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Abstract. Some properties of the Shield transformation on elastic strain energy functions are
established. It is reflexive, it preserves objectivity and material symmetry for isotropic materials,
and it also preserves infinitesimal strain response, ellipticity and Hadamard stability, and the
Baker–Ericksen condition. Two new classes of strain energies for compressible isotropic materials
are introduced, one of them being the image under the Shield transformation of the class of
harmonic strain energies. In view of Shield’s Inverse Deformation Theorem, these new classes of
strain energies will allow solution in closed form of a variety of problems in finite elastostatics.
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1. Introduction

Although Shield’s Inverse Deformation Theorem was first proved some thirty five
years ago its implications, especially with regard to finite deformations of com-
pressible isotropic solids, do not appear to have been fully appreciated. The theo-
rem is rather simple; it states that if a particular deformation is supported without
body force for a specific strain energy, then the inverse deformation is supported
withour body force for another energy, derived from the first. The theorem ap-
plies both to unconstrained materials (compressible materials) and to materials
with internal constraints, such as incompressibility. A simpler proof was given
later by Carlson and Shield [2].

The second strain energy (W ∗) is obtained from the first (W ) by a transfor-
mation (the Shield transformation)

W ∗(F) = (detF)W (F−1), (1.1)

where F is the deformation gradient tensor. We examine this transformation
and establish some of its properties. It is reflexive and it preserves infinitesimal
response, ellipticity, strong ellipticity and Hadamard stability, and the Baker–
Ericksen condition. It also transpires that W ∗ is objective if, and only if, W
is isotropic (and vice versa, because of reflexivity) and this essentially limits the
application of the Inverse Deformation Theorem to isotropic materials.
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Our focus in on the applications of the theorem for compressible isotropic elastic
materials. Motivated by the theorem, we introduce two new classes of materials.
The firs of these is the image under the shield transformation of the class of
harmonic materials introduced by John [3]. (The image of a harmonic material
is not a harmonic material – we call it coharmonic material.) One implication of
the Inverse Deformation Theorem is that the inverses of deformation solutions for
a particular harmonic material are solutions for its dual coharmonic material. A
second important implication is that if a deformation is controllable (or universal)
for a class of materials, so that it is supported without body force by every strain
energy in the class, then its inverse is controllable for the image class. Carroll [4,
5] identified three classes of compressible materials that have many controllable
deformations, one of them being the class of harmonic materials. It follows that the
inverses of the controllable deformations for harmonic materials are controllable
deformations for coharmonic materials. Similarly, the inverses of the controllable
deformations for the second class of materials introduced in [4] are controllable
for its image class under the Shield transformation. The third class of materials
introduced in [4] has the property that the image under the Shield transformation
of any material in the class is another material in the class. While this still gives
a “two for the price of one” bargain with respect to closed form solutions, it does
not give rise to nay new controllable deformations.

The case of plane deformations merits special attention. The Inverse Defor-
mation Theorem was introduced by Adkins [6] for plane deformations and all of
its application to date have been for plane problems. John introduced harmonic
materials to simplify the plane problem and to allow closed form solutions in terms
of harmonic functions. In their treatment of plane strain around elliptical cavi-
ties, Varley and Cumberbatch [7] identified four classes that they called harmonic
materials of Types 1, 2, 3 and 4. Materials of Type 1 were the harmonic materials
and materials of Type 3 were their “Eulerian duals” or Shield transforms, i.e., co-
harmonic materials. The equations of plane strain also simplified for materials of
Type 2 but Ogden [8] pointed out that they are unacceptable on physical grounds
because they predict zero stress for all (equal) biaxial strain states. Their Shield
transforms, materials of Type 4, are similarly flawed.

2. Basic equations

A deformation is a mapping

x = χ(X) (2.1)

that carries a typical material particle from its initial position X to its final position
x. The deformation gradient tensor F is defined as

F = Gradχ. (2.2)
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It has a positive Jacobian (J = detF > 0) and it admits polar decompositions

F = RU = VR, (2.3)

where U and V are positive-definite, symmetric stretch tensors and R is the
rotation tensor.

The strain energy W for an elastic solid is a function of the deformation gradient

W = W (F ). (2.4)

It has the invariance (objective) property

W (QF) = W (F) (2.5)

for all rotations Q and this implies a reduced representation

W = W (C); C = U2 = FT F. (2.6)

The strain energy function also exhibits a material symmetry property

W (FQT ) = W (F); W (QCQT ) = W (C) (2.7)

for all tensors Q in the material symmetry group g. We assume that the unde-
formed state is an undistorted state, so that g is a group of rotations.

The Piola stress P and the Cauchy stress T are

P = ∂W/∂F; T = (detF)−1PFT (2.8)

and the equation of equilibrium, with no body force, may be written as

DivP = o or divT = o. (2.9)

For isotropic materials, F,V,P and T admit representations

F = λivi ⊗ ui, V = λivi ⊗ vi,

P = pivi ⊗ ui, T = tivi ⊗ vi,
(2.10)

where λi (the principal values of U and V), pi and ti are the principal stretches,
principal forces and principal stresses, respectively.

We will make use of two particular representations of the strain energy for
isotropic solids:

W = w(λ1, λ2, λ3) and W = W (i1, i2, i3). (2.11)

Here i1, i2 and i3 are the principal invariants of the stretch tensors or the symmetric
combinations of the principal stretches¿

i1 = trV = λ1+λ2+λ3; i2 = trV+ = λ2λ3+λ3λ1+λ1λ2; i3 = detV = λ1λ2λ3,
(2.12)

where V+ is the adjoint of V. The function w( ) in (2.11)1 is completely symmetric
in its arguments. The corresponding stress response relations are

pi = ∂w/∂λi, ti = 1/λjλk∂w/∂λi (λi �= λj �= λk �= λi) (2.13)

and [4]

T = ∂w/∂i31 + ∂w/∂i1V/i3 + ∂w/∂i2{(trV−1)1 − V−1}. (2.14)
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3. The Shield transformation

In this section we define the Shield transformation of a strain energy W (F) and
we establish some of its properties.

Definition. The Shield transformation takes W to its image W ∗, with

W ∗(F) = (detF)W (F−1). (3.1)

This transformation has the following properties:
a) It is reflexive.
b) It preserves objectivity and material symmetry for isotropic materials.
c) It preserves strong ellipticity and Hadamard stability.
d) It preserves the Baker–Ericksen condition.
e) It preserves infinitesimal strain response.

a) Reflexivity
It should be obvious that the transformation is reflexive, i.e., that the image

of W ∗ is W . Indeed, (3.1) is easily inverted to give

W (F) = (detF)W ∗(F−1). (3.2)

b) Objectivity
For any rotation Q, we have

W ∗(QF) = det(QF)W ((QF)−1) = (detF)W (F−1QT )

= (detF)W (F−1) = W ∗(F). (3.3)

where the third step invokes the property (2.7)1. Since this invariance property
must hold for all rotations, the symmetry group g must be orthogonal group, i.e.,
W (F) must be an isotropic strain energy. Shield [1] was aware of this connection
between isotropy of W and objectivity of W ∗. The proof of his important theorem
on inverse deformations, discussed in the next section, does not invoke isotropy.
He did discuss its applicability for anisotropic materials, saying “Inverse deforma-
tion results for anisotropic materials can be obtained if the class of deformations
is restricted” and going on to discuss plane deformations of transversely isotropic
materials. For such deformations, of course, the material is effectively isotropic.
The reflexivity property shows that there is a similar relationship between objec-
tivity of W and isotropy of W ∗. Thus, the transformation preserves objectivity
and material symmetry for isotropic materials.

(c) Strong ellipticity and Hadamard stability
We now introduce a suffix notation with the summation convention and we

write
FiA = xi,A, FAi = XA,i. (3.4)

The strain energy W is elliptic at F if, and only if,

det{∂2W/∂xi,A∂xj,BMAMB} �= 0 (all M �= o). (3.5)
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It is Hadamard stable at F if

∂2W/∂xi,A∂xj,BmimjMAMB ≥ 0 (all m �= o and M �= o), (3.6)

i.e., if the acoustic tensor at F is positive semi-definite, and it is strongly elliptic
at F if the acoustic tensor is positive definite, so that strict inequality prevails in
(3.5). Clearly, strong ellipticity implies ellipticity.

Repeated differentiation of W ∗(F), given in (3.1), with repeated use of formula

∂XA,i/∂xj,B = −XB,iXA,j , (3.7)

which follows from the indentity

XA,ixi,C = δAC , (3.8)

leads to

∂2W ∗/∂xi,A∂xj,B = JW (XA,iXB,j − XA,jXB,i)
−J∂W/∂XC,k(XA,iXB,kXC,j +XA,kXB,jXC,i −XA,jXB,kXC,i −XA,kXB,iXC,j)

+ J∂2W/∂XC,k∂XD,lXA,kXB,lXC,iXD,j . (3.9)

It follows that

∂2W ∗/∂xi,A∂xj,BMAMB = J∂2W/∂XC,kXD,lnknlXC,iXD,j (3.10)

and

∂2W ∗/∂xi,A∂xj,BmimjMAMB = ∂2W/∂XA,iXB,jninjNANB , (3.11)

with
ni = XA,iMA; NA = XA,imi. (3.12)

Since F−1 is nonsingular, it follows that W ∗ is elliptic, strongly elliptic or Hadamard
stable at F if, and only if, W is elliptic, strongly elliptic or Hadamard stable at
F−1.

d) The Baker–Ericksen inequality is

(ti − tj)(λi − λj) > 0 (λi �= λj), (3.13)

i.e., the orderings of the principal stresses and principal stretches are the same.
With the principal stress response equation (2.13)2, this becomes

(λi∂w/∂λi − λj∂w/∂λj)(λi − λj) > 0 (λi �= λj , no summation). (3.14)

The image of the strain energy (2.11)1 under the Shield transformation is

W ∗ = w∗(λ1, λ2, λ3) = λ1λ2λ3w(1/λ1, 1/λ2, 1/λ3) (3.15)

The principal stresses are

ti = 1/λjλk∂w∗/∂λi (λi �= λj �= λk �= λi)
= w(1/λ1, 1/λ2, 1/λ3) − 1/λiwi(1/λ1, 1/λ2, 1/λ3) (no summation), (3.16)
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where wi( ) denotes the partial derivative of w( ) with respect to its ith argument.
The Barker–Ericksen inequality becomes

(1/λjwj − 1/λiwi)(λi − λj) > 0 (λi �= λj , no summation). (3.17)

Bearing in mind that the arguments of wj( ) in this inequality are the inverse
principal stretches, the substitution µi = 1/λi gives

{µjwj(µi, µ2, µ3) − µiwi(µi, µ2, µ3)}(1/µi − 1/µj) > 0
(µi �= µj , no summation), (3.18)

which is equivalent to (3.14). Thus, the Shield transformation preserves the Baker–
Ericksen condition in the sense that W ∗ meets the Baker–Ericksen condition at
a particular defomation if, and only if, W meets the condition at the inverse
deformation.

e) Infinitesimal deformations
Elastic response in infinitesimal deformation in determined by the fourth-order

elasticity tensor, which has component form

(∂2W/∂F∂F)iAjB = ∂2W/∂xi,A∂xj,B at F = 1, xi,A = δi,A. (3.19)

It follows immediately from (3.9), setting F = 1, and making use of the fact that
the energy and the stress vanish in the undeformed state, that the response of W ∗

in infinitesimal deformation is the same as that of W .
This may also be shown directly from (2.13)1 and (3.16). Indeed, for both W ∗

and W the Lamé constants µ and β are given by

2µ = w11(1, 1, 1) − w12(1, 1, 1); β = w12(1, 1, 1), (3.20)

where the subscript again denote partial differentiation and the symmetry of the
strain energy function w( ) implies that w12 = w13 at λ1 = λ2 = λ3 = 1.

4. Shield’s Inverse Deformation Theorem

The motivation for our discussion of the Shield transformation in the previous
section is the following

Inverse Deformation Theorem. Let W be a strain energy and W ∗ its image
under the Shield transformation. If a deformation

x = χ(X) (4.1)

is supported by W without body force, then the inverse deformation, given implicitly
by

X = χ(x), (4.2)

is supported by W ∗ without body force.
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This result was first proved by Shield [1] and a simpler proof was given later by
Carlson and Shield [2]. The theorem generalized the earlier result of Adkins [7] for
plane deformations. The theorem applies for materials with or without internal
constraints, such as incompressibility. The proofs [1,2] do not invoke isotropy of
W , however, in view of the discussion of the objectivity of W ∗ in the previous
section, we will confine further discussion to the isotropic case.

Incidentally, (3.8) furnishes a proof of the Inverse Deformation Theorem. Sup-
pose that W supports F−1 without body force, so that

∂/∂xk(∂W/∂XC,k) = (∂2W/∂XC,k∂XD,l)XD,kl = 0. (4.3)

Then it follows from (3.8) and (4.3) that

∂/∂XA(∂W ∗/∂xi,A) = (∂2W ∗/∂xi,A∂xj,B)xj,AB

= −J∂2W/∂XC,k∂D,lXC,iXD,kl = 0. (4.4)

For incompressible materials, the image of a strain energy W (i1, i2) is the strain
energy W (i2, i1). Similarly, the image of a strain energy W (I1, I2) is a strain energy
W (I2, I1), I1 and I2 being the first two principal invariants of the deformation
tensor C. In particular, if a deformation is supported without body force in
a particular Mooney–Rivlin material, then the inverse deformation is supported
withour body force in another Mooney–Rivlin material.

An immediate corollary of the Inverse Deformation Theorem is the following:

If a deformation (4.1) is a controllable deformation for a class of strain energies,
so that it is supported without body force for every strain energy in the class, then
its inverse (4.2) is a controllable deformation for the image class of strain energies
under the Shield transformation.

The inverse of a very known controllable deformation for incompressible isotropic
materials is also a controllable deformation (for example, bending of a rectangular
block into a circular cylindrical sector and straightening of a sector into a block).
Indeed, this is a manifestation of the Inverse Deformation Theorem. It follows
that use of the theorem does not lead to any new controllable deformations for
incompressible materials.

The situation is quite different in the compressible case. Ericksen [9] proved
that the only deformations that are controllable for the full class of compressible
isotropic materials are homogeneous deformations. (A short proof of this result
was given by Shield [10].) However, there are three known families of compress-
ible isotropic materials – one being harmonic materials – that have controllable
deformations (Carroll [4, 5]). The Inverse Deformation Theorem implies that the
images of these classes under the Shield transformation will also afford controllable
deformations. As stated above, the Shield transformation of the class of harmonic
materials yield the class of coharmonic materials. Transformation of the second
class of strain energies (called Class II in [4, 5]) also yields a new class (Class II∗).
However, the third class (Class III) is such that the Shield transformation of any
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particular strain energy in the class yields another energy in the class.

5. Two new classes of compressible isotropic strain energies

We begin by listing five classes of compressible isotropic strain energies:
Class I (harmonic materials):

W = f(i1) − 2µ{ζi2 + (1 − ζ)i3 − 1 − 2ζ} (5.1)

Class I∗ (coharmonic materials):

W = i3f(i2/i3) − 2µ{ζi1 − (1 + 2ζ)i3 + 1 − ζ} (5.2)

Class II:
W = g(i2) + µ{(1 − ζ)i1 − (3 + ζ)i3 + 4ζ} (5.3)

Class II∗:
W = i3g(i1/i3) + µ{(1 − ζ)i2 + 4ζi3 − 3 − ζ} (5.4)

Class III:
W = h(i3) + 2µ{ζi1 + (1 − ζ)i2 − 3}. (5.5)

Classes I, II and III were introduced previously by John [3] and Carroll [4].
Classes I∗ and II∗ are new and they are the images of Classes I and II under the
Shield transformation. They might also be written as

Class I∗:
W = 1/j3{f(j1) − 2µ(ζj2 + (1 − ζ)j3 − 1 − 2ζ} (5.6)

Class II∗:
W = 1/j3{g(j2) + µ{(1 − ζ)j1 − (3 + ζ)j3 + 4ζ}, (5.7)

where j1, j2 and j3 are the principal invariants of the inverse stretch tensor V−1,
i.e.,

j1 = 1/λ1+1/λ2+1/λ3; j2 = 1/λ2λ3+1/λ3λ1+1/λ1λ2; j3 = 1/λ1λ2λ3. (5.8)

The image of a particular Class III strain energy (5.5) is

W ∗ = 1/j3{h(j3) + 2µ{ζj1 + (1 − ζ)j2 − 3}
= i3h(1/i3) + 2µ{ζi2 + (1 − ζ)i1 − 3i3}, (5.9)

which is a different strain energy in Class III.
The constants in (5.1)–(5.5) are chosen so that the strain energies and the

stresses vanish in the undeformed state, provided

f(3) = g(3) = h(1) = 0 (5.10)

and
f ′(3) = 2µ(1 + ζ), g′(3) = µ(1 + ζ), h′(1) = 2µ(ζ − 2). (5.11)
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In each case, the constant µ(> 0) is the shear modulus for infinitesimal deformation
and the bulk modulus K(> 0) is given by

f ′′(3) = 4g′′(3) = 3h′′(1) = K + 4/3µ. (5.12)

(The Shield transformation preserves the response in infinitesimal deformation.) It
was pointed out in [4] that a strain energy that is linear in all three invariants i1, i2
and i3 does not describe realistic material response and this is evident from (5.12).
The image of such a strain energy under the Shield transformation is another such
strain energy.

The fact that the Shield transformation preserves strong ellipticity, Hadamard
stability and the Baker–Ericksen condition suggests that if the constitutive func-
tions f( ), g( ) and h( ) are such that the strain energies (5.1), (5.3) and (5.5)
model realistic material response, then so too will the image energies (5.2), (5.4)
and (5.9). The Baker–Ericksen conditions are

f ′(i1) − 2µζλ > 0, λg′(i2) + µ(1 − ζ) > 0, λ < ζ/(ζ − 1), (5.13)

for each principal stretch λ. Observe from (5.13)3 that materials of Class III can
not meet the Baker–Ericksen condition for all stretch states, except in the case
ζ = 1.

6. Examples: Harmonic and coharmonic materials

By way of example, we present two new deformations that are controllable for
harmonic materials and we verify that the inverse deformations are controllable
for coharmonic materials.

For the class of harmonic materials (5.1), the Cauchy stress is given by (2.14)
as

T = −2µ(1 − ζ)1 + f ′(i1)V/i3 − 2µζ{(trV−1)1 − V−1}, (6.1)

so that the equation of equilibrium (2.9)2 reduces to

f ′′(i1)(V/i3)gradi1 + f ′(i1)div(V/i3) − 2µζdiv{(trV−1)1 − V−1} = o. (6.2)

It was shown in [5] that

div(V/i3) = o and div{(trV−1)1 = V−1} = o (6.3)

for any irrotational (potential) deformation†

x = GradΨ(X). (6.4)

The first result (6.3)1 is an immediate consequence of the indentity

i3div(V/i3) = DivR. (6.5)

† All irrotational deformations are potential deformations but the opposite is not true.
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The second result (6.3)2 follows from the fact that the inverse deformation is also
irrotational, so that

X = gradψ(x), (6.6)

and hence
V−1 = F−1 = gradgradψ(x). (6.7)

It follows from (6.2) and (6.3) that any irrotational deformation (6.4) is controllable
for the class of harmonic materials provided ii is constant, i.e., provided

∇2Ψ = ν (constant). (6.8)

This implies [5] that every harmonic scalar (Φ = Ψ−1/2νX·X) gives a deformation
that is controllable for harmonic materials.

For coharmonic materials, the stress is

T = {f(i2/i3) − i2/i3f
′(i2/i3) + 2µ(1 + 2ζ)}1 − 2µζV/i3

+ f ′(i2/i3){(trV−1)1 − V−1}. (6.9)

In view of (6.3), the equation of equilibrium for any potential deformation (6.4)
reduces to the condition that j1 = i2/i3 be constant. This class of controllable
deformations is clearly the inverse of the class of controllable deformations for
harmonic materials.

Consider a potential

Ψ = 1/2(αX2+βY 2+γZ2)+κ ln R (R2 = X2+Y 2; α > 0, β > 0, γ > 0). (6.10)

which meets the condition (6.8) with ζ = α+β+γ. The corresponding deformation

x = (α + κ/R2)X, y = (β + κ/R2)Y, z = γZ (6.11)

is controllable for harmonic materials. It follows from (6.11) that

x2/(αR + κ/R)2 + y2/(βR + κ/R)2 = 1. (6.12)

so that this deformation carries material circular cylinders R = R0 into elliptical
cylinders. The stretch tensor is

V = F =




α + κ/R2 − 2κX2/R4 −2κXY/R4 0
−2κXY/R4 β + κ/R2 − 2κY 2/R4 0

0 0 γ


 (6.13)

and the stress tensor is given by (6.1) and (6.13).
The inverse deformation is given implicitly as

X = (α + κ/r2)x, Y = (β + κ/r2)y, Z = γz. (6.14)

This is controllable for harmonic materials and it carries material elliptical cylin-
ders into circular cylinders r = r0. The inverse stretch is

V−1 = F−1 =




α + κ/r2 − 2κx2/r4 −2κxy/r4 0
−2κxy/r4 β + κ/r2 − 2κy2/r4 0

0 0 γ


 (6.15)
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and the stress is given by (6.9) and (6.15), with i2/i3 = α + β + γ.
As a second example, consider the potential

Ψ = 1/2(α1X
2
1 + α2X

2
2 + α3X

2
3 ) + κ/R (R2 = XiXi, αi > 0), (6.16)

which meets the condition (6.8) with ζ = α1 + α2 + α3. The corresponding
deformation

xi(αi − κ/R3)Xi (no summation) (6.17)

is controllable for harmonic materials. It follows from (6.17) that

x2
1/(α1R − κ/R2)2 + x2

2/(α2R − κ/R2)2 + x2
3/(α3R − κ/R2)2 = 1, (6.18)

so that this deformation carries material spheres R = R0 into ellipsoids. The
components of the stretch tensor are

Vij = (αi − κ/R3)δij − 3κXiXj/R5 (no summation) (6.19)

and the stress tensor is given by (6.1) and (6.19).
The inverse deformation, given implicitly as

Xi = (αi − κ/r3)xi (no summation), (6.20)

is controllable for coharmonic materials and it carries material ellipsoids into
spheres r = r0. The inverse stretch components are

V −1
ij = (αi − κ/r3)δij − 3κxixj/r5 (6.21)

and the stresses are given by (6.9) and (6.21).
The deformations (6.11) and (6.17) are treated here merely as illustrative ex-

amples. They are somewhat artificial in that there are not enough adjustable
parameters for them to provide solutions of realistic boundary value problems.
For example, if we attempt to use the controllable deformation (6.11) to solve the
plane strain (γ = 1) problem of a hollow circular cylinder with inner and outer
radii R0 and R1, threaded on to an elliptical spindle with principal radii a and b,
the boundary conditions at R = R0 are

αR0 + κ/R0 = a, βR0 + κ/R0 = b. (6.22)

This leaves just one adjustable parameter to meet boundary conditions at R = R1.
Similar remarks apply for the deformation (6.17). More realistic solutions for
harmonic and coharmonic materials will be treated subsequently.

7. Radial cylindrical deformations for materials in Class II∗

As a final example, we treat a radial cylindrical expansion or compaction that is
controllable for materials in Class II∗. We first describe briefly the corresponding
deformation for materials in Class II, first treated in [4].

For a Class II strain energy (5.3), the Cauchy stress is given by (2.14) as

T = −µ(3 + ζ)1 + µ(1 − ζ)V/i3 + g′(i2){(trV−1)1 − V−1}. (7.1)
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For irrotational deformations (6.4), the equations of equilibrium reduce to the
condition that i2 be constant. For the Class II∗ strain energy (5.4), the Cauchy
stress is

T = {g(i1/i3)−i1/i3g
′(i1/i3)+4µζ}1+g′(i1/i3)V/i3+µ(1−ζ){(trV−1)1−V−1}.

(7.2)
For irrotational deformations, the equations of equilibrium reduce to the condition
that j2 = i1/i3 be constant.

An irrotational deformation with potential

Ψ = F (R) + 1/2λZ2; (R2 = X2 + Y 2, F ′(R) > 0, F ′′(R) > 0, λ > 0) (7.3)

generates a radial cylindrical deformation

r = r(R), θ = Θ, z = λZ. (7.4)

This radial expansion or compaction has principal stretches dr/dR, r/R and λ
and the condition that i2 be constant

r/R dr/dR + λ(dr/dR + r/R) = constant (7.5)

integrates to
r = (αR2 + β)1/2 − λR. (7.6)

The deformation described by (7.4) and (7.6) is controllable for materials in
Class II.

The inverse deformation is given implicitly by

R = (αr2 + β)1/2 − λr, Θ = θ Z = λz (7.7)

and explicitly by

r = λR/(α − λ2) [1 + {1 + (α/λ2 − 1)(β/R2 − 1)}1/2], θ = Θ, z = Z/λ. (7.8)

The invariant j2 = i1/i3 = α − λ2 and the deformation (7.8) is controllable for
materials in Class II∗. The inverse stretch tensor is found from (7.7):

V−1 = {αr/(αr2+β)1/2−λ}er⊗er +{(αr2+β)1/2/r−λ}eθ⊗eθ +λez⊗ez (7.9)

and the stress is found from (7.2) and (7.9). In particular, the radial stress is

Trr = g(α−λ2)−αg′(α−λ2)+4µζ+{λg′(α−λ2)+µ(1−ζ)}(α+β/r2)1/2. (7.10)

Solutions of boundary value problems of interest are given by (7.8) and (7.10) for
any particular response function g( ) and constants µ and ζ.
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