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Exact solution of the Navier-Stokes equations for the
oscillating flow in a duct of a cross-section of right-angled
isosceles triangle
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In memory of Klaus Oswatitsch as a teacher and scientist

Abstract. The Navier-Stokes equations have been solved in order to obtain an analytical solu-
tion of the fully developed laminar flow in a duct having a cross section of a right-angled, isosceles
triangle. We obtained a solution for the case of oscillating pressure gradient flow. The pulsating
flow is obtained by the superposition of the steady and oscillating pressure gradient solutions.
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Introduction

The analytical expressions for the developed, laminar, steady flow velocity distri-
bution in straight channels (parallel walls), pipe of circular cross section (Hagen-
Poisseuille law) and annular cross section refer back to G.G. Stokes (1851 and
1898), E. Hagenbach (1860) and H. Lamb (1879) respectively, [1, 2]. The velocity
distribution for the laminar flow in a duct with rectangular cross section has been
given by J. V. Boussinesq (1914), as referred to in Part II (Chapter II) in the
excellent reviews by H.L. Dryden et al [3] and R. Berker [4]. Laminar steady flow
for triangular cross section exists in the literature for the cases of the equilateral
triangle and for the case of a right angled isosceles triangle B.G. Galerkin (1919),
C.Kolossoff (1924), M. Paschoud (1924), [3, 5].

Laminar, developed, oscillating flow in straight ducts with a constant cross
section and impermeable wall exists in the literature between parallel plates [2],
for a circular [6-9], for an annular [10] and for a rectangular cross section [11-13].
For a triangular cross section an analytical solution for oscillating flow does not
exist.

Reviews for the exact solutions of the Navier-Stokes equations can be found in
the review articles of C.Y. Wang [14] and [15].

An analytical solution of the steady and oscillating flow in the straight duct
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with triangular cross is sought in the present paper and is successfully given in a
series form for the case of isosceles, right angled triangle.

Methodology and solution

As governing equations, the Navier-Stokes equations for unsteady flow, of an in-
compressible fluid of constant viscosity, are used as a system with the continuity
equation, both written in cartesian coordinates. We seek the analytical solution
for both steady and oscillating flow conditions for the case of a straight duct with
triangular cross section, confined by x = 0 , y = 0 and x + y = a . By as-
suming fully developed flow ( u = 0 , v = 0 ), the continuity equation is satisfied
when developed flow conditions across the z -axis of the straight duct are valid
( w = w(x, y, t) ). For the w component of the velocity, using the corresponding
Navier-Stokes equation, the following partial differential equation should be satis-
fied, because we are interested here in the cases of the flow due to an oscillating
pressure gradient:
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P/� is the amplitude of the imposed pressure gradient, while ω is the cyclic
frequency of the oscillating pressure gradient. Taking the value ω = 0 leads to
the case of steady flow solution.

The boundary conditions that have to be fulfilled are the non-slip condition
at the walls x = 0 , y = 0 , x + y = a of the triangular cross section for the w
component of the velocity ( w = 0 ).

In order to define periodic and steady solutions we assume that w is periodic
so that:

w = ws sin(ωt) + wc cos(ωt) (2)

By introducing non-dimensional variables:
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, ỹ =

y

a
, w̃ =

w

Pa2
µ�, α = a

(ω

ν

) 1
2

(3)

the equation (1) together with equation (2) are reduced to a system of non-
homogeneous Helmholtz equations:
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where α is the reduced frequency. The boundary conditions for w̃s , w̃c result
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from using the boundary conditions for the velocity and the equation for oscillating
flow assumption (2):

w̃s(0, ỹ) = 0 w̃s(x̃, 0) = 0 w̃s(x̃, 1 − x̃) = 0
w̃c(0, ỹ) = 0, w̃c(x̃, 0) = 0, w̃c(x̃, 1 − x̃) = 0

, (5)

For the equations (4) the analytical solution, which satisfies the boundary condi-
tions (5), can be determined by using a Fourier series analysis of w̃s , w̃c for x̃, ỹ .
The eigenfunction which satisfies the homogeneous Helmholtz equation as well as
the boundary conditions (5) is given by P.M.Riz [16] and can be expressed as:

w̃mn = sin[π(m + n)x̃] sin(πnỹ) − (−1)m sin[π(m + n)ỹ] sin(πnx̃). (6)

w̃s, w̃c and 1 are expressed as Fourier expansions:
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∞∑
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where Cmn can be calculated by the relation:
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D is the triangular domain. The calculation gives for Cmn the following relation:
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4
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1
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Substituting the above double series expansions (7)-(9) in the system of differential
equations (4) we get a system of algebraic equations, which have the following
solution for the unknown coefficients Amn, Bmn :
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For the imposed oscillating pressure gradient the resulting periodic velocity can
be written as:

w̃ = w̃a cos(ωt + ϕ) (13)

where w̃a(x̃, ỹ) is the amplitude and ϕ(x̃, ỹ) the phase angle resulting from the
expression of w̃(x̃, ỹ) as follows:

w̃a = (w̃2
s + w̃2

c )
1
2 , ϕ = arctan

(
− w̃s

w̃c

)
(14)

The defined analytic solution of the problem contains both the oscillatory as well
as the steady solution of the problem. The steady solution can be obtained by
substituting α = 0 in the expressions (12).

By integrating the expression of the velocity over the area of the triangle, the
mean over the cross section velocity w̃ can be calculated:

w̃ = w̃a cos(ωt + θ). (15)

w̃a is the amplitude w̃a and θ is the phase angle, which are given by the following
relations:
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The double Fourier series converge, because the coefficients approach zero as m
and n approach infinity. The truncation error for the Fourier series expression of
the amplitude is of the order of 10−6 for m = n = 11 and of the order of 10−10

for m = n = 71 and is independent from the value of reduced frequency. For our
calculations we used the values m = n = 71 .

Results and discussion

For α = 0 , which is the case of steady flow, the amplitude shows a maximum
maximorum value w̃max = 0.0295 . This value is identical to the maximum velocity
value, given in [3], while the phase angle is identical to zero.

The influence on flow of the oscillating pressure gradient is shown for two
values of the characteristic reduced frequency of the flow field ( α = 5 , α = 20 ) in
figures 1 and 2. Increasing the values of the reduced frequency causes a reduction
of the velocity amplitude. For high values of the reduced frequency ( α = 20 ,
figure 2) both the amplitude and phase angle (≈ −π/2 ) are nearly constant in
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Figure 1. Iso-amplitude w̃a (left) and iso-phase angle ϕ (right) plot of the velocity in the
cross-section of the right-angled isosceles duct, for oscillating flow with a reduced frequency
α = 5 .

Figure 2. Iso-amplitude w̃a (left) and iso-phase angle ϕ (right) plot of the velocity in the
cross-section of the right-angled isosceles duct, for oscillating flow with a reduced frequency
α = 20 .
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each cross section so that the velocity profiles become flat in the central region
of the duct cross-section except of a region close to the walls of the duct, which
shows a boundary layer behavior with a high velocity gradient close to the solid
boundaries. In the region of the constant velocity the flow behaves inviscid showing
amplitude w̃a = 1/α2 and phase angle ϕ = −π/2 and this behavior is typical for
the oscillating flows of high frequencies. The phase angle at the walls far from the
apexes and for high values of α takes a value near to −π/4 , which is also typical
for such kind of flows (figure 2-right).

The velocity shows maximum values close to the solid walls, while in the cen-
terline of the square duct the velocity has a local minimum value. There are three
maximum maximorum values close to the three apexes of the triangular cross
section, clearly shown in figure 2-right. Related flow phenomena are expected,
and are discovered by E.G. Richardson and E. Tyler (1929) [7] and are known as
“annular effect” [9].

Using the relations (15-18) the mean over the triangular cross section velocity
amplitude w̃a and the phase angle symbolized as θ can be calculated. In figure
3(left) the amplitude and in figure 3(right) the phase angles are plotted respectively
as functions of the reduced frequency α .

Figure 3. Mean over the right-angled isosceles cross section velocity amplitude w̃a (left) and
phase angle θ (right) as function of the reduced frequency α .

By increasing the reduced frequency α the amplitude of the mean velocity is
reduced while the maximum of the mean velocity amplitude appears for the quasi
steady flow ( α = 0 ), having the value w̃a = 0.013 , which is identical to the value
for steady flow given in literature [3]. The phase angle θ (fig. 3(left)) has a value
close to zero for low values of α ( θ → 0 as α → 0 ), totally damped by the viscous
effects. For higher values of the reduced frequency ( α = 20 ) θ approaches the
value −π/2 approaching the value for the inviscid flow case.
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