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Zaihong Wang

Abstract. In this paper, we study the existence of periodic solutions of Rayleigh equation

x′′ + f(x′) + g(x) = p(t)

where f , g are continuous functions and p is a continuous and 2π-periodic function. We prove
that the given equation has at least one 2π-periodic solution provided that f(x) is sublin-
ear and the time map of equation x′′ + g(x) = 0 satisfies some nonresonant conditions. We
also prove that this equation has at least one 2π-periodic solution provided that g(x) satisfies
lim|x|→+∞ sgn(x)g(x) = +∞ and f(x) satisfies sgn(x)(f(x) − p(t)) ≥ c, for t ∈ R, |x| ≥ d with
c, d being positive constants.
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1. Introduction

We are concerned with the existence of 2π-periodic solutions of Rayleigh equation

x′′ + f(x′) + g(x) = p(t), (1.1)

where f, g : R → R are continuous, p : R → R is continuous and 2π-periodic.
Arising from nonlinear oscillations, Eq.(1.1) has been studied by many authors

(see [1-4, 9, 14] and the references therein). In [14], using the method of upper
and lower solutions, Habets and Torres studied the existence and multiplicity of
2π-periodic solutions of Eq.(1.1) by assuming that g = g(t, x, x′) is bounded (or
bounded from below) and other conditions hold.

When f(x) ≡ 0, Eq.(1.1) is a conservative system. It is well known that time
map plays a crucial role in dealing with the existence and multiplicity of periodic
solutions of equation x′′ + g(x) = p(t). Assume that g(x) satisfies the following
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condition,

(H1) lim
|x|→+∞

sgn(x)g(x) = +∞.

Let G(x) =
∫ x

0
g(u)du. Define a function τ(c) as follows,

τ(c) =
√

2|
∫ c

0

du
√

G(c) − G(u)
|,

which is usually called time map and was first introduced in [13]. From condition
(H1) we know that τ(c) is continuous for |c| large enough. Now, we introduce
notations,

τ+ = lim inf
c→+∞ τ(c), τ+ = lim sup

c→+∞
τ(c),

τ− = lim inf
c→−∞ τ(c), τ− = lim sup

c→−∞
τ(c).

By the asymptotic property of τ(c), Ding and Zanolin [5] proved that equation
x′′+g(x) = p(t) has at least one 2π-periodic solution provided that condition (H1)
holds and there is an integer n > 0 such that

(H2)
2π

n + 1
< τ− + τ+ ≤ τ− + τ+ <

2π

n
.

Wang [8] generalized this result to Liénard equation x′′ +f(x)x′ + g(x) = p(t). He
proved that this Liénard equation has at least one 2π-periodic solution provided
that conditions (H1), (H2) hold and F (x) is bounded, where F (x) =

∫ x

0
f(u)du.

One aim of this paper is to prove the existence of 2π-periodic solutions of
Eq.(1.1) provided that conditons (H1), (H2) hold and f(x) is sublinear. Assume
that f(x) satisfies

(H3) lim
|x|→+∞

f(x)/x = 0.

Since f(x) maybe unbounded under condition (H3), the method in [8] is invalid
under present situation. By developing a different estimate method, we overcome
the difficulty in estimating time owing to the possible unboundedness of f(x). We
obtain

Theorem 1. Assume that conditions (H1), (H2) and (H3) hold. Then Eq.(1.1)
has at least one 2π-periodic solution.

If the condition (H2) is replaced by a condition as follows,

(H4) τ− + τ+ > 2π,

then we also have

Theorem 2. Assume that conditions (H1), (H3) and (H4) hold. Then Eq.(1.1)
has at least one 2π-periodic solution.
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Another aim of this paper is to prove the existence of periodic solutions of
Eq.(1.1) provided that f(x) satisfies sign condition. It was proved in [11] that
Liénard equation

x′′ + f(x)x′ + g(x) = p(t)

has at least one 2π-periodic solution provided that the following conditions hold,
(i) f(x) is continuous and lim|x|→+∞ sgn(x)F (x) = +∞ (or −∞),
(ii) g(x) is locally Lipschitz continuous and sgn(x)g(x) ≥ 0, |x| ≥ c0, where c0 is
a positive constant and

∫ 2π

0
p(t)dt = 0.

Obviously, the same conclusion still holds if the condition (ii) is replaced by
the condition as follows,
(ii)′ g(x) is locally Lipschitz continuous and sgn(x)(g(x)− p̄) ≥ 0, |x| ≥ c0, where
c0 is a positive constant and p̄ = (1/2π)

∫ 2π

0
p(t)dt.

For Rayleigh equation, we have a similar result. Assume that f(x) satisfies the
following sign condition,

(H5) sgn(x)(f(x) − p(t)) ≥ c, ∀t ∈ R, |x| ≥ d

with c, d being arbitrary positive constants. We prove

Theorem 3. Assume that f , g are locally Lipschitz continuous and conditions
(H1), (H5) hold. Then Eq.(1.1) has at least one 2π-periodic solution.

Throughout this paper, we always use R to denote the whole real number set.

2. Periodic solutions via continuation theorem

In this section, we deal with the existence of periodic solutions of (1.1) under
conditions (H1), (H2) and (H3) or (H1), (H3) and (H4). Consider an equivalent
system of Eq.(1.1),

x′ = y, y′ = −g(x) − f(y) + p(t). (2.1)

In order to use the Continuation Theorem [6, Theorem 2], we embed (2.1) into a
system family with one parameter λ ∈ [0, 1],

x′ = y, y′ = −g(x) − λf(y) + λp(t). (2.2)

Let (xλ(t), yλ(t)) = (x(t, x0, y0, λ), y(t, x0, y0, λ)) be a solution of (2.2) satisfying
the initial value condition (xλ(0), yλ(0)) = (x0, y0). In what follows, for simplicity,
we always use (x(t), y(t)) to denote (xλ(t), yλ(t)). We have the following lemma.

Lemma 1. Assume that conditions (H1), (H3) hold. Then every solution (x(t), y(t))
of (2.2) exists on the whole t-axis.

Proof. Define a function

V (x, y) =
1
2
y2 + G(x).
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Set
v(t) = V (x(t), y(t)) =

1
2
y(t)2 + G(x(t)).

Then we have
v′(t) = −λ[f(y(t)) − p(t)]y(t). (2.3)

Since lim|x|→∞ f(x)/x = 0, there exists a constant a > 0 such that

|f(x)x| ≤ x2, |x| ≥ a.

Furthermore, there exists a positive constant b such that

|f(x)x| ≤ x2 + b, x ∈ R. (2.4)

It follows from (2.3) and (2.4) that

|v′(t)| ≤ y(t)2 + b +
1
2
y(t)2 +

1
2
p(t)2 ≤ 3

2
y(t)2 + M, (2.5)

with M = b + M2
p /2, Mp = max{|p(t)| : t ∈ R}. From (H1) we know that there

exists a positive constant M0 such that

G(x) + M0 ≥ 0, x ∈ R,

which, together with (2.5), implies that

|v′(t)| ≤ 3
2
y(t)2 + 3G(x(t)) + M̄,

with M̄ = M + 3M0. Thus, we have that |v′(t)| ≤ 3v(t) + M̄ . Hence,

v′(t) ≤ 3v(t) + M̄.

Multiplying both sides of this inequality by e−3t and integrating over any bounded
interval [0, T0) (T0 > 0) we have that

v(t) ≤ v(0)e3T0 +
1
3
M̄(e3T0 − 1), t ∈ [0, T0).

Therefore, there is no blow-up for solution (x(t), y(t)) on any bounded interval.
Furthermore, every solution (x(t), y(t)) of (2.2) exists on the whole t-axis.

On the basis of Lemma 1, we have

Lemma 2. Under conditions (H1), (H3). Then there is a nondecreasing function
σ : R+ → R+, with σ(s) ≥ s, for all s > 0, such that for any λ ∈ [0, 1], r > 0 and
each solution (x(t), y(t)) of (2.2), the following conclusion holds,
(i) If (x2

0 + y2
0)1/2 ≤ r, then (x(t)2 + y(t)2)1/2 ≤ σ(r), for t ∈ [0, 2π].

(ii) If (x2
0 + y2

0)1/2 ≥ σ(r), then (x(t)2 + y(t)2)1/2 ≥ r, for t ∈ [0, 2π].

This lemma can be proved by standard methods [7, 12].

Lemma 3. Assume that (H1), (H3) hold. Then there exists a constant R0 > 0
such that if (x(t), y(t)) is a 2π-periodic solution of (2.2) with x2

0 + y2
0 ≥ R2

0 and
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x1 = x(t1) is a local maximum of x(t) and x2 = x(t2) is a local minimum of x(t),
then

x1 > 0, x2 < 0.

Proof. We only give the proof of x1 > 0. The other case can be treated similarly.
Assume by contradiction that x1 ≤ 0. Let A > 0 be a constant satisfying

|f(0)| + |p(t)| + 1 ≤ A, t ∈ R.

It follows from (H1) that there exists a constant a > 0 such that

sgn(x)g(x) ≥ A, |x| ≥ a. (2.6)

Define R0 = σ(a), where σ is defined in Lemma 2. Since x1 = x(t1) is a local
maximum of x(t), we know that y(t1) = x′(t1) = 0. Therefore,

y′(t1) = −g(x(t1)) − λf(0) − λp(t1).

From Lemma 2 we have that if x2
0 + y2

0 ≥ R2
0, then

x(t)2 + y(t)2 ≥ a2, t ∈ [0, 2π].

Therefore,
x(t1)2 ≥ a2,

which implies that x(t1) ≥ a or x(t1) ≤ −a. By the hypothesis x1 ≤ 0 we have
that x(t1) ≤ −a, which, together with (2.6), implies that y′(t1) > 0. Then we have
x′′(t1) = y′(t1) > 0. From the continuity of x′′(t) we know that there exists an
interval (α, β) such that t1 ∈ (α, β) and x′′(t) > 0, for t ∈ (α, β). Since x′(t1) = 0,
we get that

x′(t) < 0, t ∈ (α, t1); x′(t) > 0, t ∈ (t1, β).

Thus we obtain that

x(t1) < x(t), t ∈ (α, t1); x(t1) < x(t), t ∈ (t1, β).

This contradicts with the fact that x1 is a local maximum of x(t).
It follows from Lemma 2 that if x2

0 + y2
0 is large enough, then we can introduce

the polar coordinates. Set x = r cos θ, y = r sin θ. Under this transformation,
(2.2) becomes






dr
dt

= r sin θ cos θ − g(r cos θ) sin θ − λf(r sin θ) sin θ + λp(t) sin θ

dθ
dt

= − sin2 θ − g(r cos θ)cosθ
r − λf(r sin θ)cosθ

r + λp(t)cosθ
r .

Denote by (r(t), θ(t)) = (r(t, r0, θ0, λ), θ(t, r0, θ0, λ)) the solution of above system
through the initial point (r0, θ0).
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Lemma 4. Assume that (H1), (H3) hold and δ(0 < δ < 1) is a given constant.
Then there exists Rδ > 0 such that for r0 ≥ Rδ and (r(t) cos θ(t), r(t) sin θ(t)) ∈
{(x, y) : |y| ≥ δ|x|}, the following inequality holds,

dθ(t)
dt

< 0, t ∈ [0, 2π].

Proof. It follows from (H1) that there exists a constant a0 > 0 such that

(g(x) − λp(t))x ≥ 0, |x| ≥ a0, t ∈ R, λ ∈ [0, 1].

Therefore,

(g(r cos θ) − λp(t)) cos θ

r
≥ 0, |r cos θ| ≥ a0, t ∈ R, λ ∈ [0, 1]. (2.7)

On the other hand, since g(x) is bounded in interval [−a0, a0], we have

−εδ

4
≤ (g(r cos θ) − λp(t)) cos θ

r
≤ εδ

4
, |r cos θ| ≤ a0, t ∈ R, λ ∈ [0, 1] (2.8)

for r > 0 large enough, where εδ = sin2(arctan δ) > 0. From (H3) we have that

−εδ

4
≤ f(r sin θ) cos θ

r
≤ εδ

4
, θ ∈ R (2.9)

for r > 0 large enough. If (r(t) cos θ(t), r(t) sin θ(t)) ∈ {(x, y) : |y| ≥ δ|x|} and
|r(t) cos θ(t)| ≥ a0, t ∈ [0, 2π], then it follows from Lemma 2 and (2.7), (2.9) that

dθ(t)
dt

≤ −εδ +
εδ

4
< 0

with r0 large enough. If (r(t) cos θ(t), r(t) sin θ(t)) ∈ {(x, y) : |y| ≥ δ|x|} and
|r(t) cos θ(t)| ≤ a0, t ∈ [0, 2π], then it follows from Lemma 2 and (2.8), (2.9) that

dθ(t)
dt

≤ −εδ +
εδ

2
< 0

with r0 large enough. Thus, we have reached the conclusion.

Let (x(t), y(t)) be a 2π-periodic solution of (2.2) with r0 =
√

x2
0 + y2

0 ≥
max{R0, Rδ}, which has polar coordinates expression (r(t), θ(t)). Then we can
define the rotation number as follows,

n(x, y) =
θ(0) − θ(2π)

2π
=

1
2π

∫ 2π

0

x′(t)y(t) − x(t)y′(t)
x2(t) + y2(t)

dt.

Assume that (H1), (H3) hold. From Lemma 3 that there exists some t0 ∈ [0, 2π]
such that x(t0) = 0. According to Lemma 4, if (x(t), y(t)) ∈ {(x, y) : |y| ≥ δ|x|}
and t ∈ [0, 2π], then θ(t) decreases strictly. Therefore, there exists t1 ∈ [t0, t0 +2π]
such that y(t1) = δx(t1), x(t1) > 0 and y(t) ≥ δx(t), t ∈ [t0, t1]. Since (x(t), y(t))
is 2π-periodic, the solution (x(t), y(t)) must leave the region {(x, y) : |y| ≤ δ|x|}
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after it enters this region. Hence, there exists some t2 ∈ [t0, t0 + 2π] such that
y(t2) = −δx(t2) and (x(t), y(t)) ∈ {(x, y) : |y| ≤ δ|x|, x > 0}, t ∈ [t1, t2]. Thus, we
have that

θ(t1) − θ(t2) = 2 arctan δ > 0.

Every time when the solution (x(t), y(t)) goes through the region {(x, y) : |y| ≤
δ|x|}, we have the same result. Recalling that θ(t) decreases strictly when (x(t), y(t)) ∈
{(x, y) : |y| ≥ δ|x|}, we obtain that θ(0) − θ(2π) > 0, which implies

n(x, y) ∈ N

for r0 =
√

x2
0 + y2

0 large enough.

Lemma 5. Assume that conditions (H1), (H2) and (H3) hold. Let k0 > 0
be a fixed integer. Suppose that there exists a sequence of 2π-periodic solutions
{(xj(t), yj(t))}∞j=1 of (2.2), with rotation numbers n(xj , yj) = k0, j = 1, 2, · · · ,
such that

lim
j→+∞

(x2
j (t) + y2

j (t)) = +∞,

then
k0(τ+ + τ−) ≤ 2π.

Proof. For simplicity, we assume that

sgn(x)g(x) > 0, x ∈ R, x 	= 0.

Let (x(t), y(t)) be any one of (xj(t), yj(t)) with j large enough. Then there exist
constants t11 < t12 < t13 = t21 < t22 < t23 = · · · = tk0

1 < tk0
2 < tk0

3 = t11 + 2π such that

x(ti1) = 0; x(ti2) = 0; x(ti3) = 0; i = 1, 2, · · · , k0

and
x(t) ≥ 0, t ∈ [ti1, t

i
2]; x(t) ≤ 0, t ∈ [ti2, t

i
3], i = 1, 2, · · · , k0.

For simplicity, let (α, β) (α < β) denote any couple of (ti1, t
i
2) (i = 1, 2, · · · , k0).

Set x∗ = x(t∗) = max{x(t) : α ≤ x ≤ β}. In what follows, we shall estimate t∗−α
and β − t∗, respectively. At first, we estimate the former one. It can be inferred
from the first equation of (2.2) that y(t) ≥ 0, for t ∈ [α, t∗]. From condition (H3)
we know that for any sufficiently small ε > 0, there exists aε > 0 such that

|f(x)| ≤ ε|x|, |x| ≥ aε,

which implies that
|f(x)x| ≤ εx2, |x| ≥ aε.

Thus, there exists a constant bε > 0 such that

|f(x)x| ≤ εx2 + bε, x ∈ R. (2.10)
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Multiplying both sides of y′ = −g(x)−λf(y)+λp(t) by y(t) and applying x′(t) =
y(t), we have

y(t)y′(t) = −g(x(t))x′(t) − λf(y(t))y(t) + λp(t)y(t). (2.11)

Integrating both sides (2.11) over interval [t, t∗] with α ≤ t ≤ t∗ yields
∫ t∗

t

y(τ)y′(τ)dτ = −
∫ t∗

t

g(x(τ))x′(τ)dτ−λ

∫ t∗

t

f(y(τ))y(τ)dt+λ

∫ t∗

t

p(τ)y(τ)dτ.

Since y(t∗) = x′(t∗) = 0, we have that, for α ≤ t ≤ t∗,

y2(t) = 2(G(x(t∗))−G(x(t)))+2λ

∫ t∗

t

f(y(τ))y(τ)dτ−2λ

∫ t∗

t

p(τ)y(τ)dτ. (2.12)

Combining (2.10) and (2.12) we get that

y2(t) ≤ 2(G(x(t∗))−G(x(t))) + 2ε

∫ t∗

t

y2(τ)dτ + 2Mp

∫ t∗

t

y(τ)dτ + 4bεπ. (2.13)

with Mp = max{|p(t)| : t ∈ R}. Write

Φ(t) =
∫ t∗

t

y2(τ)dτ.

Then
Φ′(t) = −y2(t).

Therefore, we have that

−Φ′(t) − 2εΦ(t) ≤ 2(G(x(t∗)) − G(x(t))) + 2Mp(x(t∗) − x(t)) + 4bεπ.

Multiplying both sides of above inequality by e2εt and integrating over interval
[t, t∗] yields

−
∫ t∗

t

[Φ(τ)e2ετ ]′dτ ≤
∫ t∗

t

[2(G(x(t∗))−G(x(τ)))+2Mp(x(t∗)−x(τ))+4bεπ]e2ετdτ.

Since Φ(t∗) = 0, we have

Φ(t)e2εt ≤
∫ t∗

t

[2(G(x(t∗)) − G(x(τ))) + 2Mp(x(t∗) − x(τ)) + 4bεπ]e2ετdτ.

On the other hand, from x′(t) = y(t) ≥ 0 we know that x(τ) is increasing on the
interval [t, t∗]. Consequently,

Φ(t)e2εt ≤ e2εt∗
∫ t∗

t

[2(G(x(t∗)) − G(x(τ))) + 2Mp(x(t∗) − x(τ)) + 4bεπ]dτ.

Furthermore, for t ∈ [α, t∗],

Φ(t) ≤ 2πe4πε[2(G(x(t∗)) − G(x(t))) + 2Mp(x(t∗) − x(t)) + 4bεπ]. (2.14)
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It follows from (2.13) and (2.14) that, for t ∈ [α, t∗],

y2(t) ≤ 2(G(x(t∗)) − G(x(t)))

+4πεe4πε[2(G(x(t∗)) − G(x(t))) + 2Mp(x(t∗) − x(t)) + 4bεπ]

+2Mp(x(t∗) − x(t)) + 4bεπ.

(2.15)

Set η = 4πεe4πε. Obviously, η → 0 as ε → 0. By (2.15) we have that

y2(t) ≤ (1 + η)[2(G(x(t∗)) − G(x(t))) + 2Mp(x(t∗) − x(t)) + 4bεπ].

Recalling x′(t) = y(t), we get that, for t ∈ [α, t∗],

x′(t) ≤
√

1 + η
√

2(G(x(t∗)) − G(x(t))) + 2Mp(x(t∗) − x(t)) + 4bεπ. (2.16)

According to (2.16), we have

x′(t)√
1 + η

√
2(G(x(t∗)) − G(x(t))) + 2Mp(x(t∗) − x(t)) + 4bεπ

≤ 1.

Integrating both sides of this inequality over [α, t∗], we obtain that

1√
1 + η

∫ x∗

0

dx
√

2(G(x∗) − G(x)) + 2Mp(x∗ − x) + 4bεπ
≤ t∗ − α, (2.17)

where x∗ = x(t∗). Take a constant L > 0 and write
∫ x∗

0

dx
√

2(G(x∗) − G(x)) + 2Mp(x∗ − x) + 4bεπ
= I1 + I2

with

I1 =
∫ x∗−L

0

dx
√

2(G(x∗) − G(x)) + 2Mp(x∗ − x) + 4bεπ
,

I2 =
∫ x∗

x∗−L

dx
√

2(G(x∗) − G(x)) + 2Mp(x∗ − x) + 4bεπ
.

If x ∈ [0, x∗ − L], then

G(x∗) − G(x) + Mp(x∗ − x) ≥ G(x∗) − G(x∗ − L) + LMp = [g(ξ) + Mp]L (2.18)

with ξ ∈ [x∗ − L, x∗]. From (2.18) and (H1) we know that

lim
x∗→+∞[G(x∗) − G(x) + Mp(x∗ − x)] = +∞.

Therefore, I1 can be expressed in the form

I1 =
∫ x∗−L

0

dx
√

2(G(x∗) − G(x)) + 2Mp(x∗ − x)[1 + o(1)]

for x∗ → ∞. From (H2) we know that τ(e) is bounded. Thus we obtain

I1 =
∫ x∗−L

0

dx
√

2(G(x∗) − G(x)) + 2Mp(x∗ − x)
+ o(1). (2.19)
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On the other hand, if x ∈ [x∗ − L, x∗], then

G(x∗) − G(x) + Mp(x∗ − x) ≥ [µ(x∗) + Mp](x∗ − x)

with µ(x∗) = min{g(x) : x ∈ [x∗ − L, x∗]}. Consequently,

I2 ≤
∫ x∗

x∗−L

dx
√

2(G(x∗) − G(x)) + 2Mp(x∗ − x)
≤

√
2L

√
µ(x∗) + Mp

= o(1)

for x∗ → ∞. Furthermore,

I2 =
∫ x∗

x∗−L

dx
√

2(G(x∗) − G(x)) + 2Mp(x∗ − x)
+ o(1). (2.20)

It follows from (2.17), (2.19) and (2.20) that

1√
1 + η

∫ x∗

0

dx
√

2(G(x∗) − G(x)) + 2Mp(x∗ − x)
+ o(1) ≤ t∗ − α

for x∗ → ∞. Applying a Lemma in [5, 13] we have that

1√
1 + η

∫ x∗

0

dx
√

2(G(x∗) − G(x))
+ o(1) ≤ t∗ − α,

which implies that, for x∗ → ∞,
1
2

1√
1 + η

τ+ + o(1) ≤ t∗ − α. (2.21)

Similarly, we have that
1
2

1√
1 + η

τ+ + o(1) ≤ β − t∗. (2.22)

Combining (2.21) and (2.22), we get

1√
1 + η

τ+ + o(1) ≤ β − α,

for x∗ → ∞. Sine (α, β) denote any couple of (ti1, t
i
2), i = 1, 2, · · · , k0, we obtain

that, for x∗ → ∞,
k0√
1 + η

τ+ + o(1) ≤
i=k0∑

i=1

(ti2 − ti1). (2.23)

Using the same methods, we can derive that

k0√
1 + η

τ− + o(1) ≤
i=k0∑

i=1

(ti3 − ti2). (2.24)

From (2.23) and (2.24) we have that

k0√
1 + η

(τ+ + τ−) + o(1) ≤
i=k0∑

i=1

(ti2 − ti1) +
i=k0∑

i=1

(ti3 − ti2) = 2π.
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Since η → 0 as ε → 0, we get that

k0(τ+ + τ−) ≤ 2π.

Lemma 6. Under the same conditions of Lemma 5. The following conclusion
holds,

k0(τ+ + τ−) ≥ 2π.

Proof. We use the same notations as in Lemma 5. From (2.10) and (2.12) we know
that

y2(t) ≥ 2(G(x(t∗)) − G(x(t))) − 2ε

∫ t∗

t

y2(τ)dτ − 2Mp

∫ t∗

t

y(τ)dτ − 4πbε,

which, together with (2.14), yields

y2(t) ≥ 2(G(x(t∗)) − G(x(t)))

−4πεe4πε[2(G(x(t∗)) − G(x(t))) + 2Mp(x(t∗) − x(t)) + 4πbε]

−2Mp(x(t∗) − x(t)) − 4bεπ.

Therefore, we have that, for t ∈ [α, β],

y2(t) ≥ 2(1 − η)(G(x(t∗)) − G(x(t))) − 2(1 + η)Mp(x(t∗) − x(t)) − 4(1 + η)πbε,

where η = 4πεe4πε. Let L0 > 0 be a constant. If x(t) ∈ [0, x(t∗) − L0], then we
have

[(1 − η)G(x(t∗)) − (1 + η)Mpx(t∗)] − [(1 − η)G(x(t)) − (1 + η)Mpx(t)]

≥ [(1 − η)G(x(t∗)) − (1 + η)Mpx(t∗)]

−[(1 − η)G(x(t∗) − L0) − (1 + η)Mp(x(t∗) − L0)]

= (1 − η)g(ξ∗)L0 − (1 + η)MpL0, ξ∗ ∈ [x(t∗) − L0, x(t∗)].

Hence, if x(t∗) is large enough and x(t) ∈ [0, x(t∗) − L0], then

y2(t) ≥ 2(1− η)(G(x(t∗))−G(x(t)))− 2(1+ η)Mp(x(t∗)−x(t))− 4(1+ η)πbε > 0.

Let t̄∗ ∈ [α, t∗] such that x(t̄∗) = x(t∗) − L0. If t ∈ [α, t̄∗], then

x′(t) ≥
√

2(1 − η)(G(x(t∗)) − G(x(t))) − 2(1 + η)Mp(x(t∗) − x(t)) − 4(1 + η)πbε.

Consequently,

x′(t)
√

2(1 − η)(G(x(t∗)) − G(x(t))) − 2(1 + η)Mp(x(t∗) − x(t)) − 4(1 + η)πbε

≥ 1.
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Integrating both sides of this inequality over [α, t̄∗] results in
∫ x∗−L0

0

dx
√

2(1 − η)(G(x∗) − G(x)) − 2(1 + η)Mp(x∗ − x) − 4(1 + η)πbε

≥ t̄∗ − α

with x∗ = x(t∗). Applying the same methods as in Lemma 5, we have that
∫ x∗−L0

0

dx
√

2(1 − η)(G(x∗) − G(x)) − 2(1 + η)Mp(x∗ − x) − 4(1 + η)πbε

=
∫ x∗−L0

0

dx
√

2(1 − η)(G(x∗) − G(x))
+ o(1)

(2.25)
for x∗ → ∞. On the other hand, it is easy to check that
∫ x∗

x∗−L0

dx
√

2(1 − η)(G(x∗) − G(x))
=

1
√

1 − η

∫ x∗

x∗−L0

dx
√

2(G(x∗) − G(x))
= o(1).

(2.26)
From (2.25) and (2.26) we know that, for x∗ → ∞,

1√
1 − η

∫ x∗

0

dx
√

2(G(x∗) − G(x))
+ o(1) ≥ t̄∗ − α. (2.27)

Next, we estimate t∗ − t̄∗. Since x′(t) = y(t) ≥ 0, t ∈ [t̄∗, t∗], we know that
x(t) ∈ [x(t∗) − L0, x(t∗)], for t ∈ [t̄∗, t∗]. From x′(t) = y(t) we have that

∫ t∗

t̄∗
y(t)dt =

∫ t∗

t̄∗
x′(t)dt = x(t∗) − x(t̄∗) = L0.

According to condition (H3), for any sufficiently small ε > 0, there exists a cε such
that

|f(x)| ≤ ε|x| + cε, x ∈ R. (2.28)

By y′(t) = −g(x(t)) − λf(y(t)) + λp(t) and (2.28) we get that, for t ∈ [t̄∗, t∗],

y′(t) ≤ −g(x(t)) + εy(t) + cε + Mp. (2.29)

Integrating both sides of (2.29) over interval [t, t∗], with t ∈ [t̄∗, t∗], we obtain
∫ t∗

t

y′(τ)dτ ≤ −
∫ t∗

t

g(x(t))dt + ε

∫ t∗

t

y(t)dt + 2π(cε + Mp).

Therefore, if t ∈ [t̄∗, t∗], then

y(t) ≥
∫ t∗

t

g(x(t))dt − εL0 − 2π(cε + Mp). (2.30)

Define ν(x∗) = min{g(x) : x ∈ [x(t∗) − L0, x(t∗)]}. By condition (H1) we know
that ν(x∗) → +∞, as x(t∗) → +∞. From (2.30) we derive that, for t ∈ [t̄∗, t∗],

y(t) ≥ ν(x∗)(t∗ − t) − εL0 − 2π(cε + Mp). (2.31)
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Integrating both sides of (2.31) over [t̄∗, t∗] yields
∫ t∗

t̄∗
y(t)dt ≥ 1

2
ν(x∗)(t∗ − t̄∗)2 − [εL0 + 2π(cε + Mp)](t∗ − t̄∗).

Hence, we get that

L0 ≥ 1
2
ν(x∗)(t∗ − t̄∗)2 − [εL0 + 2π(cε + Mp)](t∗ − t̄∗),

which implies that
t∗ − t̄∗ = o(1), (2.32)

for x∗ → ∞. Combining (2.27) and (2.32) we obtain

1√
1 − η

∫ x∗

0

dx
√

2(G(x∗) − G(x))
+ o(1) ≥ t∗ − α.

Furthermore,
τ+

2
√

1 − η
+ o(1) ≥ t∗ − α. (2.33)

Similarly, we have
τ+

2
√

1 − η
+ o(1) ≥ β − t∗. (2.34)

It can be inferred from (2.33) and (2.34) that, for x∗ → ∞,

τ+

√
1 − η

+ o(1) ≥ β − α.

Since (α, β) denotes any one of (ti1, t
i
2), we reach that

k0τ
+

√
1 − η

+ o(1) ≥
i=k0∑

i=1

(ti2 − ti1).

Similarly, we have that

k0τ
−

√
1 − η

+ o(1) ≥
i=k0∑

i=1

(ti3 − ti2).

Therefore, we obtain that

k0(τ+ + τ−)√
1 − η

+ o(1) ≥
i=k0∑

i=1

(ti2 − ti1) +
i=k0∑

i=1

(ti3 − ti2) = 2π.

Recalling that η → 0, as ε → 0, we know that

k0(τ+ + τ−) ≥ 2π.

Lemma 7. Assume that conditions (H1), (H2) and (H3) hold. Let k > 0 be
an arbitrary integer. Then there exists a constant Rk > 0 such that for any
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2π-periodic solution (x(t), y(t)) of (2.2), with rotation number n(x, y) = k, the
following conclusion holds,

x(t)2 + y(t)2 ≤ R2
k, t ∈ R.

Proof. Assume by contradiction that there exist an integer k0 > 0 and a sequence of
2π-periodic solutions (xj(t), yj(t)) of (2.2), with the rotation number n(xj , yj) = k0

(j = 1, 2, · · · ), such that

lim
j→+∞

(x2
j (t) + y2

j (t)) = +∞

uniformly for t ∈ R. From Lemma 5 and Lemma 6 we know that

τ+ + τ− ≤ 2π

k0
≤ τ+ + τ−.

This contradicts with condition (H2).

Proof of Theorem 1. In order to use the Continuation Theorem [6] to prove the
existence of 2π-periodic solution of (2.1), we shall check that all conditions of the
Continuation Theorem are satisfied. From [8] we know that

(i) There exists B > 0 such that every 2π-periodic solution (x(t), y(t)) of
system x′ = y, y′ = −g(x) satisfies |x(t)| + |y(t)| ≤ B, t ∈ [0, 2π].

(ii) Define h(x, y) = (y,−g(x)). Then the Brouwer degree d(h,B(0, r), 0) = 1,
with r large enough, B(0, r) = {(x, y) : x2 + y2 ≤ r2}.

From Lemma 2 we have that
(iii) For any r1 > 0, there exists r2 > 0 such that, for each 2π-periodic solution

of (2.2), we have

min
[0,2π]

(x2(t) + y2(t)) ≤ r2
1 =⇒ max

[0,2π]
(x2(t) + y2(t)) ≤ r2

2.

From Lemma 7 we know that
(iv) For any integer k > 0, there exists Rk > 0 such that, for each 2π-periodic

solution of (2.2), we have

n(x, y) = k =⇒ min
[0,2π]

(x2(t) + y2(t)) ≤ R2
k.

Thus, all conditions of the Continuation Theorem are satisfied. Therefore, (2.1)
has at least one 2π-periodic solution.

The proof of Theorem 2 can be handled similarly. Indeed, under conditions of
Theorem 2, the conditions (i), (ii) and (iii) in proof of Theorem 1 are still satisfied.
From Lemma 5 and condition (H4) we know that (iv) still holds. Therefore, all
conditions of the Continuation Theorem are satisfied. Hence, (2.1) has at least
one 2π-periodic solution.
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3. Periodic solutions via Lyapunov function

From Massera’s theorem [10] we know that if every Cauchy problem of the system

x′ = h1(x, y, t), y′ = h2(x, y, t)
x(0) = x0, y(0) = y0

exists uniquely and is positively bounded, then this system has at least one 2π-
periodic solution, where hi ∈ C(R,R,R) and hi(x, y, t + 2π) = hi(x, y, t), for
x, y, t ∈ R, i = 1, 2. In this section, by means of Lyapunov function, we will
show that all solutions of (2.1) are positively bounded under conditions (H1) and
(H5) and hence (2.1) possesses at least one 2π-periodic solution. Let us recall that
condition (H5) refers to

sgn(x)(f(x) − p(t)) ≥ c, ∀t ∈ R, |x| ≥ d

with c, d being positive constants.

Proof of Theorem 3. We follow an argument in [11]. Since f , g are locally Lipschitz
continuous, every solution (x(t), y(t)) of (2.1) satisfying the initial value condition
(x(0), y(0)) = (x0, y0) exists uniquely. Define a potential function V as in Lemma
1,

V (x, y) =
1
2
y2 + G(x).

Set
v(t) = V (x(t), y(t)) =

1
2
y(t)2 + G(x(t)).

Then
v′(t) = −y(t)(f(y(t)) − p(t)). (3.1)

Write
m1 = max{|f(y)| : −d ≤ y ≤ d}, m2 = max{|p(t)| : t ∈ R}.

If |y| ≤ d, then

|(1 − y)(f(y) − p(t))| ≤ m3, |(1 + y)(f(y) − p(t))| ≤ m3,∀t ∈ R (3.2)

with m3 = (1 + d)(m1 + m2). Take a constant k > 0 sufficiently large such that

|g(x)| ≥ m3, |x| ≥ k and 2d/k ≤ c. (3.3)

Define a Lyapunov function W (x, y) as follows,

W (x, y) =






V (x, y), |x| < +∞, y ≥ d,

V (x, y) − y + d, x ≤ −k, |y| ≤ d,

V (x, y) + 2d, x ≤ −k, y ≤ −d,

V (x, y) + y − d, x ≥ k, |y| ≤ d,

V (x, y) − 2d, x ≥ k, y ≤ −d,

V (x, y) − 2d
k

x, |x| ≤ k, y ≤ −d.
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It is easy to check that W (x, y) is continuous and locally Lipschitz with respect to
(x, y) ∈ {(x, y) : |x| ≥ k, |y| ≥ d}. Moreover, W (x, y) tends to infinity uniformly
for x ∈ R as |y| → +∞. Set Γ(x, y) = V (x, y) + 2dx/k + y + 2d. Then Γ(x, y) is
continuous and W (x, y) ≤ Γ(|x|, |y|). By using (3.1)-(3.3) and the expression of
W (x, y), we have that the derivative W ′(x(t), y(t)) of W (x(t), y(t)) with respect
to t satisfies

W ′(x(t), y(t)) ≤ 0.

On the other hand, let l > 0 be a constant. Then there exists a constant L > 0
such that, for |y| ≤ l,

|y − f(y) + p(t)| ≤ L, ∀t ∈ R.

Take a constant r > 0 such that

|g(x)| ≥ L, |x| ≥ r.

Define another Lyapunov function

U(x, y) =

{
x + y, x ≥ r, |y| ≤ l,

−x − y, x ≤ −r, |y| ≤ l.

Obviously, U(x, y) satisfies the following conclusions.
(1)U(x, y) tends to infinity uniformly for |y| ≤ l as |x| tends to infinity.
(2)U(x, y) ≤ |x| + l, for |y| ≤ l.
(3)if x ≥ r, |y| ≤ l, then U ′(x(t), y(t)) = y(t) − g(x(t)) − f(y(t)) + p(t) ≤ 0 and if

x ≤ −r, |y| ≤ l, then U ′(x(t), y(t)) = −y(t) + g(x(t)) + f(y(t)) − p(t) ≤ 0.
Therefore, all conditions of Theorem 8.9 in [11] are satisfied. Furthermore, all

solutions of (2.1) are positively bounded. It follows from Corollary 15.1 in [11]
that Eq.(2.1) has at least one 2π-periodic solution.
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