Z. angew. Math. Phys. 55 (2004) 592–605 0044-2275/04/040592-14 DOI 10.1007/s00033-004-1084-9 © 2004 Birkhäuser Verlag, Basel

Zeitschrift für angewandte Mathematik und Physik ZAMP

Positive solutions of a Schrödinger equation with critical nonlinearity

Mónica Clapp 1 and Yanheng Ding 2

Abstract. We study the nonlinear Schrödinger equation

 $-\Delta u + \lambda a(x)u = \mu u + u^{2^* - 1}, \ u \in \mathbb{R}^N,$

with critical exponent $2^* = 2N/(N-2)$, $N \ge 4$, where $a \ge 0$ has a potential well. Using variational methods we establish existence and multiplicity of positive solutions which localize near the potential well for μ small and λ large.

Mathematics Subject Classification (2000). 35Q55, 35J65.

 $\label{eq:Keywords.Nonlinear Schrödinger equation, critical nonlinearity, localized solutions, potential well.$

1. Introduction and statement of results

In recent years much attention has been paid to the nonlinear Schrödinger equation

$$i\hbar\frac{\partial\psi}{\partial t} = -\hbar^2\Delta\psi + a(x)\psi - |\psi|^{p-2}\psi, \quad x \in \mathbb{R}^N$$
(S)

where \hbar is the Planck constant. When looking for stationary waves of the form $\psi(t, x) = e^{-i\mu(\hbar t)}\varphi(x)$ with $\mu \in \mathbb{R}$, one is lead to considering an elliptic equation in \mathbb{R}^N , namely, replacing \hbar by ε one sees that φ must satisfy

$$-\varepsilon^2 \Delta \varphi + a(x)\varphi = \varepsilon^2 \mu \varphi + |\varphi|^{p-2} \varphi.$$

Setting $u(x) := \varepsilon^{-2/(p-2)} \varphi(x)$ and $\lambda = \varepsilon^{-2}$, this equation is transformed into

$$-\Delta u + \lambda a(x)u = \mu u + |u|^{p-2}u.$$

where $\lambda = \hbar^{-2}$.

¹ Research supported by CONACyT under Research Grant 28031-E.

 $^{^2}$ Research supported by CONACyT under Research Grant 28031-E and by Special Funds for Major State Basic Research Projects of China.

Equations of this type with subcritical nonlinearities (that is, with $p < 2^* = \frac{2N}{N-2}$ for $N \ge 3$) have been investigated extensively, see for example [1], [3], [4], [5], [11], [12], [13], [14], [16], [17], [20], [21], [23], [26].

Here we investigate the existence and multiplicity of solutions of nonlinear Schrödinger equations with critical nonlinearity. More precisely, we consider the problem

$$\begin{cases} -\Delta u + \lambda a(x)u = \mu u + u^{2^* - 1} & \text{in } \mathbb{R}^N \\ u > 0 & \text{in } \mathbb{R}^N \\ u \in H^1(\mathbb{R}^N) \,, \end{cases}$$
(NS_{\lambda,\mu)}

where $N \ge 4$, $2^* = \frac{2N}{N-2}$, $\lambda > 0$, $\mu \in \mathbb{R}$ and a(x) satisfies the following assumptions:

(A1) $a \in C(\mathbb{R}^N, \mathbb{R})$, $a \ge 0$, and $\Omega :=$ int $a^{-1}(0)$ is a nonempty bounded set with smooth boundary, and $\overline{\Omega} = a^{-1}(0)$.

(A2) There exists $M_0 > 0$ such that

$$\mathcal{L}\{x \in \mathbb{R}^N : a(x) \le M_0\} < \infty$$

where \mathcal{L} denotes the Lebesgue measure in \mathbb{R}^N .

Recently Bartsch and Wang [4] considered the similar problem with subcritical nonlinearity

$$-\Delta u + (\lambda a(x) + 1)u = u^{p-1}, \quad u \in H^1(\mathbb{R}^N), \quad N \ge 3, \quad 2$$

where a(x) satisfies (A1) and (A2). They showed that, for λ large, this problem has a positive least energy solution, and that there exist $p_0 \in (2, 2^*)$ and a function $\Lambda : (p_0, 2^*) \to \mathbb{R}$ such that it has at least cat (Ω) positive solutions for any $\lambda \ge \Lambda(p), \ p \ge p_0$. Here cat (Ω) stands for the Lusternik-Schnirelmann category of Ω . They also showed that a certain concentration behaviour of the solutions occurs as $\lambda \to \infty$.

A problem arises naturally: Are there similar results for the Schrödinger equation with critical nonlinearity u^{2^*-1} ?

The leitmotiv of Bartsch and Wang's approach was that, for large λ , the Dirichlet problem

$$-\Delta u + u = u^{p-1}, \ u > 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega, \tag{D}_{0,p}$$

is some kind of limit problem for $(NS_{\lambda,0,p})$. Benci and Cerami had previously shown [6] that problem $(D_{0,p})$ has at least cat (Ω) solutions if $p < 2^*$ but close enough to 2^* .

There is a great deal of work on elliptic equations with critical nonlinearity on bounded domains, see for example [2], [25], [27] and the references therein. We focus our attention on the the following results for the Dirichlet problem

$$\begin{cases}
-\Delta u = \mu u + u^{2^{*-1}} & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$

$$(D_{\mu})$$

M. Clapp and Y. Ding

Brzis and Nirenberg [8] showed there is at least one solution of (D_{μ}) if $N \ge 4$ and $0 < \mu < \mu_1(\Omega)$, where $\mu_1(\Omega)$ is the first eigenvalue of $-\Delta$ on Ω with boundary condition u = 0. Multiplicity results similar to those of [6] are also known for this problem. It was shown by Rey [24] for $N \ge 5$ and by Lazzo [19] for $N \ge 4$ that there is a $0 < \mu^{\#} < \mu_1(\Omega)$ such that (D_{μ}) has at least cat (Ω) solutions for all $0 < \mu < \mu^{\#}$.

Motivated by these results we will show that, for μ small enough, problem (D_{μ}) is some kind of limit problem for $(NS_{\lambda,\mu})$ as $\lambda \to \infty$ and use the knowledge about (D_{μ}) to establish existence and multiplicity of solutions of $(NS_{\lambda,\mu})$. Moreover, as in the subcritical case [4], there is also a concentration behavior of the solutions as $\lambda \to \infty$. Before stating our results we give some definitions.

A solution u_{λ} of $(NS_{\lambda,\mu})$ is said to be a least energy solution if the energy integral

$$I_{\lambda,\mu}(u) = \int_{\mathbb{R}^N} \left(\frac{1}{2} \left(|\nabla u|^2 + (\lambda a(x) - \mu) u^2 \right) - \frac{1}{2^*} |u|^{2^*} \right) dx$$

achieves its minimum at u_{λ} over all nontrivial solutions of $(NS_{\lambda,\mu})$.

A sequence of solutions (u_n) of $(NS_{\lambda_n,\mu})$ will be said to concentrate at a solution u of $(D)_{\mu}$ if a subsequence converges strongly to u in $H^1(\mathbb{R}^N)$ as $\lambda_n \to \infty$.

Let

$$S = \inf_{u \in H^1 \setminus \{0\}} \frac{|\nabla u|_2^2}{|u|_{2^*}^2},$$

be the best Sobolev constant. We shall prove the following results:

Theorem 1. Assume (A1) and (A2) hold and $N \ge 4$. Then, for every $0 < \mu < \mu_1(\Omega)$, there exists $\lambda(\mu) > 0$ such that $(NS_{\lambda,\mu})$ has a least energy solution u_{λ} for each $\lambda \ge \lambda(\mu)$.

Theorem 2. Assume (A1) and (A2) hold and that $N \ge 4$. Then there exist $0 < \mu^* < \mu_1(\Omega)$ and for each $0 < \mu \le \mu^*$ two numbers $\Lambda(\mu) > 0$ and $0 < c(\mu) < \frac{1}{N}S^{\frac{N}{2}}$ such that, if $\lambda \ge \Lambda(\mu)$, then $(NS_{\lambda,\mu})$ has at least cat (Ω) solutions with energy $I_{\lambda,\mu} \le c(\mu)$.

Theorem 3. Every sequence of solutions (u_n) of $(NS_{\lambda_n,\mu})$ such that $\mu \in (0, \mu_1(\Omega))$, $\lambda_n \to \infty$ and $I_{\lambda_n,\mu}(u_n) \to c < \frac{1}{N}S^{\frac{N}{2}}$ as $n \to \infty$, concentrates at a solution of (D_{μ}) .

Thus, turning back to the nonlinear Schrödinger equation (S), our ansatz leads to solutions of the form $\psi(t,x) = \hbar^{2/(p-2)} e^{-i\mu\hbar t} u_{\hbar}(x)$ where u_{\hbar} concentrates at a solution of the Dirichlet problem (D_{μ}) on the bottom Ω of the potential well as $\hbar \to 0$. This concentration behaviour is quite different from the one obtained by taking the usual ansatz $\phi(t,x) = e^{-i\nu\hbar^{-1}t}\varphi(x)$, $\varepsilon = \hbar$, and looking at the corresponding singularly perturbed elliptic equation

$$-\varepsilon^2 \Delta u + V(x)\varphi = \left|\varphi\right|^{p-2}\varphi.$$

It is well known that for $p < 2^*$ positive bound states of this equation concentrate at minima of the potential V and decay exponentially away from such minima, see for example [11], [13], [14], [16], [17], [20], [26]. For $p = 2^*$ solutions with this same kind of behaviour have recently been obtained by Chabrowsky and Yang [10] under special assumptions on the potential. Finally, we would like to mention that, in a recent paper [9], Chabrowski and Szulkin have considered the Schrödinger equation

$$-\Delta u + V(x)u = |u|^{2^* - 2} u, \ u \in H^1(\mathbb{R}^N),$$

with periodic potential V, $N \ge 4$ and critical nonlinearity. They showed the existence of one nontrivial solution provided that 0 lies in a spectral gap of the operator $-\Delta + V$ in $L^2(\mathbb{R}^N)$.

This paper is organized as follows. In section 2 we shall establish some compactness results for the variational problem related to $(NS_{\lambda,\mu})$. Section 3 is devoted to the proofs of Theorems 1 and 3. Theorem 2 will be proved in section 4.

2. Compactness conditions

Throughout this paper we always assume that (A1) - (A2) hold and that $N \ge 4$. We denote by $\mu_1(\Omega)$ the first eigenvalue of $-\Delta$ on Ω with boundary condition u = 0, and write $|\cdot|_q$ for the L^q -norm for $q \in [1, \infty]$.

Let

$$E = \left\{ u \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} a(x)u^2 < \infty \right\}$$

be the Hilbert space endowed with the norm

$$||u|| = \left(||u||_{H^1}^2 + \int_{\mathbb{R}^N} a(x)u^2 \right)^{1/2},$$

which is clearly equivalent to each of the norms

$$||u||_{\lambda} = \left(||u||_{H^1}^2 + \lambda \int_{\mathbb{R}^N} a(x)u^2 \right)^{1/2}$$

for $\lambda > 0$.

Lemma 4. Let $\lambda_n \geq 1$ and $u_n \in E$ be such that $\lambda_n \to \infty$ and $||u_n||^2_{\lambda_n} < K$. Then there is a $u \in H^1_0(\Omega)$ such that, up to a subsequence, $u_n \rightharpoonup u$ weakly in E and $u_n \rightarrow u$ in $L^2(\mathbb{R}^N)$.

Proof. Since $||u_n||^2 \leq ||u_n||^2_{\lambda_n} < K$ we may assume that $u_n \rightarrow u$ weakly in E and $u_n \rightarrow u$ in $L^2_{loc}(\mathbb{R}^N)$. Set $C_m = \{x : |x| \leq m, \ a(x) \geq 1/m\}, \ m \in \mathbb{N}$. Then

$$\int_{C_m} |u_n|^2 \le m \int_{C_m} a u_n^2 \le \frac{mK}{\lambda_n} \to 0 \text{ as } n \to \infty$$

for every m. This implies that u(x) = 0 for a.e. $x \in \mathbb{R}^N \setminus \Omega$. Hence, since $\partial \Omega$ is smooth, $u \in H_0^1(\Omega)$.

We now show that $u_n \to u$ in $L^2(\mathbb{R}^N)$. Let $F = \{x \in \mathbb{R}^N : a(x) \leq M_0\}$ with M_0 as in (A_2) , and let $F^c = \mathbb{R}^N \setminus F$. Then

$$\int_{F^c} u_n^2 \le \frac{1}{\lambda_n M_0} \int_{F^c} \lambda_n a u_n^2 \le \frac{K}{\lambda_n M_0} \to 0 \text{ as } n \to \infty..$$

Setting $B_R^c = \mathbb{R}^N \setminus B_R$, where $B_R = \{x \in \mathbb{R}^N : |x| \le R\}$, and choosing $r \in (1, N/(N-2)), r' = r/(r-1)$, we have

$$\int_{B_R^c \cap F} (u_n - u)^2 \le |u_n - u|_{2r}^2 \mathcal{L}(B_R^c \cap F)^{1/r'} \le c ||u_n - u||^2 \mathcal{L}(B_R^c \cap F)^{1/r'} \to 0$$

as $R \to \infty$, due to (A2). Finally, since $u_n \to u$ in L^2_{loc} ,

$$\int_{B_R} (u_n - u)^2 \to 0 \text{ as } n \to \infty.$$

ZAMP

Let $A_{\lambda} := -\Delta + \lambda a$ be the selfadjoint operator acting on $L^2(\mathbb{R}^N)$ with form domain E. We denote by (\cdot, \cdot) the L^2 -inner product and write

$$(A_{\lambda}u,v) = \int_{\mathbb{R}^N} \left(\nabla u \nabla v + \lambda a u v \right)$$

for $\,u,v\in E\,.$ Set $\,a_\lambda:=\inf\,\sigma(A_\lambda)\,,$ the infimum of the spectrum of $\,A_\lambda\,.$ Observe that

$$0 \le a_{\lambda} = \inf \{ (A_{\lambda}u, u) : u \in E, |u|_2 = 1 \}$$

and that a_{λ} is nondecreasing in λ .

Lemma 5. For each $\mu \in (0, \mu_1(\Omega))$, there is $\lambda(\mu) > 0$ such that $a_{\lambda} \ge (\mu + \mu_1(\Omega))/2$ for $\lambda \ge \lambda(\mu)$. Consequently,

$$\alpha_{\mu} \|u\|_{\lambda}^2 \le ((A_{\lambda} - \mu)u, \ u)$$

for all $u \in E$, $\lambda \ge \lambda(\mu)$, where $\alpha_{\mu} := (\mu_1(\Omega) + \mu)/(\mu_1(\Omega) + 2 + 3\mu)$.

Proof. Assume, by contradiction, there exists a sequence $\lambda_n \to \infty$ such that $a_{\lambda_n} < (\mu + \mu_1(\Omega))/2$ for all n and $a_{\lambda_n} \to \tau \leq (\mu + \mu_1(\Omega))/2$. Let $u_n \in E$ be such that $|u_n|_2 = 1$ and $((A_{\lambda_n} - a_{\lambda_n})u_n, u_n) \to 0$. Then

$$\begin{aligned} \|u_n\|_{\lambda_n}^2 &= \int_{\mathbb{R}^N} \left(|\nabla u_n|^2 + (1+\lambda_n a)|u_n|^2 \right) \\ &= ((A_{\lambda_n} - a_{\lambda_n})u_n, \ u_n) + (1+a_{\lambda_n})|u_n|_2^2 \\ &\leq 2(1+\mu_1(\Omega)) \end{aligned}$$

for all *n* large. By Lemma 4 there is a $u \in H_0^1(\Omega)$ such that $u_n \rightharpoonup u$ weakly in *E* and $u_n \rightarrow u$ in $L^2(\mathbb{R}^N)$. Therefore $|u|_2 = 1$ and $\liminf_{n \rightarrow \infty} |\nabla u_n|_2^2 \ge |\nabla u|_2^2$.

It follows that

$$\int_{\Omega} (|\nabla u|^2 - \tau u^2) \leq \liminf_{n \to \infty} \int_{\mathbb{R}^N} (|\nabla u_n|^2 - a_{\lambda_n} u_n^2)$$
$$\leq \liminf_{n \to \infty} ((A_{\lambda_n} - a_{\lambda_n}) u_n, u_n) = 0.$$

and, hence, that

$$\int_{\Omega} |\nabla u|^2 \le \tau \le (\mu + \mu_1(\Omega))/2 < \mu_1(\Omega).$$

This is a contradiction because, by definition, $\mu_1(\Omega) \leq |\nabla u|_2^2$ for all $u \in H_0^1(\Omega)$ with $|u|_2 = 1$. The result follows.

Consider the functional

$$\begin{split} I_{\lambda,\mu}(u) &= \frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla u|^2 + \lambda a u^2 - \mu u^2 \right) - \frac{1}{2^*} \int_{\mathbb{R}^N} |u|^{2^*} \\ &= \frac{1}{2} ((A_\lambda - \mu)u, \ u) - \frac{1}{2^*} |u|^{2^*}_{2^*} \,. \end{split}$$

Then $I_{\lambda,\mu} \in \mathcal{C}^1(E,\mathbb{R})$ and critical points of $I_{\lambda,\mu}$ are solutions of

$$-\Delta u + \lambda a(x)u = \mu u + |u|^{2^*-2} u, \quad u \in H^1(\mathbb{R}^N).$$

Recall that a sequence $(u_n) \subset E$ is called a (PS) $_c$ sequence (for $I_{\lambda,\mu}$) if $I_{\lambda,\mu}(u_n) \rightarrow c$ and $I'_{\lambda,\mu}(u_n) \rightarrow 0$ as $n \rightarrow \infty$. $I_{\lambda,\mu}$ is said to satisfy the (PS) $_c$ condition if any (PS) $_c$ sequence contains a convergent subsequence.

Lemma 6. If $\mu \in (0, \mu_1(\Omega))$ and $\lambda \ge \lambda(\mu)$, then every $(PS)_c$ sequence (u_n) for $I_{\lambda,\mu}$ is bounded in E, and satisfies

$$\lim_{n \to \infty} ((A_{\lambda} - \mu)u_n, \ u_n) = \lim_{n \to \infty} |u_n|_{2^*}^{2^*} = Nc.$$
 (2.1)

Proof. By definition,

$$I_{\lambda,\mu}(u_n) - \frac{1}{2^*} I'_{\lambda,\mu}(u_n) u_n = \frac{1}{N} ((A_\lambda - \mu) u_n, \ u_n)$$
(2.2)

and

$$I_{\lambda,\mu}(u_n) - \frac{1}{2}I'_{\lambda,\mu}(u_n)u_n = \frac{1}{N}|u_n|^{2^*}_{2^*}.$$
(2.3)

Equation (2.2) and Lemma 5 imply that (u_n) is bounded in E, and taking limits in Equations (2.2) and (2.3) gives (2.1).

Let

$$S = \inf_{u \in H^1 \setminus \{0\}} \frac{|\nabla u|_2^2}{|u|_{2^*}^2},$$

be the best Sobolev constant. In the following, enlarging $\lambda(\mu)$ if necessary, we assume $\lambda(\mu) \ge \mu/M_0$, thus

$$\lambda M_0 - \mu \ge 0 \quad \text{for all } \lambda \ge \lambda(\mu).$$
 (2.4)

Proposition 7. If $\mu \in (0, \mu_1(\Omega))$ and $\lambda \geq \lambda(\mu)$ then $I_{\lambda,\mu}$ satisfies the $(PS)_c$ condition for all $c < \frac{1}{N}S^{\frac{N}{2}}$, that is, any sequence $(u_n) \subset E$ with $I_{\lambda,\mu}(u_n) \to c < \frac{1}{N}S^{\frac{N}{2}}$ and $I'_{\lambda,\mu}(u_n) \to 0$ contains a convergent subsequence.

Proof. By Lemma 6 (u_n) is bounded in E and we may assume without loss of generality that $u_n \rightharpoonup u$ weakly in E, $u_n \rightarrow u$ in L^2_{loc} and $u_n(x) \rightarrow u(x)$ a.e. in $x \in \mathbb{R}^N$. A standard argument shows that u is a weak solution of

$$-\Delta u + \lambda a(x)u = \mu u + |u|^{2^*-2} u$$

Let $w_n = u_n - u$. By the Brzis-Lieb lemma [7], [27],

$$u_n|_{2^*}^{2^*} = |u|_{2^*}^{2^*} + |w_n|_{2^*}^{2^*} + o(1)$$
(2.5)

and, since $I'_{\lambda,\mu}(u_n)u_n \to 0$, it is easy to check that

$$((A_{\lambda} - \mu)w_n, w_n) - |w_n|_{2^*}^{2^*} \to 0.$$
 (2.6)

It follows from Equations (2.1), (2.5) and (2.6) that

$$((A_{\lambda} - \mu)w_n, w_n) \to b$$
 and $|w_n|_{2^*}^{2^*} \to b \le Nc < S^{\frac{N}{2}}.$

As in the proof of Lemma 4 one shows that

$$\int_F w_n^2 \to 0 \quad \text{as } n \to \infty$$

where $F = \{x \in \mathbb{R}^N : a(x) \leq M_0\}$. Let $F^c = \mathbb{R}^N \setminus F$. Then, using Equation (2.4),

$$S|w_{n}|_{2^{*}}^{2} \leq |\nabla w_{n}|_{2}^{2}$$

$$\leq |\nabla w_{n}|_{2}^{2} + \int_{F^{c}} (\lambda a - \mu)w_{n}^{2}$$

$$\leq ((A_{\lambda} - \mu)w_{n}, w_{n}) + \mu \int_{F} w_{n}^{2}$$

$$= ((A_{\lambda} - \mu)w_{n}, w_{n}) + o(1).$$

Passing to the limit yields $Sb^{2/2^*} \leq b$. Since $b < S^{\frac{N}{2}}$ it follows that b = 0. Hence $w_n \to 0$ in E.

3. Proof of Theorems 1 and 3

The critical points of $I_{\lambda,\mu}$ lie on the Nehari manifold

$$\mathcal{M}_{\lambda,\mu} = \{ u \in E \setminus \{0\} : I'_{\lambda,\mu}(u)u = 0 \}$$

= $\{ u \in E \setminus \{0\} : ((A_{\lambda} - \mu)u, u) = |u|^{2^*}_{2^*} \}.$

 $\mathcal{M}_{\lambda,\mu}$ is radially dipheomorphic to $\mathcal{V} = \{v \in E : |v|_{2^*} = 1\}$; the diffeomorphism is given by

$$\mathcal{V} \to \mathcal{M}_{\lambda,\mu}, \quad v \mapsto ((A_{\lambda} - \mu)v, v)^{\frac{N-2}{4}}v.$$

For $u \in \mathcal{M}_{\lambda,\mu}$, the functional $I_{\lambda,\mu}$ is just

$$I_{\lambda,\mu}(u) = \frac{1}{N}((A_{\lambda} - \mu)u, u).$$

Hence,

$$c_{\lambda,\mu} := \inf_{u \in \mathcal{M}_{\lambda,\mu}} I_{\lambda,\mu}(u) = \frac{1}{N} \inf_{v \in \mathcal{V}} ((A_{\lambda} - \mu)v, v)^{\frac{N}{2}}.$$

Following Benci and Cerami [6] one can easily show that

Proposition 8. If $u \in \mathcal{M}_{\lambda,\mu}$ is a critical point of $I_{\lambda,\mu}$ such that $I_{\lambda,\mu}(u) < 2c_{\lambda,\mu}$ then u does not change sign. Hence, |u| is a solution of $(NS_{\lambda,\mu})$.

Proof. Since u is a critical point of $I_{\lambda,\mu}$, $((A_{\lambda}-\mu)u,w) = \int |u|^{2^*-2} uw$ for every $w \in E$. In particular for $w = u^{\pm}$ where $u^{\pm} = \pm \max\{\pm u, 0\}$. So, if both u^{+} and u^{-} are nonzero, then $u^{\pm} \in \mathcal{M}_{\lambda,\mu}$ and $I_{\lambda,\mu}(u) = I_{\lambda,\mu}(u^{+}) + I_{\lambda,\mu}(u^{-}) \geq 2c_{\lambda,\mu}$. This is a contradiction.

Similarly, for every domain $\mathcal{D} \subset \mathbb{R}^N$, we consider the functional

$$I_{\mu,\mathcal{D}}(u) = \frac{1}{2} \int_{\mathcal{D}} \left(|\nabla u|^2 - \mu u^2 \right) - \frac{1}{2^*} \int_{\mathcal{D}} |u|^{2^*} = \frac{1}{2} ((A_0 - \mu)u, u) - \frac{1}{2^*} |u|^{2^*}_{2^*}$$

on $H_0^1(\mathcal{D})$, associated to problem (D_μ) . Its Nehari manifold

$$\mathcal{M}_{\mu,\mathcal{D}} = \{ u \in H^1_0(\mathcal{D}) \setminus \{0\} : ((A_0 - \mu)u, u) = |u|_{2^*}^{2^*} \}$$

is radially diffeomorphic to $\mathcal{V}_{\mathcal{D}} = \left\{ v \in H_0^1(\mathcal{D}) : |v|_{2^*} = 1 \right\}$. Set

$$c(\mu, \mathcal{D}) := \inf_{u \in \mathcal{M}_{\mu, \mathcal{D}}} I_{\mu, \mathcal{D}}(u) = \frac{1}{N} \inf_{v \in \mathcal{V}_{\mathcal{D}}} ((A_0 - \mu)v, v)^{\frac{N}{2}}.$$

Lemma 9. If $\mu \in (0, \mu_1(\Omega))$ and $\lambda \geq \lambda(\mu)$ then

$$\frac{1}{N} \left(\alpha_{\mu} S \right)^{\frac{N}{2}} \le c_{\lambda,\mu} < c(\mu, \Omega) < \frac{1}{N} S^{\frac{N}{2}}.$$

Proof. By Lemma 5, $\alpha_{\mu} \|v\|_{H^{1}}^{2} \leq \alpha_{\mu} \|v\|_{\lambda}^{2} \leq ((A_{\lambda} - \mu)v, v)$. Taking infima over $v \in \mathcal{V}$ gives the first inequality. Since $\mathcal{V}_{\Omega} \subset \mathcal{V}$ and $(A_{\lambda}v, v) = (A_{0}v, v)$ for $v \in \mathcal{V}_{\Omega}$, it follows that $c_{\lambda,\mu} \leq c(\mu, \Omega)$. Now, Brzis and Nirenberg showed [8] that, for $\mu \in (0, \mu_{1}(\Omega))$, $c(\mu, \Omega) < \frac{1}{N}S^{\frac{N}{2}}$ and $c(\mu, \Omega)$ is achieved at some $\tilde{u} > 0$. Therefore $c_{\lambda,\mu} < c(\mu, \Omega)$, because otherwise $c_{\lambda,\mu}$ would be also achieved at \tilde{u} which vanishes outside Ω , contradicting the maximum principle.

We are now ready to prove Theorems 1 and 3.

Proof of Theorem 1. Let (u_n^{λ}) be a minimizing sequence for $I_{\lambda,\mu}$ on $\mathcal{M}_{\lambda,\mu}$. By Ekeland's variational principle [15], [27], we may assume that it is a PS sequence. It follows from Proposition 7 and Lemma 9 that a subsequence converges to a least energy solution u_{λ} of $(NS_{\lambda,\mu})$.

Proof of Theorem 3. Let (u_n) be a sequence of solutions of $(NS_{\lambda_n,\mu})$ such that $\mu \in (0, \mu_1(\Omega)), \lambda_n \to \infty$ and $NI_{\lambda_n,\mu}(u_n) = ((A_{\lambda_n} - \mu)u_n, u_n) \to Nc < S^{\frac{N}{2}}$. Then Lemmas 4 and 5 imply that there is a $u \in H_0^1(\Omega)$ such that a subsequence $u_n \rightharpoonup u$ weakly in E and $u_n \rightarrow u$ in $L^2(\mathbb{R}^N)$. Since u_n is a solution of $(NS_{\lambda_n,\mu})$,

$$\int_{\mathbb{R}^N} \nabla u_n \nabla v + \lambda_n a u_n v - \mu u_n v = \int_{\mathbb{R}^N} |u_n|^{2^* - 2} u_n v \quad \text{ for all } v \in E.$$

If $v \in H^1_0(\Omega)$ then $\int \lambda_n a u_n v = 0$ for all n, so letting $n \to \infty$ we obtain

$$\int_{\mathbb{R}^N} \nabla u \nabla v - \mu u v = \int_{\mathbb{R}^N} |u|^{2^* - 2} u v \quad \text{ for all } v \in H^1_0(\Omega),$$

that is, u is a solution of (D_{μ}) . Let $w_n = u_n - u$. Since a(x) = 0 for $x \in \Omega$, it is easy to see that

$$((A_{\lambda_n} - \mu)u_n, u_n) = ((A_0 - \mu)u, u) + ((A_{\lambda_n} - \mu)w_n, w_n) + o(1).$$

By the Brzis-Lieb lemma [7]

$$|u_n|_{2^*}^{2^*} = |u|_{2^*}^{2^*} + |w_n|_{2^*}^{2^*} + o(1)$$

so, since $u_n \in \mathcal{M}_{\lambda_n,\mu}$ and $u \in \mathcal{M}_{\mu,\Omega}$,

$$((A_{\lambda_n} - \mu)w_n, w_n) - |w_n|_{2^*}^{2^*} = o(1)$$

We claim that $|w_n|_{2^*} \to 0$. Assume by contradiction that $|w_n|_{2^*}^{2^*} \to b > 0$. Then, since

$$S|w_n|_{2^*}^2 \leq |\nabla w_n|_2^2 \\ \leq ((A_{\lambda_n} - \mu)w_n, w_n) + o(1) \\ = |w_n|_{2^*}^{2^*} + o(1),$$

it follows that

$$S \le |w_n|_{2^*}^{2^*-2} + o(1) \le |u_n|_{2^*}^{2^*-2} + o(1)$$

and, therefore, that

$$S^{\frac{N}{2}} \le \lim_{n \to \infty} |u_n|_{2^*}^{2^*} = c < S^{\frac{N}{2}}.$$

This is a contradiction. Consequently, $|w_n|_{2^*} \to 0$ and $((A_{\lambda_n} - \mu)w_n, w_n) \to 0$. Hence,

$$((A_0 - \mu)u, u) = \lim_{n \to \infty} ((A_{\lambda_n} - \mu)u_n, u_n)$$
(3.1)

Since $u_n = w_n$ in $\mathbb{R}^N \setminus \Omega$ and a = 0 in Ω ,

$$\int au_n^2 \leq \int \lambda_n au_n^2 = \int \lambda_n aw_n^2 \leq ((A_{\lambda_n} - \mu)w_n, w_n) + o(1).$$

Therefore, $\int au_n^2 \to 0$ and Equation (3.1) implies that $u_n \to u$ in E.

As a consequence of Theorems 1 and 3 we have

Corollary 10. For each $\mu \in (0, \mu_1(\Omega)), \lim_{\lambda \to \infty} c_{\lambda,\mu} = c(\mu, \Omega).$

Proof. By Lemma 9, $c_{\lambda,\mu} \to c \leq c(\mu,\Omega) < \frac{1}{N}S^{\frac{N}{2}}$ and, by Theorem 1, $c_{\lambda,\mu}$ is achieved for $\lambda \geq \lambda(\mu)$. So Theorem 3 implies that c is achieved by $I_{\mu,\Omega}$ on $\mathcal{M}_{\mu,\Omega}$. Hence, $c \geq c(\mu, \Omega)$.

4. Proof of Theorem 2

To prove Theorem 2 we follow the method introduced by Benci and Cerami in [6]. Since Ω is a bounded smooth domain of \mathbb{R}^N , we may fix r > 0 small enough

such that

$$\Omega_{2r}^+ = \{ x \in \mathbb{R}^N : \text{ dist } (x, \Omega) < 2r \}$$

and

$$\Omega_r^- = \{ x \in \Omega : \text{ dist } (x, \partial \Omega) > r \}$$

are homotopically equivalent to Ω . Moreover, we may assume that $B_r = \{x \in$ $\mathbb{R}^N : |x| < r \} \subset \Omega$. We define $c(\mu, r) := c(\mu, B_r)$. Then, arguing as in the proof of Lemma 9, we have that

$$c(\mu,\Omega) < c(\mu,r) < \frac{1}{N}S^{\frac{N}{2}}$$

for $0 < \mu < \mu_1(\Omega)$. For $0 \neq u \in L^{2^*}(\Omega)$ we consider its center of mass

$$\beta(u) := \frac{\int_{\Omega} |u|^{2^*} x \, dx}{\int_{\Omega} |u|^{2^*} dx}.$$

Rephrasing Lazzo's results in [19] one has the following lemma.

Lemma 11. There is a $\mu^{\#} = \mu^{\#}(r) \in (0, \mu_1(\Omega))$ such that, for $0 < \mu \le \mu^{\#}$, i) $c(\mu, r) < 2c(\mu, \Omega)$, and ii) $\beta(u) \in \Omega_r^+$ for every $u \in \mathcal{M}_{\mu,\Omega}$ with $I_{\mu,\Omega}(u) \le c(\mu, r)$.

As in [4], we choose R > 0 with $\overline{\Omega} \subset B_R$ and set

$$\xi(t) = \begin{cases} 1 & 0 \le t \le R, \\ R/t & R \le t. \end{cases}$$

Define

$$\beta_0(u) = \frac{\int_{\mathbb{R}^N} |u|^{2^*} \,\xi(|x|) x \, dx}{\int_{\mathbb{R}^N} |u|^{2^*} \, dx} \quad \text{for } u \in L^{2^*}(\mathbb{R}^N) \setminus \{0\}.$$

Lemma 12. There exist $\mu^* = \mu^*(r) \in (0, \mu_1(\Omega))$ and for each $0 < \mu \leq \mu^*$ a number $\Lambda(\mu) \geq \lambda(\mu)$ with the following properties:

i) $c(\mu, r) < 2c_{\lambda,\mu}$ for all $\lambda \ge \Lambda(\mu)$, and ii) $\beta_0(u) \in \Omega_{2r}^+$ for all $\lambda \ge \Lambda(\mu)$ and all $u \in \mathcal{M}_{\lambda,\mu}$ with $I_{\lambda,\mu}(u) \le c(\mu, r)$.

Proof. Assertion i) follows immediately from Lemma 11 and Corollary 10. We now prove ii). Assume, by contradiction, that for μ arbitrarily small there is a sequence (u_n) such that $u_n \in \mathcal{M}_{\lambda_n,\mu}$, $\lambda_n \to \infty$, $I_{\lambda_n,\mu}(u_n) \to c \leq c(\mu, r)$ and $\beta_0(u_n) \notin \Omega_{2r}^+$. Then, by Lemma 4, there is $u_\mu \in H_0^1(\Omega)$ such that $u_n \to u_\mu$ weakly in E and $u_n \to u_\mu$ in $L^2(\mathbb{R}^N)$. We distinguish two cases:

Case 1: $|u_{\mu}|_{2^{*}}^{2^{*}} \leq ((A_{0} - \mu)u_{\mu}, u_{\mu}).$ Let $w_{n} = u_{n} - u_{\mu}$. Since a(x) = 0 for $x \in \Omega$,

$$((A_{\lambda_n} - \mu)u_n, u_n) = ((A_0 - \mu)u_\mu, u_\mu) + ((A_{\lambda_n} - \mu)w_n, w_n) + o(1).$$

By the Brzis-Lieb lemma [7]

$$|u_n|_{2^*}^{2^*} = |u_\mu|_{2^*}^{2^*} + |w_n|_{2^*}^{2^*} + o(1)$$

so, since $u_n \in \mathcal{M}_{\lambda_n,\mu}$,

$$((A_{\lambda_n} - \mu)w_n, w_n) \le |w_n|_{2^*}^{2^*} + o(1)$$

We claim that $|w_n|_{2^*} \to 0$. Assume by contradiction that $|w_n|_{2^*}^{2^*} \to b > 0$. Then, since

$$\begin{aligned} |w_n|_{2^*}^2 &\leq |\nabla w_n|_2^2 \\ &\leq ((A_{\lambda_n} - \mu)w_n, w_n) + o(1) \\ &\leq |w_n|_{2^*}^{2^*} + o(1) \end{aligned}$$

we have that

$$S^{\frac{N}{2}} \le \lim_{n \to \infty} |u_n|_{2^*}^{2^*} = Nc < S^{\frac{N}{2}},$$

a contradiction. Consequently, $u_n \to u_\mu$ in $L^{2^*}(\mathbb{R}^N)$ and, therefore, $\beta_0(u_n) \to \beta(u_\mu)$. But, since $I_{\mu,\Omega}(u_\mu) \leq \lim_{n\to\infty} I_{\lambda_n,\mu}(u_n) \leq c(\mu, r)$, it follows from Lemma 11 that $\beta(u_{\mu}) \in \Omega_r^+$. This contradicts our assumption that $\beta_0(u_n) \notin \Omega_{2r}^+$.

S

Case 2: $|u_{\mu}|_{2^*}^{2^*} > ((A_0 - \mu)u_{\mu}, u_{\mu}).$ In this case $tu_{\mu} \in \mathcal{M}_{\mu,\Omega}$ for some $t \in (0, 1)$ and, therefore,

$$c(\mu,\Omega) \le I_{\mu,\Omega}(tu_{\mu}) \le \frac{t^2}{N}((A_0 - \mu)u, u) < \lim_{n \to \infty} I_{\lambda_n,\mu}(u_n) \le c(\mu, r).$$

It follows that, for $n(\mu)$ large enough,

$$\left| \left| u_{n(\mu)} \right|_{2^*}^{2^*} - \left| t u_{\mu} \right|_{2^*}^{2^*} \right| \le N(c(\mu, r) - c(\mu, \Omega)).$$

602

ZAMP

Since $|c(\mu, r) - c(\mu, \Omega)| \to 0$ as $\mu \to 0$, this implies that $|\beta_0(u_{n(\mu)}) - \beta(tu_{\mu})| < r$ for all μ sufficiently small. But, by Lemma 11, $\beta(tu_{\mu}) \in \Omega_r^+$, whereas $\beta_0(u_{n(\mu)}) \notin \Omega_{2r}^+$, a contradiction.

As usual, for a given function $I: M \to \mathbb{R}$ we set $I^{\leq b} = \{z \in M : I(z) \leq b\}$. We shall need the following easy consequence of standard Lusternik-Schnirelmann theory.

Proposition 13. Let $I : M \to \mathbb{R}$ be an even C^1 -functional on a complete symmetric $C^{1,1}$ -submanifold $M \subset V \setminus \{0\}$ of some Banach space V. Assume that I is bounded below and satisfies the Palais-Smale condition $(PS)_c$ for all $c \leq b$. Further, assume that there are maps

$$X \xrightarrow{\iota} I^{\leq b} \xrightarrow{\beta} Y$$

whose composition $\beta \circ \iota$ is a homotopy equivalence, and that $\beta(z) = \beta(-z)$ for all $z \in M \cap I^{\leq b}$. Then I has at least cat(X) pairs $\{z, -z\}$ of critical points with $I(z) = I(-z) \leq b$.

Proof. Let Q be the quotient space of $I^{\leq b}$ obtained by identifying z with -z and let $q: I^{\leq b} \to Q$ be the quotient map. Since I and β are even, they induce a functional $\widetilde{I}: Q \to \mathbb{R}$ and a map $\widetilde{\beta}: Q \to Y$ such that $\widetilde{\beta} \circ q \circ \iota : X \simeq Y$ is a homotopy equivalence. It follows easily that $\operatorname{cat}(X) \leq \operatorname{cat}(Q)$ [18]. Standard Lusternik-Schnirelmann theory [22], [25] now yields at least $\operatorname{cat}(X)$ critical points of the induced functional $\widetilde{I}: Q \to \mathbb{R}$, that is, at least $\operatorname{cat}(X)$ pairs $\{z, -z\}$ of critical points of I with $I(z) = I(-z) \leq b$.

We are now ready to prove Theorem 2.

Proof of Theorem 2. For $0 < \mu \leq \mu^*$ and $\lambda \geq \Lambda(\mu)$, we define two maps

$$\Omega_r^- \xrightarrow{\iota} \mathcal{M}_{\lambda,\mu} \cap I_{\lambda,\mu}^{\leq c(\mu,r)} \xrightarrow{\beta_0} \Omega_{2r}^+$$

as follows: The map β_0 is the one defined above. Lemma 12 shows that it is well defined. Let $u_r \in H_0^1(B_r) \subset E$ be a minimizer of I_{μ,B_r} on \mathcal{M}_{μ,B_r} with $u_r > 0$ and set $\iota(x) = u_r(\cdot - x)$. Since $\iota(x) \equiv 0$ in $\mathbb{R}^N \setminus \Omega$ for every $x \in \Omega_r^-$, it follows that $\iota(x) \in \mathcal{M}_{\lambda,\mu}$ and that $I_{\lambda,\mu}(\iota(x)) = I_{\mu,B_r}(\iota(x)) = c(\mu,r)$. Since u_r is radially symmetric, $\beta_0(\iota(x)) = x$ for every $x \in \Omega_r^-$. Clearly, $I_{\lambda,\mu}(u) = I_{\lambda,\mu}(-u)$ and $\beta_0(u) = \beta_0(-u)$ for every $u \in E \setminus \{0\}$. On the other hand, $c(\mu,r) < \frac{1}{N}S^{\frac{N}{2}}$ [8] so, by Proposition 7, $I_{\lambda,\mu}$ satisfies (PS) c for all $c \leq c(\mu,r)$. It follows from Propositions 13 and 8 and Lemma 12 that $(NS_{\lambda,\mu})$ has at least cat (Ω) positive solutions.

References

- Ambrosetti, A., Badiale, M. and Cingolani, S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rat. Mech. Anal. 140 (1997), 285-300.
- [2] Bahri, A. and Coron, J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, *Comm. Pure Appl. Math.* 41 (1988), 253–294.
- [3] Bartsch, T. and Wang, Z.Q., Existence and multiplicity results for some superlinear elliptic problems on R^N, Commun. Part. Diff. Eqs. 20 (1995), 1725-1741.
- [4] Bartsch, T. and Wang, Z.Q., Multiple positive solutions for a nonlinear Schrödinger equation, Z. angew. Math. Phys. 51 (2000), 366–384.
- [5] Bartsch, T., Pankov, A. and Wang, Z.Q., Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math. 3 (2001), 549–569.
- [6] Benci, V. and Cerami, G., The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal. 114 (1991), 79–83.
- [7] Brézis, H. and Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
- [8] Brézis, H. and Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–447.
- [9] Chabrowski, J. and Szulkin, A., On a semilinear Schrödinger equation with critical Sobolev exponent, Proc. Amer. Math. Soc. 130 (2002), 85–93.
- [10] Chabrowski, J. and Yang, J., Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent, *Portugaliae Math.* 57 (2000), 273-284.
- [11] Cingolani, S. and Lazzo M., Multiple semiclassical standing waves for a class of nonlinear Schrödinger equation. Top. Meth. Nonl. Anal. 10 (1997), 397-408.
- [12] Cingolani, S. and Lazzo M., Multiple positive solutions to nonlinear Schrödinger equations with compiting potential functions. J. Diff. Eq. 160 (2000), 118-138.
- [13] del Pino, M. and Felmer, P., Multi-peak bound states for nonlinear Schrödinger equations, AIHP, Anal. Non Linaire 15 (1998), 127-149.
- [14] Ding, W.Y. and Ni, W.M., On the existence of positive entire solutions of a semilinear elliptic equation, *Arch. Rat. Mech. Anal.* **91** (1986), 283-308.
- [15] Ekeland, I., On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
- [16] Floer, A. and Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397-408.
- [17] Gui, C., Existence of multi-bump solutions for nonlinear Schrödinger equation via variational method, Comm. Part. Diff. Eqs. 21 (1996), 787-820.
- [18] James, I.M., On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.
- [19] Lazzo, M., Solutions positives multiples pour une quation elliptique non linaire avec l'exposant critique de Sobolev, C.R. Acad. Sci. Paris 314, Srie I (1992), 61-64.
- [20] Li, Y.Y., On a singularly perturbed elliptic equation, Adv. Diff. Eqs. 2 (1997), 955-980.
- [21] Oh, Y.G., Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V_{α}) , Comm. Part. Diff. Eqs. 13 (1988), 1499-1519.
- [22] Palais, R.S., Critical point theory and the minimax principle, Proc. Symp. Pure Math. 15 (1970), 185-212.
- [23] Rabinowitz, P.H., On a class of nonlinear Schrödinger equations, Z. angew. Math. Phys. 43 (1992), 270-291.
- [24] Rey, O., A multiplicity result for a variational problem with lack of compactness, Nonl. Anal. T.M.A. 133 (1989), 1241-1249.
- [25] Struwe, M., Variational Methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer, Berlin-Heidelberg 1990.
- [26] Wang, X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (1993), 229-244.

[27] Willem, W., Minimax Theorems, Birkhäuser, Boston-Basel-Berlin 1996.

Mónica Clapp Instituto de Matemáticas Universidad Nacional Autónoma de México 04510 México D.F. México e-mail: mclapp@math.unam.mx

Yanheng Ding Institute of Mathematics, AMSS Chinese Academy of Sciences 100080 Beijing China e-mail: dingyh@math03.math.ac.cn

(Received: June 14, 2001; revised: February 8, 2002)

To access this journal online: http://www.birkhauser.ch