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Existence and continuous dependence of large solutions for
the magnetohydrodynamic equations
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Abstract. Global solutions of the nonlinear magnetohydrodynamic (MHD) equations with gen-
eral large initial data are investigated. First the existence and uniqueness of global solutions are
established with large initial data in H' . It is shown that neither shock waves nor vacuum and
concentration are developed in a finite time, although there is a complex interaction between the
hydrodynamic and magnetodynamic effects. Then the continuous dependence of solutions upon
the initial data is proved. The equivalence between the well-posedness problems of the system
in Euler and Lagrangian coordinates is also showed.
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1. Introduction

Magnetohydrodynamics (MHD) concerns the motion of conducting fluids (cf. gases)
in an electromagnetic field with a very broad range of applications. The dynamic
motion of the fluids and the magnetic field strongly interact each other, and thus
the hydrodynamic and electrodynamic effects are coupled. Plane magnetohydro-
dynamic flows are governed by the following equations (see [5, 7, 10, 15, 17]):

pt+ (pu); =0, ze€R, t>0,

(pu)t + (pu2 +p+ %‘bP)r = ()‘ur)m

(pw)i + (puw — b)y = (W),

b; + (ub — w), = (vby),,

&+ (u (5 +p+ %|b|2) —w- b)I = (A\uuy, + pw - w, +vb - b, + k6,).,

(1.1)

where p denotes the density of the flow, u € R the longitudinal velocity, w €
R? the transverse velocity, b € R? the transverse magnetic field, and # the
temperature; the longitudinal magnetic field is a constant which is taken to be one
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in (1.1); the total energy of the plane magnetohydrodynamic flow is
1 1
e =p (et 502+ 1w)) + 5IbP,

with the internal energy e; both the pressure p and the internal energy e are
related with the density and temperature of the flow according to the equations
of state: p = p(p,0),e =e(p,0); A= Xp,0) and p = p(p,d) are the viscosity
coefficients of the flow, v = v(p, ) is the magnetic diffusivity acting as a magnetic
diffusion coefficient of the magnetic field, k = k(p,0) is the heat conductivity.
The equations in (1.1) describe the macroscopic behavior of the magnetohy-
drodynamic flow with dissipative mechanisms. This is a three-dimensional magne-
tohydrodynamic flow which is uniform in the transverse directions. Many efforts
have been made because of its physical importance, complexity, and rich phenom-
ena,; see [1, 2,3, 5,7, 10, 11, 15, 17, 18, 19, 22, 23] and the references cited therein.
In this paper we focus on an initial-boundary value problem for the magnetohy-
drodynamic flow of a perfect gas with the following equations of state:

p = Rpb, e =c,b,

where R is the gas constant, ¢, = R/(y — 1) is the heat capacity of the gas at
constant volume, and ~ is the adiabatic exponent. We are interested in the well-
posedness and continuous dependence of global solutions of the initial-boundary
value problem. For small smooth initial data, the existence of global solution was
proved in [10], and the large-time behavior was studied in [19]. For large initial
data, these problems have additional difficulties because of the presence of the
magnetic field and its interaction with the hydrodynamic motion of the flow of
large oscillation.

In this paper we first establish the existence and uniqueness of global solutions
to the initial-boundary value problem of (1.1) with initial data in H' and show
that neither shock waves nor vacuum and concentration are developed in a finite
time for such initial data. Different from the early results on the Navier-Stokes
equations, such as [13] which considered the equations of a viscous heat-conductive
perfect gas that does not allow heat to be generated by the magnetic field, we per-
mit the generation of heat by the magnetic field as well as its interaction with the
fluid motion. Mathematically, the argument of [13] can not be directly followed to
solve our MHD problem because of the presence of magnetic field. For example,
the lower and upper bounds of the density can not be obtained by the same argu-
ment. The main reason here is that the full pressure p+ |b|?/2 in MHD does not
have the simple special structure as the pressure p in the Navier-Stokes equations.
We develop some new estimates and techniques to overcome these difficulties. We
establish a new expression of the density for this magnetohydrodynamic system
and successfully obtain its lower and upper bounds. Then we make other a-priori
estimates and prove the existence of global solutions. The existence of global solu-
tions is proved by extending the local solutions globally in time based on the global
a-priori estimates of solutions with a physical growth condition of the heat conduc-
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tivity. By introducing a Lagrangian variable, we transform the initial-boundary
value problem of (1.1) in Euler coordinates into the corresponding initial-boundary
value problem in Lagrangian coordinates. These two problems are equivalent for
the solutions under consideration (see Section 2). We first obtain an entropy-type
energy estimate involving the dissipative effects of viscosity, magnetic diffusion,
and heat diffusion. After proving the lower and upper bounds of the density as
stated earlier, all the required a-priori estimates are obtained subsequently with
our careful analysis, and the existence of global solutions in H' (as well as in
a Holder space) is established in Section 3. After the proof of the existence, we
show the continuous dependence of solutions on the initial data. For this purpose,
we first prove the Lipschitz continuity of the density, and then we prove that the
solutions depend continuously on the initial data with several careful estimates on
a functional in Section 4.

More precisely, we focus on the initial-boundary value problem of (1.1) in a
bounded spatial domain Q = [0,1] (without loss of generality) with the following
initial condition and impermeable, thermally insulated boundaries:

(pauawvbvo)‘t:O = (pOau()aWOabanO)(x)v LS Qa

1.2
(U,W,b,ox)‘ag :Oa ( )
where the initial data satisfies these compatibility conditions:
(u0, Wo, bo, oz ) |a = 0,
(poug + Rpobo — Augs + |b0\2/2)z|89 = (1.3)

0,
(pouowo — by — wog, ugbg — Wo — vbog)z|a0 = 0.

For noninsulated boundary conditions, similar results can be obtained with some
small modification. Although we deal with the initial-boundary value problem in
this paper, our existence results can directly be generalized to the Cauchy problem
by using the localization argument in [9] or the known localization lemma [12].
We state our main results of this paper in Section 2, prove the existence of
global solutions in Section 3, and show the continuous dependence in Section 4.

2. Main Theorems

Consider the initial-boundary value problem (1.1)-(1.2) with positive lower and
upper bounds of the initial density and temperature: Cj L'< po < Co, CO_1 <
0y < My, for some constants Cy and My . Without loss of generality, we take
fol po(z)der = 1. We first assume that p,0 > 0, and then we will prove their
positive lower bounds later. Introduce the Lagrangian variable:

y = ylo.1) = / " ol t)de. (2.1)
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We have 0 <y <1 since y is increasing in z and fol plz,t)dr = fol po(x)dr =1.
We translate problem (1.1)-(1.2) in Euler coordinates into the following initial-
boundary value problem in Lagrangian coordinates (y,t),y € Q = [0,1], a moving
coordinate along the particle path:

v — Uy = 0, (2.2a)
Au
ug + (p+ |b|2/2)y = <Ty) ) (2.2b)
y
— — Mwy
w; — by = ( ” )y, (2.2¢)

(vb): — w, = (L> (2.24)

v

A : b-b, + b
Et—|—(u(p+b2/2)—w.b)y:< Utly T W Wy;” Tl y) . (2:2¢)
Y

with the initial-boundary conditions:

(U,U,W,b,9)|t:0 = (v()quvWOvbanO)(y)? Yy S Q7

2.3
(UaW,b,Qy”aQ = 0’ ( )
where v = 1/p is the specific volume, p = Rf/v, e = ¢,0, and
Loy 2y, 1 2
E=e+ —(u°+|w|°) + =v|b]".
2 2
From (2.2), we have
0 A 2 ylb,[?
v/, v v v

Problem (1.1)-(1.2) and problem (2.2)-(2.3) are equivalent (see the argument
below). Our main interest is to study the behavior of solutions of this problem
with physical equations of state and various physical viscosity coefficients A, p,
magnetic diffusivity v, and heat conductivity &, which generally depend on the
density p and the temperature 6. For concreteness, in this paper we focus on
the physical case for polytropic gases such that A, u, and v are constants, and
depends on the temperature § with Cy < k(0)/(1 4 6") < Cy for some positive
constants C7, Cy, and r > 2. The growth condition assumed on « is motivated
by the physical fact: & oc §°/2 for important physical regimes (see [5, 22]). For
problem (2.2)-(2.3), we will see that, if the initial dataisin H' (or a Hélder space),
then the solution will be at least in H' (or the Hélder space), and neither shock
waves nor vacuum and concentration are developed in a finite time. We also study
the continuous dependence of global solutions and prove that the solutions depend
continuously on the initial data. Let (v;,u;,w;,b;,6;),7 = 1,2, be two solutions
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to problem (2.2)-(2.3) with the corresponding initial data. Define a functional
D(t) =[|(v1 — va,u1 — ug, W1 — Wa, by — by, 01 — b, v1 — v2y) (-, 1) [|72 ()
+ [ (ur = ug, w1 — Wa, b1 = ba, 01 = 02)y[|72 0 (0.0
Then we have

Theorem 2.1. Suppose that there are some positive constants Cy and My such
that

Cot <w<Co, Cyt <0y < Mo,
l|(uo, Wo,bo)||zs + [|6o]l 2 < Co, ||(vo, w0, Wo, bo,00)||mr < M.

Then, for some constants C = C(Cy,T) > 0, independent of My, and M =
M(Co,Mo,T) >0,

(1). Problem (2.2)-(2.3) has a global solution (v,u,w,b,0) € L>(0,T; H*(Q))
for any fixed T >0 such that, for each (y,t) € Q x[0,T],

Ch<u(y,t) <C, CTH<0(y,t) <M, |(u,w,b)(y, 1)] < M,
[ (u, w, )20, 74001 + 102200, 17:220HY) < C,
||(U,’LL,W,b,e)y(',t)H%z(Q)

+ ||(vauvayvbyvey’vtvutth’btvvytvuyvayyvbyya9yy)||2L2(Qx(0,t)) < M;
(2.5)
(2). Furthermore, if vg € WH(Q), (vj,uj,w;,b;,0;),7 = 1,2, are two solutions
0 (2.2)-(2.3) in (1), then

D(t) < MD(0), 0<t<T. (2.6)
That is, the solutions depend continuously on the initial data.

We also remark that, if vg € C1T%(Q) and (ug,wq,bg, ) € C?>T(Q) for
some « € (0,1), we can conclude, using the standard method (cf. [9, 16, 21]) and
the Schauder estimates (cf. [14, 8]), that there exists a unique classical solution
v € CTFel+e/2(Q % [0,T]) and (u,w,b, ) € C?t*1+2/2(Q % [0, T]) for any fixed
T >0 to (2.2)-(2.3) satisfying (2.5).

The existence of local solutions is known from the standard method based on
the Banach theorem and the contractivity of the operator defined by the lineariza-
tion of the problem on a small time interval (cf. [20]). The global existence of
solutions will be proved by the method of extending the local solutions with re-
spect to time based on a-priori global estimates. We will establish these a-priori
estimates and prove the continuous dependence of the solutions on the initial data
in Sections 3 and 4.

The results in Theorem 2.1 in Lagrangian coordinates can easily be converted
to equivalent statements for the corresponding results in Euler coordinates. In
particular, we have
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Theorem 2.2. Suppose that there exist some positive constants Cy and My such
that

Cot <po<Co, Cy' <6y < My,
[ (w0, Wo,bo)|l s + [|6ollz> < Co,  [[(po,uo, Wo, bo, 00) || 1 < Mo.

Then, for some constants C' = C(Cy,T) >0 and M = M(Cy, My, T) >0,
(1). Problem (1.1)-(1.2) has a global solution (p,u,w,b,0) € L>(0,T; H(Q))
for any fized T >0 such that, for each (x,t) € Q% [0,T7],

Cl<plx,t)y<C, C'<O(x,t)<M, |(u,w,b)(zt) <M,

| (w, w,D)||2(0, L4081y + 102200, 7522001y < C,

(0, 1w, W, b, 0) (-, 1) [ 720

+ ||(pffﬂuz7wrabIaeiﬂptvutﬂwtabt,prtvumz7wzm7brxaazz)”%Z(Qx(o,t)) < M;

(2.7)
(2). Furthermore, if po € WH>(Q), then the solution of (1.1)-(1.2) is unique.

If the initial data is in a Holder space, then the corresponding solution is also in
the Holder space. The corresponding statement concerning the continuous depen-
dence is more subtle, however, owing to the fact that the change of variables from
Lagrangian to Euler coordinates is solution-dependent (see [4]). The uniqueness
of solutions in Euler coordinates can be shown as follows.

Assume that (pj,u;,wj,bj;,0;)(x,t), j=1,2, are two solutions of (1.1) with
the same initial-boundary data (1.2)-(1.3). Then, through the Lagrangian variable

vy = yy(at) = / C (e, (2.8)

which is a one-to-one correspondence between (z,t) and (y;,t), both solutions
(pj,uj,wji, by, 0;)(x(yt),t),j =1,2, satisty (2.2)-(2.3) with (y,t) = (y;,t). Since
the solution of the problem (2.2)-(2.3) is unique, we conclude that there exists
(pyu,w,b,0)(y,t) € L*(0,T; H') such that

(pj,ujs Wi, by, 05)(x(y;,t),t) = (p,u, w, b, 0)(y;,1). (2.9)
Notice that y;(z,t),j = 1,2, are Lipschitz and satisfy
e+ 0500 0 =0 1,0) =a(a.0) = [ (600 (210)
That is, by (2.9),
e+ 0l s =0 (,0) = (w0 = [ (€00, (2.11)

which implies y1(x,t) = yo(z,t) (see [4]). Therefore, from (2.8) and (2.9), we
conclude
(p1,u1, Wi, b1, 01)(2,t) = (p2,u2, W2, ba, 02) (2, 1),

that is, the solution is unique.
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3. Proof of Existence

In this section, we prove part (i) of Theorem 2.1. In order to establish the global
existence, we need a-priori estimates of the solutions for (y,t) € % [0,T] for any
fixed T'> 0. We denote C' > 0 the generic constant depending only upon 7' and
Co , and denote M the generic constant depending upon M, besides upon 7' and
Co . Without loss of generality, we take ¢, = R = 1. First, from equations (2.2)
and the initial-boundary conditions (2.3), we have the following energy estimates.

Lemma 3.1.

1
/((v—1—lnv)+(9—1—1n0)+u2+\W|2+v|b|2)dy§C’, (3.1)
0
Lt (k02 M2 w2 vlby|?
— Yy Ay Y 4 Y dydr < C. 2
/0/0<1192+v9+ vl + vl ydr < ¢ (3:2)

Proof. Integrating the energy equation (2.2e) and using the boundary condition
(2.3), we have

! 1
[ (o4 002+ b - olbl?) )
0
! 1
- / (90 + S (ud+ wol? + v|b0|2)> dy < C.
0

Set n=(v—1—Inv)+ (6 —1—Inb)+ 3(u?+ |w|?+v|b[?). From (2.2), we obtain

k02 Au? lw, |2 v|b,|? K0
I ] y . MWy y _ Yy
= <U92 + vl + vl * vl iy (HU)y
A . b-b 0 1
*( PR “%‘“(“5"0'2)”*’)

v v y

Integrating the above equation over [0,1] x [0,¢] yields Lemma 3.1. O

We now derive a representation of the specific volume v and prove the lower
and upper bounds of the density, which is essential to establish the existence.

Lemma 3.2.
C ! <oy,t) < C. (3.3)

Proof. The proof is divided in three steps.

1. Set
!y 1, 9 Y
0= [ (M p= 3B ) i + [ uolerae
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Then (2.2b) implies u = h,. For a function y(t) € [0,1] of ¢, which will be
determined later, we integrate in y from y(t) to y on hy =u to have

et) = hly(o).0)+ [ " (e t)e.

y(t)
On the other hand, since u, = v, then
t 1 Y
h(y,t) = Alnv — Alnwg —/ (p+ §|b|2) (y,7)dr +/ uo(§)d¢,
0 0

from the definition of h. Therefore,

1/t 1 1 [t
—1 - — —A = - 2
v exp(A/OpdT> exp<>\ (y,1) /\/0 2|b| dT),
v

Aly,t) = /Oy ug(§)ds — h(y(t),t) — /(t) u(§, t)d§ — Anvo.

Multiplying by 6/A and integrating over [0,¢], we have

exp(/l\/tpd7> _1+/ 1O s )exp( Y, s A/ Z|b| dT>

Hence, we conclude

v =exp (% /t 1|lo|2dT — lA(y,t)> X
(”/A w5 )exp< v A/ 'b'd> )

2. We now determine y(t). From the definition of h, we have

where

Au 1
hy="—% —p—=|b]%
t 0 p 2| |
Then, using vy = u, and hy, = u, we obtain
1
(vh)e — (Au+uh), = — (u2 +up+ 2U|b|2> .

Integrating the above equation over [0,1] x [0,¢] yields

1
/ vh(y,t)dy
0

- /0 Coo(y) /0 " uol€)dedy - / t / 1 <u2+vp+3v|b|2) (y, 7)dydr.

Without loss of generality, we assume here fo (y,t)dy = fo vo(y)dy = 1. Then

| oty = niue). 1
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for some y(t) € [0,1] . Therefore,

v(y,t) =P(yl7 t) etXp </Ot Q(y,f)d7> t 5.4)
+ X/o 0(y,s)P(y,t)P(y,s) " exp (/ Q(y,T)dT> ds,

where

1 y
P(y,t) :exp{%/o vo(y)/o ug(§)dédy
1 /Y 1 /Y
3 /y(t)u(&t)dﬁ - X/o uo(§)d§ ‘ano} ,

— 1 2 1 ! 2 1 2
Q.0 = gy = 5 [ (ot 5o ) ay

It is easy to see that, C~! < P(y,t) < C, since \fyy(t) u(§,t)dg] < ||ul| 2 < C.
Estimate (3.1) implies that Q(y,t) > —C/A. Then the specific volume v has a
positive lower bound since

oy, 1) > Py, 1) exp (/Ot Q(y,r)dT) >C, teloTl.

3. From the convexity of § — 1 —Inf and Jensen’s inequality, one has ¢; <
fol 0(y,t)dy < co for some positive constants ¢; and ¢y, and

1
o <00a(0).0) = [ 0.0y <

for some a(t) € [0,1]. Thus

1
c1 < / (u? + vp)dy < C.
0

Integrating (2.4) over [0,1] x [0,¢] and using Cauchy-Schwartz’s inequality yield

t pl )\2 2 2
// (ﬁﬁw L viby| )dydT
oJo v v v
1 1 t pl
9
:/O de—/o 90(y)dy+/0/0 %dydr
1 1 1 t 1)\u2 t r1l
<[ bdy— | 6o(y)dy+ = " dydr + C 02dyd
< Y oy)y+2 o dydr + ydr.
0 0 0J0 0J0
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Then, by (3.2) and 6(y,t) = 0(a(t),t) + 0,d¢ , we have

a(t)

/t/l (A_IL?/_FM_FM)C@C[T
0 v v v
<C+C// y/ vdydr < C.
0

From the above estimates, we derive that, for s <t,

t t 1
/Q(y,r)dT:l/ (/yb-bydf—/ (u2+vp+%v|b|2> dy) dr
s 0
2
_)\/ / ('b ol (u +vp))dyd7§0—%1(t—s).

Since fol 0dy < C', we have the following estimate:

y 92
0(y,t)/? = 0(a(t),t)*/? +/ 2991/2 (&,t)dE < C + C max v
()

(3.6)

yel0,1]  Jo v02 Y-

From (3.4) and the above estimates,

max v < Ce 1t/ ¢ C/ ge 1t/ A g
y€[0,1]

<C+C yd —alt=s)/rq
<O+ m[/ w2 e *

and by Gronwall’s inequality and (3.2), we conclude

max v < Cexp ( // dy e—or(t= s)/)‘ds) <C.
y€[0,1]

That is, v(y,t) < C. This completes the proof of Lemma 3.2. O

Lemma 3.3.
O(y,t) > C~ L. (3.7)

Proof. Set w = 1/6 . Multiplying (2.4) by —w? , we obtain the following equation:

2 2 2 2
= (&) IR 2y, L
wt_( v y+4)\v ( wv + v (pefwry[* 4 v]by [F) + v\ T 2w ’

20—-1

Multiplying the above equation by 2lw with [ > 0, integrating in y over €1,
and using the boundary condition and Young’s inequality, we have

d It w? ! l _
HwHLQ’(Q) = ﬁ/o dy < 2)\||W||2Ll2169)HU Hlzer ey
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and then %HwHLzz(Q) < C. Therefore, [|wl|p21(qy < C. Taking | — oo, we obtain
the lower bound of 6. O

Lemma 3.4.
1 t o1
/0 o2 (y, t)dy + /0/0 (v} + ui +v) (y, s)dyds < M. (3.8)

Proof. In (2.2b), notice (uy/v)y, = (Inv)yy = (vy/v); . Then

<ﬂ> +0ﬂ:ut+0—y+b~by. (3.9)
v o), v

Multiplying the equation (2.2¢) by KiFE and (2.2b) by K,u®, taking the inner
product of (2.2c) with Kz|w|?w and (2.2d) with K4|vb|>vb, respectively, for
proper positive constants K;,1 < j < 4, integrating them over [0,1] x [0,¢],
adding all of them together, and using the Gronwall’s inequality, we eventually
obtain fot fol |b - by|2dyds < M from tedious calculations. Multiplying the equa-
tion (3.9) by v,/v, integrating over [0,1] x [0,¢], and using Cauchy-Schwartz’s
inequality and the following observation:

Uy

= o= (32), - (1), + 5

we obtain, by (3.7),

/—%’)dJr// (<) dyds
é/ ydy+//—ydyd+// ‘”dde-

1 t pl 0 2 t pl A 2
/ Uidy—t—// — (E) dyds < M—|—// ﬂdyds. (3.10)
0 oJo VNV oJo U

Although we can conclude the proof by using (3.5), we proceed the proof in the
following way so that the bounds in the estimates do not have extra dependence
on T . Multiplying (2.2b) by u, we get

2
(5), 45 (2) (5 2ov)
2 : v v Y v v?2

Therefore,
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Integrating it over [0,1] x [0,¢], we obtain

/—dy+// —ydyds
od ' 0d
/ iodw// (um f wul by y>dyd5
v
+// [ullb - by |dyds

’U 1

<M+ - // y dyds+M/ / ydy (/ vidy)ds,
o v 0

where we used the following estimates:

// 2dyds<// “dy/ v9dyds<M// ydyds<M
0 0
1 t 192 1
—/ de’ddeS/ / “dy (/ vdy) ds < M.
0 0 o v 0

Adding (3.10) and 2x (3.11), we get
1 t ol
/ (u2 + vz) dy + / / (U@Q/ + 01}5) dyds
0 0Jo
t 1 1
<M + M/ (/ uidy) (/ vidy) ds.
0 0o 0

Then, from Gronwall’s inequality and (3.2), we have

1 t o1 t 1,2
/ (v +v}) dy +// (ug + 6v)) dyds < M exp (M// %dyds) < M.
0 0Jo 0Jo

(3.12)

(3.11)

Since ¢; < fol 0(y,t)dy < c3 and fol vgdy < M from the above estimate,

1 1 1
Cl/ vody < 9(y,t)dy/ vpdy
o 0 o
1 1 1
§/ </ 9(y7t)dy—0> vzdy—i-/ 9v§dy
01 2dy+M/ 92dy/ 2dy+/ 01)2dy

Therefore, fofo vadyds < M from (3.7) and (3.12). O
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/ (y,t dy+// s)dyds < M. (3.13)
0

Proof. First we have the following interpolation inequalities: for ¢ > 0,

1 1 1 1
uf, < (5/ uflydy-i- (1 +(5_1)/ ufldy, 0 < 2/ 95dy+2 (/ 9dy>
0 0 0 0
Then, multiplying (2.2b) by u,, and integrating it over [0,1] x [0,t], we have
1 u2 t pl )\’U,2
/ —ydy—f—// yydyds
Ov Ay, v
/ d+//( y+bbf Uzy)uyydyds
i PR
Uy
§M+§/0/0 ” dyderM/O/O (uy+9y+vy)dyds
1 t pl /\U2
SM—i——// Y dyds.
2J)0Jo v

The lemma follows. O

Lemma 3.5.

2

Lemma 3.6.

1 t pl
(w5 0)w O+ [ (b0, Pyt [ [ 1w, bwy by, Pyds < M. (310
0 0J0

Proof. Take the inner product of (2.2c) with w, integrate it over [0,1] x [0,7],
and use Cauchy-Schwartz’s inequality to obtain

1 t pl 2
|w\2dy—|—// Mdyds
2 Jo 0J0 v
1 1 t pl Yy 2
s—/ IwO\Qdy+// (/ Ibyld§> dyds
2 Jo 0J0 0
t pl |b |2 1
§M+// ; dy/ Odyds < M.
0J0 0

Similarly, we have by taking the inner product of (2.2d) with vb and integrating
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it over [0, 1] x [0,]
L, t 1 ,
= [ v?|bl*dy + v|by|“dyds
2Jo 0Jo

1 1 ) ) t pl I/Uy
<= [ W2lboPdy + (vb-wy — “b-b, ) dyds
2 Jo 0Jo v

t 1|b |2 1 t r1

§M+M// %dy/ 9dyd8+M// (Iwyl* + v} + b - by|?) dyds
0Jo 0 0Jo

<M

Multiplying (2.2¢) by w,, , integrating it, and using the interpolation inequality:
1 1
|wy|2 < (1 +6_1)/ |wy|2dy+6/ |Wyy|2dy, for any § > 0,
0 0
one has

1 [t )
§/O|Wy‘dy

t 1 t 1
<M - / / [wyy Pdyds + M / / (Iby| + [0y [[Wy]) [Wyy|dyds
0JO 0J0

3M1 t pl ) t pl )
<M - |Wyy|“dyds + M |b, | dyds
4 JoJo 0Jo
t 1
M 2 2dyd
+ /0 I;leaédwy\ /0 v, dyds

M t pl
<M — —1// |wyy|2dyds,
2 JoJo

and then

1 t pl
/ |wy|2dy—|—// \Wyy|2dyds < M.
0 0Jo

Using v = u, , we rewrite (2.2d) as follows:
1 b
by = — b+ - <w+u) . (3.15)
v v v/,

Multiplying the above equation by by, , integrating it, and using the similar in-
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terpolation inequalities, one has

1 1 t pl
5/0 |by|2dy§M—M2/0/0 by, |*dyds

t pl
+M/O/O (Juy|[b] + [wy| + [vy|[by]) [byy|dyds

3M2 t pl ) t pl )
<M - by, |“dyds + M |wy|“dyds
4 JoJo 0Jo

t el t
+ M max |b|? // uidyds + M/ max b, |?ds
Yt 0Jo 0 VvEL

M t 1 1 1
<m M / / by, 2dyds + - / b, dy,
2 0J0 4 0

1 t el
/ |by|2dy —|—// \byy|2dyds < M.
0 0Jo

Multiplying (2.4) by v~! foo k(€)dE , one has the estimate fol 02dy < M by further
similar arguments. Therefore, we have

and then

1/2

O(y,t) = O(a(t),t) + /y 0,d¢ < M + (/01 9§dy) <M,

a(t)
1/2

y 1 1
u? = / 2uuydé <2 (/ uzdy> (/ uZdy) < M.
0 0 0

Similarly, we conclude |w|? + |b|? < M. This completes the proof of part (i) of
Theorem 2.1. O

1/2

4. Continuous Dependence on the Initial Data

In this section we prove part (ii) of Theorem 2.1, the continuous dependence of
global solutions on the initial data. First, with the global a-priori estimates in
Section 3, we have

Lemma 4.1. If vg € WH*°(Q), then, for any solution (v,u,w,b,0) to (2.2)-
(2.3) in part (i) of Theorem 2.1,

vy (y, £)] < M. (4.1)
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Proof. For the convenience of differentiation, we rewrite (3.4) as follows:

v(y,t) =exp (lnP y,t) / Qy, 7 dT)

1
+X/o 0(y, s) exp <1nP(y, t)—InP(y,s / Qly, 7 dT)

Then, taking the derivative with respect to y,
Uy (y, t)

= P(y,t)exp (/ Qly, 7 )dT) <(lnP y,t / Qu(y, 7 d7->
—/ P(y,t)P(y,5)"" exp (/ Qy,7 >
/Py, (y,s eXp(/Qy, d7'>><

0(y,s)(In P(y,t) — In P(y, s)),ds

+i/0tP(y,) Y, S exp(/Qy, dT)Oy, /ny, )dTds,

(In P(y,t))y = %uw,t) - %uo(y) + ?O”((yy)>7 Qy(y,t) =

From the estimates in Section 3, we conclude

C™t < P(y,t), 0(y,t) < M, [9,InP(y,t)| < M.

where

1
b by

From (3.6), f: Q(y,7)dr < M . Using the inequality

1 1
by <2 [ byt [ by Py,
0 0
we have

t 3 t pl 1 t pl
[ auwnar <50 [ [ byPavar+ o5 [ [ by, Pdvar <
s 2 0J0 2\ 0Jo

Again, using a similar interpolation inequality, we have

/ P 0)P(.s) " exp ( / t Q(ym)dr) 16,(y,9)\ds

1 t
< 5/ P(y,t)*P(y, s) exp( / Qly, 7 dT) d5+// 92+ 29§y dyds
0

< M.

Therefore, |v,| < M . This completes the proof of Lemma 4.1. O
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We now start the proof of the continuous dependence of global solutions on the
initial data by establishing the estimates in several lemmas. Set

2 1
0 =23 [ 0,(0105.55,0,)7 + 10y, (u5.95. 5. 05) Py
j=1

Then, from (2.5), we have

t

/ G(s)ds < M. (4.2)
0
Using the interpolation inequality, we have

1 1
2
gy < 2/0 ujydy+/ ujy,dy < G(1).

Similarly, for j =1,2, w5, 4+ b3, +67 < G(t). Applying (2.2) to both solutions
(vj,u;,wj,b;,60;), 7 =1,2, we have the following lemmas.

Lemma 4.2.

/ |(v1 — va, Uy — ug, wy — ws)|Pdy — / |(v10 — V20, U10 — U20, W10 — Wao)|*dy
<——// (w1y — Uzy) dyds——// |W1y—W2y\ dyds
0o U
+M/ H{K»/@rWﬁ@@
0

+M//(m—mﬁﬂﬁ—@%@m
0J0

Proof. Multiplying the following equation by 2(u; — us)

AU AU 0 0 1 1
(i —ug)e = (S S0 BT Syt
V1 Vo vy U1 2 2

and integrating it over [0, 1] x [0,t], we have

1 1
/ (ul — UQ)Qdy — / (Ulo — UQo)Qdy
0 0

7 t p1 A t 1
< ——// = (ury — ugy)?dyds + M/ (1+ G(s))/ (v1 — va)%dyds
4 JoJo v 0 0
t pl
+M// (|b1 —b2|2+(91 —92)2) dyds
0Jo

Multiplying the equation (vq —v2): = (u1 —u2)y by 2(vi —v2) and integrating
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over [0,1] x [0,¢], for any constant M’ > 0, we have

1 1
/ (1}1 — ’1)2)2dy — / (’010 — ’020)2dy
0 0

1 t rl A ) t pl )
< — — (u1y — Ugy) dyds+M// (v1 — va)*dyds.
4M’/0/0 v 4 0Jo

Taking M’ =1, we obtain

/1(U1 — v2)?dy — /l(vw — vg0)?dy

// (4 (u1y — ugy)2 + M(v; — ’Ug)z) dyds.
U1

Taking M’ =2M , we have

t 1
A

M/ (v1 — v2) dy<M/ (v10 — va0) dy+8// —(uly—ugy)Qdyds
0Jo V1

—|—M// v] — Ug) dyds

Similarly, taking the inner product of the equation

(W1 —wy); = (,uwly _ By +b; — b2)

U1 V2 y

625

(4.4)

with 2(w; —ws) and using Cauchy-Schwartz’s inequality yield a similar estimate.

Then adding these estimates together yields the result of Lemma 4.2.

Lemma 4.3.

1
/ (6, — 02)%dy
0
1
/ (610 — 020)*dy — —// (01 — 02, dyds
0o V1
// v uly*UZy dyd5+ // |W1y W2y| dyds
// V|b1y—b2y‘ dyds

+M/ 1+ G( ))/ ((v1 —v2)? + (01 — 62)?) dyds.
0

O

(4.5)
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Proof. Multiply the following equation

K0 K0
(01 — 02)¢ =pauoy — pruty + ( L ﬂ)
(% (%) "

LMy PP N, w4 vfbay

U1 V2

2(61 — 62) and integrate it to get

1 1
/ (91 - 92)2dy - / (910 - 920)2dy
0 0

t r1
= 2// (ﬁ — @> (821/ — Gly)dyds
0Jo U1 V2

+2// (pauzy — pruy)(01 — O2)dyds (4.6)
0J0

bl Au?, + > +v|by,[?
+2// (91—92)< R

0Jo U1

V2

M3, + plway |2 + v|bay |2
_ N\Ugy 1 2y‘ |2y| dyds.

Using Cauchy-Schwartz’s inequality, we have

// (/{91@, B /-6921/) (B2 — 01, )dyds

< —— // (014 — O2y) 2dyds + M max 63 (vl — vy)%dyds,
U1 o v€[0,1] v

¢t el
2// (pougy — Pruty) (01 — 62)dyds

0 0 0
_2// <(_2__1)u2y+(u2y uly)vl>(91 02)dyds
< // (u1y — uzy) dyds+M// (61— 02) dyds
8 0 V1

1
+M 01 — 02)dyds + M 2/ — vg) dyds,
sy [ 000t [[ sy [ P
(4.7)
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and

/t/l Aty + plwiy* +vlbry P gy, + plway [ 4 v]bsy 2
U1 V2

> (91 — Gz)dyds

1
=3 // (2 oy (1w — ugy)? + E'le — way|? + v[by, — b2y|2> dyds

1
+M ylg%)i] Z ugy + |WJU|2 + ‘b1y| )/ ((Ul - U2)2 + (01 — 92)2) dyds.
0 0

Applying these estimates to (4.6) and from the definition of G(t), we conclude
(4.5). This completes the proof of Lemma 4.3. O

Lemma 4.4.

1
/ by — ba2dy
0
1 ) ) 7 t pl )
<M ((U10 — v30)” + |b1o — bag| ) dy — 3 v|byy — byl dyds
0Jo
// ( (ury — uzy)? + 5—1|W1y - wa2> dyds (4.8)
—|—M// (v1y — vay)?dyds
0Jo

t pl
*1122 1 22 S.
+M/0/0(1+G(s))((v1 12 1 by — bo?) dyd

Proof. Take the inner product of the following equation

I/bly ngy

(Ulbl - U2b2)t = <
V1 (%)

+wi — WQ)
y
with 2(v1b; — v2bs) , and integrate it to get

1 1
/ [v1by — vabo|*dy — / [v10b1o — v20bao|*dy

— _2// ( biy ﬂ) (v1by — vaba),dyds

+ 2// (w1y — way)(v1b1 — vaby)dyds.
0Jo

Notice that

1 1 1
/ |v1by — vaba|2dy > 5/ v?|by — by|*dy — / (v1 — v2)?|ba|*dy.
0 0 0
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Then, using (4.4), Lemma 4.1, and Cauchy-Schwartz’s inequality, we have
1 1
/ by — by[?dy — M/ ((vio — v20)* + [b1o — bao|?) dy
0 0

1 t pl b1 b2
< M/ (1 — 02)2dy — 4// v <—y — —y> (vib1 — vaba)y,dyds
0 0J0

U1 V2

t pl
+ 4// (w1y — way)(viby — vaba)dyds
0J0
1 7 t pl
S M/ (’Ulo — 1}20)2dy — = // V|b1y — b2y|2dyd5
0 2 0J0

1 [t/
t3 // <_(u1y —uzy)? + Ly, - W2y|2> dyds
0J0 U1 V1

+ M/O/O (14 G(5)) (v — v2)? + by — bo[?) dyds

t el
+M // (v1y — vay)*dyds.
00

This completes the proof of Lemma 4.4. O

Lemma 4.5.

1
/ (v1y — vzy)Zdy

0

1 ¢t el
< M/ |(u10 — w20, V10 — V20, Vioy — Vaoy)|*dy + M// (v1y — v2y) dyds
0 0o

T M\ [P )
- — — — — dyd

+ (8 4)/0/0 Ul(uly ugy ) dyds

+ g —(0174 — egy) + l/‘bly — b2y| dyds
0J0 U1

t 1
0 [ @G [ 10— vy — 02,01 — o) P,
0 0
(4.9)

Proof. From (3.9), we have the following equation:

<)\’U1y _ )\Ugy) + lely 92U2y
t

U1 V2 ’U% U%
01y  Oay
= (w1 —u2)t + — — — + b1 - by, — by - by,

U1 V2
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)\’Uly
V1

/lﬁ<m_vﬁ)2dy_/1£(m_m>2dy
0o 2 \nm V2 0o 2 \ vio V2
¢ el
Oav2 01v1 01 02
[ s ).
0Jo 2 1 1 2
<)\U1y)\v2y)dyds

(% v
A
_ vzy> dyds.
Vo

2

t pl
AV
+// (UltUQt)( Ly
0Jo V1

Notice that

v (
(s — ua)s (w _ 2y>
(%1 (%)

= (w1 —u2)(Invr —Inwa)y), — ((u1 — u2)(Invy —Inwvs)e),

u u
+ (uy —ug), (ﬁ _ ﬁ) )

U1 V2

Multiply the above equation by — )‘Z% and integrate it to get

Then we integrate it to get

t el
// (u1s — uat) (M}ly — M) dyds
0Jo U1 V2

1 1
< M/ |(u10 — u20, V10 — V20, V10y — Vaoy )| dy + 2/ (uy — ug)?dy
0 0

! )\2 U1 V2 2 trl (5% (75
L e [ o (22
0 4 U1 V2 0Jo U1 U2

Since

1 2 1 1 )2 2,2
/ A (vﬂ - —U2y> dy > 1/ A(ory —vay)” — UQy)2dy —/ A — va) gy _2U22> P2y dy,
o 4 \un Vo 2 Jo h 0 4viv;

we also have

1 L 1 )\2 V1 Vo 2
/ (v1y — vay)?dy < M/ (v — vg)Qvgydy + M/ — (—y - —y) dy.
0 0 0 4 U1 (%)



630 G.-Q. Chen and D. Wang ZAMP

Thus, from (4.4) and (4.3),

1 1
/ (v1y — voy ) dy — M/ |(u10 — u20, V10 — V20, Vioy — Vaoy)|*dy
0 0

t pl 1 P .
S M// (Uly - UQy)Qdde + — // (_(913,, _ 92y)2 + V|b1y . b2y|2> dyds
070 8 JoJo \1

1 M\ [P
+ (§ - Z) /0/0 U—l(uly — uzy)*dyds
t 1
+M/ (1+G(S))/ ‘(7)1 —’02,91 —92,b1—b2)|2dyd8.
0 0

This completes the proof of Lemma 4.5. O

We now add (4.3), (4.5), and (4.8)-(4.9) together to get
! 1
/ (|(U1 — vy, Uy — ug, Wi — wa)|? + §|b1 — by|?
0

1
+2(91 — 92)2 + §(U1y — Ugy)2> dy

3 M t pl A 9 5 trl 7! 2
+ (Z + 7) /0/0 a(uly — uzy) dyds + Z/o/o E|W1y — way|“dyds
5 rtfl ) 3 MMk 2
+ 1 v|b1y, — boy|“dyds + B — (01y — O2y)"dyds
0Jo 0Jo Y1

t pl
ngm+M//@@—mﬁ@@
0J0

t

1
M (1+G(s))/ (01 — va, b1 — ba, 01 — 0)dyds.
0 0

Using Gronwall’s inequality and (4.2), we obtain
¢
D(t) < M exp (M/ (1+ G(s))ds) D(0) < MD(0).
0

The proof of part (ii) of Theorem 2.1, is now complete.
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