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Abstract. We study the nonlinear Schrödinger equation

−∆u + λa(x)u = µu + u2∗−1, u ∈ R
N ,

with critical exponent 2∗ = 2N/(N − 2), N ≥ 4, where a ≥ 0 has a potential well. Using
variational methods we establish existence and multiplicity of positive solutions which localize
near the potential well for µ small and λ large.
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1. Introduction and statement of results

In recent years much attention has been paid to the nonlinear Schrödinger equation

i�
∂ψ

∂t
= −�

2∆ψ + a(x)ψ − |ψ|p−2ψ, x ∈ R
N (S)

where � is the Planck constant. When looking for stationary waves of the form
ψ(t, x) = e−iµ(�t)ϕ(x) with µ ∈ R, one is lead to considering an elliptic equation
in R

N , namely, replacing � by ε one sees that ϕ must satisfy

−ε2∆ϕ + a(x)ϕ = ε2µϕ + |ϕ|p−2ϕ.

Setting u(x) := ε−2/(p−2)ϕ(x) and λ = ε−2 , this equation is transformed into

−∆u + λa(x)u = µu + |u|p−2u.

where λ = �
−2.
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Equations of this type with subcritical nonlinearities (that is, with p < 2∗ =
2N

N−2 for N ≥ 3) have been investigated extensively, see for example [1], [3], [4],
[5], [11], [12], [13], [14], [16], [17], [20] , [21], [23], [26].

Here we investigate the existence and multiplicity of solutions of nonlinear
Schrödinger equations with critical nonlinearity. More precisely, we consider the
problem 





−∆u + λa(x)u = µu + u2∗−1 in R
N

u > 0 in R
N

u ∈ H1(RN ) ,
(NSλ,µ)

where N ≥ 4, 2∗ = 2N
N−2 , λ > 0, µ ∈ R and a(x) satisfies the following

assumptions:
(A1) a ∈ C(RN , R), a ≥ 0, and Ω := int a−1(0) is a nonempty bounded set

with smooth boundary, and Ω = a−1(0).
(A2) There exists M0 > 0 such that

L{x ∈ R
N : a(x) ≤ M0} < ∞

where L denotes the Lebesgue measure in R
N .

Recently Bartsch and Wang [4] considered the similar problem with subcritical
nonlinearity

−∆u + (λa(x) + 1)u = up−1, u ∈ H1(RN ), N ≥ 3, 2 < p < 2∗, (NSλ,0,p)

where a(x) satisfies (A1) and (A2). They showed that, for λ large, this problem
has a positive least energy solution, and that there exist p0 ∈ (2, 2∗) and a
function Λ : (p0, 2∗) → R such that it has at least cat (Ω) positive solutions
for any λ ≥ Λ(p), p ≥ p0. Here cat (Ω) stands for the Lusternik-Schnirelmann
category of Ω. They also showed that a certain concentration behaviour of the
solutions occurs as λ → ∞.

A problem arises naturally: Are there similar results for the Schrödinger equa-
tion with critical nonlinearity u2∗−1?

The leitmotiv of Bartsch and Wang’s approach was that, for large λ, the
Dirichlet problem

−∆u + u = up−1, u > 0 in Ω, u = 0 on ∂Ω, (D0,p)

is some kind of limit problem for (NSλ,0,p). Benci and Cerami had previously
shown [6] that problem (D0,p) has at least cat (Ω) solutions if p < 2∗ but close
enough to 2∗ .

There is a great deal of work on elliptic equations with critical nonlinearity on
bounded domains, see for example [2], [25], [27] and the references therein. We
focus our attention on the the following results for the Dirichlet problem






−∆u = µu + u2∗−1 in Ω
u > 0 in Ω
u = 0 on ∂Ω

(Dµ)



594 M. Clapp and Y. Ding ZAMP

Brzis and Nirenberg [8] showed there is at least one solution of (Dµ) if N ≥ 4 and
0 < µ < µ1(Ω), where µ1(Ω) is the first eigenvalue of −∆ on Ω with boundary
condition u = 0 . Multiplicity results similar to those of [6] are also known for
this problem. It was shown by Rey [24] for N ≥ 5 and by Lazzo [19] for N ≥ 4
that there is a 0 < µ# < µ1(Ω) such that (Dµ) has at least cat (Ω) solutions for
all 0 < µ < µ#.

Motivated by these results we will show that, for µ small enough, problem
(Dµ) is some kind of limit problem for (NSλ,µ) as λ → ∞ and use the knowl-
edge about (Dµ) to establish existence and multiplicity of solutions of (NSλ,µ).
Moreover, as in the subcritical case [4], there is also a concentration behavior of
the solutions as λ → ∞. Before stating our results we give some definitions.

A solution uλ of (NSλ,µ) is said to be a least energy solution if the energy
integral

Iλ,µ(u) =
∫

RN

(
1
2

(|∇u|2 + (λa(x) − µ)u2
) − 1

2∗
|u|2∗

)

dx

achieves its minimum at uλ over all nontrivial solutions of (NSλ,µ).
A sequence of solutions (un) of (NSλn,µ) will be said to concentrate at a

solution u of (D)µ if a subsequence converges strongly to u in H1(RN ) as
λn → ∞.

Let

S = inf
u∈H1\{0}

|∇u|22
|u|22∗

,

be the best Sobolev constant. We shall prove the following results:

Theorem 1. Assume (A1) and (A2) hold and N ≥ 4 . Then, for every 0 <
µ < µ1(Ω) , there exists λ(µ) > 0 such that (NSλ,µ) has a least energy solution
uλ for each λ ≥ λ(µ) .

Theorem 2. Assume (A1) and (A2) hold and that N ≥ 4 . Then there exist
0 < µ∗ < µ1(Ω) and for each 0 < µ ≤ µ∗ two numbers Λ(µ) > 0 and 0 < c(µ) <
1
N S

N
2 such that, if λ ≥ Λ(µ), then (NSλ,µ) has at least cat (Ω) solutions with

energy Iλ,µ ≤ c(µ) .

Theorem 3. Every sequence of solutions (un) of (NSλn,µ) such that µ ∈ (0,

µ1(Ω)), λn → ∞ and Iλn,µ(un) → c < 1
N S

N
2 as n → ∞, concentrates at a

solution of (Dµ).

Thus, turning back to the nonlinear Schrödinger equation (S) , our ansatz leads
to solutions of the form ψ(t, x) = �

2/(p−2)e−iµ�tu�(x) where u� concentrates at
a solution of the Dirichlet problem (Dµ) on the bottom Ω of the potential well
as � → 0. This concentration behaviour is quite different from the one obtained
by taking the usual ansatz φ(t, x) = e−iν�

−1tϕ(x), ε = �, and looking at the
corresponding singularly perturbed elliptic equation

−ε2∆u + V (x)ϕ = |ϕ|p−2
ϕ.
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It is well known that for p < 2∗ positive bound states of this equation concentrate
at minima of the potential V and decay exponentially away from such minima,
see for example [11], [13], [14], [16], [17], [20], [26]. For p = 2∗ solutions with
this same kind of behaviour have recently been obtained by Chabrowsky and
Yang [10] under special assumptions on the potential. Finally, we would like to
mention that, in a recent paper [9], Chabrowski and Szulkin have considered the
Schrödinger equation

−∆u + V (x)u = |u|2∗−2
u, u ∈ H1(RN ),

with periodic potential V, N ≥ 4 and critical nonlinearity. They showed the
existence of one nontrivial solution provided that 0 lies in a spectral gap of the
operator −∆ + V in L2(RN ).

This paper is organized as follows. In section 2 we shall establish some compact-
ness results for the variational problem related to (NSλ,µ). Section 3 is devoted
to the proofs of Theorems 1 and 3. Theorem 2 will be proved in section 4.

2. Compactness conditions

Throughout this paper we always assume that (A1)− (A2) hold and that N ≥ 4.
We denote by µ1(Ω) the first eigenvalue of −∆ on Ω with boundary condition
u = 0 , and write | · |q for the Lq -norm for q ∈ [1, ∞] .

Let

E =
{

u ∈ H1(RN ) :
∫

RN

a(x)u2 < ∞
}

be the Hilbert space endowed with the norm

‖u‖ =
(

‖u‖2
H1 +

∫

RN

a(x)u2

)1/2

,

which is clearly equivalent to each of the norms

‖u‖λ =
(

‖u‖2
H1 + λ

∫

RN

a(x)u2

)1/2

for λ > 0 .

Lemma 4. Let λn ≥ 1 and un ∈ E be such that λn → ∞ and ‖un‖2
λn

< K.
Then there is a u ∈ H1

0 (Ω) such that, up to a subsequence, un ⇀ u weakly in E
and un → u in L2(RN ).

Proof. Since ‖un‖2 ≤ ‖un‖2
λn

< K we may assume that un ⇀ u weakly in E

and un → u in L2
loc(R

N ). Set Cm = {x : |x| ≤ m, a(x) ≥ 1/m} , m ∈ N . Then
∫

Cm

|un|2 ≤ m

∫

Cm

au2
n ≤ mK

λn
→ 0 as n → ∞
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for every m . This implies that u(x) = 0 for a.e. x ∈ R
N\Ω . Hence, since ∂Ω

is smooth, u ∈ H1
0 (Ω).

We now show that un → u in L2(RN ). Let F = {x ∈ R
N : a(x) ≤ M0} with

M0 as in (A2), and let F c = R
N\F . Then

∫

F c

u2
n ≤ 1

λnM0

∫

F c

λnau2
n ≤ K

λnM0
→ 0 as n → ∞..

Setting Bc
R = R

N\BR, where BR = {x ∈ R
N : |x| ≤ R} , and choosing r ∈

(1, N/(N − 2)), r′ = r/(r − 1) , we have
∫

Bc
R∩F

(un − u)2 ≤ |un − u|22rL(Bc
R ∩ F )1/r′ ≤ c‖un − u‖2L(Bc

R ∩ F )1/r′ → 0

as R → ∞, due to (A2) . Finally, since un → u in L2
loc ,

∫

BR

(un − u)2 → 0 as n → ∞.

Let Aλ := −∆ + λa be the selfadjoint operator acting on L2(RN ) with form
domain E . We denote by (·, ·) the L2 -inner product and write

(Aλu, v) =
∫

RN

(∇u∇v + λauv)

for u, v ∈ E . Set aλ := inf σ(Aλ) , the infimum of the spectrum of Aλ . Observe
that

0 ≤ aλ = inf {(Aλu, u) : u ∈ E, |u|2 = 1}
and that aλ is nondecreasing in λ .

Lemma 5. For each µ ∈ (0, µ1(Ω)) , there is λ(µ) > 0 such that aλ ≥ (µ +
µ1(Ω))/2 for λ ≥ λ(µ) . Consequently,

αµ‖u‖2
λ ≤ ((Aλ − µ)u, u)

for all u ∈ E , λ ≥ λ(µ) , where αµ := (µ1(Ω) + µ)/(µ1(Ω) + 2 + 3µ) .

Proof. Assume, by contradiction, there exists a sequence λn → ∞ such that
aλn

< (µ + µ1(Ω))/2 for all n and aλn
→ τ ≤ (µ + µ1(Ω))/2 . Let un ∈ E be

such that |un|2 = 1 and ((Aλn
− aλn

)un, un) → 0 . Then

‖un‖2
λn

=
∫

RN

(|∇un|2 + (1 + λna)|un|2
)

= ((Aλn
− aλn

)un, un) + (1 + aλn
)|un|22

≤ 2(1 + µ1(Ω))

for all n large. By Lemma 4 there is a u ∈ H1
0 (Ω) such that un ⇀ u weakly in E

and un → u in L2(RN ). Therefore |u|2 = 1 and lim infn→∞ |∇un|22 ≥ |∇u|22 .
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It follows that
∫

Ω

(|∇u|2 − τu2) ≤ lim inf
n→∞

∫

RN

(|∇un|2 − aλn
u2

n)

≤ lim inf
n→∞ ((Aλn

− aλn
)un, un) = 0.

and, hence, that ∫

Ω

|∇u|2 ≤ τ ≤ (µ + µ1(Ω))/2 < µ1(Ω).

This is a contradiction because, by definition, µ1(Ω) ≤ |∇u|22 for all u ∈ H1
0 (Ω)

with |u|2 = 1 . The result follows.

Consider the functional

Iλ,µ(u) =
1
2

∫

RN

(
|∇u|2 + λau2 − µu2

)
− 1

2∗

∫

RN

|u|2∗

=
1
2
((Aλ − µ)u, u) − 1

2∗
|u|2∗

2∗ .

Then Iλ,µ ∈ C1(E, R) and critical points of Iλ,µ are solutions of

−∆u + λa(x)u = µu + |u|2∗−2
u, u ∈ H1(RN ) .

Recall that a sequence (un) ⊂ E is called a (PS) c sequence (for Iλ,µ ) if Iλ,µ(un) →
c and I ′λ,µ(un) → 0 as n → ∞ . Iλ,µ is said to satisfy the (PS) c condition if
any (PS) c sequence contains a convergent subsequence.

Lemma 6. If µ ∈ (0, µ1(Ω)) and λ ≥ λ(µ) , then every (PS) c sequence (un)
for Iλ,µ is bounded in E , and satisfies

lim
n→∞((Aλ − µ)un, un) = lim

n→∞ |un|2∗
2∗ = Nc . (2.1)

Proof. By definition,

Iλ,µ(un) − 1
2∗

I ′λ,µ(un)un =
1
N

((Aλ − µ)un, un) (2.2)

and
Iλ,µ(un) − 1

2
I ′λ,µ(un)un =

1
N

|un|2∗
2∗ . (2.3)

Equation (2.2) and Lemma 5 imply that (un) is bounded in E , and taking limits
in Equations (2.2) and (2.3) gives (2.1).

Let

S = inf
u∈H1\{0}

|∇u|22
|u|22∗

,

be the best Sobolev constant. In the following, enlarging λ(µ) if necessary, we
assume λ(µ) ≥ µ/M0 , thus

λM0 − µ ≥ 0 for all λ ≥ λ(µ). (2.4)
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Proposition 7. If µ ∈ (0, µ1(Ω)) and λ ≥ λ(µ) then Iλ,µ satisfies the (PS) c

condition for all c < 1
N S

N
2 , that is, any sequence (un) ⊂ E with Iλ,µ(un) → c <

1
N S

N
2 and I ′λ,µ(un) → 0 contains a convergent subsequence.

Proof. By Lemma 6 (un) is bounded in E and we may assume without loss of
generality that un ⇀ u weakly in E , un → u in L2

loc and un(x) → u(x) a.e.
in x ∈ R

N . A standard argument shows that u is a weak solution of

−∆u + λa(x)u = µu + |u|2∗−2
u .

Let wn = un − u . By the Brzis-Lieb lemma [7], [27],

|un|2∗
2∗ = |u|2∗

2∗ + |wn|2∗
2∗ + o(1) (2.5)

and, since I ′λ,µ(un)un → 0 , it is easy to check that

((Aλ − µ)wn, wn) − |wn|2∗
2∗ → 0 . (2.6)

It follows from Equations (2.1), (2.5) and (2.6) that

((Aλ − µ)wn, wn) → b and |wn|2∗
2∗ → b ≤ Nc < S

N
2 .

As in the proof of Lemma 4 one shows that
∫

F

w2
n → 0 as n → ∞

where F = {x ∈ R
N : a(x) ≤ M0}. Let F c = R

N\F . Then, using Equation
(2.4),

S|wn|22∗ ≤ |∇wn|22
≤ |∇wn|22 +

∫

F c

(λa − µ)w2
n

≤ ((Aλ − µ)wn, wn) + µ

∫

F

w2
n

= ((Aλ − µ)wn, wn) + o(1) .

Passing to the limit yields Sb2/2∗ ≤ b. Since b < S
N
2 it follows that b = 0. Hence

wn → 0 in E.

3. Proof of Theorems 1 and 3

The critical points of Iλ,µ lie on the Nehari manifold

Mλ,µ = {u ∈ E\{0} : I ′λ,µ(u)u = 0}
= {u ∈ E\{0} : ((Aλ − µ)u, u) = |u|2∗

2∗}.
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Mλ,µ is radially dipheomorphic to V = {v ∈ E : |v|2∗ = 1} ; the diffeomorphism
is given by

V → Mλ,µ, v 
→ ((Aλ − µ)v, v)
N−2

4 v.

For u ∈ Mλ,µ , the functional Iλ,µ is just

Iλ,µ(u) =
1
N

((Aλ − µ)u, u).

Hence,

cλ,µ := inf
u∈Mλ,µ

Iλ,µ(u) =
1
N

inf
v∈V

((Aλ − µ)v, v)
N
2 .

Following Benci and Cerami [6] one can easily show that

Proposition 8. If u ∈ Mλ,µ is a critical point of Iλ,µ such that Iλ,µ(u) < 2cλ,µ

then u does not change sign. Hence, |u| is a solution of (NSλ,µ).

Proof. Since u is a critical point of Iλ,µ, ((Aλ−µ)u,w) =
∫ |u|2∗−2

uw for every
w ∈ E. In particular for w = u± where u± = ±max{±u, 0}. So, if both u+ and
u− are nonzero, then u± ∈ Mλ,µ and Iλ,µ(u) = Iλ,µ(u+) + Iλ,µ(u−) ≥ 2cλ,µ.
This is a contradiction.

Similarly, for every domain D ⊂ R
N , we consider the functional

Iµ,D(u) =
1
2

∫

D

(|∇u|2 − µu2
) − 1

2∗

∫

D
|u|2∗

=
1
2
((A0 − µ)u, u) − 1

2∗
|u|2∗

2∗

on H1
0 (D), associated to problem (Dµ). Its Nehari manifold

Mµ,D = {u ∈ H1
0 (D)\{0} : ((A0 − µ)u, u) = |u|2∗

2∗}
is radially diffeomorphic to VD =

{
v ∈ H1

0 (D) : |v|2∗ = 1
}

. Set

c(µ,D) := inf
u∈Mµ,D

Iµ,D(u) =
1
N

inf
v∈VD

((A0 − µ)v, v)
N
2 .

Lemma 9. If µ ∈ (0, µ1(Ω)) and λ ≥ λ(µ) then

1
N

(αµS)
N
2 ≤ cλ,µ < c(µ,Ω) <

1
N

S
N
2 .

Proof. By Lemma 5, αµ‖v‖2
H1 ≤ αµ‖v‖2

λ ≤ ((Aλ − µ)v, v). Taking infima over
v ∈ V gives the first inequality. Since VΩ ⊂ V and (Aλv, v) = (A0v, v) for
v ∈ VΩ, it follows that cλ,µ ≤ c(µ,Ω). Now, Brzis and Nirenberg showed [8] that,
for µ ∈ (0, µ1(Ω)) , c(µ,Ω) < 1

N S
N
2 and c(µ,Ω) is achieved at some ũ > 0.

Therefore cλ,µ < c(µ,Ω), because otherwise cλ,µ would be also achieved at ũ
which vanishes outside Ω , contradicting the maximum principle.

We are now ready to prove Theorems 1 and 3.
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Proof of Theorem 1. Let (uλ
n) be a minimizing sequence for Iλ,µ on Mλ,µ.

By Ekeland’s variational principle [15], [27], we may assume that it is a PS se-
quence. It follows from Proposition 7 and Lemma 9 that a subsequence converges
to a least energy solution uλ of (NSλ,µ) .

Proof of Theorem 3. Let (un) be a sequence of solutions of (NSλn,µ)
such that µ ∈ (0, µ1(Ω)), λn → ∞ and NIλn,µ(un) = ((Aλn

− µ)un, un) →
Nc < S

N
2 . Then Lemmas 4 and 5 imply that there is a u ∈ H1

0 (Ω) such that
a subsequence un ⇀ u weakly in E and un → u in L2(RN ). Since un is a
solution of (NSλn,µ),

∫

RN

∇un∇v + λnaunv − µunv =
∫

RN

|un|2
∗−2

unv for all v ∈ E.

If v ∈ H1
0 (Ω) then

∫
λnaunv = 0 for all n , so letting n → ∞ we obtain

∫

RN

∇u∇v − µuv =
∫

RN

|u|2∗−2
uv for all v ∈ H1

0 (Ω),

that is, u is a solution of (Dµ). Let wn = un − u. Since a(x) = 0 for x ∈ Ω, it
is easy to see that

((Aλn
− µ)un, un) = ((A0 − µ)u, u) + ((Aλn

− µ)wn, wn) + o(1).

By the Brzis-Lieb lemma [7]

|un|2∗
2∗ = |u|2∗

2∗ + |wn|2∗
2∗ + o(1)

so, since un ∈ Mλn,µ and u ∈ Mµ,Ω,

((Aλn
− µ)wn, wn) − |wn|2∗

2∗ = o(1)

We claim that |wn|2∗ → 0. Assume by contradiction that |wn|2∗
2∗ → b > 0 . Then,

since

S|wn|22∗ ≤ |∇wn|22
≤ ((Aλn

− µ)wn, wn) + o(1)
= |wn|2∗

2∗ + o(1),

it follows that
S ≤ |wn|2

∗−2
2∗ + o(1) ≤ |un|2

∗−2
2∗ + o(1)

and, therefore, that
S

N
2 ≤ lim

n→∞ |un|2∗
2∗ = c < S

N
2 .

This is a contradiction. Consequently, |wn|2∗ → 0 and ((Aλn
− µ)wn, wn) → 0 .

Hence,
((A0 − µ)u, u) = lim

n→∞((Aλn
− µ)un, un) (3.1)
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Since un = wn in R
N\Ω and a = 0 in Ω,

∫

au2
n ≤

∫

λnau2
n =

∫

λnaw2
n ≤ ((Aλn

− µ)wn, wn) + o(1).

Therefore,
∫

au2
n → 0 and Equation (3.1) implies that un → u in E.

As a consequence of Theorems 1 and 3 we have

Corollary 10. For each µ ∈ (0, µ1(Ω)), limλ→∞ cλ,µ = c(µ,Ω).

Proof. By Lemma 9, cλ,µ → c ≤ c(µ,Ω) < 1
N S

N
2 and, by Theorem 1, cλ,µ

is achieved for λ ≥ λ(µ) . So Theorem 3 implies that c is achieved by Iµ,Ω on
Mµ,Ω. Hence, c ≥ c(µ,Ω).

4. Proof of Theorem 2

To prove Theorem 2 we follow the method introduced by Benci and Cerami in [6].
Since Ω is a bounded smooth domain of R

N , we may fix r > 0 small enough
such that

Ω+
2r = {x ∈ R

N : dist (x,Ω) < 2r}
and

Ω−
r = {x ∈ Ω : dist (x, ∂Ω) > r}

are homotopically equivalent to Ω . Moreover, we may assume that Br = {x ∈
R

N : |x| < r} ⊂ Ω. We define c(µ, r) := c(µ,Br). Then, arguing as in the proof
of Lemma 9, we have that

c(µ,Ω) < c(µ, r) <
1
N

S
N
2

for 0 < µ < µ1(Ω).
For 0 �= u ∈ L2∗

(Ω) we consider its center of mass

β(u) :=

∫

Ω
|u|2∗

x dx
∫

Ω
|u|2∗

dx
.

Rephrasing Lazzo’s results in [19] one has the following lemma.

Lemma 11. There is a µ# = µ#(r) ∈ (0, µ1(Ω)) such that, for 0 < µ ≤ µ#,
i) c(µ, r) < 2c(µ,Ω), and
ii) β(u) ∈ Ω+

r for every u ∈ Mµ,Ω with Iµ,Ω(u) ≤ c(µ, r) .

As in [4], we choose R > 0 with Ω ⊂ BR and set

ξ(t) =
{

1 0 ≤ t ≤ R,
R/t R ≤ t .
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Define

β0(u) =

∫

RN |u|2∗
ξ(|x|)x dx

∫

RN |u|2∗
dx

for u ∈ L2∗
(RN )\{0}.

Lemma 12. There exist µ∗ = µ∗(r) ∈ (0, µ1(Ω)) and for each 0 < µ ≤ µ∗ a
number Λ(µ) ≥ λ(µ) with the following properties:

i) c(µ, r) < 2cλ,µ for all λ ≥ Λ(µ), and
ii) β0(u) ∈ Ω+

2r for all λ ≥ Λ(µ) and all u ∈ Mλ,µ with Iλ,µ(u) ≤ c(µ, r) .

Proof. Assertion i) follows immediately from Lemma 11 and Corollary 10. We
now prove ii). Assume, by contradiction, that for µ arbitrarily small there is a
sequence (un) such that un ∈ Mλn,µ, λn → ∞, Iλn,µ(un) → c ≤ c(µ, r) and
β0(un) /∈ Ω+

2r. Then, by Lemma 4, there is uµ ∈ H1
0 (Ω) such that un ⇀ uµ

weakly in E and un → uµ in L2(RN ). We distinguish two cases:
Case 1: |uµ|2

∗

2∗ ≤ ((A0 − µ)uµ, uµ).
Let wn = un − uµ. Since a(x) = 0 for x ∈ Ω,

((Aλn
− µ)un, un) = ((A0 − µ)uµ, uµ) + ((Aλn

− µ)wn, wn) + o(1).

By the Brzis-Lieb lemma [7]

|un|2∗
2∗ = |uµ|2∗

2∗ + |wn|2∗
2∗ + o(1)

so, since un ∈ Mλn,µ,

((Aλn
− µ)wn, wn) ≤ |wn|2∗

2∗ + o(1)

We claim that |wn|2∗ → 0. Assume by contradiction that |wn|2∗
2∗ → b > 0 . Then,

since

S|wn|22∗ ≤ |∇wn|22
≤ ((Aλn

− µ)wn, wn) + o(1)
≤ |wn|2∗

2∗ + o(1)

we have that
S

N
2 ≤ lim

n→∞ |un|2∗
2∗ = Nc < S

N
2 ,

a contradiction. Consequently, un → uµ in L2∗
(RN ) and, therefore, β0(un) →

β(uµ). But, since Iµ,Ω(uµ) ≤ limn→∞ Iλn,µ(un) ≤ c(µ, r), it follows from Lemma
11 that β(uµ) ∈ Ω+

r . This contradicts our assumption that β0(un) /∈ Ω+
2r.

Case 2: |uµ|2
∗

2∗ > ((A0 − µ)uµ, uµ).
In this case tuµ ∈ Mµ,Ω for some t ∈ (0, 1) and, therefore,

c(µ,Ω) ≤ Iµ,Ω(tuµ) ≤ t2

N
((A0 − µ)u, u) < lim

n→∞ Iλn,µ(un) ≤ c(µ, r).

It follows that, for n(µ) large enough,
∣
∣
∣
∣
∣un(µ)

∣
∣2

∗

2∗ − |tuµ|2
∗

2∗

∣
∣
∣ ≤ N(c(µ, r) − c(µ,Ω)).
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Since |c(µ, r) − c(µ,Ω)| → 0 as µ → 0, this implies that
∣
∣β0(un(µ))− β(tuµ)

∣
∣< r

for all µ sufficiently small. But, by Lemma 11, β(tuµ) ∈ Ω+
r , whereas β0(un(µ)) /∈

Ω+
2r, a contradiction.

As usual, for a given function I : M → R we set I≤b = {z ∈ M : I(z) ≤ b}.
We shall need the following easy consequence of standard Lusternik-Schnirelmann
theory.

Proposition 13. Let I : M → R be an even C1 -functional on a complete
symmetric C1,1 -submanifold M ⊂ V \{0} of some Banach space V. Assume
that I is bounded below and satisfies the Palais-Smale condition (PS) c for all
c ≤ b. Further, assume that there are maps

X
ι→ I≤b β→ Y

whose composition β ◦ ι is a homotopy equivalence, and that β(z) = β(−z) for
all z ∈ M ∩ I≤b. Then I has at least cat (X) pairs {z,−z} of critical points
with I(z) = I(−z) ≤ b.

Proof. Let Q be the quotient space of I≤b obtained by identifying z with −z
and let q : I≤b → Q be the quotient map. Since I and β are even, they induce
a functional Ĩ : Q → R and a map β̃ : Q → Y such that β̃ ◦ q ◦ ι : X 
 Y is
a homotopy equivalence. It follows easily that cat (X) ≤ cat (Q) [18]. Standard
Lusternik-Schnirelmann theory [22], [25] now yields at least cat (X) critical points
of the induced functional Ĩ : Q → R , that is, at least cat (X) pairs {z,−z} of
critical points of I with I(z) = I(−z) ≤ b.

We are now ready to prove Theorem 2.

Proof of Theorem 2. For 0 < µ ≤ µ∗ and λ ≥ Λ(µ), we define two maps

Ω−
r

ι→ Mλ,µ ∩ I
≤c(µ,r)
λ,µ

β0→ Ω+
2r

as follows: The map β0 is the one defined above. Lemma 12 shows that it is
well defined. Let ur ∈ H1

0 (Br) ⊂ E be a minimizer of Iµ,Br
on Mµ,Br

with
ur > 0 and set ι(x) = ur(· − x). Since ι(x) ≡ 0 in R

N\Ω for every x ∈ Ω−
r , it

follows that ι(x) ∈ Mλ,µ and that Iλ,µ(ι(x)) = Iµ,Br
(ι(x)) = c(µ, r). Since ur is

radially symmetric, β0(ι(x)) = x for every x ∈ Ω−
r . Clearly, Iλ,µ(u) = Iλ,µ(−u)

and β0(u) = β0(−u) for every u ∈ E\{0}. On the other hand, c(µ, r) < 1
N S

N
2

[8] so, by Proposition 7, Iλ,µ satisfies (PS) c for all c ≤ c(µ, r). It follows from
Propositions 13 and 8 and Lemma 12 that (NSλ,µ) has at least cat (Ω) positive
solutions.
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