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1. Introduction

In this paper, we study the existence of 2π-periodic solutions for the non-dissipative
Duffing equation

x′′ + g(x) = p(t), (1.1)

where g(x) ∈ C(R), p(t) = p(t + 2π) ∈ C(R+).
There are many papers devoted to the study of the existence of periodic solu-

tions for Eq. (1.1) (see [1–13] and the references therein). In 1980, Dancer [7] and
Fuc̆ik [8] established the conception being called “Fuc̆ik spectrum” respectively,
here we call (µ, ν) is the Fuc̆ik spectrum if equation

x′′ + µx+ − νx− = 0,

has a nontrivial 2π-periodic solution, where x+ = max{x, 0}, x− = max{−x, 0},
µ, ν > 0. It is easy to obtain that the Fuc̆ik spectrum (µ, ν) satisfies the equality

1√
µ

+
1√
ν

=
2
n

,

where n is a positive integer. Under the frame of the Fuc̆ik spectrum, many schol-
ars studied the existence of periodic solutions for Eq. (1.1) using the asymptotic
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behavior of the ratio
g(x)
x

as |x| → ∞. Such as Fuc̆ik [8] proved that if

lim
x→+∞

g(x)
x

= µ, lim
x→−∞

g(x)
x

= ν, (1.2)

and (µ, ν) is not the Fuc̆ik spectrum, then Eq. (1.1) has a 2π-periodic solution;
Drabek and Invernizzi [11], Gossez and Omari [12] improved the condition (1.2)
into

p ≤ lim inf
x→+∞

g(x)
x

≤ lim sup
x→+∞

g(x)
x

≤ q, r ≤ lim inf
x→−∞

g(x)
x

≤ lim sup
x→−∞

g(x)
x

≤ s, (1.3)

where p, q, r, s are positive numbers and satisfy
2

n + 1
<

1√
q

+
1√
s
≤ 1√

r
+

1√
p

<
2
n

, (1.4)

n is a positive integer. Obviously, if p = q, r = s, the conditions (1.3)–(1.4) are
identical with (1.2). In 1991, Ding and Zanolin [9], using time-map

τ(c) = 2

∣
∣
∣
∣
∣

∫ c

0

dξ
√

2(G(c) − G(ξ))

∣
∣
∣
∣
∣

where
G(c) =

∫ c

0

g(u)du, g(u) : lim
|u|→∞

g(u)sign(u) = +∞,

proved that the Eq. (1.1) has a 2π-periodic solution [9, Theorem 1] provided that

[

J− + J+, J− + J+
] ∩

{
2π

n
: n ∈ N

}

= ∅ (1.5)

where
J− = lim inf

c→−∞ τ(c), J+ = lim inf
c→+∞ τ(c)

J− = lim sup
c→−∞

τ(c), J+ = lim sup
c→+∞

τ(c). (1.6)

In [9], Ding and Zanolin also gave the following two special existence conditions
of 2π-periodic solutions for Eq. (1.1) respectively:

[
π√
q+

+
π√
q−

,
π√
γ−

+
π√
γ+

] ∩ {2π

n
: n ∈ N} = ∅ (1.7)

where

γ− = lim inf
x→−∞

g(x)
x

≤ lim
x→−∞

2G(x)
x2

= q−, γ+ = lim inf
x→+∞

g(x)
x

≤ lim
x→+∞

2G(x)
x2

= q+.

(1.8)
and

lim
x→+∞

2G(x)
x2

= µ, lim
x→−∞

2G(x)
x2

= ν, (1.9)

where µ, ν > 0 and (µ, ν) is not the Fuc̆ik spectrum.
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Because
lim inf
x→−∞

g(x)
x ≤ lim inf

x→−∞
2G(x)

x2

≤ lim sup
x→−∞

2G(x)
x2

≤ lim sup
x→−∞

g(x)
x ,

lim inf
x→+∞

g(x)
x ≤ lim inf

x→+∞
2G(x)

x2

≤ lim sup
x→+∞

2G(x)
x2

≤ lim sup
x→+∞

g(x)
x ,

(1.10)

the condition (1.7) is more precise than (1.4) if the limits lim
x→±∞

2G(x)
x2 exist. Just

as reason, the estimate by asymptotic behavior of
2G(x)

x2
instead of

g(x)
x

may

become trend (see[9], [6], [13]). However, the question is whether or not there
is a 2π-periodic solution for Eq. (1.1) if the limits lim

x→+∞
2G(x)

x2 and lim
x→−∞

2G(x)
x2

don’t exist. The aim of this paper is to solve this question, i.e., to establish
the existence of 2π-periodic solutions for Eq. (1.1) by using lim sup

x→+∞
2G(x)

x2 and

lim inf
x→−∞

2G(x)
x2 instead of lim

x→±∞
2G(x)

x2 under the frame of the Fuc̆ik spectrum. Our

conditions on g(x) are more general and more easily checked than those of some
known results to some extent (Remark 2, 3).

It needs mentioning that the conditions relative to
2G(x)

x2
may lead to the

oscillation crossing resonant points, just as which, it is difficult to deal with.

2. Main results

It is easily verified that if x(t) is a 2π-periodic solution of Eq. (1.1), then x(t)
satisfies the periodic boundary condition

x(0) = x(2π), x′(0) = x′(2π). (2.1)

In this paper, we often use (2.1) and throughout suppose that
I1) there exist positive real numbers c0, d0, d, such that

d0 ≥ g(x)
x

≥ c0 > 0, when |x| ≥ d,

I2) there exist positive real numbers p, q, r, s, such that

p ≤ lim
x→+∞ inf

2G(x)
x2

≤ lim
x→+∞ sup

2G(x)
x2

≤ q, (2.2)

r ≤ lim
x→−∞ inf

2G(x)
x2

≤ lim
x→−∞ sup

2G(x)
x2

≤ s, (2.3)
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and
2

n + 1
<

1√
q

+
1√
s
≤ 1√

p
+

1√
r

<
2
n

, (2.4)

where n is a positive integer,

G(x) =

x∫

0

g(s)ds.

Lemma 2.1. [14] Equation

x′′ + u1(t)x+ − u2(t)x− = 0,

has only a trivial 2π-periodic solution provided that u1(t), u2(t) ∈ L2[0, 2π] and

p ≤ u1(t) ≤ q, r ≤ u2(t) ≤ s,

where p, q, r, s satisfy the condition (2.4).

Lemma 2.2. [15] Suppose that L is a Fredholm mapping of index zero, N : Ω̄ → Z
is L-compact, A : X → Z is L-completely continuous in Ω̄, and

i) Ker(L − A) = {0};
ii) ∀(x, λ) ∈ (D(L) ∩ ∂Ω) × (0, 1), Lx − (1 − λ)Ax − λNx 
= 0.

Then equation
Lx = Nx

has at least one solution in D(L) ∩ Ω̄, where X is normed space, 0 ∈ Ω ⊂ X open
bounded.

Theorem 1. Let the conditions I1) and I2) hold. Then the Eq. (1.1) has at least
one 2π-periodic solution.

Proof. Consider homotopy equation with (1.1)

x′′ + λg(x) + (1 − λ)(ax+ − bx−) = λe(t), 0 ≤ λ ≤ 1, (2.5)

where x+ = max{x, 0}, x− = max{−x, 0}, a and b are constants satisfying

p ≤ a ≤ q, r ≤ b ≤ s. (2.6)

First of all, we prove that there exists a positive number M independent of λ, such
that ‖x‖C1 ≤ M for all possible 2π−periodic solution x(t) of (2.5), where ‖ · ‖C1

denotes the norm in C1[0, 2π] by

‖x‖C1 = max( max
t∈[0,2π]

|x(t)|, max
t∈[0,2π]

|x′
(t)|).

We assume on the contrary that there exists a sequence of 2π−periodic solutions
{xm(t)}∞1 of (2.5) corresponding to sequence {λm}∞1 ⊂ [0, 1] such that

‖xm‖C1 → ∞, as m → ∞ (2.7)
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Dividing both sides of (2.5) by ‖xm‖C1 and writing

Zm(t) =
xm(t)
‖xm‖C1

,

we have

Z
′′
m +

λm

‖xm‖C1
g(xm) + (1 − λm)(aZ+

m − bZ−
m) =

λm

‖xm‖C1
e(t). (2.8)

In view of the condition I1), there exists a positive number b1 such that
∣
∣
∣
∣

g(xm)
‖xm‖C1

∣
∣
∣
∣
≤ b1,

moreover, there exists M0 > 0 independent of λ,such that
∣
∣
∣Z

′′
m(t)

∣
∣
∣ ≤ M0 t ∈ [0, 2π].

This shows that the sequences {Zm(t)} and {Z ′
m(t)} are uniformly bounded and

equicontinuous on [0, 2π]. Thus we know by the Arzela–Ascoli theorem that there
are uniformly convergent subsequences on [0, 2π] for {Zm(t)} and {Z ′

m(t)} respec-
tively, which may be taken as themselves without loss of generality, such that

lim
m→∞Zm(t) = Z(t), lim

m→∞Z
′
m(t) = Z ′(t). (2.9)

and
‖Z‖C1 = 1 (2.10)

from the definition of Zm(t). Noting that

x′′
m(t) + λmg(xm(t)) + (1 − λm)[ax+

m(t) − bx−
m(t)] = λme(t)

and integrating both sides of above equation on [0, 2π], we have

λm

∫ 2π

0
g(xm(t))dt + (1 − λm)

∫ 2π

0
[ax+

m(t) − bx−
m(t)]dt

= λm

∫ 2π

0
e(t)dt.

(2.11)

We claim that for each m, there exists tm ∈ [0, 2π] and d1 > 0 independent of
λm, such that

|xm(tm)| ≤ d1. (2.12)

For example, we might as well take d1 satisfying

d1 ≥ d, and ad1, bd1, c0d1 >
1
2π

∫ 2π

0

|e(t)|dt.

If the claim is false, then |xm(t)| ≥ d1 for each t ∈ [0, 2π]. However, we observe
from I1) that when xm(t) ≥ d1 ,

λm

∫ 2π

0

g(xm(t))dt + (1 − λm)
∫ 2π

0

[ax+
m(t) − bx−

m(t)]dt
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≥ λm2πc0d1 + (1 − λm)2πad1

>

∫ 2π

0

|e(t)|dt

≥ λm

∫ 2π

0

e(t)dt,

which yields a contradiction with (2.11). Similarly, we may get a contradiction if
xm(t) ≤ −d1, t ∈ [0, 2π]. The claim is complete. Consider the boundedness of the
sequence {tm} and {λm} bounded, we deduce without loss of generality that

lim
m→∞ tm = t0, lim

m→∞λm = λ0. (2.13)

Multiplying both sides of (2.8) by Z ′
m(t) and integrating from tm to t, we have

[Z ′
m(t)]2 − [Z ′

m(tm)]2 + λm
2G(xm(t))

x2
m(t)

· x2
m(t)

‖xm‖2
C1

− λm
2G(xm(tm))
‖xm‖2

C1

+(1 − λm)[a(Z+
m(t))2 + b(Z−

m(t))2 − (a(Z+
m(tm))2 + b(Z−

m(tm))2)]

= λm
2

‖xm‖2
C1

∫ t

tm

e(s)Z
′
m(s)ds. (2.14)

Taking a superior limit in (2.14) (m → ∞) and combing (2.7), (2.9), (2.12), (2.13)
as well as

lim
m→∞Zm(tm) = lim

m→∞
xm(tm)
‖xm‖C1

= 0,

we get
[Z ′(t)]2 − [Z ′(t0)]2 + λ0 lim

m→∞ sup 2G(xm(t))
x2

m(t) · [Z(t)]2

+(1 − λ0)[a(Z+(t))2 + b(Z−(t))2]
= 0.

From I2) and the definition of a and b, we obtain

(Z ′(t))2 − (Z ′(t0))2 + q(Z(t))2 ≥ 0, when Z(t) > 0.

Analogously, we also obtain

[Z ′(t)]2 − [Z ′(t0)]2 + p[Z(t)]2 ≤ 0, when Z(t) > 0,

[Z ′(t)]2 − [Z ′(t0)]2 + s[Z(t)]2 ≥ 0, when Z(t) < 0,

[Z ′(t)]2 − [Z ′(t0)]2 + r[Z(t)]2 ≤ 0, when Z(t) < 0.

According to the continuity of Z(t), we may rewrite above inequalities as following
equivalent forms:

−q[Z(t)]2 ≤ [Z ′(t)]2 − [Z ′(t0)]2 ≤ −p[Z(t)]2, Z(t) ≥ 0,

−s[Z(t)]2 ≤ [Z ′(t)]2 − [Z ′(t0)]2 ≤ −r[Z(t)]2, Z(t) ≤ 0. (2.15)
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It follows that Z ′(t0) 
= 0. If not, it is easily verified from (2.15) that Z(t) =
0, Z ′(t) = 0, t ∈ [0, 2π], which contradicts with ‖Z‖C1 = 1. Next, we shall prove
that Z ′(t) has only limited zero points on [0, 2π].

We suppose, on the contrary, that Z ′(t) has unlimited zero points {ξi}∞1 ⊂
[0, 2π] and lim

i→∞
ξi = ξ0. Letting t = ξi in (2.15) and taking limit as i → ∞, we

immediately get that Z(ξ0) 
= 0 and might let as well Z(ξ0) > 0. Because of the
continuity of Z(t) there exist k, δ > 0, such that for all t ∈ [ξ0 − δ, ξ0 + δ], Z(t) >
k > 0. Furthermore, for sufficient large m,

Zm(t) ≥ k, t ∈ [t0 − δ, t0 + δ]

this shows Z−
m(t) = 0, t ∈ [t0 − δ, t0 + δ]. Since ξ0 is the limiting point of {ξi}, we

may take two zero points ξ∗, ξ∗(ξ∗ < ξ∗) of Z ′(t) in [ξ0 − δ, ξ0 + δ] and integrate
(2.8) from ξ∗ to ξ∗, so that

Z ′
m(ξ∗) − Z ′

m(ξ∗) + λm
1

‖xm‖C1

∫ ξ∗

ξ∗
g(xm(s))ds + (1 − λm)

∫ ξ∗

ξ∗
aZm(s)ds

= λm
1

‖xm‖C1

∫ ξ∗

ξ∗
e(t)dt. (2.16)

Notice that when m is sufficiently large and t ∈ [ξ∗, ξ∗]

xm(t) = Zm(t)‖xm‖C1 ≥ ‖xm‖C1 · k > d0.

Therefore
g(xm(t))
‖xm‖C1

=
g(xm(t))
xm(t)

xm(t)
‖xm‖C1

=
g(xm(t))
xm(t)

· Zm(t) ≥ c0 · k t ∈ [ξ∗, ξ∗].

Combining (2.16) and the above inequalities we get that

Z ′
m(ξ∗) − Z ′

m(ξ∗) + λmc0k(ξ∗ − ξ∗) + (1 − λm)ak(ξ∗ − ξ∗)
≤ λm

1
‖xm‖C1

∫ ξ∗

ξ∗
e(s)ds,

which, letting m → ∞, gives the contradictory inequality

[λ0c0k + (1 − λ0)ak](ξ∗ − ξ∗) ≤ 0.

Hence Z ′(t) has limited zero points. For proving (2.7) is impossible now, we
deduce a contrary conclusion to (2.10) that the inequality (2.15) has only a trivial
2π-periodic solution.

We suppose on the contrary that (2.15) has a non-trivial 2π-periodic solution
Z̄(t) and let for convenience that t0 = 0 and Z̄ ′(0) > 0. If Z1(t) and Z2(t) are
solutions of the following equations, respectively

[Z ′(t)]2 − [Z ′(0)]2 = −q[Z(t)]2, [Z ′(t)]2 − [Z ′(0)]2 = −p[Z(t)]2, Z(t) ≥ 0, (2.17)

with Z̄(0) = Z1(0) = Z2(0) and Z ′
1(0) ≤ Z̄ ′(0) ≤ Z ′

2(0), then we have

Z1(t) ≤ Z̄(t) ≤ Z2(t), t ∈ [0, t1],
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here t1 is the first zero point of Z̄(t) in (0, 2π]. Similarly, if Z1(t) and Z2(t) are
solutions of the following equations, respectively

[Z ′(t)]2 − [Z ′(0)]2 = −s[Z(t)]2, [Z ′(t)]2 − [Z ′(0)]2 = −r[Z(t)]2, Z < 0 (2.18)

with Z̄(t1) = Z1(t1) = Z2(t1) and Z ′
1(t1) ≤ Z̄ ′(t1) ≤ Z ′

2(t1), then we get

Z1(t) ≤ Z̄(t) ≤ Z2(t), t ∈ [t1, t2],

here t2 is the first zero point of Z̄(t) in (t1, 2π]. As Z ′(t)(Z(t) is the solution of
(2.17) or (2.18)) has limited zero points in [0, 2π], the Eqs. (2.17) and (2.18) are
thus equivalent to the following equations

Z ′′ = −qZ, Z ′′ = −p Z, forZ ≥ 0,
Z ′′ = −sZ, Z ′′ = −r Z, forZ < 0

respectively. Thus there are positive constants A,B,C,D, such that

A sin
√

qt ≤ Z̄(t) ≤ B sin
√

pt, 0 < t ≤ t1,

−C sin
√

s(t − t1) ≤ Z̄(t) ≤ −D sin
√

r(t − t1), t1 < t ≤ t2,

where t1 and t2 are the same as above. It follows that
π√
q
≤ t1 ≤ π√

p
,

π√
s

+
π√
q
≤ t2 ≤ π√

r
+

π√
p
. (2.19)

From periodicity of Z̄(t) and above discussions, we conclude that there exists a
positive integer m, such that

2mπ

n + 1
<

mπ√
s

+
mπ√

q
≤ t2m = 2π ≤ mπ√

r
+

mπ√
p

<
2mπ

n
. (2.20)

Clearly this is impossible. Therefore the assumption (2.7) is false. That is, there
exists a constant M > 0 independent of λ such that

‖x‖C1 ≤ M. (2.21)

Let

Lx = x′′, D(L) = {x(t) ∈ C2[0, 2π], x(0) = x(2π), x′(0) = x′(2π)},
Nx = g(x) − e(t), A(x) = ax+ − bx−,

Ω̄ = {x(t) ∈ C1[0, 2π] : ‖x‖C1 ≤ M + 1}.
It is easy to see that N(·) is L-compact, A(·) completely continuous in Ω̄ and

Lx + (1 − λ)Ax + λNx 
= 0,

for all (x, λ) ∈ (D(L) ∩ ∂Ω) × (0, 1). From Lemma 2.1 we know that

Ker(L + A) = {0}.
According to Lemma 2.2, the operator equation

Lx + Nx = 0
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has at least one solution in D(L) ∩ Ω̄, that is, the equation (1.1) has at least one
2π-periodic solution.

Corollary 1. Under the conditions I1), I2), if p = q
�
= q+, r = s

�
= q−, that is

lim
x→+∞

2G(x)
x2

= q+,

lim
x→−∞

2G(x)
x2

= q−,

with
2

n + 1
<

1√
q+

+
1√
q−

<
2
n

,

where n is a positive integer, then the Eq. (1.1) has a 2π-periodic solution.

Corollary 2. If p = q = r = s in the conditions I1), I2),that is

lim
|x|→∞

2G(x)
x2


= k2 (k = ±1,±2, · · · )

then the Eq. (1.1) has a 2π-periodic solution.

Remark 1. Corollaries 1, 2 are the same as Corollaries 2, 3 in [9].

Remark 2. If adding a condition on g(x) aside from the conditions I1), I2), we
may conclude the following theorem similar to [9].

Theorem 2. Assume that the conditions in Theorem 1 hold, and for any a > 0

lim
x→∞

g(ax)
g(x)

= a.

Then

[J− + J+, J− + J+] =
[

π√
q

+
π√
s
,

π√
p

+
π√
r

]

,

where J−, J+, J−, J+ are the same as (1.6),

p = lim
x→∞ inf

2G(x)
x2

, q = lim
x→∞ sup

2G(x)
x2

,

r = lim
x→−∞ inf

2G(x)
x2

, s = lim
x→−∞ sup

2G(x)
x2

,

Proof. According to the proof of Theorem 1 in [9], we have
√

2G(c)

2c τ(c) =
√

2G(c)

c

∫ c

0
du√

G(c)−G(u)
=

∫ 1

0
dξ√

1−(G(cξ)/G(c))

=
∫ ε

0
dξ√

1−(G(cξ)/G(c))
+

∫ 1−ε

ε
dξ√

1−(G(cξ)/G(c))
+

∫ 1

1−ε
dξ√

1−(G(cξ)/G(c))

:= T1(c) + T2(c) + T3(c)
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where ε : 0 < ε < 1
4 , τ(c), J±, J± as above, and T1(c), T2(c), T3(c) :

0 ≤ lim inf
c→+∞ T1(c) ≤ lim sup

c→+∞
T1(c) ≤

√
ε,

lim
c→+∞T2(c) =

∫ 1−ε

ε

dξ
√

1 − ξ2
,

0 ≤ lim inf
c→+∞ T3(c) ≤ lim sup

c→+∞
T3(c) ≤ L

c0

√
ε.

Thus, letting ε → 0+, we get that for c 
 1

τ(c) =
(

1
2π

+ α(c)
)

1
√

2G(c)/(2c)

where α(c) → 0 as c → +∞. So

J+ = lim inf
c→+∞ τ(c) = 1

2π lim inf
c→+∞

1√
2G(c)
2c

= π
2

1

lim sup
c→+∞

√
2G(c)
2c

= π√
q.

Similarly

J− = lim inf
c→−∞ τ(c) =

π√
s
, J+ = lim sup

c→+∞
τ(c) =

π√
p
, J− = lim sup

c→−∞
τ(c) =

π√
r
.

Thus

[J− + J+, J− + J+] =
[

π√
q

+
π√
s
,

π√
p

+
π√
r

]

.

Remark 3. The conditions of Theorem 1 are general to some extent, this is
because we don’t need lim

x→±∞
2G(x)

x2 to exist; on the other hand, even if these limits

exist, because
γ− = lim

x→−∞ inf g(x)
x ≤ lim

x→−∞ inf 2G(x)
x2

≤ lim
x→−∞ sup 2G(x)

x2

≤ lim
x→−∞ sup g(x)

x = Γ−,

γ+ = lim
x→+∞ inf g(x)

x ≤ lim
x→+∞ inf 2G(x)

x2

≤ lim
x→+∞ sup 2G(x)

x2

≤ lim
x→+∞ sup g(x)

x = Γ+,

(2.22)

[
1√
q

+
1√
s
,

1√
r

+
1√
p

]

⊂
[

1√
q+

+
1√
q−

,
1√
γ+

+
1√
γ−

]

,

where γ±, q± are the same as (1.8). Theorem 1 also improves some relative results
in [8, 11].
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