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A geometrically exact viscoplastic membrane-shell with
viscoelastic transverse shear resistance avoiding degeneracy
in the thin-shell limit.
Part I: The viscoelastic membrane-plate

Patrizio Neff

Abstract. We reduce a viscoelastic finite-strain continuum model to a two-dimensional memb-
rane-plate. The reduction is based on assumed kinematics, analytical integration through the
thickness and physically motivated simplifications. The resulting formulation is observer-invariant
and accounts for thickness stretch and finite rotations.

The membrane energy is a quadratic, uniformly Legendre-Hadamard elliptic, first order en-
ergy in contrast to classical membrane models and the corresponding system of balance equations
remains of second order. An evolution equation for some independent rotation is appended (al-
ready in the bulk-model) introducing viscoelastic transverse shear resistance. It can be shown
that this reduced membrane formulation is locally well-posed. Use is made of a dimensionally
reduced version of an extended Korn’s first inequality.

In the equilibrium relaxation limit an intrinsic membrane-plate formulation is obtained sim-
ilar to the proposal of Fox/Simo, which is, however, non-elliptic. Nevertheless, the linearization
of this last equilibrium model coincides with the classical linear membrane-plate model. In this
sense, the new viscoelastic membrane-plate model regularizes the occurring loss of ellipticity in
classical finite-strain membrane models.
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1. Introduction

1.1. The underlying finite-strain viscoelastic-plastic 3D-model

In [41] a model of finite-strain elasto-plasticity has been introduced, based on the
multiplicative decomposition of the deformation gradient F = Fe Fp, incorporat-
ing viscoelastic effects due to grain boundary relaxation. The model preserves
observer-invariance and is invariant with respect to superposed spatially con-
stant rotations of the so called intermediate configuration induced by Fp. The
model is geometrically nonlinear and allows for finite elastic rotations, finite
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plastic deformations and overall finite deformations but remains a truly “physi-
cally linear” theory in the sense that simple uniaxial tension is modelled as linear
and without viscosity.

We need to mention, however, that the new model is intrinsically rate-
dependent, i.e., it is not possible to “freeze” the “viscoelastic” rotations and ob-
tain a frame-indifferent reduced plasticity model. In other words, the used elastic
free energy W is not expressible as a reduced function of C = FT F , nevertheless,
the model is observer-invariant1 and the common wisdom that observer-invariance
implies a representation in C or the stretch U applies as such only to intrinsically
non-dissipative problems [23, p.203]. In general, form-invariance under superposed
time-dependent rigid rotations (frame-indifference) implies observer-invariance but
is not identical to it. For this subtle point compare also to the lucid discussion in
[25, p.269] and [30, p.159] together with [52, 8, 35].2

To begin with let us first introduce the considered 3D-model which we have
modified compared to [41, 37] to include also in a consistent manner “compressible”
plasticity, i.e., det[Fp] �= 1. In the quasi-static setting appropriate for slow loading,
where we neglect consistently inertia terms, we are led to study the following
coupled minimization and evolution problem for the finite deformation ϕ : [0, T ]×
Ω �→ R

3, the plastic variable Fp : [0, T ] × Ω �→ GL+(3, R) and the independent
local viscoelastic rotation Re : [0, T ] × Ω �→ SO(3) on Ω∫

Ω

W (Fe,Re) det[Fp] − 〈f, ϕ〉 det[Fp] dV (1.1)

−
∫

ΓS

〈N,ϕ〉 ‖Cof Fp.�n∂Ω‖ dS �→ min .w.r.t. ϕ at fixed (Re, Fp) ,

with prescribed Dirichlet boundary conditions ϕ|Γ = gd(t) on Γ ⊂ ∂Ω. The
constitutive assumption on the density is

W (Fe, Re) =
µ

4
‖FT

e Re + R
T

e Fe − 211‖2 +
λ

8
tr
[
FT

e Re + R
T

e Fe − 211
]2

,

= µ ‖ sym(Ue − 11)‖2 +
λ

2
tr
[
Ue − 11

]2
, Ue = R

T

e Fe , (1.2)

Fe = ∇ϕ·F−1
p , S1(Fe, Re)

= Re

[
µ(FT

e Re + R
T

e Fe − 211) + λ tr
[
FT

e Re − 11
]
11
]
F−T

p ,

where S1 = DF

[
W (Fe, Re)

]
denotes the first Piola-Kirchhoff stress tensor and

µ, λ > 0 are the classical Lamé constants of isotropic elasticity. The coupled

1 observer-invariant means that material properties do not depend on the choice of representation
tools used to portray them.
2 And the undisputed physical principle is observer-invariance and not directly frame-indifference
(form-invariance under rigid rotations). The strengthening of form-invariance of the equations
under superposed rigid rotations to form-invariance under the group of all diffeomorphisms is
called covariance [23]. We understand that form-invariance and covariance are additional con-
stitutive assumptions.
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plastic and viscoelastic evolution is defined by

d
dt
[
F−1

p

] ∈ −F−1
p · ∂χ(ΣE),

ΣE = FT
e DFe

W (Fe, Re) det[Fp] − W (Fe, Re) det[Fp]11 , (1.3)

dω̂

dt
Re(t) = ν+ skew(B) · Re(t), B = Bmech or Btc, ν+ = ν+(Fe, Re) ∈ R

+ ,

Bmech = µFeR
T

e , Btc =
[
µ(2 11 − FeR

T

e ) + λ [3 − 〈FeR
T

e , 11〉]
]
FeR

T

e ,

F−1
p (0) = F−1

p0
, Fp0 ∈ GL(3, R),

Re(0) = R
0

e, R
0

e ∈ SO(3), R
0

e = 11 if Fp0 = ∇Θ,

where the flow potential χ : M
3×3 �→ R governs the plastic evolution (here

associated plasticity for simplicity only) and which is motivated through the prin-
ciple of maximal dissipation sufficient for the thermodynamical consistency of the
model. Bmech or Btc are alternative constitutive choices. The dead load body
force and the boundary tractions on ΓS ⊂ ∂Ω are denoted by f, N , respectively
and defined w.r.t. the intermediate plastic configuration Fp and �n∂Ω is the unit
outward normal to ∂Ω. Corresponding natural boundary conditions apply.

Here ΣE denotes the elastic Eshelby stress tensor (the driving force behind
evolving inhomogeneities in the reference configuration [32]) which may be reduced
to ΣM = FT

e DFe
W (Fe, Re), the elastic Mandel stress tensor in case of a

deviatoric flow rule which preserves the incompressibility constraint det[Fp] = 1.
By dω̂

dt we mean the observer-invariant (corotated) time derivative on
SO(3, R)

dω̂

dt
[R(t)] :=

d
dt

[R(t)] − ω̂(t) · R(t) , ω̂ :=
d
dt

[Q(t)] · Q(t)T , (1.4)

where Q(t) ∈ SO(3, R) is the instantaneous rotation of the current frame with
respect to the inertial frame and ω̂ is the corresponding angular velocity. Without
loss of generality, we confine attention to the inertial frame, i.e. ω̂ ≡ 0 and dω̂

dt = d
dt .

The term ν+ := 1
ηe

ν+(Fe, Re) represents a scalar valued function introducing
elastic viscosity within the elastic domain and ηe plays the role of a relaxation time
with units [ηe] = sec. F−1

p0
and R

0

e are the initial conditions for the plastic variable
and viscoelastic rotation part, respectively. The choice B = Btc is thermody-
namically consistent whereas the simpler choice B = Bmech is (only) mechanically
consistent in the sense that various invariance requirements are met. Due to the
underlying isotropy the resulting model (1.1) with B = Bmech approaches in the
(vanishing elastic viscosity = zero relaxation limit ηe → 0 viz. for arbitrary slow
processes) equilibrium limit ν+ → ∞ formally the coupled problem
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∫
Ω

W∞(Fe) det[Fp] − 〈f, ϕ〉 det[Fp] dV

−
∫

ΓS

〈N,ϕ〉 ‖Cof Fp.�n∂Ω‖ dS �→ stat .w.r.t. ϕ at fixed Fp ,

W∞(Fe) := µ ‖Ue − 11‖2 +
λ

2
tr [Ue − 11]2, Fe = ∇ϕF−1

p , (1.5)

d
dt
[
F−1

p

]
(t) ∈ −F−1

p (t) · ∂χ(ΣE,∞) ,

ΣE,∞ := UeDUe
W∞(Ue) det[Fp] − W∞(Ue) det[Fp] 11 ,

with Ue = (FT
e Fe)

1
2 the classical symmetric elastic stretch, Ue−11 the elastic Biot

strain tensor and W∞(Ue) the non-elliptic equilibrium energy. The system (1.5)
is an exact equilibrium model for small elastic strains and finite plastic deforma-
tions in the classical sense with no extra internal dissipation. The transition from
(1.1) to (1.5) is not entirely trivial since it is not just the replacement of the in-
dependent rotation Re by the continuum rotation Re → Re = polar(Fe) and note
the subtle change from global minimization to a stationarity requirement only.
Observe as well that µ ‖U − 11‖2 + λ

2 tr [U − 11]2 leads to a linear stress response
in uniaxial tension/compression while e.g. µ ‖E‖2 + λ

2 tr [E]2, E = 1
2 (FT F − 11)

would lead to a nonlinear, unphysical non-monotone stress response in uniaxial
tension/compression.

In the companion paper [41] the implications, predictions and physical rele-
vance of the new model have been investigated in great detail. It is shown that
the additional degrees of freedom inherent through the independent local vis-
coelastic rotations Re can be interpreted in the framework of a material with
a polycrystalline substructure where the individual rotations of the grains may
deviate from the continuum rotation. Then, in the presence of plasticity, Re rep-
resents a reversible, “viscoelastic” part of the total rotation of the grains and leads
to texture effects (deformation induced anisotropy). The evolution equation for
Re introduces hysteresis effects into the model already within the elastic region,
i.e. immediately for arbitrary small stress levels. The physical reality of this be-
haviour for polycrystalline material is well documented and it is shown that the
new model (1.1) allows a qualitative and in parts quantitative description of such
effects which are ascribed to internal friction at the grain boundaries. In [41] it has
also been motivated that the elastic viscosity is larger for larger internal surfaces,
i.e. the smaller the grain size, while single crystals behave nearly rate-independent
for that matter.

In [42] the local well-posedness of (1.1) under Dirichlet conditions has been
shown, while such a result is not yet known for (1.5). The general applicability of
the model (1.1) in the three-dimensional case has been investigated numerically
in [45]. This is our motivation to extend the model to a reduced membrane for-
mulation. It is planned to investigate in a sequel the full dimensional reduction
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problem for the viscoelastic-viscoplastic problem (1.1). Here, we concentrate on
the viscoelastic formulation.

1.2. The finite-strain viscoelastic 3D-model

Before we proceed to the dimensional reduction, the need has been felt to further
motivate this model (1.1) since it departs considerably from classical viscoelastic
models to which the reader might be aquainted. Let us therefore look at the
purely viscoelastic version of (1.1) with B = Bmech, ν+ ∈ R but without surface
tractions. The problem reads∫

Ω

W (F,R) − 〈f, ϕ〉 dV �→ min .w.r.t. ϕ at fixed R , ϕ|∂Ω = gd(t) , (1.6)

W (F,R) =
µ

4
‖FT R + R

T
F − 211‖2 +

λ

8
tr
[
FT R + R

T
F − 211

]2
, F = ∇ϕ ,

with coupled viscoelastic evolution

d
dt

R(t, x) = ν+ skew(F (t, x)R(t, x)T ) · R(t, x) , R(0, x) = R0(x) . (1.7)

The minimization at fixed R ∈ SO(3, R) in (1.6) is in fact strictly equivalent to
the balance of linear momentum equation

−Divx DF [W (∇ϕ(t, x), R(t, x))] = f(t, x) , ϕ|∂Ω(t, x) = gd(t, x) , (1.8)

as long as ∂Ω and gd are sufficiently smooth. The local evolution equation for
R introduces the viscoelastic effects. In contrast to a more traditional Cosserat
approach, the rotations are not determined by simultaneous minimiza-
tion of some augmented elastic energy (which would include curvature
terms DxR) w.r.t. both ϕ and R.

In order to appreciate the relaxation properties of (1.7) already hinted at,
assume now that we are given a deformation history F ∈ C1(R+,GL+(3, R)) for
a specific point x0 ∈ Ω. Then

Theorem 1.1 (Dynamic polar decomposition and relaxation). The vis-
coelastic evolution problem (1.7) admits a unique global in time solution R ∈
C1(R+,SO(3, R)). Moreover,
1. if F is constant in time and ‖R−polar(F )‖2 < 8, then we have the asymptotic

behaviour R(t) → polar(F ) for t → ∞.
2. ∀ t ∈ R

+ : ‖ skew(F (t)R
T
(t))‖2 ≤ M+

ν+ (1−e−ν+t)+‖F (0)T R(0)−11‖2 e−ν+t,
where M+ = (‖F‖∞ +

√
3) ‖F ′‖∞ is independent of ν+.

Proof. The right hand side in (1.7) is globally Lipschitz as a function of R, hence
there exists a unique global solution R ∈ C1(R+,SO(3, R)).

Part i.) is proved in [41, p.173]. The proof of part ii.) will be given in the
appendix.
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Since ‖ skew(F (t)R(t)T )‖ is a measure for the difference between R(t) and
the continuum rotation polar(F (t)) c.f. Lemma 6.4, we see that by choosing ν+

appropriately large (low viscosity) this difference can be effectively controlled. In
the limit ν+ → ∞ we determine the constraint rotation R(t) = polar(F (t)).

1.3. Dimensionally reduced kinematics

The dimensional reduction of a given model is already an old and mature sub-
ject and it has seen many “solutions”. The different approaches toward elastic
shell theory proposed in the literature and relevant references thereof are, there-
fore, too numerous to list here. In any case our proposal falls within the so
called derivation approach, i.e., reducing a given three-dimensional model via
(physically) reasonable constitutive assumptions to a two-dimensional model as
opposed to either the intrinsic approach which views the shell from the onset as
a two-dimensional surface and invokes concepts from differential geometry or the
asymptotic methods which try to establish two-dimensional equations by for-
mal expansion of the three-dimensional solution in power series in terms of a small
parameter. The intrinsic approach is closely related to the direct approach which
takes the shell to be a directed medium in the sense of a restricted Cosserat-
theory [9].3 A detailed presentation of the classical shell theories can be found in
[36]. A thorough mathematical analysis of linear, infinitesimal shell theory, based
on asymptotic methods is to be found in [12] and the extensive references therein,
see also [11, 13, 1, 20, 16]. Excellent reviews and insightful discussions of the mod-
elling and finite element implementation may be found in [51, 49, 50, 23, 24, 3, 5]
and in the series of papers [55, 58, 59, 61, 60, 56, 14]. Properly invariant elas-
tic plate theories for membrane and bending are derived by formal asymptotic
methods in [21] and extended to the case of curvilinear coordinates in [34, 31].

The mathematical analysis establishing the wellposedness of all the infinitesi-
mal linearized models is fairly well established and will not be our concern.

In the finite-strain, geometrically exact elastic case, mostly based on the Saint
Venant-Kirchhoff free energy density µ ‖E‖2 + λ

2 tr [E]2, the formal asymptotic
methods are still successful in that they identify again leading membrane and
bending terms. As far as the occurring membrane contribution is concerned, it
is the form (6.9) which is given e.g. in [22, 21, 34]. However, variational meth-
ods based on Γ-convergence [17] suggest a fundamentally different membrane term
which leads to a non-resistance of the membrane plate/shell in compression.4 The
non-resistance to compression in this analysis is related to the use of the quasicon-
vex hull5 QW0 of a dimensionally reduced St.Venant Kirchhoff energy, see (6.10).
3 Restricted, since no material length scale enters the direct approach, only the relative thickness
h appears.
4 They remark [18, p.550]: “...then the corresponding nonlinear membranes offer no resistance
to crumpling. This is an empirical fact, witnessed by anyone who ever played with a deflated
balloon.”
5 “... the fact that this function is not quasiconvex already implied that it had to be relaxed in
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This quasiconvex hull, surprisingly enough, can be given in closed form [19, 27]
and shows to be in general positive but zero in the compression range.

The classical linear models proposed in the literature lead to effective numerical
schemes only if the thickness h of the structure is still appreciable, i.e. classical
bending terms are present and regularize the computation. However, there is an
abundance of new applications where very thin structures are used, e.g. very
thin metal layers on a substrate (in computer hardware, for the characteristic non
dimensional relative thickness h ≤ 5 · 10−4). See [4] for an application to thin
films.

Since locally rotating the thin structure is energetically “cheap” compared to
stretching, we are forced to consider models including finite rotations in an ob-
jective manner. But the proposed finite-strain membrane terms found in the lit-
erature are either non-elliptic and the remaining (minimization) problem is not
well-posed or they lead to the aforementioned non-resistance in compression.

1.4. Outline and scope of this contribution

In order to improve on this unsatisfactory state of the art for finite-strain mem-
brane plate formulations we propose here a new membrane-plate model for very
thin almost rigid6, viscoelastic materials which is non-degenerate in the thin shell
limit without addition of bending terms and which in principle allows to describe
the detailed geometry of deformation in a finely wrinkled plate. This might be
contrasted with the variational approach in [17] and tension field theory which
describes the approximate stress distribution in the membrane but determines the
deformation only to within a probability measure. Strictly speaking, the use of
the quasiconvex hull leads to a so called tension field theory [62]. Steigmann
[62, p.143] notes “A question then arises concerning the validity of tension filed
theory as an approximation to a theory of shells with bending stiffness that is
small in some sense. Evidently, the deformation is not well described, though the
theory delivers solutions that approximate the average of the deformation observed
in a real membrane containing many wrinkles. We conjecture that the stress is
accurately predicted, however.”

Our contribution is organized as follows. After this introductory part we con-
sider the finite-strain purely viscoelastic model (1.1) on an absolutely thin domain.
Using a quadratic kinematical ansatz through the thickness, which is consistent
with the appearance of independent rotations in the three-dimensional theory and
subsequent analytical integration through the thickness together with certain sim-
plifications we formally reduce the equilibrium energy.7 For the viscoelastic evolu-

order to give rise to a well posed problem.” [18, p.575].
6 almost rigid: a material with high Lamé moduli µ, λ � 1[MPa] such that F ≈ SO(3, R)
whenever kinematically possible.
7 One should not confuse this approach with energy projection on a reduced ansatz space, since
we do not introduce additional fields in the process of dimensional reduction.
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tion equation we obtain the dimensional reduction by averaging the generator on
the Lie-algebra of the flow through the thickness. Consistently reducing the bound-
ary conditions and putting the results together defines formally the viscoelastic
membrane-plate model (3.1).

The new viscoelastic model is shown to remain observer-invariant and its mem-
brane equilibrium energy density satisfies a uniform Legendre-Hadamard ellipticity
condition (3.7) while it is not uniformly convex.

Then the elastic equilibrium limit for vanishing viscosity (ν+ → ∞) is investi-
gated. It is shown that the formal limit exhibits a non-elliptic membrane strain
energy density (3.20), similar to the membrane model of Fox/Simo (6.9). We
close with a local existence and uniqueness result for the obtained viscoelastic
membrane-plate.

The notation will be found in the appendix as well as the dimensional reduction
of the external loads. Finally, we present two alternative propositions from the
literature for the computation of membrane dominated problems.

A different formulation of elastic plate models with independent rotations lead-
ing to a true, geometrically exact Cosserat theory of plates has been given in
[40, 44].

2. The formal dimensional reduction in the viscoelastic case

2.1. The three-dimensional finite-strain viscoelastic problem on a thin
domain

The basic task of any shell theory is a consistent reduction of some presumably
“exact” 3D-theory to 2D. We assume from now on small elastic strains (almost
rigidity) and no plasticity (i.e., Fp = 11 in (1.1) and Re = R). We will adapt the
bulk problem to a plate like theory. Let us assume that we are given a three-
dimensional absolutely thin domain

Ωh := ω × [−h

2
,
h

2
], ω ⊂ R

2 , (2.1)

with transverse boundary ∂Ωtrans
h = ω × {−h

2 , h
2 } and lateral boundary

∂Ωlat
h = ∂ω × [−h

2 , h
2 ], where ω is a bounded domain in R

2 with smooth boundary

∂ω and h > 0 is the thickness, and a deformation ϕ3d and rotation R
3d

ϕ3d : Ωh ⊂ R
3 �→ R

3 , R
3d

: Ωh ⊂ R
3 �→ SO(3, R) , (2.2)

solving the following coupled minimization and evolution problem on Ωh:∫
Ωh

W (U) − 〈f, ϕ〉 dV−
∫

∂Ωtrans
h ∪{γs×[−h

2 , h
2 ]}

〈N,ϕ〉 dS �→ min .w.r.t. ϕ at fixed R,

U = R
T
F, ϕ|Γh

0
= gd, Γh

0 = γ0 × [−h

2
,
h

2
], γ0 ⊂ ∂ω, γs ∩ γ0 = ∅ ,
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W (U) = µ ‖ sym(U − 11)‖2 +
λ

2
tr
[
sym(U − 11)

]2
, (2.3)

dω̂

dt
R(t) = ν+ skew(B) · R(t), B = Bmech or Btc, ν+ = ν+(F,R) ∈ R

+ ,

Bmech = µFR
T
, Btc =

[
µ(2 11 − FR

T
) + λ [3 − 〈FR

T
, 11〉]

]
FR

T
, R(0) ∈ SO(3) ,

where U = R
T
F is not necessarily symmetric. U is known as the first Cosserat

deformation tensor. We want to find a reasonable approximation (ϕs, Rs) of
(ϕ3d, R

3d
) involving only two-dimensional quantities. The reduction is based on

assumed kinematics and analytical integration through the thickness.

2.2. Enriched quadratic kinematics

In order to characterize the shell deformation, let us assume that the deformation
ϕ3d can be represented by a converging function expansion in thickness direction,
i.e.

ϕ3d(x, y, z) =
∞∑

i=0

�αi(x, y) · vi(z), �αi : ω �→ R
3, vi : [−h/2, h/2] �→ R , (2.4)

with linearly independent functions vi. Without loss of generality, we may take
vi(z) = zi.

In the engineering shell community it is well known [10, 54, 46] that the ansatz
through the thickness should at least be quadratic in order to avoid the Poisson
thickness-locking8 and to fully capture the three-dimensional kinematics without
artificial modification of the material laws if applying projection methods. See the
detailed discussion of this point in [7] and compare with [5, 2, 48, 6, 53].

For the three-dimensional theory with small elastic strains which captures shells
with large in-plane rigidity and high transverse flexibility we truncate (2.4) and
assume the quadratic ansatz in the thickness direction9 for the reconstructed
finite deformation ϕs : Ωh ⊂ R

3 �→ R
3 of the shell-like structure

ϕs(x, y, z) = m(x, y) +
(

z 
m(x, y) +
z2

2

b(x, y)

)
· �d(x, y) , (2.5)

where m : ω ⊂ R
2 �→ R

3 takes on the role of the deformation of the midsurface of
the shell viewed as a parametrized surface and the independent unit director
of the shell �d : ω ⊂ R

2 �→ S
2. The yet indeterminate scalar functions 
m, 
b :

ω ⊂ R
2 �→ R allow in principal for symmetric thickness stretch (
m �= 1) and

asymmetric thickness stretch (
b �= 0) about the midsurface. For �d �= �nm (�nm

the outer unit normal to m) transverse shear occurs.

8 The bending stiffness of the reduced theory would tend to ∞ as the Poisson-number ν → 1
2
.

9 Identify �α0 = m, �α1 = �m
�d, �α2 = �b

�d.
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This leads at first glance to a 10 “dof” constraint theory: 3 components of
the membrane deformation, 3 degrees of freedom for the bulk microrotations
R ∈ SO(3, R), including naturally one drilling degree of freedom for in-plane
rotations, 2 degrees of freedom for the unit director �d ∈ S

2 and 2 degrees of free-
dom 
m, 
b over the thickness. However, the director �d will be specialized and the
two thickness coefficients 
m, 
b will be eliminated analytically, leaving us finally
with 6 six degrees of freedom and the rotations R remain locally coupled to the
deformation gradient through viscoelasticity. Already in the classical elasticity
context the beneficial influence of drill rotations for the numerical implementation
has been investigated in the linear case in [26] and in the finite-strain case in [57].

The (reconstructed) rotations R
s

: Ωh �→ SO(3, R) in the thin shell are assumed
not to depend on the thickness variable z

R
s
(x, y, z) = R(x, y) , (2.6)

in line with the assumed thinness and material homogeneity of the structure. This
is now a kind of plate formulation, since for the moment the unstressed reference
configuration ω was assumed to lie in the plane. We immediately replace the
independent unit director �d in the ansatz (2.5) by specializing

�d(x, y) := R
s
(x, y, 0).e3 =: R3 , (2.7)

including now also drill-rotations. This implies for the (reconstructed) deforma-
tion gradient of the shell (plate)

Fs = ∇ϕs(x, y, z) = (∇m| 
m R3)︸ ︷︷ ︸
Am

+z (∇(
m R3)|
b R3)︸ ︷︷ ︸
Ãr

+
z2

2
(∇(
b R3)|0)︸ ︷︷ ︸

˜̃Ar

. (2.8)

It should be noted that the augmented quadratic ansatz already changes the term
which is linear in the transverse direction. The stress field through the thickness
R

s,T
S1(∇ϕs(x, y, z), R

s
).e3 is at least linear in the transverse variable z and not

constant, as would be the case in a first order (linear) ansatz for the deformation.
Invertibility of the reconstructed shell deformation (as a physical requirement)

entails

∀ z ∈ [−h/2, h/2] : det[∇ϕs(x, y, z)] > 0 ⇒ 
m(x, y) > 0 , (2.9)

and we should guarantee that 
m : ω �→ R
+. The three-dimensional local part of

the elastic free energy in (2.3) has the form

W (F,R) =
µ

4
‖RT

F + FT R − 211‖2 +
λ

8
tr
[
R

T
F + FT R − 211

]2
. (2.10)

The equilibrium equations ensuing from (2.3) show that on the transverse bound-
ary (upper and lower face of the plate) the Neumann condition (3D-exact)

S3d
1 (∇ϕ3d(x, y,±h/2), R

3d
(x, y,±h/2)).(±e3) = N trans(x, y,±h/2) , (2.11)
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holds. N trans are the prescribed tractions N [N/m2] on the transverse boundary
given globally in the basis (e1, e2, e3). This implies (3D-exact, multiplication with
R

3d,T
)

R
3d

(x, y,±h/2)T S3d
1 (∇ϕ3d(x, y,±h/2), R

3d
(x, y,±h/2)).(±e3) =

R
3d

(x, y,±h/2)T N trans(x, y,±h/2) . (2.12)

As a consequence of (2.11) we have (3D-exact)

〈R3d
(x, y,±h/2)T S3d

1 (∇ϕ3d(x, y,±h/2), R
3d

(x, y,±h/2)).e3, e3〉 =

± 〈N trans(x, y,±h/2), R
3d

(x, y,±h/2).e3〉 . (2.13)

We determine the coefficients 
m, 
b from the corresponding requirement in terms
of the assumed kinematics (ϕs, R

s
), yielding

〈Rs,T
(x, y,±h/2)S1(∇ϕs(x, y,±h/2), R

s
).e3, e3〉

= ±〈N trans(x, y,±h/2), R
s
(x, y,±h/2).e3〉 ⇒

〈RT
S1(∇ϕs(x, y,±h/2), R).e3, e3〉 = ±〈N trans(x, y,±h/2), R.e3〉 , (2.14)

which condition reduces to zero normal tractions on the transverse free
boundary (in the absence of transverse tractions N trans) in the classical, non-
polar continuum limit of R → R = polar(∇ϕ). The physical motivation for this
condition is simple: if the transverse surface of the plate is free of loads and if we
take the plate to be a thin three-dimensional structure made of a regular array of
springs, the springs will not be elongated in normal direction. Since from (2.10)

DF Wmp(F,R) = S1(F,R)

= R

[
µ
(
FT R + R

T
F − 211

)
+

λ

2
tr
[
FT R + R

T
F − 211

]
11
]

, (2.15)

the requirement (2.14) turns for z = ±h/2 into the local condition

± 〈N trans(x, y,±h/2), R.e3〉 = µ (2(
m − 1) + 2z 
b) (2.16)

+ λ
(
〈RT

(∇m|0), 11〉 + 
m + z 
m〈(∇R3|0)T R, 11〉

+ z 
b − 3 +
z2

2

b〈RT

(∇R3|0), 11〉
)

,

surprisingly without spatial derivatives of 
m, 
b appearing, which would have
been the case did we not assume (2.7). Define now Nres, Ndiff : ω �→ R

3 by

Nres(x, y) :=
[
N trans(x, y,+h/2) + N trans(x, y,−h/2)

]
,

Ndiff(x, y) :=
1
2
[
N trans(x, y,+h/2) − N trans(x, y,−h/2)

]
. (2.17)
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In terms of (2.17) the local statement (2.16) yields two linear equations in 
m, 
b
10

the exact solution of which is given by

(

ex

m


ex
b

)
=

1

(2µ + λ)2 h − λ2 h3

8
〈(∇R3|0)T R, 11〉2︸ ︷︷ ︸

small of higher order

×
(

(2µ + λ)h −λ h2

8 〈∇R3|0)T R, 11〉
−λh〈(∇R3|0)T R, 11〉 (2µ + λ)

)

×
(〈Ndiff , R3〉 + (2µ + λ) − λ

[〈(∇m|0), R〉 − 2
]

〈Nres, R3〉
)

. (2.18)

Skipping the indicated term of higher order we obtain the approximation


ex
m ≈ 1 − λ

2µ + λ

[〈(∇m|0), R〉 − 2
]
+

〈Ndiff , R3〉
(2µ + λ)

− λh

8(2µ + λ)2︸ ︷︷ ︸
small for λ � 1

〈(∇R3|0), R〉 〈Nres, R3〉 ,


ex
b ≈ − λ

2µ + λ
〈(∇R3|0), R〉︸ ︷︷ ︸

�

+
〈Nres, R3〉
(2µ + λ)h

(2.19)

− λ

2(2µ + λ)2︸ ︷︷ ︸
small for λ � 1

〈(∇R3|0), R〉〈Ndiff , R3〉

+
λ2

(2µ + λ)2
〈(∇R3|0), R〉 [〈(∇m|0), R〉 − 2

]
︸ ︷︷ ︸

small for small elongational strain, compared to �

.

For an almost rigid material with µ, λ � 1 we have λ
(2µ+λ)2 � 1, which motivates

to neglect these terms. The term λ2

(2µ+λ)2 〈(∇R3|0), R〉 [〈(∇m|0), R〉 − 2
]

repre-
sents a nonlinear coupling between midsurface in-plane (membrane) strain and
normal curvature, a result of the derivation not present in the underlying three-
dimensional theory where only products of deformation gradient and rotations
occur. Since we have in mind a small strain situation, this product is one order
smaller than 〈(∇R3|0), R〉. Therefore, we neglect this term as well. Thus we set

10 �m, �b have different units. �m is dimensionless, whereas [�b] = m−1.
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finally


m := 1 − λ

2µ + λ

[〈(∇m|0), R〉 − 2
]
+

〈Ndiff , R3〉
(2µ + λ)

, mainly membrane related ,


b := − λ

2µ + λ
〈(∇R3|0), R〉 +

〈Nres, R3〉
(2µ + λ)h

, mainly bending related .

(2.20)

Note that the possibility to determine 
m, 
b exactly in (2.18) is predicated on the
isotropy of the underlying model and the choice (2.7).

The last formula (2.20) has a clear physical significance:
1. to first order: transverse fibers will be symmetrically elongated by opposite

transverse tractions and symmetrically shortened through in-plane stretch.
2. to second order: the midsurface will be asymmetrically shifted through bend-

ing, moderated through resulting transverse tractions.
3. in pure bending there is only a shift of the midsurface.
Having obtained a physically reasonable form of the relevant coefficients 
m, 
b,
it is expedient to base the expansion and subsequent integration of the three-
dimensional elastic energy on a further simplified expression. We take F s, where

Fs = ∇ϕs(x, y, z) ≈ (∇m| 
m R3)︸ ︷︷ ︸
Am

+z (∇R3|
b R3)︸ ︷︷ ︸
Ar

=: Am + z Ar =: F s , (2.21)

motivated by the form of the deformation gradient F lin
s = (∇m|R3) + z(∇R3|0),

based on a naive linear Reissner-Mindlin (1|1|0)-ansatz ϕlin
s = m + z · R3. Note

that the “assumed gradient” F s is in general not a gradient of some form of
reconstructed deformation any more. It should be observed that by using (2.21)
we are consistent with John’s general result [28, 29] that the stress distribution
through the thickness is approximately linear for a thin shell.

A simple but tedious calculation reveals now that (reminder Ar := (∇R3|
bR3))

µ

4
‖RT

Ar +AT
r R‖2+

λ

8
tr
[
R

T
Ar + AT

r R
]2

= µ‖ sym(R
T
Ar)‖2+

λ

8
tr
[
sym(R

T
Ar)

]2

= µ‖ sym(R
T
(∇R3|0))‖2 +

µλ

2µ + λ
tr
[
sym(R

T
(∇R3|0))

]2
+

〈Nres, R3〉2
2(2µ + λ)h2

.

(2.22)

Exactly the same computations as for the bending term allows us to conclude that
(reminder Am := (∇m|
mR3))

µ

4
‖RT

Am + AT
mR − 211‖2 +

λ

8
tr
[
R

T
Am + AT

mR − 2 11
]2

(2.23)

= µ‖ sym(R
T
(∇m|R3)) − 11‖2+

µλ

2µ + λ
tr
[
sym(R

T
(∇m|R3)) − 11

]2
+
〈Ndiff , R3〉2
2(2µ + λ)

.
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2.3. Dimensionally reduced energy: analytical integration through the
thickness

Now we perform the analytical integration through the thickness in terms of the
reduced kinematics. We insert the assumed expression F s (2.21) and Rs instead
of F and R

3d
into the bulk energy (2.3). Since

‖ sym(R
T

s F s) − 11‖2 =
1
4
‖AT

mR + R
T
Am + z AT

r R + z R
T
Ar − 211‖2

=
1
4
‖AT

mR + R
T
Am − 211‖2 + z 〈AT

mR + R
T
Am − 211, AT

r R〉 (2.24)

+
z2

4
‖AT

r R + R
T
Ar‖2 .

and a similar result for tr
[
sym(R

T

s F s) − 11
]2

, we obtain by explicitly integrating

over the (absolutely thin plate like referential) domain Ωh = ω × [−h
2 , h

2 ], using
(2.23) and (2.22)

∫
ω

∫ h
2

−h
2

Wmp(F s, Rs) dV

=
∫

ω

h

(
µ‖ sym(R

T
(∇m|R3)) − 11‖2 +

µλ

2µ + λ
tr
[
sym(R

T
(∇m|R3)) − 11

]2

+
〈Ndiff , R3〉2
2(2µ + λ)

+
〈Nres, R3〉2
24 (2µ + λ)

)
dω (2.25)

+
∫

ω

h3

12

(
µ‖ sym(R

T
(∇R3|0))‖2 +

µλ

2µ + λ
tr
[
sym(R

T
(∇R3|0))

]2)
dω ,

and we call the factor of h the membrane part and the factor of h3 the bending
part, in line with the classical terminology. The result (2.25) shows the charac-
teristic apparent change of the Lamé moduli for the two-dimensional structure in
membrane and bending as well as the additive decoupling of these effects. Such
a decoupling would also have been obtained by formal energy projection based
on the naive linear Reissner-Mindlin ansatz ϕs = m + z R3. The final energy
expression (2.25), however, cannot be obtained by energy projection.

2.4. Effective evolution of rotations: averaged generator on so(3, R)

It remains to reduce the three-dimensional evolution equation for the rotations of
the thin structure into an evolution equation for some effective rotation defined
over the midsurface ω only. Now consider the evolution equation for the viscoelas-
tic rotations in (1.1) with B = Bmech first. If we insert Fs (2.8) instead of F we
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can completely reconstruct the three-dimensional evolution equation

d
dt

R(t, x, y, z) = ν+ skew
(
FsR(t, x, y, z)T

) · R(t, x, y, z) . (2.26)

In order to get some effective equation for rotations R which are defined over
the two-dimensional referential domain ω only, we consider

d
dt

R(x, y, z) = ν+ skew(Bres,h
mech) · R(x, y, z) ,

Bres,h
mech(x, y) :=

1
h

∫ h
2

−h
2

F sR(x, y, z)T dz ,

(2.27)

where Bres,h
mech is the thickness averaged generator on the Lie-algebra of the

evolution and we use F s instead of Fs to be consistent with the simplification
(2.21).11 In addition we assume that the rotations do not depend on the transverse
variable z, i.e. R(x, y, z) = R(x, y, 0). This leads to

d
dt

R(x, y, z) = ν+ skew

(
1
h

∫ h
2

−h
2

(Am(x, y) + z Ar(x, y)) R(x, y, 0)T dz

)
· R(x, y, z)

= ν+ skew
(
Am(x, y)R(x, y, 0)T

)·R(x, y, z) . (2.28)

Hence an effective equation based on B = Bmech is

d
dt

R(x, y) = ν+ skew(Bres,h
mech)R(x, y) , Bres,h

mech = AmR
T

, (2.29)

independent of the thickness h. This result could have been obtained by setting z =
0 in (2.26) incidentally. The derivation for B = Btc proceeds similarly. We need

the averaged quantity Bres,h
tc (x, y) := 1

h

∫ h
2
−h
2

Btc(x, y, z) dz. A small calculation
reveals

Bres,h
tc =

(
µ (211 − AmR

T
) + λ [3 − 〈AmR

T
, 11〉]

)
AmR

T

− h2

12

(
µArR

T
+ λ〈ArR

T
, 11〉

)
ArR

T
, (2.30)

i.e., the three-dimensional thermodynamically consistent evolution equation auto-
matically furnishes a certain “bending” like influence in the viscoelastic flow, while
the mechanically consistent evolution equation alone does not.

11 Rotations live on the nonlinear manifold SO(3, R) and cannot be averaged over the thickness,
since the average might cease to be a rotation.
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2.5. Deduction of the boundary conditions

Taking the Dirichlet boundary conditions for ϕ into account and the quadratic
kinematical ansatz, we should have ϕs(x, y, z)|Γh

0
= gd(x, y, z) and

ϕs(x, y, z) = m(x, y) +
(

z 
m(x, y) +
z2

2

b(x, y)

)
· Rs,3(x, y, 0) , (2.31)

Evaluating for ±h/2 yields two vector equations:

gd(x, y,±h/2) = m(x, y) +
(
±h/2 
m(x, y) +

h2

8

b(x, y)

)
· Rs,3(x, y, 0) . (2.32)

Adding and subtracting shows

gd(x, y,+h/2) + gd(x, y,−h/2) = 2m(x, y) +
h2

4

b(x, y) · Rs,3(x, y, 0) (2.33)

gd(x, y,+h/2) − gd(x, y,−h/2) = h 
m(x, y)Rs,3(x, y, 0) ⇒
∇gd(x, y, 0).e3 = 
m(x, y)Rs,3(x, y, 0) + o(h) .

This implies to first order m(x, y) = 1
2 (gd(x, y,+h/2) + gd(x, y,−h/2)) ≈

gd(x, y, 0), which we take as reduced boundary condition for simple support. It
is also suggested that one should take Rs,3(x, y, 0) = ∇gd(x,y,0).e3

‖∇gd(x,y,0).e3‖ . However, for
a membrane plate it is not possible to specify higher order boundary conditions
corresponding to some sort of clamping.

3. The reduced viscoelastic membrane-plate model

Since in the underlying three-dimensional model (1.1) we minimized the elastic
energy at fixed rotations R we are led to minimizing (2.25) with respect to the
deformation of the midsurface m at fixed reduced rotation R : ω �→ SO(3). We

observe that the term h
(

〈Ndiff ,R3〉2
2(2µ+λ) + 〈Nres,R3〉2

24 (2µ+λ)

)
in the membrane part of the

reduced energy (2.25) does not contribute to the minimization w.r.t. the membrane
deformation m. The same is true for the complete h3-bending expression in (2.25).

3.1. The two-dimensional membrane-plate

Collecting all the former results we postulate the following coupled problem for
the deformation of the midsurface of the membrane plate m : [0, T ]×ω �→ R

3 and
the independent local viscoelastic rotation R : [0, T ] × ω �→ SO(3, R) on ω∫

ω

hW (F,R) dω − Π(m,R3) �→ min .w.r.t. m at fixed R , (3.1)
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Figure 1. The assumed membrane-plate kinematics incorporating viscoelastic transverse shear
resistance (R3 �= �nm), instantaneous thickness stretch (�m �= 1) and viscoelastic drill-rotations.
Reconstructed three-dimensional deformation
ϕs : Ωh �→ R

3, ϕs(x, y, z) = m(x, y) + z �m(x, y) R3(x, y), midsurface deformation m : ω �→ R
3,

independent viscoelastic rotation R : ω �→ SO(3, R).

with prescribed Dirichlet boundary conditions for simple support m|γ0
(t, x, y) =

gd(t, x, y, 0), γ0 ⊂ ∂ω. The constitutive assumptions on the reduced density are

W (F,R) :=
µ

4
‖FT R + R

T
F − 211‖2 +

λ

8
tr
[
FT R + R

T
F − 211

]2
(3.2)

F = (∇m|
m R3), 
m = 1 − λ

2µ + λ

[〈(∇m|0), R〉 − 2
]
+

〈Ndiff , R3〉
2µ + λ

.

The effective viscoelastic evolution for the “moving orthonormal three-frame”
R(t, x, y) ∈ SO(3, R) is given by

dω̂

dt
R(t) = ν+ · skew (Bres) · R(t) ,

Bres = Bres,h
mech or Bres,h

tc ,

Bres,h
tc =

[
µ(2 11 − FR

T
) + λ [3 − 〈FR

T
, 11〉]

]
FR

T
(3.3)

− h2

12

(
µArR

T
+ λ〈ArR

T
, 11〉

)
ArR

T
,
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where

Ar = (∇R3|
b R3) , 
b = − λ

2µ + λ
〈(∇R3|0), R〉 +

〈Nres, R3〉
(2µ + λ)h

. (3.4)

The effective viscoelastic evolution (3.3) is a local, nonlinear ordinary differential
equation for Bres = Bres,h

mech, but turns into a nonlocal, nonlinear first order partial
differential system for R in case of Bres = Bres,h

tc if h > 0. Subsequently, we restrict
attention to the simpler local choice Bres = Bres,h

mech.
Here, Π is the linear functional of resultant external loading, cf.(6.8). We have

already observed (2.23) that for F̂ = (∇m|R3) and Ndiff = 0 in fact

W (F,R) = µ ‖ sym
(
FT R − 11

) ‖2 +
λ

2
tr
[
sym

(
FT R − 11

)]2

= µ ‖ sym
(
F̂T R − 11

)
‖2 +

µλ

(2µ + λ)
tr
[
sym

(
F̂T R − 11

)]2
, (3.5)

showing the characteristic apparent change of the Lamé moduli for the two-
dimensional structure.12Observe that µλ

(2µ+λ) = 2
1
µ + 2

λ

is half the harmonic mean

of µ and λ
2 .

3.2. Uniform Legendre-Hadamard ellipticity

Let us consider the membrane contribution to the elastic free energy (for simplicity
take µ > 0, λ = 0)∫

ω

hW (F,R) dω (3.6)

= h

∫
ω

µ

4
‖(∇m|
m(∇m,R)R3)T R + R

T
(∇m|
m(∇m,R)R3) − 211‖2 dω .

It is easy to see that this remaining membrane energy density is uniformly
Legendre-Hadamard elliptic at frozen R ∈ SO(3, R) with ellipticity constant
µ independent of R(x, y), since its second differential with respect to m verifies
(reminder F = (∇m|
mR3) and (3.5))

∀H ∈ M
2×3 D2

∇mW (F,R).(H,H) ≥ µ

2
‖(H|0)T R + R

T
(H|0)‖2 ⇒

∀ ξ ⊗ η ∈ M
2×3 D2

∇mW (F,R).(ξ ⊗ η, ξ ⊗ η) ≥ µ ‖ξ‖2
R3 · ‖η‖2

R2 . (3.7)

Moreover, the membrane energy is a convex functional in ∇m at frozen R, later
we will see that it is indeed uniformly convex if integrated over ω also for noncon-
stant rotations R if R satisfies some additional smoothness requirements. This is
precisely the property which can be exploited to our advantage in a subsequent
mathematical analysis.

12 It is not expedient to use F̂ in general in (3.1) since it is F which appears in the local evolution.
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Remark 3.1. A possible advantage of the resulting model (3.1) is the fact that the
membrane part alone is not degenerate. This has to be paid with the additional
internal viscoelastic relaxation which is, however, only a local problem and does
not involve additional field equations. Spatially discontinuous rotations R(x, y)
are no major numerical concern, since they are only local quantities. Usually, the
implementational burden associated with either a fourth order system coming from
the classical Kirchoff-Love ansatz or the additional field equations for the rotations
R in a Reissner-Mindlin (restricted Cosserat-surface) type theory counterbalances
the gain of the dimensional reduction. A particular appealing feature of the model
(3.1) is the absence of a C1-continuity requirement and the absence of additional
field equations. For the membrane equilibrium part any standard 2D-H1-finite
element might be suitable.

3.3. Observer-invariance of the reduced viscoelastic model

Observer-invariance amounts to the requirement of invariance of the stresses in
model (3.1) with respect to superposed rigid body rotations Q ∈ SO(3, R) in the
sense that

∀Q ∈ SO(3) : QS1(F,R) = S1(QF,QR) , (3.8)

where S1 is the first Piola-Kirchhoff stress tensor. In our context we check invari-
ance of the model under the transformation (m,R) �→ (Q.m,QR). Now,

W ((∇Q.m|((QR)3), QR)) = W ((Q∇m|((QR)3), QR) = W (Q(∇m|R3), QR)

= W (QF,QR) = W (F,R) = W ((∇m|R3), R) , (3.9)

by frame-indifference of the 3D-strain energy density. The evolution equation for
the rotations is also observer-invariant due to the use of the corotated time
derivative dω̂

dt . Thus the invariance of the reduced thin plate viscoelastic model
under m �→ Q.m, R �→ QR is guaranteed. However, unlike classical theories based
on just one hyperelastic free energy formulation and Hamilton’s principle, where
frame-indifference of the energy implies balance of external angular momentum,
this is not true in the case (3.1) due to a viscoelastic dissipative nonsymmetric
stress contribution coming from the evolution equation for R.

3.4. Thin membrane-plate non-elliptic relaxation limit

If the viscosity is related to friction occuring at internal surfaces, it is reasonable
to assume that the viscosity for the plate should scale like ν+ ∼ 1

h3 with h the
plate thickness. Hence, the (vanishing elastic viscosity) limit ν+ → ∞ corresponds
to the interesting limit of vanishing thickness h → 0.

Assume now that for a sequence of vanishing viscosity ν+
k → ∞ we obtain a

corresponding sequence mk, Rk as solutions to the problem (3.1) with thickness
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stretch 
m ≡ 1 (for simplicity only) and which converges to m̂ ∈ C1(R+,H1(ω, R3))

and R̂ ∈ C1(R+, L∞(ω,SO(3, R))), respectively. Then the limit membrane defor-

mation m̂ and rotation R̂ satisfy forall times (note that skew(FR
T
) = 0 ∼ R =

polar(F ), c.f. Lemma 6.3 and recall Theorem 1.1)
∫

ω

hW (F,R) dω − Π(m,R3) �→ min .w.r.t. m at fixed R , (3.10)

F = (∇m|R3), R = polar(F ) = polar
(
(∇m|R3)

)
,

and the computed equilibrium energy level at a given time is

W (F,R) =
µ

4
‖FT R + R

T
F − 211‖2 +

λ

8
tr
[
FT R + R

T
F − 211

]2
(3.11)

= µ ‖U − 11‖2 +
λ

2
tr [U − 11]2 =: W∞(U) ,

with U = (FT F )
1
2 the classical symmetric elastic stretch and U − 11 the elastic

Biot strain tensor. Remark, however, that it is not W∞ which underlies the
variational problem (3.10).

Let us investigate in more detail this limit equilibrium system in the viscoelas-
tic case without external loads and without loss of generality only based on the
simplified energy expression (µ = 1, λ = 0)

W (∇m,R) =
1
4
‖(∇m|R3)T R + R

T
(∇m|R3) − 211‖2. (3.12)

Since m̂ minimizes (3.10) with respect to m at fixed R̂ ∈ SO(3, R), we have

necessarily for the relaxation limit m̂, R̂

0 =
d
dt |t=0

∫
ω

W ((∇m̂ + t∇φ|R̂3), R̂) dω

=
1
2
〈(∇m̂|R̂3)T R̂ + R̂

T

(∇m̂|R̂3) − 211, (∇φ|0)T R̂ + R̂
T

(∇φ|0)〉ω (3.13)

= 〈(∇m̂|R̂3)T R̂ + R̂
T

(∇m̂|R̂3) − 211, (∇φ|0)T R̂〉ω, ∀ φ ∈ H1,2
◦ (ω, R3; γ0) .

Now based on the identity polar(X)T ·polar(X) = 11 for X ∈ GL(3, R) the (point-
wise) expansion

polar((∇m̂ + H|R̂3)) = polar((∇m̂|R̂3) + (H|0))

= polar((∇m̂|R̂3)) + D polar((∇m̂|R̂3)).(H|0) + . . . (3.14)

with H ∈ M
2×3 implies that

polar((∇m̂|R̂3))T · D polar((∇m̂|R̂3)).(∇φ|0) ∈ so(3). (3.15)
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Taking U = 1
2 (FT R̂ + R̂

T

F ) if R̂ = polar(F ) into account and computing the

variation with respect to m̂ at fixed column R̂3 of

‖U((∇m̂|R̂3)) − 11‖2
ω =

1
4
‖(∇m̂|R̂3)T polar(∇m̂|R̂3)

+ polar(∇m̂|R̂3)T (∇m̂|R̂3) − 211‖2
ω , (3.16)

we get

d
dt |t=0

‖U((∇(m̂ + tφ)|R̂3)) − 11‖2
ω = (3.17)

=
1
2
〈(∇m̂|R̂3)T polar(∇m̂|R̂3) + polar(∇m̂|R̂3)T (∇m̂|R̂3) − 211, 〉

(∇φ|0)T R̂ + R̂
T

(∇φ|0)ω+

〈U − 11(∇m̂|R̂3)T D polar((∇m̂|R̂3)).(H|0)

+ D polar((∇m̂|R̂3)).(H|0)T (∇m̂|R̂3)〉ω
(3.13)
= 0 + 〈U − 11, (∇m̂|R̂3)T R̂ R̂

T

D polar((∇m̂|R̂3)).(H|0)+

D polar((∇m̂|R̂3)).(H|0)T R̂ R̂
T

(∇m̂|R̂3)〉ω
= 〈U − 11, UR̂

T

D polar((∇m̂|R̂3)).(H|0) + D polar((∇m̂|R̂3)).(H|0)T R̂U〉ω
(3.15)
= 〈U2 − U, R̂

T

D polar((∇m̂|R̂3)).(H|0) + D polar((∇m̂|R̂3)).(H|0)T R̂〉ω = 0 ,

by (3.13) and (3.15), since U is symmetric. Thus we have proved that if the
equilibrium relaxation limit exists in fact∫

ω

hW∞(U((∇m|R3)) dω − Π(m,R3) �→ stat .w.r.t. m at fixed R3 ,

R = polar
(
(∇m|R3)

)
,

W∞(U) = µ ‖U − 11‖2 +
λ

2
tr [U − 11]2 , (3.18)

is solved by m̂, R̂. This means that at fixed viscoelastic “director” R.e3, the mem-
brane energy is stationary, but no claim as respects minimality of this solution
can be made and indeed it is very likely to end up in a metastable state by which
we mean a local but not a global minimum.

In this relaxation limit the true Cauchy-stresses σ = 1
det[F ]S1F

T turn out
to be symmetric upon inspection of (3.1), which means that classical balance of
external angular momentum constrains the theory to its relaxed version. It might
be worth remembering, however, that in continuum mechanics balance of external
angular momentum is an additional hypotheses, independent of balance of linear
momentum and frame-indifference [23, p.137].
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We push the analysis of the elastic case further: the holonomic constraint R =
polar

(
(∇m|R3)

)
in (3.18) is essentially a generalization of the normality condition

for the unit outward normal to the surface m, the director �nm in a Kirchhoff-Love
model. To see this we note that the condition R = polar(∇m|R3) implies already
R3 = �nm. Thus R3 coincides with the unit normal on the midsurface �nm. This
is a welcome feature of the theory since normality has not been imposed yet
anywhere. Since

U2 = C = FT F = (∇m|�nm)T (∇m|�nm) =


 ‖mx‖2 〈mx,my〉 0
〈mx,my〉 ‖my‖2 0

0 0 1


 , (3.19)

we understand that U = U((∇m|�nm)) is in fact independent of �nm, such that in
the elastic relaxation equilibrium limit we have actually solved the intrinsic,
purely elastic13 problem (
m �= 1)∫

ω

hW∞(U((∇m|�nm)) dω − Π(m,�nm) �→ stat .w.r.t. m ,

W∞(U) := µ ‖U − 11‖2 +
µλ

2µ + λ
tr [U − 11]2 . (3.20)

Note that W∞(U) is a non-quasiconvex, non-elliptic elastic energy w.r.t. ∇m
but convex in U , ensuring in fact the Baker-Ericksen inequalities.14Currently
there are no mathematical theorems available establishing the existence of mini-
mizers or stationary points based directly on W∞. In this sense, the viscoelastic
formulation (3.1) provides a physical regularization of the occurring loss of el-
lipticity. The linearization of (3.20) coincides with the classical, rigourously
justified linearized membrane plate, cf. [15].

To sum up, we have motivated that normality of the director R3 is an
asymptotic feature of our model for vanishing absolute thickness or the
absolutely thinner the shell the less transverse shear is possible.

4. Local existence and uniqueness

In this part we sketch the methods and mathematical tools which allow us to
establish a local existence and uniqueness result. Since the formal structure of
energy projection does not obtain for our membrane model, it is not possible to
simply transfer the three-dimensional existence and uniqueness result [42] to a
reduced ansatz space. However, the ideas used in [42] still apply.
13 intrinsic: depending only on the first fundamental form Im = ∇mT∇m ∈ M

2×2 of the surface
m : ω ⊂ R

2 �→ R
3.

14 One version of the BE-inequalities for membranes can be stated as follows: for λ2
i ≥ 0, i =

1, 2 , λ2
3 = 1 the (generalized) principal stretches (here λ2

i are the eigenvalues of (∇m|�n)T (∇m|�n)),

the free energy Φ(λ1, λ2, 1) := Ŵ (∇mT∇m) = W∞(U) is separately convex in λi. No
mathematical existence results based only on BE are known. Note also that BE is enough to
effectively exclude phase-transformations, modelled with multi-well potentials.
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At frozen viscoelastic rotations R the equilibrium system corresponding to (3.1)
proves to be a linear, second order, strictly Legendre-Hadamard elliptic boundary
value problem with nonconstant coefficients set by R(t, x, y). This system has
variational structure in the sense that the equilibrium part of (3.1) is formally
equivalent to the minimization problem

∀ t ∈ [0, T ] : I(m(t), R(t)) �→ min .w.r.t. m, m(t) ∈ gd(t) + H1,2
◦ (ω, R3; γ0) ,

I(m,R) :=
∫

ω

hW (F,R) dω − Π(m,R3) , (4.1)

W (F,R) :=
µ

4
‖FT R + R

T
F − 211‖2 +

λ

8
tr
[
FT R + R

T
F − 211

]2
,

F = (∇m|
mR3), 
m = 
m(∇m,R) .

The main task in proving that (3.1) is well posed consists of showing uniform
estimates for solutions of elliptic systems whose coefficients are time dependent
and do not induce a pointwise uniformly positive bilinear form. Thus we are first
concerned with the static situation where R is assumed to be known. We prove the
existence, uniqueness and regularity of solutions to the two-dimensional boundary
value problem corresponding to (4.1). In addition we elucidate in which manner
these solutions depend on the rotations R. Decisive use is made of the following
new two-dimensional coercivity inequality:

Theorem 4.1 (Improved Korn’s inequality for rigid plates and shells).
Let ω ⊂ R

2 be a bounded domain with smooth boundary and let γ0 ⊂ ∂ω be a
part of the boundary with non vanishing 1-dimensional Hausdorff measure. Define
H1,2

◦ (ω, R3; γ0) := {φ ∈ H1,2(ω) | φ|γ0
= 0} and let Fp, F

−1
p ∈ W 1,2+δ(ω,GL(3, R)).

Then

∃ c+ > 0 ∀ φ ∈ H1,2
◦ (ω, R3; γ0) :

‖(∇φ|0)F−1
p (x) + F−T

p (x)(∇φ|0)T ‖2
L2(ω) ≥ c+ ‖φ‖2

H1,2(ω) , (4.2)

and the constant is bounded away from zero for Fp, F
−1
p bounded in W 1,2+δ(ω,

GL(3, R)).

Proof. The proof is based on a generalized three-dimensional Korn’s first inequality
[39, 47] and subsequent dimensional reduction; it can be found in [40, 44].

We have not yet specified the form of ν+. One possible choice is to take ν+

scaled with the thickness of the plate h (not necessary) and set formally similar
to a viscoplastic Norton-Hoff formulation

ν+ : =
[1m]3

h3 η


1 +

[
‖ skew(µFR

T
)‖ − 0

σ̄0

]r+1

+




k

·

‖ skew

(
µFR

T
)
‖ − 0

σ̄0




r−1

+

,

(4.3)

with η a relaxation time, σ̄0 = 1[MPa] and positive parameters r, k.
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The conceptual idea to treat the evolution problem is then straightforward: we
write the ordinary differential equation (3.3) in the following form

d
dt

R(t) = f(∇xm(R), R) · R , (4.4)

with some “nice” function f : M
2×3 × M

3×3 �→ so(3, R) and where m = m(R) is
the unique solution of the elliptic second order two-dimensional boundary value
problem corresponding to (4.1) at fixed rotations R.

It remains to show that the right hand side of (4.4) as a function of R is locally
Lipschitz,15allowing to apply the standard local existence and uniqueness theorem.
With appropriate changes this program can be carried out similar to [38, 42], but
will be presented in detail elsewhere [43]. Thus we are in a position to announce
the following result for the case of the everywhere (γ0 = ∂ω) simply supported
finite-strain viscoelastic membrane-plate:

Theorem 4.2 (Local existence and uniqueness for the viscoelastic mem-
brane-plate). Let ω ⊂ R

2 be a bounded smooth domain and suppose for the
displacement boundary data gd ∈ C1(R,H3,2(ω, R3)). Moreover, assume for the
resultant body force f ∈ L2(ω, R3), see (6.8). Assume for the initial condition on
the rotation R

0 ∈ H2,2(ω,SO(3))). Then there exists a time t1 > 0 such that the
initial boundary value problem (3.1) with Bres = Bres,h

mech and ν+ according to (4.3)
together with γ0 = ∂ω admits a unique solution

(m,R) ∈ C([0, t1],H3,2(ω, R3)) × C1([0, t1],H2,2(ω,SO(3))). �

Remark 4.3. The level of smoothness required and the kind of boundary condi-
tions are due to technical details pending on the use of refined elliptic regularity.

5. Discussion and concluding remarks

In this contribution we have formally derived membrane-plate equations for vis-
coelastic materials at small elastic strains starting from a given three-dimensional
formulation. The ensuing theory is neither a Kirchhoff-Love nor a Reissner-Mindlin
(restricted Cosserat surface) type theory, but combines elements of both theories
together with the use of the specific strain measure sym R

T
F − 11 and a non-

standard treatment of finite rotations. The derivation turns out to be straight
forward in the elastic case once the correct corresponding kinematical assumption
for small elastic strains on the underlying finite deformation of the plate is made.
The resulting equations in the thin plate limit, where the possibility of bending-
like influence in the viscoelastic evolution problem has been neglected, retain a

15 This is more than a simple requirement on f; precise estimates of the non-local solution

operator R �→ m(R) are involved.
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particular simple form. The dimensionally reduced system inherits in a natural
way the observer-invariance of the three-dimensional formulation which is a basic
requirement in continuum mechanics.

A special feature of the new system (3.1) is that the remaining membrane part
at frozen viscoelastic rotations R is uniformly Legendre-Hadamard elliptic and
indeed non-degenerate due to a novel extended Korn’s first inequality applicable
to thin plates (and shells). This structure of the resulting plate model allows
to prove a local existence and uniqueness result following the ideas which made
the treatment of the three-dimensional system possible [38, 42]. The model is lo-
cally in time well-posed independent of the thickness h > 0. And it is again this
structure which should prove its worth when doing numerical calculations: only
a standard 2D-H1-finite element is in principal required in refreshing contrast to
the ubiquitous C1-smoothness requirement for Kirchhoff-Love shells. The numer-
ical treatment of the evolution equations may follow merely standard practice in
finite-strain elasto-plasticity (exponential-update for the rotations and consistent
tangent). An extension of the model (3.1) and the announced mathematical re-
sults to finite-strain viscoelastic-viscoplastic membrane plates and shells is already
known to the author but will be detailed in a future contribution.

In conclusion it can be seen that the general assumption of small elastic strains
(almost rigidity) in conjunction with a non-standard treatment of finite rotations
represents a refreshing departure from more traditional degenerate approaches. It
opens a rich and as yet mostly unexplored structure linking the well established
infinitesimal, linear theories to the at present analytically difficult two-dimensional,
geometrically exact finite-strain problems.
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6. Appendix

6.1. Notation

Notation for bulk material

Let Ω ⊂ R
3 be a bounded domain with Lipschitz boundary ∂Ω and let Γ be a

smooth subset of ∂Ω with non-vanishing 2-dimensional Hausdorff measure. For
a, b ∈ R

3 we let 〈a, b〉
R3 denote the scalar product on R

3 with associated vector
norm ‖a‖2

R3 = 〈a, a〉
R3 . We denote by M

3×3 the set of real 3 × 3 second order
tensors, written with capital letters. The standard Euclidean scalar product on
M

3×3 is given by 〈X,Y 〉
M3×3 = tr

[
XY T

]
, and thus the Frobenius tensor norm is

‖X‖2 = 〈X,X〉
M3×3 . In the following we omit the index R

3, M3×3. The identity
tensor on M

3×3 will be denoted by 11, so that tr [X] = 〈X, 11〉. We let Sym and
PSym denote the symmetric and positive definite symmetric tensors respectively.
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We adopt the usual abbreviations of Lie-group theory, i.e., GL(3, R) := {X ∈
M

3×3 |det[X] �= 0} the general linear group, SL(3, R) := {X ∈ GL(3, R) |det[X] =
1}, O(3) := {X ∈ GL(3, R) | XT X = 11}, SO(3, R) := {X ∈ GL(3, R) |XT X =
11, det[X] = 1} with corresponding Lie-algebras so(3) := {X ∈ M

3×3 |XT = −X}
of skew symmetric tensors and sl(3) := {X ∈ M

3×3 |tr [X] = 0} of traceless
tensors. We set sym(X) = 1

2 (XT + X) and skew(X) = 1
2 (X − XT ) such that

X = sym(X) + skew(X) and for vectors ξ, η ∈ R
n we have the tensor product

(ξ ⊗ η)ij = ξi ηj .
We write the polar decomposition in the form F = R U = polar(F )U with

R = polar(F ) the orthogonal part of F and U the symmetric stretch. In general
we work in the context of nonlinear, finite elasticity. For the total deformation
ϕ ∈ C1(Ω, R3) we have the deformation gradient F = ∇ϕ ∈ C(Ω, M3×3). Fur-
thermore, S1(F ) and S2(F ) denote the first and second Piola Kirchhoff stress
tensors, respectively. Total time derivatives are written d

dtX(t) = Ẋ. The first
and second differential of a scalar valued function W (F ) are written DF W (F ).H
and D2

F W (F ).(H,H), respectively. We employ the standard notation of Sobolev
spaces, i.e. L2(Ω),H1,2(Ω),H1,2

◦ (Ω), which we use indifferently for scalar-valued
functions as well as for vector-valued and tensor-valued functions. Moreover, we
set ‖X‖∞ = supx∈Ω ‖X(x)‖. For A ∈ C1(Ω, M3×3) we define CurlA(x) as the
operation curl applied row wise. We define H1,2

◦ (Ω,Γ) := {φ ∈ H1,2(Ω) | φ|Γ = 0},
where φ|Γ = 0 is to be understood in the sense of traces and by C∞

0 (Ω) we denote
infinitely differentiable functions with compact support in Ω. We use capital let-
ters to denote possibly large positive constants, e.g. C+,K and lower case letters
to denote possibly small positive constants, e.g. c+, d+. The smallest eigenvalue
of a positive definite symmetric tensor P is abbreviated by λmin(P ).

Notation for shells

Let ω ⊂ R
2 be a bounded domain with Lipschitz boundary ∂ω and let γ0 be a

smooth subset of ∂ω with non-vanishing 1-dimensional Hausdorff measure. The
thickness of the plate is taken to be h > 0 with dimension length (contrary to
Ciarlet’s definition of the thickness to be 2ε, which difference leads to various
different constants in the resulting formulas). We denote by M

n×m the set of
matrices mapping R

n �→ R
m. For H ∈ M

2×3 and ξ ∈ R
3 we employ also the

notation (H|ξ) ∈ M
3×3 to denote the matrix composed of H and the column

ξ. Likewise (v|ξ|η) is the matrix composed of the columns v, ξ, η. The identity
tensor on M

2×2 will be denoted by 112. The mapping m : ω ⊂ R
2 �→ R

3 is the
deformation of the midsurface, ∇m = (mx|my) is the corresponding deformation
gradient with mx = (m1,x,m2,x,m3,x)T , my = (m1,y,m2,y,m3,y)T . The standard
volume element is written dx dy dz = dV = dω dz.
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6.2. The treatment of external loads

Dead load body forces for the thin plate

In the three-dimensional theory the dead load body forces f(x, y, z) ∈ R
3 were sim-

ply included by appending the potential with the term
∫
Ωh

f(x, y, z) ·ϕ(x, y, z) dV.
Inserting the quadratic ansatz for the reconstructed deformation ϕs results in the
approximation∫

Ωh

f(x, y, z) · ϕ(x, y, z) dV ≈
∫

Ωh

f(x, y, z) ·
[
m(x, y) + z 
mR3 +

z2

2

b R3

]
dV

=
∫

ω

h f̂(x, y) · m(x, y) dω +
∫

ω

(∫ h/2

−h/2

z f(x, y, z) dz

)

mR3 dω

+
∫

ω

(∫ h/2

−h/2

z2

2
f(x, y, z) dz

)

bR3 dω (6.1)

Let us define

f̂0(x, y) :=
∫ h/2

−h/2

f(x, y, z) dz ,

f̂1(x, y) :=
∫ h/2

−h/2

z f(x, y, z) dz ,

f̂2(x, y) :=
∫ h/2

−h/2

z2

2
f(x, y, z) dz , (6.2)

such that f̂0, f̂1, f̂2 are the zero, first, second moment of f in thickness direction.
This implies∫

Ωh

f(x, y, z) · ϕ(x, y, z) dV ≈
∫

ω

f̂0(x, y) · m(x, y) dω

+
∫

ω

f̂1(x, y)
mR3 dω +
∫

ω

f̂2(x, y)
bR3 dω . (6.3)

Traction boundary conditions for the thin plate

In the three-dimensional theory the traction boundary forces N(x, y, z) ∈ R
3, [N ]

= [Newt.]
[m]2 were simply included by appending the potential with the term∫

∂Ωtrans
h ∪{γs×[−h

2 , h
2 ]}N(x, y, z) ·ϕ(x, y, z) dS. Inserting our quadratic ansatz for the

reconstructed deformation ϕs results in the approximation∫
∂Ωtrans

h ∪{γs×[−h
2 , h

2 ]}
N(x, y, z) · ϕ(x, y, z) dS

≈
∫

ω×{−h
2 , h

2 }
N(x, y, z) ·

[
m(x, y) + z
mR3 +

z2

2

bR3

]
dS
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+
∫

γs×[−h
2 , h

2 ]

N(x, y, z) ·
[
m(x, y) + z
mR3 +

z2

2

bR3

]
dS.

Let us define on γs

N̂lat,0(x, y) :=
∫ h/2

−h/2

N(x, y, z) dz ,

N̂lat,1(x, y) :=
∫ h/2

−h/2

z N(x, y, z) dz ,

N̂lat,2(x, y) :=
∫ h/2

−h/2

z2

2
N(x, y, z) dz , (6.4)

such that N̂lat,0, N̂lat,1, N̂lat,2 are the zero, first, second moment of the tractions
N at the lateral boundary in thickness direction. Hence∫

∂Ωh

N(x, y, z) · ϕ(x, y, z) dS ≈
∫

ω

Nres(x, y) · m(x, y) dω

+
∫

ω

hNdiff(x, y)
mR3 dω +
∫

ω

h2

8
Nres
bR3 dω (6.5)

+
∫

γs

N̂lat,0(x, y) · m(x, y) ds +
∫

γs

N̂lat,1(x, y) 
mR3 ds +
∫

γs

N̂lat,2(x, y) 
bR3 ds ,

with

Nres := [N(x, y,
h

2
) + N(x, y,−h

2
)] , Ndiff :=

1
2
[N(x, y,

h

2
) − N(x, y,−h

2
)] .

(6.6)

The external loading functional

Let us gather all influences of the external loading terms. In view of a reasonable
simplification for membrane-plates we consider only those terms, which would have
appeared, if we had made the restricted linear ansatz without thickness stretch
ϕs = m + z R3. To leading order we have

f = f̂0 + Nres , resultant body force

M = f̂1 + hNdiff , resultant body couple (6.7)

N = N̂lat,0 , resultant surface traction

M c = N̂lat,1 , resultant surface couple .

The resultant loading functional Π is given by

Π(m,R3) =
∫

ω

〈f,m〉 + 〈M,R3〉dω +
∫

γs

〈N,m〉 + 〈M c, R3〉ds . (6.8)

If we denote the dependence of Π on the loads of the underlying three-dimensional
problem as Π(f,N ; m,R3), then it is easily seen that frame-indifference of the
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external loading functional is satisfied in the sense that
Π(Q.f,Q.N ; Q.m,Q.R3) = Π(f,N ; m,R3) for all rigid rotations Q ∈ SO(3, R).
Since R is only a passive parameter in the static minimization problem (3.1) of
the viscoelastic plate, the dependence in the resulting loading functional Π on R
can be dropped.

6.3. The finite-strain membrane model of Fox/Simo

In [21] the following geometrically exact, frame-indifferent membrane model has
been derived by formal asymptotic analysis based on the St. Venant-Kirchhoff
energy. In a variational form the model can be written in our notation in the form
of a minimization problem for the deformation of the midsurface of the membrane
m : ω ⊂ R

2 �→ R
3 on ω:

∫
ω

hWmp(C) dω − Π(m,�nm) �→ min . w.r.t. m, m|γ0
= gd(x, y, 0)

C = F̂T F̂ , F̂ = (∇m|�nm), Fs = (∇m|
m �nm) , (6.9)


m =
〈Ndiff , �nm〉
(2µ + λ)

+

√
1 − λ

(2µ + λ)
tr
[
C − 11

]
+

〈Ndiff , �nm〉2
(2µ + λ)2

,

first order thickness stretch ,

Wmp(C) =
µ

4
‖C − 11‖2 +

2µλ

8(2µ + λ)
tr
[
C − 11

]2

=
µ

4
‖∇mT∇m − 112‖2 +

2µλ

8(2µ + λ)
tr
[∇mT∇m − 112

]2
,

=
µ

4
‖Im − 112‖2 +

2µλ

8(2µ + λ)
tr [Im − 112]

2
,

Im = ∇mT∇m: first fundamental form .

The reconstructed membrane deformation ϕs(x, y, z) = m(x, y) + z
m �nm yields
the plane stress condition S1(∇ϕs(x, y, 0).e3 = 0, which is only consistent with
three-dimensional equilibrium if there are no normal tractions at the transverse
boundary and indeed, in [21, p.176] it is assumed that Ndiff ≡ 0, for otherwise,
formal asymptotic expansion is impossible.

It is easily seen that the resultant membrane strain energy Wmp(C) is neither
quasiconvex nor Legendre-Hadamard elliptic. Moreover, the resultant membrane
strain energy density does not satisfy the Baker-Ericksen inequalities in
contrast to the equilibrium model (3.20).
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6.4. The finite-strain, quasiconvex membrane model of Le Dret/Raoult

By means of Γ-convergence arguments based on the St. Venant-Kirchhoff en-
ergy LeDret and Raoult [18] derive the following quasiconvex geometrically exact,
frame-indifferent minimization problem which is, however, degenerate in compres-
sion. The membrane deformation m : ω ⊂ R

2 �→ R
3 satisfies on ω:∫

ω

hQW0(∇m) dω − Π(m,�nm) �→ min . w.r.t. m, m|γ0
= gd(x, y, 0) , (6.10)

W0(∇m) := inf
η∈R3

W ((∇m|η)T (∇m|η)) , W (C) =
µ

4
‖C − 11‖2 +

λ

8
tr [C − 11]2 ,


̂m :=

{

m 1 − λ

(2µ+λ)

[‖∇m‖2 − 2
] ≥ 0 , (∇m|
̂m�n) ∈ GL+(3, R)

0 1 − λ
(2µ+λ)

[‖∇m‖2 − 2
]

< 0 , (∇m|
̂m�n) �∈ GL+(3, R)
⇒

W0(∇m) = W ((∇m|
̂m�n)T (∇m|
̂m�n)) = Wmp(C) if 
̂m = 
m

with the definition of C , 
m and Wmp given in (6.9). QW0 denotes the quasiconvex
hull of W0 which can be determined analytically showing the degenerate feature
that QW0 = 0 in uniform compression. In compression, this model can only predict
the stresses in the membrane appropriately while the geometry of deformation
cannot be accounted for.

6.5. The viscoelastic evolution

Here we provide the missing proofs for the properties of the viscoelastic evolution
in Theorem 1.1.
Lemma 6.1. Assume that for positive constants A+,M+, ν+ > 0 it holds that

∀ t > 0 : u2(t) + ν+

∫ t

0

u2(s) ds ≤ A+ + M+ t . (6.11)

Then we have the estimate

∀ t > 0 : u2(t) ≤ A+ e−ν+ t +
M+

ν+

(
1 − e−ν+ t

)
. (6.12)

Proof. We can easily find a smooth function g : R
+ �→ R, which satisfies

g(t) + ν+

∫ t

0

g(s) ds = A+ + M+ t . (6.13)

This implies g(0) = A+. Differentiation yields the equation

g′(t) + ν+ g(t) = M+ . (6.14)

The unique solution is given by

g(t) = A+ e−ν+ t +
M+

ν+

(
1 − e−ν+ t

)
. (6.15)
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Now we consider the difference u2(t) − g(t). Substracting the equality for g from
the inequality for u2 we obtain the differential inequality

[u2(t) − g(t)] + ν+

∫ t

0

[u2(s) − g(s)] ds ≤ 0. (6.16)

Define h(t) =
∫ t

0
[u2(s)−g(s)]. This implies h(0) = 0 and the differential inequality

h′ + ν+h(t) ≤ 0. (6.17)

Muliplication with eν+ t and integration shows that eν+ t h(t) ≤ 0, hence u2(t) ≤
g(t).

Lemma 6.2. Assume that F ∈ C1(R+,GL+(3, R)) is given and consider the
ordinary differential equation for R ∈ SO(3, R):

d
dt

R(t) = ν+ skew(F (t)R
T
(t)) · R(t) , R(0) = R0 . (6.18)

Then the unique global solution satisfies for all times t ∈ R
+

‖ skew(F (t)R
T
(t))‖2 ≤ −2ν+

∫ t

0

‖ skew(F (s)R
T
(s))‖2 ds

+ 2
∫ t

0

(‖F (s)‖ + ‖R(s)‖) ‖F ′(s)‖ds + ‖FT (0)R(0) − 11‖2 .

(6.19)

Proof. Consider

d
dt

(
1
2
‖FT R − 11‖2

)
= 〈FT R − 11, FT d

dt
R(t) + [F ′(t)]T R〉

= 〈FT R − 11, ν+FT skew(FR
T
)R + [F ′(t)]T R〉

= ν+〈FFT − FR
T
, skew(FR

T
)〉 + 〈FT R − 11, [F ′(t)]T R〉

= −ν+‖ skew(FR
T
)‖2 + 〈F − R,F ′(t)〉

≤ −ν+‖ skew(FR
T
)‖2 + ‖F ′(t)‖ (‖F‖ −

√
3) . (6.20)

Integration yields

1
2
‖FT (t)R(t) − 11‖2 ≤ −ν+

∫ t

0

‖ skew(F (s)R
T
(s))‖2 ds

+
∫ t

0

‖F ′(2)‖ (‖F (s)‖ −
√

3) ds +
1
2
‖FT (0)R(0) − 11‖2 .

(6.21)

We use finally that

‖ skew(FR
T
)‖ = ‖ skew(FR

T − 11)‖ ≤ ‖FR
T − 11‖ = ‖RFT − 11‖
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= ‖RT
(RFT − 11)R‖ = ‖FT R − 11‖ . (6.22)

This shows the desired integral inequality.

The proof of Theorem 1.1, part ii.) is achieved by identifying
u2(t) = ‖ skew(F (t)R

T
(t))‖2 and using Lemma 6.4 and Lemma 6.1.

Lemma 6.3 (The rotation constraint). Let F ∈ GL+(3, R) and R ∈ SO(3, R).
Then

skew(FR
T
) = 0 ⇔ R

T
polar(F ) ∈



1 0 0

0 1 0
0 0 1


 ,


1 0 0

0 −1 0
0 0 −1


 ,


−1 0 0

0 1 0
0 0 −1


 ,


−1 0 0

0 −1 0
0 0 1




 .

Proof. The proof is based on the polar decomposition of F and can be found in
[41, p. 175].

Lemma 6.4. Let F ∈ GL+(3, R) be given, then

∀ R ∈ SO(3, R) : ‖R − polar(F )‖2 < 8 :

∃ c+ > 0 : ‖ skew(FR
T
)‖2 ≥ c+ ‖R − polar(F )‖2 . (6.23)

Proof. We proceed by contradiction and a compactness argument. Assume to the
contrary that the inequality does not hold good. Then we can find a sequence of
rotations Rk ∈ SO(3, R) with ‖Rk − polar(F )‖2 < 8 such that ‖ skew(FR

T

k )‖ → 0
but ‖Rk−polar(F )‖ ≥ a+ > 0. Since SO(3, R) is compact, by Bolzano-Weierstrass

we can extract a subsequence Rkj
, converging to some R̂ with ‖R̂−polar(F )‖2 < 8,

‖ skew(FR̂
T

)‖ = 0 and ‖R̂ − polar(F )‖ ≥ a+ > 0. This is a contradiction due to
Lemma 6.3.
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