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Abstract. Peristaltic transport of an incompressible viscous fluid in an asymmetric channel is
studied under long-wavelength and low-Reynolds number assumptions. The channel asymmetry
is produced by choosing the peristaltic wave train on the walls to have different amplitudes and
phase. The flow is investigated in a wave frame of reference moving with velocity of the wave.
The effects of phase difference, varying channel width and wave amplitudes on the pumping
characteristics, streamline pattern, trapping, and reflux phenomena are investigated. The limits
on the time averaged flux for trapping and reflux are obtained. It is observed that the pumping
against pressure rise, trapping and reflux layer exists only when cross-section of the channel
varies. The peristaltic waves on the walls with same amplitude propagating in phase produce
zero flux rate as the channel cross-section remains same through out. The trapping and reflux
regions increase as the channel becomes more and more symmetric and the maximum occurs for
the symmetric channel.
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1. Introduction

Peristaltic transport is a form of fluid transport generated by a progressive wave
of area contraction or expansion along the length of a distensible tube containing
fluid. Peristalsis is an inherent property of many biological systems having smooth
muscle tubes which transports biofluids by its propulsive movements and is found
in the transport of urine from kidney to the bladder, the movement of chyme in the
gastro-intestinal tract, intra-uterine fluid motion, vasomotion of the small blood
vessels and in many other glandular ducts. The mechanism of peristaltic transport
has been exploited for industrial applications like sanitary fluid transport, blood
pumps in heart lung machine and transport of corrosive fluids where the contact
of the fluid with the machinery parts is prohibited.

Eventhough peristalsis existed very well in physiology, its relevance came about
mainly through the works of Kill [6] and Boyarsky [1]. Later several mathematical
and experimental models have been developed to understand the fluid mechanical
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aspects of peristaltic motion. The mathematical models obtained by a train of
periodic sinusoidal waves in an infinitely long two-dimensional symmetric chan-
nel or axisymmetric tubes containing a Newtonian or non-Newtonian fluid have
been investigated by Shapiro et al. [9], Fung and Yih [5], Yin and Fung [14] ,
Shukla and Gupta [10], Srivastava and Srivastava [11], and many others. Many
of these models explain the basic fluid mechanics aspects of peristalsis, namely
the characteristics of pumping, trapping and reflux. These models are developed
in two ways, one by restricting to small peristaltic wave amplitude with arbitrary
Reynolds number and the other by lubrication theory in which the fluid inertia
and wall curvature are neglected without any restriction of wave amplitude. The
problems are investigated either in a fixed frame of reference or in a wave frame of
reference moving with constant velocity of the wave simplifying the study to a case
with stationary wavy walls. The accuracy of these models has been investigated
numerically and experimentally by Takabatake and Ayukawa [12], Weinberg et al.
[13], Yin and Fung [15] and several others.

Recently, physiologists observed that the intra-uterine fluid flow due to my-
ometrial contractions is peristaltic-type motion and the myometrial contractions
may occur in both symmetric and asymmetric directions, De Vries et al. [2].

Eytan et al. [4] have observed that the characterization of Non-pregnant
woman uterine contractions is very complicated as they are composed of variable
amplitudes, a range of frequencies and different wavelengths. It was observed that
the width of the sagittal cross-section of the uterine cavity increases towards the
fundus and the cavity is not fully occluded during the contractions. Recently Ey-
tan and Elad [3] have developed a mathematical model of wall-induced peristaltic
fluid flow in a two-dimensional channel with wave trains having a phase difference
moving independently on the upper and lower walls to simulate intra-uterine fluid
motion in a sagittal cross-section of the uterus. They have obtained a time depen-
dent flow solution in a fixed frame by using lubrication approach. These results
have been used to evaluate fluid flow pattern in a non-pregnant uterus. They have
also calculated the possible particle trajectories to understand the transport of
embryo before it gets implanted at the uterine wall. On the other hand a numer-
ical technique using boundary integral method has been developed by Pozrikidis
[7] to investigate peristaltic transport in an asymmetric channel under Stokes flow
conditions to understand the fluid dynamics involved. He has studied the stream-
line patterns and mean flow rate due to different amplitudes and phases of the
wall deformation. The existence of trapping region adjacent to the walls is also
observed for some flow rates.

The aim of the present study is to investigate fluid mechanics effects of peri-
staltic transport in a two-dimensional asymmetric channel under the assumptions
of long wavelength and low Reynolds number in a waveframe of reference which
is different from the methods used by Pozrikidis [7] and Eytan and Elad [3]. The
channel asymmetry is produced by choosing the peristaltic wave train on the walls
to have different amplitude and phase due to the variation of channel width, wave
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amplitudes and phase differences. In addition to reproducing the earlier results,
we clearly bring out the significant effects on the pumping characterstics, trapping
and reflux.

Figure 1. Schematic diagram of a two-dimensional asymmetric channel.

2. Mathematical formulation and solution

We consider the motion of an incompressible viscous fluid in a two-dimensional
channel (see Fig. 1) induced by sinusoidal wave trains propagating with constant
speed c along the channel walls

Y = H1 = d1 + a1 cos 2π
λ (X − ct), . . . . . . upper wall

Y = H2 = −d2 − b1 cos
(

2π
λ (X − ct) + φ

)
. . . . . . lower wall, (1)

where a1, b1 are the amplitudes of the waves, λ is the wave length, d1 + d2 is
the width of the chanel, the phase difference φ varies in the range 0 ≤ φ ≤ π ,
φ = 0 corresponds to symmetric channel with waves out of phase and φ = π
the waves are in phase, and further a1, b1, d1, d2 and φ satisfies the condition
a2
1 + b2

1 + 2a1b1 cos φ ≤ (d1 + d2)2.
Introducing a wave frame (x, y) moving with velocity c away from the fixed

frame (X,Y ) by the transformation

x = X − ct, y = Y, u = U − c, v = V, and p(x) = P (X, t), (2)
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where (u, v) and (U, V ) are velocity components, p and P are pressures in wave
and fixed frame of references respectively. The pressure p remains a constant
across any axial station of the channel under the assumption that the wave length is
large and the curvature effects are negligible. Using the following non-dimensional
variables:

x̄ =
x

λ
, ȳ =

y

d1
, ū =

U

c
, v̄ =

V

cδ
, δ =

d1

λ
, p̄ =

d2
1p

µcλ
, t̄ =

ct

λ

h1 =
H1

d1
, h2 =

H2

d1
, d =

d2

d1
, a =

a1

d1
b =

b1

d1
, R =

cd1

ν
, ψ̄ =

ψ

d1c

in the Navier-Stokes equations and eliminating pressure by cross differentiation,
the equation for the flow in terms of stream function ψ , (dropping the bars,
u = ∂ψ

∂y , v = −∂ψ
∂x ) is given by

Rδ
{

ψyψyyx−ψxψyyy +δ2(ψyψxxx−ψxψxxy)
}

= ψyyyy +2δ2ψxxyy +δ4ψxxxx, (3)

here and in what follows subscripts x and y denote parial differentiations with
respect to that variables.

The corresponding boundary conditions are

ψ = q/2 at y = h1 = 1 + a cos 2πx
ψ = −q/2 at y = h2 = −d− b cos(2πx + φ)
∂ψ
∂y = −1 at y = h1 and y = h2,


 (4)

where q is the flux in the wave frame and a, b, φ and d satisfy the relation

a2 + b2 + 2ab cos φ ≤ (1 + d)2. (5)

Under the assumptions of long wavelength δ << 1 and low Reynolds number,
the equation (3) becomes

ψyyyy = 0. (6)

The solution of (6) satisfying the corresponding boundary conditions (4) is

ψ =
q + h1 − h2

(h2 − h1)3
(
2y3 − 3(h1 + h2)y2 + 6h1h2y

)− y

+
1

(h2 − h1)3
(
(
q

2
+ h1)(h3

2 − 3h1h
2
2)− (h2 − q

2
)(h3

1 − 3h2h
2
1)

)
, (7)

where h2 ≤ y ≤ h1. The flux at any axial station in the fixed frame is

Q =
∫ h1

h2

(u + 1)dy =
∫ h1

h2

udy +
∫ h1

h2

dy = q + (h1 − h2).

The average volume flow rate over one period (T = λ
c ) of the peristaltic wave is

defined as

Q̄ =
1
T

∫ T

0

Qdt =
1
T

∫ T

0

(q + (h1 − h2))dt = q + 1 + d. (8)
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The pressure gradient is obtained from the dimensionless momentum equation
for the axial velocity dp/dx = ψyyy and substituting for ψ from (6), we get

dp

dx
= −12

(
1

(h1 − h2)2
+

q

(h1 − h2)3

)
. (9)

Integrating (9) over a tube length L , we get

∆pL = pL − p0 = −12

(∫ L

0

dx

(h1 − h2)2
+ q

∫ L

0

dx

(h1 − h2)3

)
. (10)

The integrals in (10) will be independent of time only when L is an integral
multiple of λ . In these problems either we have to prescribe ∆p or Q̄ and
by prescribing either ∆p or Q̄ as constants, the flow can be treated as steady
in wave frame. The integrals in (10) are evaluated over one wavelength using the
values of the integrals given in Appendix and replacing q with Q̄ from (8), we
get

∆p = −6
{

Q̄− (1 + d)
} 2(1 + d)2 + (a2 + b2 + 2ab cos φ){

(1 + d)2 − (a2 + b2 + 2ab cos φ)
}5/2

− 12
1 + d{

(1 + d)2 − (a2 + b2 + 2ab cos φ)
}3/2

, (11)

and this is rewritten in the form

Q̄ =
−∆p

6

{
(1 + d)2 − (a2 + b2 + 2ab cos φ)

}5/2

2(1 + d)2 + (a2 + b2 + 2ab cos φ)

+
3(1 + d)(a2 + b2 + 2ab cos φ)

2(1 + d)2 + (a2 + b2 + 2ab cos φ)
. (12)

The results for the flow corresponding to a symmetric channel are obtained
from our results by putting a = b, d = 1 and φ = 0 . Equation(12) reduces to
Poiseuille law for a channel when ∆p < 0; a = b = 0 channel with straight walls
or a = b and φ = π a channel with peristaltic waves with same amplitude and
inphase.
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3. Discussion of the results

3.1. Pumping Characterstics

The characterstic feature of peristaltic motion is pumping against pressure rise.
From (12), we observe

Q̄ = 0 for ∆p = ∆pmax =
18(1 + d)(a2 + b2 + 2ab cos φ){

(1 + d)2 − (a2 + b2 + 2ab cos φ)
}5/2

,

and Q̄ = Q̄max =
3(1 + d)(a2 + b2 + 2ab cos φ)

2(1 + d)2 + (a2 + b2 + 2ab cos φ)
,

for ∆p = 0, (free pumping). When ∆p > ∆pmax one gets negative flux and
when ∆p < 0 , we get Q̄ > Q̄max as the pressure assists the flow which is known
as copumping. The complete occlusion (or the channel walls touch each other)
occurs when a2 + b2 + 2ab cos φ = (1 + d)2 and in that case the fluid is pumped
as a positive displacement pump with Q̄ = 1 + d.

The variation of time-average flux Q̄ as a function φ/π = φ̄ , normalized
phase difference, is calculated from equation (12) for different values of ∆p and
is presented in Fig. 2 for two different cases (i) when the amplitudes of the
peristaltic wave on the upper and lower walls are same a = b = 0.7 and (ii)
when the amplitudes are different a = 0.7, b = 1.2 . From the curve for ∆p = 1.5
in Fig. 2(i) , we observe that when φ̄ = 0, Q̄ is maximum and decreases as φ̄
increases and becomes zero for some φ̄ and remains negative afterwards until φ̄
becomes 1. For ∆p > ∆pmax , even for φ̄ = 0 , Q̄ becomes negative and remains
so for all 0 < φ̄ ≤ 1 . When ∆p = 0 , for free pumping case, we observe Q̄ is
zero for φ̄ = 1 (i.e when peristaltic waves are in phase, the cross section of the
channel remains same through out) and is positive for all 0 ≤ φ̄ < 1 . Q̄ remains
always positive for ∆p < 0 (i.e in the copumping range) as pressure assists the
flow due to peristalsis on the walls. The positive rate of flux for 0 ≤ ∆p ≤ ∆pmax

is entirely due to peristalsis. The results for same amplitude peristaltic waves
with phase difference given by Eytan and Elad [3] agree with our results described
above. When the amplitudes of the peristaltic waves are different, we observe for
free pumping ( ∆p = 0 ), the rate of flux Q̄ remains positive for all 0 ≤ φ̄ ≤ 1
as depicted in Fig. 2(ii) . Here the positive flux is possible mainly because the
different amplitude peristaltic waves on the walls produce an asymmetric channel
of variable cross section. Further, it is easy to observe that the flux increases when
the amplitudes (depend on d as given in (4)) of the pearistaltic waves increses.
Fig. 3, depicts the variation of ∆p with Q̄ with a = 0.7, b = 1.2, d = 2 for
different values of φ . An interesting observation here is that in copumping Q̄
increases with φ , 0 ≤ φ ≤ π , for an appropriatly chosen ∆p(< 0) irrespective of
the amplitudes being same or different.

The variation of flux Q̄ with the width of the channel d , for fixed a =
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Figure 2. The variation Q̄ with φ and d=2 for different values of ∆p with (i)
a = 0.7, b = 0.7 , (ii) a = 0.7, b = 1.2 .

0.7, b = 1.2 and φ = π/2 is presented in Fig. 4 for different values of ∆p .
It is observed that for ∆p ≥ 0 the flux rate decreases as the distance d between
the walls increases due to the reduction in the peristalsis effects. From the curve
for ∆p = −0.05 (∆p < 0 small) in Fig. 4, Q̄ decreases for some d (small) in
the beginning but it starts increasing for d large as the Poiseuille flow due to
pressure loss dominates the peristaltic flow. Fig. 5 shows the variation of Q̄ with
one of the amplitudes b for fixed a = 0.5, d = 1, ∆p = 0.1 for different values
of φ . It shows that the rate of flux decreases and attains the minimum value at
b = −a cos φ and then it increases as b increases. Even when there is no wave on
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Figure 4. Variation of Q̄ with d for different ∆p with a = 0.7, b = 1.2 and φ = π/2.

one of the walls i.e when b = 0 , we observe that the flux rate is always positive.

3.2. Trapping

In the wave frame the streamlines in general have a shape similar to the walls as
the walls are stationary. But under certain conditions some streamlines split (due
to the existence of a stagnation point) to enclose a bolus of fluid particles in closed
streamlines. In the fixed frame the bolus moves as a whole at the wave speed as
if trapped by the wave. It is seen from the equation (7) that center streamline
(ψ = 0) is not only at y = (h1 + h2)/2, but also on the curve defined by the
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Figure 5. The variation of Q̄ as a function of b with a = 0.5, d = 1 and ∆p = 0.1 for
different φ .

points given by

2y2
{
(h1 − h2)− (1 + d) + Q̄

}
+ 2y{h1 + dh1 − h2

1 + h2 + dh2

+h2
2 − h1Q̄− h2Q̄}+ {h2

1 + dh2
1 − 4h1h2 − 4dh1h2 + 2h2

1h2

+h2
2 + dh2

2 − 2h1h
2
2 − h2

1Q̄− h2
2Q̄ + 4h1h2Q̄} = 0. (13)

Equation (13) gives two real roots for y , when the descriminent

−3(1 + d) + (h1 − h2) + 3Q̄

h1 − h2 − 1− d + Q̄
≥ 0. (14)

An analysis of the equation (13) shows that both the real roots lie with in the
channel whenever Q̄ satisfies the condition

2(1 + d)−
√

a2 + b2 + 2ab cos φ

3
≤ Q̄ ≤ 2(1 + d) +

√
a2 + b2 + 2ab cos φ

3
. (15)

Equation (15) gives the upper and lower trapping limits on Q̄ for the splitting of
the center streamline.

The effect of phase shift φ on trapping with same amplitudes a = b = 0.5
for Q̄ = 1.4 (with in the centerline trapping limits) is illusrated in Fig. 6. It is
observed that the bolus appearing in the center region for φ = 0 moves towards
left and decreases in size as φ increases. For φ = π , the bolus dissapears and



Vol. 54 (2003) Peristaltic transport in an asymmetric channel 541

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

(i) (ii) 

(iii) (iv) 

Figure 6. Streamlines for a = 0.5, b = 0.5, d = 1, Q̄ = 1.4 and for different φ
i)φ = 0, ii)φ = π

2
, iii)φ = 5π

6
, iv)φ = π.

the streamlines are parallel to the boundary walls (Pozrikidis [7]) and here Q̄ > 0
is possible only when ∆p < 0 corresponding to Poiseuille flow. Fig. 7 gives the
plots for a = 0.3, b = 0.5 (different amplitudes) and Q̄ = 1.4 at different values
of φ and it shows that the trapping exists for all phase differences φ . Even when
the walls are moving inphase, (φ = π) with different amplitudes trapping exists
due to non zero flux rate Q̄ . For fixed Q̄, ∆p (> 0 for φ = 0) decreases as
φ increases and may become negative for φ = π and corresponding the trapping
region decreases as seen from Fig. 6 and Fig. 7. Streamlines with same as well as
different amplitudes with different phases in a fixed frame of reference are shown
in Fig. 8 and these agree with the streamline patterns shown by Pozrikidis [7].

It is observed when the flux lies between Q̄max < Q̄ < 1+d a streamline other
than ψ = 0 splits and the results of trapping near the centerline are shown in
Fig. 9(i) and (ii). When Q̄ > 1+d , in the copumping region, the trapping moves
towards the boundary walls and its size reduces as Q̄ increases as depicted in
Fig. 9(iii) and (iv). The values of the parameters chosen are given in the captions.
Similar type of phenomena was observed in copumping zone by Ramachandra
Rao and Usha [8] in the study of peristaltic transport in two fluid system. When
either a or b equals to zero, peristaltic wave exists only on one of the walls,
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the mechanism of trapping remains the same and the trapping phenomena at the
centerline and near the boundary of the channel are shown in Fig. 10.

Fig. 11 illustrates the effect of the width of the channel for a fixed Q̄ = 1.4, φ =
π/2, a = b = 0.5 for different values of d . The trapping occuring for small d
(Fig. 11(i) ) near the boundary (as Q̄ = 1.4 falls in the copuming range) moves to
the center line(with the existence of stagnation point, Q̄ lies in the trapping limits
given in (15))for d = 1.0 (Fig. 11(ii) ) and disappears for large d ( Q̄ lies outside
the trapping limits) see Fig. 10 (iii) , and (iv) . From Fig. 11, we conclude for
a given Q̄ , one can find the width of the channel for which trapping occurs near
the boundary, centerline or no where.

3.3. Reflux

Reflux is defined as the presence of some fluid particles whose mean motion over
one cycle is against the net pumping direction. Following Shapiro et al. [9],
Qψ defined as dimensionless volume flow rate in the fixed frame between the
centerline of the channel (h1 + h2)/2 and the wave frame streamline ψ , which
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Figure 8. Streamlines in a fixed frame of reference with d = 1 (i)a = b = 0.5, Q̄ = 1.4, φ =
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(iv)a = 0.3, b = 0.5, Q̄ = 2.5, φ = 3π
4

is an indicator of material particles in fixed frame, and is given by

Qψ =
∫ Y (ψ,X,t)

(h1+h2)/2

U(X,Y, t)dY. (16)

By using the transformation between the two frames given in equation (2) and
integrating (16), we get

Qψ = ψ + y(ψ,X, t)− h1 + h2

2
. (17)

Averaging (17) over one period of the wave, we get

Q̄ψ = ψ +
∫ 1

0

y(ψ, x)dx− 1− d

2
(18)

Now define Q∗ = Q̄ψ/Q̄w, ψ∗ = ψ/ψw, where Q̄w and ψw are the values
of Q̄ψ and ψ at the wall, at y = h1, Q̄w = Q̄/2 and ψw = (Q̄ − 1 − d)/2 .
According to Shapiro et al. [9] reflux layer exists near the wall, whenever Q∗

increases to a value greater than one and decreases to one at the wall.
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2
.

The integrand of (18) is found by solving (7), a cubic, for y as a function of
x . The integral is evaluated by using a numerical quadrature. Fig. 12(i) shows
the variation of Q∗ as a function of ψ∗ for a fixed value of Q̄w = 0.05 , lying
in the reflux zone (given by equation (21) later) and a = b = 0.5, d = 1 . If
Q∗ increases with an increase in ψ∗ then the motion of the particles is always
in the pumping direction and reflux appears where Q∗ decreases with increasing
ψ∗ . From Fig 12(i) , it is clearly seen that curve for φ = 0 (corresponding to
the symmetric channel) reflux exists near the boundary wall. We observe, as φ
increases the reflux zone reduces and it is actually absent when φ = 3π/4 and π
as seen from the Fig. 12(i) . It appears that reflux zone present in a symmetric
channel may disappear when the channel becomes asymmetric through the phase
difference of the peristaltic waves on the walls as expected from the pumping
characterstics. These results agree with the evaluation of particle trajectories
given by Eytan and Elad [3]. The variation of Q∗ with ψ∗ for the case with
a = 0.5, b = 0.2, Q̄ = 0.02 is depicted in Fig. 12 (ii) . The interesting phenomena
observed here is, a reflux zone exists near the boundary wall even for φ = π , as
positive pumping is possible in a variable cross section channel. We observe that
the reflux zones are bigger for all φ in Fig. 12 (ii) compared with Fig. 12(i)
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Figure 10. Streamlines for wave at one wall i.e. a = 0.0, b = 0.5 and d = 1, for
(i) Q̄ = 1.3 (pumping region) and (ii) Q̄ = 2.8 (copuming region).

for the cases considered. It appears that Q̄ small leads to bigger reflux zones in
general. The effects of channel width on reflux layer is illustrated in Fig. 13 and
it is observed that the reflux layer decreases with an increase in d and completely
absent for d large.

In order to obtain the limits on Q̄ for reflux, we expand y about the wall in
powers of a small parameter ε , where

ε = ψ − ψy=h1 = ψ +
1 + d− Q̄

2
,



546 M. Mishra and A. Ramachandra Rao ZAMP

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
(ii)

−0.5 0 0.5
−1

−0.5

0

0.5

1

1.5
(i)

−0.5 0 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5
(iii)

−0.5 0 0.5
−3

−2

−1

0

1

2
(iv)

Figure 11. Streamlines for a = b = 0.5, φ = π/2, Q̄ = 1.4 with varying channel width d
(i) d = 0.3 (ii) d = 1.0 (iii) d = 1.5, (iv) d = 2

and we get

y = h1 − ε− 3ε2

h1 + h2

{ Q̄− (1 + d)
h1 − h2

+ 1
}

+ · · · . (19)

Using (19) in the integral (18), one gets

Q̄ψ =
Q̄

2
− 3ε2

{ Q̄(1 + d)− (a2 + b2 + 2ab cos φ{
(1 + d)2 − (a2 + b2 + 2ab cos φ)

}3/2

}
+ · · · . (20)

Applying the reflux condition Q∗ = Q̄ψ/Q̄w > 1 , one obtains the reflux limit as

Q̄ <
a2 + b2 + 2ab cos φ

1 + d
. (21)

By putting a = b, d = 1 in (21), we obtain the reflux limit for a symmetric
channel which agrees with the results existing in the literature. Similar results can
be obtained near the other boundary wall y = h2 .

Fig. 14 shows the trapping and reflux limits by the variation of Q̄/Q̄max with
a = b = κ and d = 1 for different φ . The region of trapping is more for a
symmetric channel. This is consistent with the earlier results shown in Figs. 6
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Figure 13. Q∗ versus ψ∗ for different d with fixed Q̄ = 0.2, a = b = 0.5, and φ = 0
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Figure 14. Trapping and reflux limit for different φ with d = 1

and 7. It is also observed that the reflux layer decreases with an increasing φ
conforming the results shown in Fig. 12. Similar results for reflux and trapping
can be obtained for the case of an asymmetric channel.
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4. Conclusions

A mathematical model to study the peristaltic transport of a newtonian fluid in
a genaralised asymmetric channel, under the assumptions of low Reynolds num-
ber and small curvature is presented. The important fluid mechanics phenomena
of peristaltic transport, the pumping characteristics such as the reflux, the trap-
ping and the variation of time-averaged flux with pressure rise as function of the
asymmetric motility parameters, is discussed with the help of a simple analytical
solution. The method followed here is different from earlier methods due to Eytan
and Elad [3] and Pozrikidis [7]. The results obtained by us agree with their results.
More effects due to asymmetry arising through different amplitudes and phase are
studied with ease through our analysis. Symmetric channel gives more rate of
flux and bigger trapping zone and reflux layer than the asymmetric channel. The
results given here may throw some light on the fluid dynamic aspects of the intra-
uterine fluid flow induced by uterine contractions studied by Eytan and Elad [3].
For a more realistic model of intra-uterine fluid flows one may have to model the
sagittal cross section of the uterus by a tapering channel and the uterine fluid by
an appropriate non-Newtonian fluid.

Appendix

∫ 2π

0

dθ

α + β cos θ + γ sin θ
=

2π√
α2 − β2 − γ2

, α >
√

β2 + γ2 (A1)

∫ 2π

0

dθ

(α + β cos θ + γ sin θ)2
=

2πα

(α2 − β2 − γ2)3/2
(A2)

∫ 2π

0

dθ

(α + β cos θ + γ sin θ)3
=

π(2α2 + β2 + γ2)
(α2 − β2 − γ2)5/2

(A3)

Integral (A1) is evaluated by contour integration, (A2) and (A3) are ob-
tained by parametric differentiation from (A1) .
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