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Abstract. The model of the equations of generalized linear micropolar thermoelasticity with
two relaxation times in an isotropic medium with temperature-dependent mechanical properties
is established. The modulus of elasticity is taken as a linear function of reference temperature.
Laplace and exponential Fourier transform techniques are used to obtain the solution by a direct
approach. The integral transforms have been inverted by using a numerical technique to obtain
the temperature, displacement, force and couple stress in the physical domain. The results
of these quantities are given and illustrated graphically. A comparison is made with results
obtained in case of temperature-independent modulus of elasticity. The problem of generalized
thermoelasticity has been reduced as a special case of our problem.
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1. Introduction

The elastic modulus is an important physical property of materials reflecting the
elastic deformation capacity of the material when subjected to an applied external
load. Most of investigations were done under the assumption of the temperature-
independent material properties, which limit the applicability of the solutions
obtained to certain ranges of temperature. At high temperature the material
characteristics such as the modulus of elasticity, Poisson’s ratio, the coefficient of
thermal expansion and the thermal conductivity are no longer constants [1]. In
recent years due to the progress in various fields in science and technology the ne-
cessity of taking into consideration the real behavior of the material characteristics
became actual. Temperature dependent measurements of Young’s modulus were
performed for the first time on black and transparent bulk material of chemical
vapor deposited diamond by a dynamic three point bending method in a tempera-
ture range from −150 to 850 deg C [2]. A lower Young’s modulus of polycrystalline
diamond is caused by crystal imperfections and impurities [2]. The temperature
dependencies of shear elasticity of some liquids have been investigated in [3]. It
was found that the shear modulus decreases with increasing temperature. This
decrease may be explained by the increase of the fluctuation free volume [3]. The
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dynamic resonance method was used to determine the temperature dependence
of the modulus of elasticity of some plasma-sprayed materials [4]. Rising in test
temperature was found to cause a monotonic decrease in the modulus of elasticity.
It was shown that the modulus of elasticity of coating materials decreases during
the temperature rise to 1200 deg C by 25 to 60 percent [4].

Analyzing the problems of high-frequency short-wavelength vibrations and ul-
trasonic waves in elastic media, the classical theory of elasticity is inadequate to
describe the real phenomena, whence the necessity of recurring to the micropo-
lar theory. The micropolar elasticity theory takes into consideration the granular
character of the medium, and is intended to be applied to materials for problems
where the classical theory of elasticity fails owing to the microstructure of the ma-
terial. The general theory of linear micropolar elasticity was given by Eringen [5–7]
and Nowacki [8–9]. Under this theory, solids can undergo macro-deformations and
micro-rotations, and support couple stresses in addition to force stresses.

The micropolar theory was extended to include thermal effects by Nowacki [10],
Eringen [5, 11], Tauchert et al. [12], Tauchert [13] and Nowacki and Olszak [14].
One can refer to Dhaliwal and Singh [15] for a review on the micropolar thermoe-
lasticity and a historical survey of the subject, as well as to Eringen and Kafadar
[16] in ”Continuum Physics” series in which the general theroy of micromorphic
media has been summed up.

The classical theory of heat conduction predicts infinite speed of heat trans-
portation, if a material conducting heat is subjected to thermal disturbances,
which contradicts the physical facts. During the last three decades non-classical
theories have been developed to remove this paradox. Lord and Shulman [17]
incorporated a flux rate term into the Fourier’s law of heat conduction and for-
mulated a generalized theory admitting finite speed for thermal signals. Green
and Lindsay [18] have developed a temperature rate dependent thermoelasticity
by including temperature rate among the constitutive variables which does not
violate the classical Fourier law’s of heat conduction when the body under con-
sideration has a center of symmetry and this theory also predicts a finite speed of
heat propagation.

Recently some authors discussed different type of problems in generalized mi-
cropolar thermoelasticity medium with temperature-independent modulus of elas-
ticity (Kumar and Singh [19, 20], Singh and Kumar [21, 22], and Kumar [23]).
Motivated by the recent experimental studies [1–4] showing the necessity of tak-
ing into consideration the real behavior of the material characteristics, this paper
presents an attempt to examine the temperature dependency of elastic modulus on
the behavior of two-dimensional solutions in a micropolar thermoelastic medium.
This article is a continuation of the work [24, 25] to include the effect of reference
temperature on thermal stress distribution.
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2. Formulation of the problem

We shall consider an isotropic micropolar thermoelastic medium with temperature-
dependent mechanical properties. Following Eringen [5-7], the components of the
force stress σijand couple stress mij tensors are given, respectively, by:

σij = λur,rδij + µ(ui,j + uj,i) + k(uj,i − εijrφr)− γ

(
T − T0 + ν

∂T

∂t

)
δij , (2.1)

mij = αφr,rδij + βφi,j + δφj,i. (2.2)

The usual summation convention for repeated indices is used throughout and the
comma denotes differentiation with respect to spatial coordinates. ui is the dis-
placement, εijr is the permutation symbol and φi is the microrotation. T is the
absolute temperature of the medium, ν is a constant with dimension of time, called
a relaxation time, γ is a material constant given by γ = (3λ + 2µ + k)αt, and αt

being the coefficient of linear thermal expansion. T0 is a reference temperature
chosen such that |(T − T0)/T0| ¿ 1.

In three dimensions, the isotropic micropolar elastic solid requires six elastic
constants λ, µ, α, β, γ and k for its description. The engineering material
constants for micropolar elasticity are as follows:

i) Characteristic Length: L2 =
δ

4µ + 2k
,

ii) Coupling factor: N2 =
k

2µ + 2k
,

iii) Poisson’s ratio: ν∗ =
λ

2µ + 2λ + k
,

iv) Young’s Modulus: E =
(2µ + 3λ + k)(2µ + k)

2µ + 2λ + k
.

(2.3)

Classical elasticity corresponds to the special case of micropolar elasticity in which
L → 0.

The generalized equation of heat conduction has the form

KT,ii = ρcE

(
∂

∂t
+ τ0

∂2

∂t2

)
T + T0γ

(
∂

∂t
+ n0τ0

∂2

∂t2

)
ui,i, (2.4)

where K is the coefficient of the thermal conductivity of the medium, cE is the
specific heat at constant strain, τ0 is an other relaxation time and n0 is a non-
dimensional constant. For the generalized theory of thermoelasticity with two
relaxation times (Green Lindsay theory), the thermal relaxations τ0 and ν satisfy
the inequality ν > τ0 and n0 = 0, whereas for coupled theory ν = τ0 = 0. The
Lord Shulman model can be deduced from Green Lindsay theory by taking ν = 0
and n0 = 1.

Our goal is to investigate the effect of temperature dependency of modulus of
elasticity keeping the other elastic and thermal parameters constants, therefore we
assume
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E = E0f(T ), λ = E0λ0f(T ), µ = E0µ0f(T ), k = E0k0f(T ),
α = E0α0f(T ), β = E0β0f(T ), δ = E0δ0f(T ), γ = E0γ0f(T ),

where E0, ν∗ and αt are considered constants, f(T ) is a given non-dimensional
function of temperature, in case of temperature-independent modulus of elasticity
f(T ) ≡ 1, and E = E0.

The system of governing equations of a micropolar thermoelastic solid, without
body forces and body couples, consists of [5-7]:

σji,j = ρ
∂2ui

∂t2
, (2.5)

εijrσjr + mji,j = jρ
∂2φi

∂t2
, (2.6)

where ρ is the density and j is the microinertia. Substituting Eqs. (2.1)–(2.2) into
equations of motion (2.5) and (2.6) we get

ρ
∂2ui

∂t2
= E0f

[
(λ0 + µ0)uj,ji + (µ0 + k0)ui,jj + k0εijrφr,j − γ0

(
1 + ν

∂

∂t

)
T,i

]

+E0f,j

[
λ0ur,rδij + µ0(ui,j + uj,i) + k0(ui,j + εijrφr)− γ0

(
T − T0 + ν

∂T

∂t

)
δij

]

jρ
∂2φi

∂t2
= E0f [(α0 + β0)φj,jiδij + δ0φi,jj + k0εijrur,j − 2k0φi] (2.7)

+ E0f,j [α0φr,rδij + δ0φi,j + β0φj,i].

Now we introduce the following non-dimensional variables:

x∗i =
η0

c0
xi; u∗i =

ρη0c0

γ0T0
ui; t∗ = η0t; τ∗0 = η0τ0; ν∗ = η0ν;

θ = E0
T − T0

T0
; σ∗ij =

σij

γ0T0
; m∗

ij =
η0

c0γ0T0
mij ; φ∗i =

ρc2
0

γ0T0
φi

where η0 = ρcEc2
0/K and c2

0ρ = µ0E0. Eqs. (2.1), (2.2), (2.4) and (2.7) take the
following form (dropping the asterisks for convenience):

µ0σij =

[
λ0ur,rδij + µ0(ui,j + uj,i) + k0(uj,i − εijrφr)

− µ0

(
1 + ν

∂

∂t

)
θδij

]
f(θ)

µ0mij = [α0φr,rδij + β0φi,j + δ0φj,i]f(θ)

µ0
∂2ui

∂t2
=

[
(λ0 + µ0)uj,ji + (k0 + µ0)ui,jj + k0εijrφr,j
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− µ0

(
1 + ν

∂

∂t

)
θ,i

]
f(θ)

+
[
λ0ur,r − µ0

(
1 + ν

∂

∂t

)
θ

]
f,i

+ [µ0(ui,j + uj,i) + k0(ui,j + εijrφr)] f,j

µ0j
∂2φi

∂t2
=

[
(α0 + β0)φj,ji + δ0φi,jj +

k0c
2
0

η2
0

εijrur,j − 2
k0c

2
0

η2
0

φi

]
f(θ)

+ α0φr,rf,i(θ) + [δ0φi,j + β0φj,i]f,j ,

∇2θ =
(

∂

∂t
− τ0

∂2

∂t2

)
θ − εf(θ)

(
∂

∂t
+ n0τ0

∂2

∂t2

)
∇2ui,i,

where ε = γ2
0E2

0T0
Kρη0

. The rectangular Cartesian co-ordinate system (x, y, z) having
origin on the surface z = 0 with z axis vertical into the medium is introduced. If
we restrict our analysis parallel to xz-plane with displacement vector u = (u, 0, w)
and microrotation vector φ = (0, φ2, 0), the set of the system of equations (2.8)
reduces to

µ0
∂2u

∂t2
=

[
(λ0 + µ0)

(
∂2u

∂x2
+

∂2w

∂x∂z

)
+ (λ0 + k0)

(
∂2u

∂x2
+

∂2u

∂z2

)

− k0
∂φ2

∂z
− µ0

(
1 + ν

∂

∂t

)
∂θ

∂x

]
f(θ)

+
[
(λ0 + 2µ0 + k0)

∂u

∂x
+ λ0

∂w

∂z
− µ0(1 + ν

∂

∂t
)θ

]
∂f

∂x

+
[
µ0

∂w

∂x
+ (µ0 + k0)

∂u

∂z
− k0φ2

]
∂f

∂z

µ0
∂2w

∂t2
=

[
(λ0 + µ0)

(
∂2w

∂z2
+

∂2u

∂x∂z

)
+ (λ0 + k0)

(
∂2w

∂z2
+

∂2w

∂x2

)

+ k0
∂φ2

∂x
− µ0

(
1 + ν

∂

∂t

)
∂θ

∂z

]
f(θ)

+
[
(λ0 + 2µ0 + k0)

∂w

∂z
+ λ0

∂u

∂x
− µ0

(
1 + ν

∂

∂t

)
θ

]
∂f

∂z

+
[
µ0

∂u

∂z
+ (µ0 + k0)

∂w

∂x
+ k0φ2

]
∂f

∂x

µ0j
∂2φ2

∂t2
=

[
δ0(

∂2φ2

∂x2
+

∂2φ2

∂z2
) +

k0c
2
0

η2
0

(
∂u

∂z
− ∂w

∂x
)− 2

k0c
2
0

η2
0

φ2

]
f(θ)

+ δ0

(
∂φ2

∂x

∂f

∂x
+

∂φ2

∂z

∂f

∂z

)
,

∇2θ =
(

∂

∂t
+ τ0

∂2

∂t2

)
θ + εf(θ)

(
∂

∂t
+ n0τ0

∂2

∂t2

)(
∂u

∂x
+

∂w

∂z

)
.

In generalized thermoelasticity, as well as in the coupled theory only the infinitesi-
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mal temperature deviations from reference temperature are considered. Therefore
f(θ) can be taken in the form f(θ) = 1− ξ∗T0, where ξ∗ is an empirical material
constant (1/K). The last system of equations is linearized and reduces to the
linear system:

ξ
∂2u

∂t2
=

1
ε1
∇2u +

1
ε2

∂

∂z

(
∂w

∂x
− ∂u

∂z

)
− ε3

ε2

∂φ2

∂z
−

(
1 + ν

∂

∂t

)
∂θ

∂x
, (2.8)

ξ
∂2w

∂t2
=

1
ε1
∇2w +

1
ε2

∂

∂x

(
∂u

∂z
− ∂w

∂x

)
+

ε3

ε2

∂φ2

∂x
−

(
1 + ν

∂

∂t

)
∂θ

∂z
, (2.9)

ξε5
∂2φ2

∂t2
= ∇2φ2 − 2ε4φ2 + ε4

(
∂u

∂z
− ∂w

∂x

)
, (2.10)

∇2θ =
(

∂

∂t
+ τ0

∂2

∂t2

)
θ + ε0

(
∂

∂t
+ n0τ0

∂2

∂t2

)(
∂u

∂x
+

∂w

∂z

)
,

where

ξ =
1

1− ξ∗T0
, ε0 =

ε

ξ
, ε1 =

µ0

λ0 + 2µ0 + k0
, ε2 =

µ0

µ0 + k0
,

ε3 =
k0

µ0 + k0
, ε4 =

k0c
2
0

δ0η2
0

, ε5 =
jµ0

δ0
.

3. Formulation and solution in the transformed domain.

Introducing potentials Φ(x, z, t) and Ψ(x, z, t) which are related to displacement
components, we get

u =
∂Φ
∂x

+
∂Ψ
∂z

, w =
∂Φ
∂z

− ∂Ψ
∂x

(3.1)

Applying the Laplace transform f̄(x, z, s) of a function f(x, z, t) defined by the
relation:

f̄(x, z, s) =
∫ ∞

0

f(x, z, t)e−stdt, (3.2)

and then the exponential Fourier transform with respect to the variable z (denoted
by an asterisk) and defined by the relation

f̄∗(x, q, s) =
1√
2π

∫ +∞

−∞
e−iqz f̄(x, z, s)dz, (3.3)

on both sides of Eq. (2.9), we get:

(D2 − q2 − ε1ξs
2)Φ̄∗ − ε1(1 + νs)θ̄∗ = 0, (3.4)

(D2 − q2 − ε2ξs
2)Ψ̄∗ − ε3φ̄

∗
2 = 0, (3.5)

(D2 − q2 − 2ε4 − ε5ξs
2)φ̄∗2 + ε4(D2 − q2)Ψ̄∗ = 0, (3.6)

(D2 − q2 − s− τ0s
2)θ̄∗ − ε0s(1 + n0τ0s)(D2 − q2)Φ̄∗ = 0, (3.7)



Vol. 57 (2006) Temperature dependence of an elastic modulus 1063

where D = ∂/∂x. Substituting Eq. (3.7) into Eq. (3.4) and Eq. (3.6) into Eq.
(3.5), we get:

(D4 −AD2 + B)(Φ̄∗, θ̄∗) = 0, (3.8)

(D4 − CD2 + E)(Ψ̄∗, φ̄∗2) = 0, (3.9)

where

A = 2q2 + s(1 + τ0s) + ε1ξs
2 + ε0ε1s(1 + νs)(1 + n0τ0s),

B = (q2 + s + τ0s
2)(q2 + ε1ξs

2) + ε0ε1q
2s(1 + νs)(1 + n0τ0s),

C = 2q2 + (ε2 + ε5)ξs2 + ε4(2− ε3),

E = (q2 + ε2ξs
2)(q2 + 2ε4 + ε5ξs

2)− ε3ε4q
2.

(3.10)

The solution of Eq. (3.8), which is bounded for x > 0, is given by

Φ̄∗ =
2∑

n=1

Ane−knx, θ̄∗ =
2∑

n=1

k2
n − q2 − ε1ξs

2

ε1(1 + νs)
Ane−knx, (3.11)

where k2
1 and k2

2 are the roots of the characteristic equation

k4 −Ak2 + B = 0 (3.12)

In a similar manner, the solution of Eq. (3.9), which is bounded for x > 0, is given
by

Ψ̄∗ =
2∑

n=1

An+2e
−kn+2x, φ̄∗2 =

1
ε3

2∑
n=1

(k2
n+2 − q2 − ε2ξs

2An+2e
−kn+2x) (3.13)

where k2
3 and k2

4 are the roots of the characteristic equation

k4 − Ck2 + E = 0 (3.14)

4. Application

We consider a thermal boundary condition that the surface of the half-space is
known

θ(0, z, t) = g(z, t) = θ0H(t)H(b− |z|) (4.1)

where H(.) is the Heaviside unit step function and θ0 is a constant. This means
that heat is applied on the surface of the half-space on a narrow band of width 2b
surrounding the z−axis to keep it at temperature θ0, while the rest of the surface
is kept at zero temperature.

The surface of the half-space is traction free

σzz(0, z, t) = σzx(0, z, t) = mzy(0, z, t) = 0. (4.2)
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Making use of Eqs. (3.11) and (3.13) in the boundary conditions (4.1)–(4.2) af-
ter applying the transforms defined by Eqs. (3.2)–(3.3), we obtain the expressions
for displacement components, and stresses fields as

ū∗ =
2∑

n=1

[
− knAne−knx + iqAn+2e

−kn+2x
]
,

w̄∗ =
2∑

n=1

[
iqAne−knx + kn+2An+2e

−kn+2x
]
,

ξm̄∗
zy =

iqε3ε4

ε2

2∑
n=1

[
k2

n+2 − q2 − ε2ξs
2
]
An+2e

−kn+2x,

ξσ̄∗zz =
2∑

n=1

[
(ξs2 − ε7k

2
n)Ane−knx + iqε7kn+2An+2e

−kn+2x
]
, (4.3)

ξσ∗zx =
2∑

n=1

[
− iqε7knAne−knx + (ξs2 − ε7k

2
n+2)An+2e

−kn+2x
]
,

where

A1 = (k4 − k3)
[
(ξs2 − ε7k

2
2)(ξs

2 − ε7(q2 + ε2ξs
2))(k4 + k3)

−q2ε2
7k2(k3k4 + q2 + ε2ξs

2)
]
/∆,

A2 = −(k4 − k3)
[
(ξs2 − ε7k

2
1)(ξs

2 − ε7(q2 + ε2ξs
2))(k4 + k3)

−q2ε2
7k1(k3k4 + q2 + ε2ξs

2)
]
/∆,

A3 = iqε7(k2
4 − q2 − ε2ξs

2)(k1 − k2)(ξs2 + ε7k2k1)/∆,

A4 = −iqε7(k2
3 − q2 − ε2ξs

2)(k1 − k2)(ξs2 + ε7k2k1)/∆,

∆ =
(k4 − k3)(k1 − k2)
ε1(1 + νs)ḡ∗(q, s)

[
(ξs2

−ε7(q2 + ε1ξs
2))(ξs2 − ε7(q2 + ε2ξs

2))(k4 + k3)(k1 + k2)

−q2ε2
7(k3k4 + q2 + ε2ξs

2)(k1k2 + q2 + ε1ξs
2)

]
.

Particular case: If we neglect the microrotational effect by putting α0 = β0 =
δ0 = k0 = j = 0 in the system of equations (2.9), the expressions for displacement
and stresses fields in a generalized thermoelastic medium are given by the system
of equations (4.3) with Ai, i = 1, 2, 3, 4, defined as

A1 =
[
(ξs2 − 2k2

2)(ξs
2 − 2k2

3)− 4q2k2k3

]
/∆,

A2 = −
[
(ξs2 − 2k2

1)(ξs
2 − 2k2

3)− 4q2k1k3

]
/∆,

A3 = 2iq(k1 − k2)(ξs2 + 2k1k2)/∆, A4 = 0,
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∆ =
(k1 − k2)

ε1(1 + νs)ḡ∗(q, s)

[
(k1 + k2)(ξs2 − 2k2

3)
(
ξs2 − 2(q2 + ε1ξs

2)
)

−4q2k3(k1k2 + q2 + ε1ξs
2)

]
.

5. Inversion of the double transforms

We shall now outline the numerical method used to find the solution in the physical
domain.

Let f̄∗(x, q, s) be the double Fourier-Laplace transform of a function f(x, z, t).
First, we invert the Fourier transform using the inversion formula to obtain a
Laplace transform expression f̄(x, z, s) of the form

f̄(x, z, s) =
1√
2π

∫ +∞

−∞
f̄∗(x, q, s)eiqzdq

=

√
2
π

∫ +∞

0

(
cos(qz)f̄∗e (x, q, s) + i sin(qz)f̄∗o (x, q, s)

)
dq,

where f̄∗e and f̄∗o denote the even and odd parts of the function f̄∗(q, z, s), respec-
tively.

The inversion formula for the Laplace transforms can be written as

f(x, z, t) =
1

2πi

∫ c+i∞

c−i∞
estf̄(x, z, s) ds,

where c is an arbitrary constant greater than all real parts of the singularities of
f̄(x, z, s) .

Taking s = c + iy , we get

f(x, z, t) =
ect

2π

∫ ∞

−∞
eiyt f̄(x, z, c + iy) dy .

Expanding the function h(x, z, t) = e−ctf(x, z, t) in a Fourier series in the interval
[0, 2T ], we obtain the approximate formula Honig and Hirdes [26]:

f(x, z, t) = f∞(x, z, t) + ED

where

f∞(x, z, t) =
1
2
c0 +

∞∑
k=1

ck, for 0 ≤ t ≤ 2T, (5.1)

and

ck =
ect

T
<e[eikπt/T f̄(x, z, c + ikπ/T )]

ED, the discretization error, can be made arbitrarily small by choosing c large
enough [26]. Since the infinite series in Eq. (5.1) can only be summed up to a
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finite number N of terms, the approximate value of f(x, z, t) becomes

fN (x, z, t) =
1
2
c0 +

N∑
k=1

ck, for 0 ≤ t ≤ 2T. (5.2)

Using the above formula to evaluate f(x, z, t), we introduce a truncation error ET

that must be added to the discretization error to produce the total approximation
error.

Two methods are used to reduce the total error. First, the Korrektur method
is used to reduce the discretization error. Next, the ε-algorithm is used to reduce
the truncation error and hence to accelerate convergence. The Korrektur method
uses the following formula to evaluate the function f(x, z, t):

f(x, z, t) = f∞(x, z, t)− e−2cT f∞(x, z, 2T + t) + E′
D,

where the discretization errors |E′
D| << |ED|. Thus, the approximate value of

f(x, z, t) becomes

fNk
(x, z, t) = fN (x, z, t)− e−2cT fN ′(x, z, 2T + t), (5.3)

where N ′ is an integer less N .
We shall now describe the ε- algorithm that is used to accelerate the conver-

gence of the series in Eq. (5.1). Let N = 2q + 1 where q is a natural number, and
let

sm =
m∑

k=1

ck

be the sequence of partial sums of Eq. (5.2), we define the ε-sequence by

ε0,m = 0, ε1,m = sm, m = 1, 2, 3, · · ·
and

εn+1,m = εn−1,m+1 +
1

εn,m+1 − εn,m
, n = m = 1, 2, 3, · · ·

It can be shown that [26] the sequence ε1,1, ε3,1, · · · , εN,1 converges to f(x, z, t) +
ED − 1

2c0 faster than the sequence of partial sums sm, m = 1, 2, 3, · · · The actual
procedure used to invert the Laplace transforms consists of using Eq.(5.2) together
with the ε- algorithm. The values of c and T are chosen according the criteria
outlined in [26].

The last step is to calculate the integral in Eq.(5.3). This method for evalu-
ating this integral is described by Press et al. in [27], which involves the use of
Romberg’s integration adaptive step size. This also uses the results from succes-
sive refinements of the extended trapezoidal rule followed by extrapolation of the
results to the limit when the step size tends to zero.
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Figure 1. a) Effect of reference temperature T0 on temperature in GMTE medium.

6. Discussion

For numerical computations, following Eringen [28], the values of relevant param-
eters for the case of magnesium crystal are taken:

Table 1. Values of the constants

λ0 = 9.4× 1011 dyne/cm2 µ0 = 4.0× 1011 dyne/cm2 k0 = 1.0× 1011 dyne/cm2

ρ = 1.74 gm/cm3 δ0 = 0.779× 10−4 dyne j = 0.2× 10−15 cm2

cE = 0.23 cal/gm ◦C γ0 = 1.78× 10−5 /◦C K = 0.6× 10−2 cal/cm s ◦C
T0 = 296 K ξ∗ = 0.001 /K ε = 10.588

The computations were carried out for a value of time t = 0.1 and on the
surface of plane z = 0. The numerical values for the temperature, the horizon-
tal displacement components u, the normal force stress component σzz and the
couple stress mzy on the surface of plane z = 0 are shown in figures 1a–3a and
Fig. 4 in case of generalized micropolar thermoelasticity medium (GMTE) and
in figures 1b–3b in case of generalized thermoelasticity medium (GTE). In these
figures the dotted lines either without center symbol or with center symbol rep-
resent the solution obtained when the modulus of elasticity is taken as a linear
function of reference temperature (ξ = 1.42), while the solid lines with or without
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Figure 1. b) Effect of reference temperature T0 on temperature in GTE medium.

center symbol represent the solution obtained in case of temperature independent
modulus of elasticity (ξ = 1). For the coupled theory (CT theory), the relaxation
times are: τ0 = ν = 0, while for the generalized theory with two relaxation times
(GL theory): τ0 = 0.02, ν = 0.03.

Some comparisons of both thermal theories and of the thermal (GTE) and
micropolar (GMTE) theories are made.

Behavior of temperature for both thermal theories in GMTE and GTE media,
as shown in Fig. 1a and Fig. 1b respectively, is similar. The temperature starts
with its maximum value at the origin (due to the presence of the thermal shock)
and decreases until attaining zero beyond the thermal wavefront for the generalized
theory, whereas it is continuous everywhere else for the coupled theory. It should
be noted that, in all cases the values of θ/θ0 are less for ξ = 1.42 compared to
those for ξ = 1, and they are large for GL theory in comparison with those for CT
theory.

Figures 2a,b show the variation of displacement u/θ0 in GMTE and GTE me-
dia, respectively. Initially, u/θ0 starts with a negative value, and then increases
until attaining zero beyond the thermal wavefront. Due to microrotation effect,
values of u/θ0 increase to zero following oscillatory pattern in GMTE medium,
whereas they go towards zero in GTE medium. We note that values of u/θ0 are
less when ξ = 1.42 compared to those when ξ = 1 for GMTE medium, whereas
the reverse happens in GTE media. It is also observed for both media, that values
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Figure 2. a) Effect of reference temperature T0 on displacement in GMTE medium.

Figure 2. b) Effect of reference temperature T0 on displacement in GTE medium.
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Figure 3. a) Effect of reference temperature T0 on force stress in GMTE medium.

Figure 3. b) Effect of reference temperature T0 on force stress in GTE medium.
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of u/θ0 for GL theory are large in comparison with those for CT theory.
Figures 3a,b show the variation of normal force stress σzz/θ0 in GMTE and

GTE media, respectively. In both media, normal force stress σzz/θ0 starts with a
zero value at the origin (according to the boundary condition given by Eq.(4.2)),
and thereafter experiences a finite jump. Due to reference temperature effect, the
discontinuity existing for ξ = 1 is eliminated for ξ = 1.42 in both media and
for generalized theory only, while for coupled theory, the existing discontinuity
persists to exist.

The variation of couple stress mzy/θ0 with x has been shown in Fig. 4 in
GMTE medium. For both coupled and generalized theories, mzy/θ0 starts with a
zero value at the origin (see Eq.(4.2)), and then oscillates in the range 0 < x ≤ 0.3
as x increases, whereas for x > 0.3 the values are very small compared to those in
the first range. It is also observed that values of mzy/θ0 for GL theory are large
in comparison with those for CT theory, and they are less for ξ = 1.42 compared
to those for ξ = 1,

7. Concluding remarks

Based on the analysis presented here and the values of the parameters used, we
state the following conclusions:

1. In all these figures, it is clear that the considered functions for the general-
ized theory are localized in a finite region of space surrounding the heating source
and are identically zero outside this region. The edge of this region is the thermal
wavefront which moves with a finite speed. It is clear from figures that the location
of discontinuities changes with values of ξ, whereas the edge of thermal wavefront
does not change. This edge is the same in both media, and is determined only by
the values of time t and relaxation time τ0. This is not the case for the coupled
theory where an infinite speed of propagation is inherent and hence all the con-
sidered functions have non-zero (although may be very small) value for any point
in the medium. In addition, the values of solutions for GL theory are large in
comparison with those for CT theory. Under GL theory, the relaxation times are
large (ν > τ0 > 0), therefore the time available for the exchange of thermal energy
with the domain is large and then the values of solutions are higher. All these
remarks indicate that the generalized theory mechanism is completely different
from the classic Fourier’s in essence, and more realistic in dealing with practical
problems involving very large heat fluxes and or short time intervals.

2. The normal force stress component σzz has a finite jump in both media for
both theories in case of temperature independent modulus of elasticity (ξ = 1).
The same situation arises in [29, 30, 31]. This jump which violates the requirement
of continuity, is not physically realistic [32]. Thus, the dependence of the modulus
of elasticity on reference temperature has a significant effect on the thermal and
mechanical interaction by eliminating the existing discontinuities under generalized
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Figure 4. Effect of reference temperature T0 on couple stress in GMTE medium.

theory only. Another important effect, is the decrease of the magnitude solution
in GMTE medium, whereas this effect is not evident in GTE medium. This
is due to the fact that the micropolar theory is more adequate to describe the
real phenomena than the classical theory of elasticity, and results obtained with
temperature dependency of modulus of elasticity are physically more acceptable
than those obtained without.
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