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1. Introduction

In basic papers published around 1960, Yakubovich [31, 32, 33] used argument
functions defined on the real symplectic group to study the oscillatory properties
of the solutions of the linear Hamiltonian system

z′ = JA(t) z , z ∈ R2n , n ≥ 1 . (1.1)

As usual we have written J for the standard skew-symmetric matrix, J =[
0n −In

In 0n

]
, where In and 0n are the n × n identity and zero matrices. The

function A(·) is bounded and measurable, with values in the set SR(2n) of real
symmetric 2n × 2n matrices. In developing his theory, Yakubovich used a basic
fact, pointed out earlier by Gel’fand and Lidskĭı [11], concerning the topological
structure of the symplectic group.

Somewhat later, V. Arnold [2] introduced his argument function on the man-
ifold of Lagrange planes on R2n and used it to study the Maslov index. This
argument function can also be used to study oscillation problems for (1.1), as
pointed out by Arnold himself in [3].
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In the course of the last fifteen years, it has developed that the argument
functions of Yakubovich and Arnold can be put to use in a random context. Thus,
one considers a family Ω of equations of the form (1.1) such that Ω is closed
under translations of the argument t and compact in, say, the usual weak- ∗
topology on L∞(R, SR(2n)) . Such a family Ω always supports an ergodic measure
µ [22]. In [15], a µ -dependent rotation number α = α(µ) for the family Ω of
equations (1.1) was defined in terms of the time-average of the Arnold argument.
See also Ruelle [28] for a related construction. This rotation number may be said
to measure the average oscillation of the solutions of (1.1). It has remarkable
properties, one of which is the following. Consider a random “Atkinson problem”

z′ = J(A(t) + λB(t)) z , (1.2)

where A and B are bounded measurable functions with values in SR(2n) , B is
positive semi-definite, and Atkinson’s non-degeneracy condition holds: namely, if
U(t) is the principal matrix solution of (1.1), then∫ ∞

−∞
UT (t)BT (t)B(t)U(t) dt ≥ δI2n

for some δ > 0 . Then the rotation number becomes a function α = α(λ) of the
real parameter λ . It turns out that, if α is constant on an open interval I ⊂ R ,
the equation (1.2) admits an exponential dichotomy over R , for all λ ∈ I ([17])

The rotation number and its basic properties can also be discussed beginning
with the Yakubovich argument functions. The relevant analysis was carried out
in [23]. In this paper the polar coordinates on the symplectic group of Barret [4]
and Reid [26, 27] were used to good effect. The authors introduced a flow on
a bundle of Lagrange planes; it turned out that the polar coordinates were the
appropriate tool to study this flow and then to derive assertions concerning the
ergodic limit which defines the rotation number.

The rotation number has been used to good effect in the context of the random
linear regulator problem and the random feedback control problem of control the-
ory. One considers these problems on the semi-infinite interval [0,∞) . On a finite
interval [0, T ] they can be solved in a standard way using a Riccati equation [10].
On the semi-infinite interval it is convenient to derive the connection between the
local controllability of the control system

x′ = A(t)x + B(t)u , (1.3)

and the existence of a minimizer of the regulator problem resp. the existence of
a linear stabilizing feedback control, by using the relation between the rotation
number and exponential dichotomy concept discussed above. This approach per-
mits one to discuss in an efficient and complete way such properties of solutions
as conservation of recurrence, robustness, and smoothness with respect to param-
eters by making use of results from the theory of exponential dichotomies (see [29]
and [36]). See [18, 19] for the use of the rotation number in solving these basic
control-theoretic problems.
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It also turns out that the concepts of rotation number and exponential di-
chotomy permit a direct generalization of the Yakubovich Frequency Theorem [33,
34] from periodic control systems to general non-autonomous systems (1.3) with
bounded measurable coefficients. The details will be presented in [9].

The present paper is the first of two in which we study the rotation number and
its properties. After taking up some preliminary considerations in §2 , we proceed
in §3 to unify the approaches to the study of the rotation number illustrated in
[15] and [23]. The unification will be carried out by working with the flow induced
by the family Ω of systems (1.1) on the bundle of complex Lagrange planes with
base Ω . We study the solutions of a complex Riccati equation in appropriate
coordinates. (Incidentally, in the control-theoretic problem mentioned above, the
role of the rotation number is effectively that of shifting a Riccati equation from the
real to the complex domain -where its study is much more natural and informative.)
In §4 we will state and prove a strong continuity result of the rotation number
with respect to variation of the coefficient matrix in (1.1). Finally, in §5 , we use
the Schwarzmann homomorphism [30] defined by the flow on Ω to prove that the
values of α are “quantized” on the set of coefficient matrices for which (1.1) admits
an exponential dichotomy. More precisely, there is a countable subgroup G of the
additive reals, which depends only on the flow on Ω and on the ergodic measure
µ , such that if equations (1.1) have an exponential dichotomy, then α (µ) ∈ G .

In the sequel to this paper [8], we take up some other basic themes related to
the rotation number. We will discuss the Floquet exponent w for equations (1.1);
this is a complex quantity of which the rotation number is the imaginary part.
Using the Floquet exponent, we will discuss the Kotani theory for the Atkinson
problem (1.2), thus generalizing the original results of Kotani [20] for the random
Schrödinger operator together with those of later authors regarding other spectral
problems. We will also use w to reprove a basic trace formula for the rotation
number α = α(λ) of the Atkinson problem (1.2) [15]. Finally, we will discuss the
gap labelling phenomenon for (1.2).

2. Preliminaries and basic results

This section is devoted to the statement of the problem we work with: we introduce
a random non-autonomous linear Hamiltonian system and explain the way on
which it induces a flow on the corresponding real Lagrange bundle, as well as the
use of the polar coordinates to determine the evolution of this flow.

We begin by recalling some basic notions of topological dynamics which will
be consistently used in what follows. Let Ω be a compact metric space. A real
continuous flow on Ω is a continuous map σ : R × Ω → Ω such that σ0 = IdΩ

and σt+s = σt◦σs for any s, t ∈ R , where σt(ω) = σ(t, ω) . The orbit of a point
ω ∈ Ω is given by the set {σt(ω) | t ∈ R} . A Borel subset A ⊂ Ω is σ -invariant if
σt(A) = A for any t ∈ R . A measure µ on Ω is σ -invariant if µ(σt(A)) = µ(A)
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for any Borel subset A ⊂ Ω and any t ∈ R . Finally, a normalized σ -invariant
measure is ergodic if any invariant set has measure 0 or 1.

Now we explain the setting of our problem. Let σ : R×Ω → Ω, (t, ω) 7→ σ(t, ω)
be a continuous flow on the compact metric space Ω . ¿From now on we represent
ω · t = σ(t, ω) and fix a normalized σ -ergodic measure m0 on Ω . Given a
measurable matrix-valued function H : Ω → sp(n, R) , we consider the family of
2n -dimensional linear Hamiltonian systems

z′ = H(ω·t) z, ω ∈ Ω . (2.1)

Recall that sp(n, R) = {H ∈ MR(2n) | HT J + JH = 02n} , being J the standard
symplectic matrix

[
0n −In

In 0n

]
. We assume some conditions on H , namely

sup
ω∈Ω

‖H(ω·s)‖∞ < ∞ ,

where ‖·‖∞ represents essential supremum (i.e., the smallest real number m with
‖H(ω · t)‖ ≤ m for Lebesgue-a.e. t ∈ R ; here ‖ · ‖ represents any fixed matrix
norm), and, in addition, the map

Ω → R , ω 7→
∫

R
H(ω·t) z(t) dt

is continuous for any vector function z on L1(R) . In particular, the first condition
assures that the matrix-valued function H belongs to L1(Ω,m0) . Note that the
n -dimensional random Schrödinger equation

−x′′ + G(ω·t)x = 0 , ω ∈ Ω , (2.2)

determined by a symmetric n × n matrix-valued function G on Ω , is included
in the general formulation (2.1) by taking z = [xx′] and H =

[
0n In

G 0n

]
, repeatedly

used in what follows.
As explained in [19], the above set up includes non-autonomous systems with

a very wide class of coefficient functions: the space Ω can be taken as the hull
in the weak- ∗ topology of a measurable function H∗(·) ∈ L∞(R) taking values
on the algebra of symplectic matrices. Slightly more generally we could take
H∗(·) ∈ Lp

loc(R) with supt

∫ 1

0
(‖H∗(t + s)‖)p ds < ∞ ( p ≥ 1 ; if p = 1 we impose

the supplementary condition limε→0 supt

∫ ε

0
‖H∗(t + s)‖ ds = 0 ).

One of these families of systems (2.1) induces in a natural way a linear skew-
product flow on Ω×C 2n : the orbit of the element (ω, z0) is {(ω·t, U(t, ω) z0)| t ∈
R} , where U(t, ω) represents the fundamental matrix solution of Eq. (2.1) for
ω ∈ Ω with U(0, ω) = I2n . Since the coefficient matrix of the system H(ω · t)
belongs to the Lie algebra of infinitesimally symplectic matrices, U(t, ω) lies in the
symplectic group Sp(n, R) = {G ∈ MR(2n)|GTJG = J} . This property allows us
to define a new skew-product flow on the real and complex Lagrange bundles, as
we explain in what follows.

Recall that a complex Lagrange plane (resp. real) is an n -dimensional vector
subspace l ⊂ C 2n (resp. l ⊂ R2n ) such that xT Jy = 0 for all x , y ∈ l .
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The spaces LC and LR of all complex and real Lagrange planes are compact
manifolds of dimension n(n + 1)/2. The symplectic character of U(t, ω) assures
that U(t, ω) l0 lies in LC whenever l0 ∈ LC , and consequently the map τ :
R× Ω× LC → Ω× LC, (t, ω, l0) 7→ (ω·t, U(t, ω) l0) defines a linear skew-product
flow on KC = Ω × LC , which can be obviously restricted to KR = Ω × LR . The
conditions assumed on H assure the continuity of all these flows.

An element l of LC can be represented by a 2n× n matrix
[
L1
L2

]
of range n

with LT
1 L2 = LT

2 L1. The column vectors form the basis of the Lagrange subspace;
so two matrices

[
L1
L2

]
and

[
M1
M2

]
represent the same complex Lagrange plane if and

only if there is a non-singular n×n complex matrix P such that L1 = M1P and
L2 = M2P . The set SC(n) of symmetric complex n × n matrices parametrizes
an open dense subset of LC, O =

{[
In

M

] |M ∈ SC(n)
}

. Taking these coordinates
in (2.1), we obtain the Riccati equations

M ′ = −MH3(ω·t)M −MH1(ω·t)−HT
1 (ω·t)M + H2(ω·t) , ω ∈ Ω , (2.3)

where H =
[

H1 H3

H2 −HT
1

]
. The flow on Ω×O is then (ω,M0)·t = (ω·t,M(t, ω,M0)),

where M(t, ω,M0) satisfies Eq. (2.3) with initial data M(0, ω,M0) = M0.
On the other hand, the space LR can be identified with the homogeneous space

of left cosets G/H , where

G =
{[

Φ1 −Φ2

Φ2 Φ1

]
∈ MR(2n) | (Φ1 + iΦ2)∗(Φ1 + iΦ2) = In

}
' U(n, C) ,

H =
{[

R 0
0 R

]
∈ MR(2n) | RTR = In

}
' O(n, R) .

As usual, the symbol ∗ represents the transpose conjugate. The above identifi-
cation allows to express the flow induced by (2.1) on the real Lagrange bundle in
terms of the generalized polar coordinates, as explained in the next theorem, whose
proof can be found in Reid [27]. The application of the polar transformation to
the study of oscillation and comparison theorems for matrix differential equations
was first presented by Barret [4] and subsequently extended by Reid [26].

Theorem 2.1. Let
[

L0
1

L0
2

]
be a real Lagrange plane and Φ0

1 , Φ0
2 and R0 n × n

real matrices such that
[

L0
1

L0
2

]
=

[
Φ0

1R0

Φ0
2R0

]
, with

[
Φ0

1 −Φ0
2

Φ0
2 Φ0

1

]
∈ G and R0 non-singular.

Then the 2n× n solution of (2.1) corresponding to the initial data
[

L0
1

L0
2

]
is

[
L1(t, ω, L0

1, L
0
2)

L2(t, ω, L0
1, L

0
2)

]
=

[
Φ1(t, ω,Φ0

1,Φ
0
2)R(t, ω,Φ0

1,Φ
0
2, R

0)
Φ2(t, ω,Φ0

1,Φ
0
2)R(t, ω,Φ0

1,Φ
0
2, R

0)

]
,

where Φ1(t, ω,Φ0
1,Φ

0
2) , Φ2(t, ω,Φ0

1,Φ
0
2) and R(t, ω,Φ0

1,Φ
0
2, R

0) are the solutions
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of

Φ′1 = Φ2 Q(ω·t,Φ1,Φ2) ,

Φ′2 = −Φ1 Q(ω·t,Φ1,Φ2) ,
(2.4)

R′ = S(ω·t,Φ1,Φ2)R (2.5)

given by the initial data Φ0
1, Φ0

2 and R0 respectively, with

Q(ω,Φ1,Φ2) =
[
ΦT

1 ΦT
2

]
JH(ω)

[
Φ1

Φ2

]
and S(ω,Φ1,Φ2) =

[
ΦT

1 ΦT
2

]
H(ω)

[
Φ1

Φ2

]
.

Besides RT (t, ω,Φ0
1,Φ

0
2, R

0)R(t, ω,Φ0
1,Φ

0
2, R

0) = LT
1 (t, ω, L0

1, L
0
2)L1(t, ω, L0

1, L
0
2)+

LT
2 (t, ω, L0

1, L
0
2)L2(t, ω, L0

1, L
0
2) and

[
Φ1(t,ω,Φ0

1,Φ0
2) −Φ2(t,ω,Φ0

1,Φ0
2)

Φ2(t,ω,Φ0
1,Φ0

2) Φ1(t,ω,Φ0
1,Φ0

2)

]
∈ G for all t ∈

R .
Therefore, with these coordinates, the linear skew-product flow τ induced by

Eqns. (2.1) on the compact metric space KR = Ω × LR can be expressed in the
following way: if

[
Φ0

1

Φ0
2

]
is a real Lagrange plane with Φ0

1 + iΦ0
2 unitary and

Φ1(t, ω,Φ0
1,Φ

0
2) and Φ2(t, ω,Φ0

1,Φ
0
2) are the matrix solutions of Eqns. (2.4) with

initial data Φ0
1 and Φ0

2 , then

τ(t, ω,Φ0
1,Φ

0
2) = (ω·t,Φ1(t, ω,Φ0

1,Φ
0
2),Φ2(t, ω,Φ0

1,Φ
0
2))

defines the equation of the flow on KR . The relation M = Φ2Φ−1
1 provides the

change between the different coordinates introduced on the dense subset of KR
parametrized by the real symmetric matrices.

3. Rotation number for linear Hamiltonian systems

Now we summarize several different ways appearing in the literature to define the
rotation number of the family of linear Hamiltonian systems (2.1), establishing at
the same time the equivalence of all these approaches. An ergodic representation
for the rotation number is also provided.

3.1. In terms of any argument on the real symplectic group

Our first definition of the rotation number is related to the evolution of the argu-
ment of a symplectic fundamental matrix solution of the Hamiltonian system.

The concept of argument of a symplectic matrix appears in the generalization
of the Sturm theory for two-dimensional systems to linear periodic Hamiltonian
systems of higher dimension. In order to analyze the oscillation properties of one
of these systems, Yakubovich [31, 32] employs geometrical methods, in contrast to
the analytical methods previously used by different authors. The starting point
of his work is the fact that the real symplectic group Sp(n, R) can be identified
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with a solid torus: it is homeomorphic to the topological product of a simply
connected space and the unit circumference S1 . This important property is proved
by Gel’fand and Lidskĭı [11], who use it to characterize stability regions of linear
periodic Hamiltonians. The position of the projection of a symplectic matrix over
S1 determines an angle, called by them the argument of the matrix.

Yakubovich identifies the oscillatory character of a periodic Hamiltonian with
the property of unbounded increment of this argument along the curve determined
by a symplectic fundamental matrix solution of the system. Following his idea,
it is natural to define a rotation number as the mean increment of the argument,
and that is exactly what is done in [23] in the general case.

As pointed out in [32], Gel’fand and Lidskĭı’s definition of the argument is
difficult to manage (and it is not clear that the concept of oscillation agrees with
the usual one for the two-dimensional case, defined in terms of the number of
zeros of the solutions, as well as with the previously introduced ones for higher
dimension). However, according to the results of [31], it is possible to define several
different arguments for a symplectic matrix, which are equivalent in a sense that
will be explained below, and which clarify these points.

The general definition of an argument function on the group Sp(n, R) can be
found in Yakubovich and Starzhinskii [35]: an argument of symplectic matrices is
a real countable-valued relation Arg on Sp(n, R) such that, if (Arg V )0 is any
value of Arg V , the other ones are

(Arg V )m = (Arg V )0 + 2mπ , m ∈ Z ,

each of the different branches is a locally continuous function, and there exists a
closed symplectic curve V (t) of index 1 with ∆Arg V (t) = 2π . Here the symbol
∆ stands for the argument increment.

Let V be a real symplectic matrix, and represent by arg the usual argument
of a complex number.
(i)If V =

[
V1 V3
V2 V4

]
, define

Arg1 V = arg det(V1 − iV2) ,

Arg2 V = arg det(V3 − iV4) ,

Arg3 V = arg det(V1 + iV3) ,

Arg4 V = arg det(V2 + iV4) .

(ii)If T, S ∈ Sp(n, R) and j = 1, . . . , 4 , define

Arg j
T,S V = Argj(TV S) .

(iii)Let µj , j = 1, . . . , n be the eigenvalues of the first type of the matrix V ;
i.e. those eigenvalues with modulus less than 1 or those for which there exist
eigenvectors vj satisfying iv∗jJvj > 0 (see [35]). Define

Arg∗ V =
n∑

j=1

arg µj .
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As proved in [31], all these arguments are equivalent in the following sense (al-
though non-equivalent arguments also exist): for any two of the previous argument
functions Arg′ and Arg′′ , there exists a uniform constant c > 0 such that for
any continuous curve V : [t1, t2] → Sp(n, R) the inequality∣∣∆Arg′ V (t)|t2t1 −∆Arg′′ V (t)|t2t1

∣∣ < c

is satisfied when a continuous branch of each argument is taken along the curve.
From now on, Arg will represent any argument equivalent to one of those listed
above. The one appearing in [11] is included among these.

The function Arg allows us to define the rotation number for a random family
of linear Hamiltonian systems. Let V (t, ω) =

[
V1(t,ω) V3(t,ω)
V2(t,ω) V4(t,ω)

]
be a real symplectic

fundamental matrix solution of (2.1), and consider the limit

α = lim
t→∞

1
t

Arg V (t, ω) , (3.1)

where a continuous branch of the argument is taken along the curve. Clearly,
the equivalence of the arguments guarantees the independence of the limit with
respect to the choices of Arg and the symplectic fundamental matrix solution.
We call α the rotation number of (2.1) with respect to m0 . As shown below, α
is well-defined, i.e. the limit exists and takes the same value for m0 -a.e. ω ∈ Ω ,
and in addition it admits an ergodic representation in terms of the generalized
polar coordinates. Note that this definition and this representation extend the
definition and the representation of rotation number for two-dimensional systems,
introduced for the almost periodic Schrödinger case by Johnson and Moser in [16].
Proposition 3.1. There is a σ -invariant subset Ω0 ⊂ Ω with m0(Ω0) = 1 such
that the limit (3.1) exists for every ω ∈ Ω0 and takes the same constant value

α =
∫
KR

tr Q(ω,Φ1,Φ2) dν (3.2)

for every normalized τ -invariant measure ν on KR projecting onto m0 .

Proof. Choose Arg = Arg1 and write
[

V1(0,ω)
V2(0,ω)

]
=

[
Φ0

1R0

Φ0
2R0

]
, with Φ0

1 + iΦ0
2 unitary

and detR0 > 0 . Then
[

V1(t,ω)
V2(t,ω)

]
=

[
Φ1(t,ω)R(t,ω)
Φ2(t,ω)R(t,ω)

]
, where Φ1(t, ω), Φ2(t, ω), R(t, ω)

represent the solutions of (2.4) with respective initial values Φ0
1, Φ0

2, R0 . In par-
ticular, det(Φ1(t, ω) − iΦ2(t, ω)) has modulus 1 and detR(t, ω) > 0 for every
t ∈ R . These facts and Liouville formula provide

lim
t→∞

1
t

Arg1 V (t, ω) = lim
t→∞

1
t

arg det(Φ1(t, ω)− iΦ2(t, ω))

= lim
t→∞

1
t

∫ t

0

trQ(τ(s, ω,Φ0
1,Φ

0
2)) ds .

Therefore, Birkhoff ergodic theorem assures that, for any τ -invariant measure ν
projecting onto m0 , this limit exists ν -a.e. on KR and defines a τ -invariant
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function. The independence of the limit of Φ0
1 and Φ0

2 and the ergodicity of m0

allow us to assert that it is m0 -a.e. constant and hence it takes the value (3.2).

Remark 3.2. The rotation number for a Hamiltonian system z′ = Hz with con-
stant coefficients agrees with the sum of the imaginary parts of those eigenvalues of
H of the first type which are purely imaginary, as can be immediately checked by
using the argument Arg∗ to obtain α . This is what one could reasonably expect
(see Arnold and San Martin [1]). An analogous statement can be formulated in
the periodic case, using now the characteristic exponents of the system.

3.2. Johnson’s definition

The second definition of rotation number that we consider appears in the paper [15]
of Johnson, in which the Floquet coefficient for a one-parameter family of random
linear Hamiltonian systems is introduced, and its relation with the Weyl matrices
and the spectral problem is studied. The analytic nature of the definition of the
rotation number for real values of the parameter suggests a natural way to extend
it to the complex plane. We consider this question in more detail in the second
part of the present work [8].

In fact, the framework of the problem in [15] is quite more general, including
the Hamiltonian systems (2.1) as a particular case: Johnson defines a rotation
number for random linear systems whose coefficient matrices lie in the Lie algebra
u(p, q) = {H̃ ∈ MC(p + q) | H̃∗J0 + J0H̃ = 0p+q} , where J0 =

[−Ip 0
0 Iq

]
and

p ≥ 1, q ≥ 1 . The Iwasawa decomposition of this algebra allows the author to
show the well-definedness of the rotation number, some of its properties, and its
geometrical significance.

Coming back to our formulation, the symplectic algebra sp(n, R) can be trans-
formed in u(n, n) ∩ sp(n, C) ⊂ u(n, n) via the map H 7→ K−1HK , where
K =

[
iIn iIn

−In In

]
, and hence one can define a rotation number for our system (2.1)

by translating the coefficient matrix to the new algebra. This is the way followed
in [15], which will be summarized below. But it is also possible and simpler to
redefine the rotation number directly for the symplectic case, using exactly the
same construction, and this is our next purpose.

Let us represent by M the set of the complex symmetric n× n matrices M
with ImM > 0 . The Lie group Sp(n, R) acts on M in the following way: a real
symplectic matrix V =

[
V1 V3
V2 V4

]
induces a map V̂ of M into itself, given by

V̂ ·M = (V2 + V4M)(V1 + V3M)−1;

i.e.
[

In

V̂·M

]
coincides with the Lagrange plane V

[
In

M

]
. Let U(t, ω) =

[
U1(t,ω) U3(t,ω)
U2(t,ω) U4(t,ω)

]
be the fundamental matrix solution of (2.1) with U(0, ω) = I2n . For t ∈ R and
M0 ∈ M , let dM0Û(t, ω) be the Frèchet derivative at the point M0 of the map
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M→M, M 7→ Û(t, ω)·M . Then define

α = − lim
t→∞

1
2n

1
t

Im ln det dM0Û(t, ω) . (3.3)

Now we will show the coincidence of the limits (3.3) and (3.1). In particular, it
follows that this last limit exists m0 -a.e. on Ω and its value is independent of
the choice of M0 ∈M .
Proposition 3.3. For every M0 ∈M , the limit (3.3) agrees with the limit (3.1).

Proof. A straightforward computation and the symplectic character of U(t, ω)
show that

dM0Û(t, ω)M =
(
U4 − (U2 + U4M0)(U1 + U3M0)−1U3

)
M (U1 + U3M0)

−1

= (UT
1 + M0U

T
3 )−1M(U1 + U3M0)−1,

where Uj represents Uj(t, ω) . Consequently,

det dM0Û(t, ω) = (det(U1(t, ω) + U3(t, ω)M0))−2n

and hence

− 1
2n

Im ln det dM0Û(t, ω) = − 1
2n

arg det dM0Û(t, ω)

= arg det(U1(t, ω) + U3(t, ω)M0) .

(3.4)

It is easy to check that the matrix CM0 =
[

Im−1/2M0 0

Re M0 Im−1/2M0 Im1/2M0

]
is symplectic.

Therefore, Yakubovich’s results above summarized assert the equivalence of Arg3

and the new argument function defined by

Arg 3
I2n,CM0

V = Arg3(V CM0) .

Since det Im1/2 M0 > 0 , we obtain

Arg 3
I2n,CM0

U(t, ω) = arg det(U1(t, ω) + U3(t, ω)M0) ,

which together with (3.4) assures that the limits (3.3) and (3.1) agree.

As said before, the well-definedness of the rotation number is proved in [15] in
a more general framework following a completely different argument, which also
points out the geometrical significance of α . The main tool is the use of the
Iwasawa decompositions (see [12]) for the Lie algebra u(p, q) and the correspond-
ing Lie group U(p, q) . For simplicity we restrict ourselves again to the symplectic
case: we embed the Lie group Sp(n, R) in U(n, n) via V 7→ K−1V K (recall that
K =

[
iIn iIn

−In In

]
) and note that its image is given by U(n, n) ∩ Sp(n, C) = {Ṽ ∈

MC(2n) | Ṽ ∗J0Ṽ = J0 and Ṽ T JṼ = J} . Then Ũ(t, ω) = K−1U(t, ω)K is the
fundamental matrix solution with value I2n at t = 0 of the systems z̃′ = H̃(ω·t) z̃ ,
where H̃(ω·t) = K−1H(ω·t)K belongs to the Lie algebra u(n, n) ∩ sp(n, C) .
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Now we represent by D the open set of the complex symmetric n×n matrices
N with In −N∗N > 0 , which agrees with the unit open disk when n = 1 . The
Lie group U(n, n) acts on D : Ṽ =

[
Ṽ1 Ṽ3

Ṽ2 Ṽ4

]
∈ U(n, n) induces a map D → D ,

given by ̂̃
V ·N = (Ṽ2 + Ṽ4N)(Ṽ1 + Ṽ3N)−1.

It is also known that this action can be extended to the closure D (which is not
possible for the action of Sp(n, R) over M ): the map V̂ preserves the boundary
of D .

The rotation number is defined as

α = − lim
t→∞

1
2n

1
t

Im ln det dN0

̂̃
U(t, ω) (3.5)

in [15], where in addition it is shown that the limit is independent of the choice of
the element N0 ∈ D and takes the same value m0 -a.e. The geometrical idea of
this definition is that the rotation number must measure the average rotation due
to the action of Ũ(t, ω) on the set D and its boundary.

In order to prove that the definition (3.5) is also correct we need some facts
concerning the Iwasawa decompositions that now we recall. Any matrix V ∈
Sp(n, R) can be written in a unique way as the product GS , where

G ∈ G =
{[

Ψ1 −Ψ2

Ψ2 Ψ1

]
∈ MR(2n) | (Ψ1 + iΨ2)∗(Ψ1 + iΨ2) = In

}
,

S ∈ S =




[
A B
0n (AT )−1

]
∈ MR(2n)

∣∣∣∣∣∣
A is upper triangular with

positive diagonal,
A−1B is symmetric




The decomposition for the symplectic fundamental matrix solution of (2.1)

U(t, ω) = G(t, ω)S(t, ω) =
[

Ψ1(t, ω) −Ψ2(t, ω)
Ψ2(t, ω) Ψ1(t, ω)

] [
A(t, ω) B(t, ω)

0n (AT )−1(t, ω)

]
is continuous in t , and hence so is the corresponding decomposition for Ũ(t, ω) ,

Ũ(t, ω) = G̃(t, ω) S̃(t, ω) (3.6)

with G̃ = K−1GK =
[

Ψ1−iΨ2 0
0 Ψ1+iΨ2

]
and S̃ = K−1SK .

Proposition 3.4. For every N0 ∈ D , the limit (3.5) agrees with the limit (3.1).

Proof. The map induced on D by G̃(t, ω) , namelŷ̃
G(t, ω) ·N = (Ψ1(t, ω) + iΨ2(t, ω))N(Ψ1(t, ω)− iΨ2(t, ω))−1 ,

is linear, and hence it agrees with its Frèchet derivative at any point. From this
fact, the definition of the group G and (3.6) we obtain

det dN0

̂̃
U(t, ω) = det ̂̃

G(t, ω) det dN0

̂̃
S(t, ω)

= det2n(Ψ1(t, ω) + iΨ2(t, ω)) det dN0

̂̃
S(t, ω) .



Vol. 54 (2003) Rotation number for linear Hamiltonian systems 495

In addition, a technical result of [15] shows that limt→∞(1/t) arg det dN0

̂̃
S(t, ω) =

0 for every N0 ∈ D and ω ∈ Ω . From here we conclude that the limit (3.5) is
equal to

α = lim
t→∞

1
t

arg det(Ψ1(t, ω)− iΨ2(t, ω)) (3.7)

and consequently it is independent of the choice of N0 ∈ D . But this expression
can be also obtained by choosing the argument Arg1 in our first definition (3.1)
and having in mind the equality

[
U1(t,ω)
U2(t,ω)

]
=

[
Ψ1(t,ω)A(t,ω)
Ψ2(t,ω)A(t,ω)

]
, since det A(t, ω) >

0 . This shows the good definition of (3.5) and its coincidence with the rotation
number, and hence completes the proof.

Relation (3.7) shows that the limit (3.3) measures the index of rotation of the
composition map of R× Ω → U(n, C), (t, ω) 7→ (Ψ1 − iΨ2)(t, ω) and U(n, C) →
S1, Ψ 7→ det Ψ , where U(n, C) is the group of the unitary n×n matrices (which
can be identified with G ). This points out once more the geometrical significance
of α . Compare (3.7) with the expression of the limit α in terms of the generalized
polar coordinates appearing in the proof of Proposition 3.1.

3.3. In terms of the Arnold-Maslov index

The rotation number for the family (2.1) admits still another definition strongly
based on Arnold’s approach [2] to the theory of the Maslov index. This index
theory, related to asymptotic methods in perturbation theory, is also a fundamental
tool in the generalization of Sturm theory to linear Hamiltonian systems, as shown
in the work of Arnold [3]: for the higher-dimensional Schrödinger equation −x′′+
G(t)x = 0 , instead of zeros of solutions one can consider moments at which a
Lagrange plane evolving under the action of the corresponding system is vertical,
i.e. it is represented by

[
L1
L2

]
with detL1 = 0 . Roughly speaking, the Maslov

index measures the number of these moments.
In [2] Arnold characterizes the Maslov index for a closed curve in the space

of real symplectic planes (whose previous definition is based on intersection index
theory and hence difficult to manage) in terms of the rotation index of certain
maps on S1 (see also Bott [5]). This is the idea which suggests the new approach
to α (which also is used in [15]). To explain this definition and the connection
with the preceding ones is our next purpose. To this end, we recall briefly the
definition of the Maslov index for a closed curve in the set of real Lagrange planes
LR and refer the reader to [2] for the details.

Let l0 be the Lagrange plane generated by the n last coordinate vectors, that
is, l0 ≡

[
0n

In

]
, and define C = {l ∈ LR | dim(l∩ l0) ≥ 1} . Obviously, C = ∪n

k=1Ck ,
where Ck = {l ∈ LR | dim(l ∩ l0) = k} . Each set Ck is an algebraic submanifold
of LR of codimension k(k + 1)/2 . In particular, codim C1 = 1 . Moreover, C1 it
is two-sidedly embedded in LR ; i.e. there exists a continuous vector field tangent
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to LR which is transversal to C1 , and hence one can refer to the positive and
negative sides of C1 . The vector field is given at each point l ≡ [

L1
L2

] ∈ LR by the
velocity vector of the curve t 7→ eit ·l ≡ [

cos t L1−sin t L2
sin t L1+cos t L2

]
, and the positive side is

chosen as the one towards which these velocity vectors are directed.
Let λ : S1 → LR be a smooth closed curve, and assume that λ only intersects

C transversally (and hence only in C1 ). Then the Maslov index of λ is given by

c(λ) = m+ −m− ,

where m+ (resp. m− ) is the number of intersection points for which λ passes
from the negative side of C1 to the positive side (resp. from the positive to the
negative). According to the results of [2] (see also Duistermaat [7]), the index
map c is independent of the choice of l0 and induces a group isomorphism c :
π1(LR) → Z , where π1(LR) is the fundamental group of LR . In particular the
Maslov index is defined for any continuous loop on LR .

Now we can give a new definition for the rotation number. Choose l ∈ LR ,
and for each pair (t, ω) consider the curve λt,ω,l : [0, t] → LR, s 7→ U(s, ω) l .
Deform λt,ω,l to a closed curve λ̃t,ω,l by sliding the final point U(t, ω) l to l

through LR − C , which is simply connected, and represent m(t, ω, l) = c(λ̃t,ω,l) .
Then define

α = − lim
t→∞

π

t
m(t, ω, l) . (3.8)

The limit exists and is independent of the choices of l and ω ( m0 -a.e.), as stated
in the following proposition. Its proof is basically due to Arnold’s results, but we
include a brief sketch for reader’s convenience.

Proposition 3.5. For every l ∈ LR , the limit (3.8) agrees with the limit (3.1).

Proof. Each real Lagrange plane l ≡ [
L1
L2

]
can be represented as l ≡ [

Φ1
Φ2

]
with

Φ1− iΦ2 unitary: it suffices to take Φj = LjP
−1 , where P is the unique definite

positive square root of LT
1 L1 + LT

2 L2 . Consequently, the map

Det2 : LR → S1,
[
L1
L2

] 7→ det2(Φ1 − iΦ2) =
det2(L1 − iL2)

det(LT
1 L1 + LT

2 L2)
(3.9)

is well-defined. In particular, the image of l does not depend on the representation
chosen.

Let λ : S1 → LR be a continuous loop. Define Ind(λ) as the rotation index
of the composition Det2 λ : S1 → S1 ; i.e. 1/(2π) times the increment along the
circumference of a continuous determination of arg : S1 → R . It is possible to
extend Ind to an isomorphism Ind : π1(LR) → Z . Arnold [2] shows that in fact
− Ind and c are the same map (since they agree on a homotopy class), which
provides a simple characterization for the Maslov index in the symplectic case.

Now return to the limit (3.8). The independence of the choice of l follows
from the invariance of c under homotopies. Choose l ≡ [

In
0n

]
, and note that
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U(t, ω) l ≡
[

U1(t,ω)
U2(t,ω)

]
. This leads to

− lim
t→∞

π

t
m(t, ω, l) = lim

t→∞
π

t

1
2π

arg
det2(U1 − iU2)(t, ω)

det(UT
1 U1 + UT

2 U2)(t, ω)

= lim
t→∞

1
t

arg det(U1(t, ω)− iU2(t, ω))

= lim
t→∞

1
t

Arg1 U(t, ω) ,

which proves the result.

The arguments used in the proof of this result will be fundamental in Section 5,
in which the relation between the properties rotation number and the occurrence
of exponential dichotomy will be discussed.

Definition (3.8) shows that α/π measures the average number of oriented
intersections with the Maslov cycle C of the curve determined in LR by the
evolution of a real Lagrange plane under the flow determined by (2.1). Therefore,
it extends to the random 2n -dimensional case one of the usual ways to define α
for the one-dimensional linear Schrödinger equation −x′′ + g(ω · t)x = 0 : α =
lim(π/t)m(t, ω), where m(t, ω) is the number of zeros in [0, t] of any solution of
the equation (see [16]).

4. Continuous variation of the rotation number

The ergodic representation for the rotation number obtained in Paragraph 3.1
is the fundamental tool in the study of the continuity of the rotation number
with respect to the L1(Ω,m0) -topology on the set of potentials H that we are
considering. According to Proposition 3.1,

α(H) =
∫
KR

trQH(ω,Φ1,Φ2) dνH

for any τH -invariant measure νH projecting onto m0 . Here, τH represents
the flow induced on KR by the family of Hamiltonian systems determined by H ,
α(H) is the corresponding rotation number, and QH(ω,Φ1,Φ2) = [ΦT

1 ,ΦT
2 ]JH(ω)

[
Φ1
Φ2

]
.

The following technical lemma is also required.
Lemma 4.1. (i) There exists a real function TH ∈ L1(Ω,m0) such that

| tr QH(ω,Φ1,Φ2)| ≤ TH(ω)

for all ω ∈ Ω and
[
Φ1
Φ2

] ∈ LR .
(ii) There exists a constant k such that

| tr QH1(ω,Φ1,Φ2)− tr QH2(ω,Φ1,Φ2)| ≤ k ‖H1(ω)−H2(ω)‖ ,

for all ω ∈ Ω and
[
Φ1
Φ2

] ∈ LR , where ‖ · ‖ represents any norm on the set of
matrices.
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Proof. Let |A| represent the only positive semidefinite square root of the matrix
AT A . It is known (see Reed and Simon [25]) that tr | · | defines a norm on the
set of matrices, with | tr A| ≤ tr |A| and tr |AB| ≤ tr |A| tr |B| . Write

tr QH(ω,Φ1,Φ2) =
1
2

tr
([

ΦT
1 ΦT

2

ΦT
1 ΦT

2

]
JH(ω)

[
Φ1 Φ1

Φ2 Φ2

])
.

The results follow from this expression, the above properties, the compactness of
LR and the equivalence of any pair of matrix norms.

Remark 4.2. The function TH is continuous if H is.

Theorem 4.3. Assume that H = limn→∞Hn in the L1(Ω,m0) -topology. Then

α(H) = lim
n→∞α(Hn) .

Proof. The argument used is standard in measure theory, the proof being sim-
pler if the limit matrix H is supposed to be continuous. For each n , take a
τHn

-invariant measure νHn
on KR projecting onto m0 . Assume that (νHn

)n∈N
converges weakly to a new measure νH on KR (each subsequence has a weakly
convergent subsequence). Then νH is τH -invariant and projects onto m0 . In
order to prove the result it suffices to check that

α(Hn)− α(H) =
∫
KR

tr QHn
dνHn

−
∫
KR

trQH dνH
n→∞−→ 0 . (4.1)

Note first (ii) in Lemma 4.1 and the L1(Ω,m0) -convergence imply that∣∣∣∣
∫
KR

trQHn
dνHn

−
∫
KR

trQH dνHn

∣∣∣∣ ≤ k

∫
Ω

‖Hn(ω)−H(ω)‖ dm0
n→∞−→ 0 . (4.2)

Take now ε > 0 and choose

- a constant δ > 0 such that
∫
Ω̃

TH(ω) dm0 < ε if Ω̃ ⊂ Ω and m0(Ω̃) < δ ,
- a compact subset Kε ⊂ Ω with m0(Ω−Kε) < δ and a continuous function

Hε on Ω such that Hε|
Kε

= H|
Kε

.

Consider QHε(ω,Φ1,Φ2) = [ΦT
1 ,ΦT

2 ]JHε(ω)
[
Φ1
Φ2

]
, continuous on KR , and find

- an open subset Uε ⊂ Ω with Kε ⊂ Uε and

m0(Uε −Kε) sup
ω∈Ω

| tr QHε(ω)| < ε ,

- and a continuous function r on Ω with χ
Kε
≤ r ≤ χ

Uε
.

Define now Q̃ ε
H(ω,Φ1,Φ2) = r(ω)QHε(ω,Φ1,Φ2) , continuous on KR . Let ν be

any measure on KR projecting onto m0 . Then∫
KR

trQH dν =
∫
KR

tr Q̃ ε
H dν −

∫
(Uε−Kε)×LR

tr Q̃ ε
H dν +

∫
(Ω−Kε)×LR

tr QH dν .



Vol. 54 (2003) Rotation number for linear Hamiltonian systems 499

Moreover, the definition of Uε and (i) in Lemma 4.1 implies that∣∣∣∣∣
∫

(Uε−Kε)×LR
tr Q̃ ε

H dν

∣∣∣∣∣ ≤ m0(Uε −Kε) sup
ω∈Ω

| tr Q̃ ε
H(ω)| < ε ,

∣∣∣∣∣
∫

(Ω−Kε)×LR
tr QH dν

∣∣∣∣∣ ≤
∫

Ω−Kε

TH(ω) dm0 < ε .

Consequently,∣∣∣∣
∫
KR

tr QH dνHn
−

∫
KR

trQH dνH

∣∣∣∣ <

∣∣∣∣
∫
KR

tr Q̃ ε
H dνHn

−
∫
KR

tr Q̃ ε
H dνH

∣∣∣∣ + 4ε .

The weak convergence of the sequence of measures implies that∣∣∣∣
∫
KR

trQH dνHn
−

∫
KR

trQH dνH

∣∣∣∣ n→∞−→ 0 . (4.3)

Relations (4.2) and (4.3) assure the convergence of (4.1) and prove the result.

5. Rotation number and the Schwarzmann homomorphism

This last section is devoted to establish a fact concerning the relation between
the rotation number and the presence of an exponential dichotomy (or hyperbolic
splitting) for the Hamiltonian system (2.1). More precisely, we will prove that
if this family of systems admits an exponential dichotomy over Ω , then the cor-
responding rotation number α takes values on the image of the Schwarzmann
homomorphism. Before stating this result, we recall the following:
Definition 5.1. The family of systems (2.1) has an exponential dichotomy (ED for
short) over Ω if there exist two positive constants η, γ and a splitting Ω×R2n =
L+ ⊕ L− of the real bundle into the Whitney sum of two τ -invariant closed
subbundles, with the following properties:

(i) ‖U(t, ω) z0‖ ≤ ηe−γt‖z0‖ for every t ≥ 0 and (ω, z0) ∈ L+ ,
(ii) ‖U(t, ω) z0‖ ≤ ηeγt‖z0‖ for every t ≤ 0 and (ω, z0) ∈ L− .
The concept of ED is a fundamental tool in several fields, such as the study of

the invertibility of self-adjoint operators in different spaces (Massera and Schae-
fer [21]), bifurcation theory (Chenciner and Iooss [6]), study of invariant manifolds
(Hirsch, Pugh and Shub [13]), analysis of homoclinic orbits (Palmer [24]), spectral
theory for the Schrödinger operator (Johnson [14]) and control theory (Johnson
and Nerurkar [17, 19]), among others.

Now we state and prove the result above mentioned.
Theorem 5.2. Suppose that the family (2.1) has an ED over Ω . Then we have
that 2α ∈ h

(
Ȟ1(Ω, Z)

)
, where h : Ȟ1(Ω, Z) → R is the Schwarzmann homomor-

phism.
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Proof. We first define the Schwarzmann homomorphism. Let H(Ω, S1) be the set
of homotopy classes of continuous maps φ : Ω → S1 ⊂ C . The class [φ] contains
a map φ such that the application

ω 7→ d

dt
φ(ω·t) |t=0= φ′(ω)

is continuous. We can then define

h : H(Ω, S1) → R , [φ] 7→ Im
∫

Ω

φ′(ω)
φ(ω)

dm0 .

It follows from the Birkhoff ergodic theorem that

h([φ]) = lim
t→∞

1
t

arg φ(ω·t) m0-a.e. (5.1)

Schwarzmann [30] shows that the map h is well-defined and provides a homomor-
phism from the group H(Ω, S1) to the additive group of real numbers. Consider
now the group of real Čech one-cocycles with integer values,

Ȟ1(Ω, Z) =
H(Ω, S1)

C
,

where C is the subgroup of H(Ω, S1) given by the homotopy classes of the maps
φ(ω) = exp 2ir(ω) , with r : Ω → R continuous. Equality (5.1) gives h([φ]) = 0
for any φ ∈ C , and consequently the map h also induces a homomorphism from
Ȟ1(Ω, Z) into R . The map h : Ȟ1(Ω, Z) → R is the Schwarzmann homomor-
phism.

Now consider the decomposition Ω×R2n = L+⊕L− provided by the ED and
note that, for each ω ∈ Ω , the fibers

l±(ω) = L± ∩ ({ω} × R2n
)

are real Lagrange planes: the symplectic character of U(t, ω) assures that xT Jy =
xT UT (t, ω)JU(t, ω)y for any t ∈ R and any pair of vectors x, y ∈ R2n , and
hence the behavior of the solutions on +∞ (resp. −∞ ) described in Definition 5.1
implies xT Jy = 0 for any pair of vectors x, y ∈ l+(ω) (resp. x, y ∈ l−(ω) ).

We can now define φ̃ as the composed map of Ω → LR, ω 7→ l(ω) and
LR → S1, l 7→ Det2 l , where this last application is defined by (3.9). The map φ̃
is well-defined and continuous, since the subbundles given by the ED are closed. In
addition, according to equality (5.1) and the proof of Proposition 3.5, 2α = h([φ̃]) ,
which completes the proof.

This result is the starting point to obtain a gap labelling formula for the spectral
problems corresponding to (2.1) and (2.2). We refer the reader to [8] for the details.
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Phys. Théor. 42 (1985), 109–115.

[29] R.J. Sacker, G.R. Sell, A spectral theory for linear differential systems, J. Differential Equa-
tions 27 (1978), 320–358.

[30] S. Schwarzmann, Asymptotic cycles, Ann. Math. 66 (2) (1957), 270–284.
[31] V.A. Yakubovich, Arguments on the group of symplectic matrices, Mat. Sb. 55 (97) (1961),

255–280 (Russian).
[32] V.A. Yakubovich, Oscillatory properties of the solutions of canonical equations, Amer. Math.

Soc. Transl. Ser. 2 42 (1964), 247–288.
[33] V.A. Yakubovich, A linear-quadratic optimization problem and the frequency theorem for

periodic systems I, Siberian Math. J. 27 (4) (1986), 614–630.
[34] V.A. Yakubovich, Linear-quadratic optimization problem and the frequency theorem for

periodic systems II, Siberian Math. J. 31 (6) (1990), 1027–1039.
[35] V.A. Yakubovich, V.M. Starzhinskii, Linear Differential Equations with Periodic Coeffi-

cients, John Wiley & Sons, Inc., New York, 1975.
[36] Y. Yi, A generalized integral manifold theorem, J. Differential Equations 102 (1993), 153–

187.

Roberta Fabbri and Russell Johnson
Dipartimento di Sistemi e Informatica
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