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c© 2002 Birkhäuser Verlag, Basel

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Differential equations, hysteresis, and time delay
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Abstract. We consider an ordinary differential equation with hysteresis and time delay in the
hysteresis term and also a partial differential equation with hysteresis in the boundary conditions.
Both are candidates for the description of a type of thermostat. The considered hysteresis relation
is relay hysteresis in both models. The existence of a periodic solution to both equations is shown
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1. Introduction

We consider two differential equations with a hysteresis term of relay type, both
equations arise from the same physical system. The derivation of both models is
given in Section 2. The two differential equations are quite different in nature and
complexity.

The first equation is an ordinary differential equation with hysteresis and delay:

du

dt
= − 1

L
[F(u)](t− τ). (1)

Here F represents a hysteresis operator of relay type, defined in Section 3. Hystere-
sis operators and their connection with differential equations have recently received
considerable attention (see, e.g., [1], [2], [3] and the references given therein). The
combination of hysteresis and delay is a relatively new topic. Recently, two papers
have been written about this problem, see [4] and [5]. They consider O.D.E.s with
hysteresis and delay and are mainly interested in the oscillatory behaviour of those
equations. The hysteresis model they dicuss is a generalized play operator. In our
paper we will show that the equation (1) coupled with the delayed relay operator
has a periodic solution and that all solutions of the equation (1) will eventually co-
incide with this periodic solution. We will actually compute this periodic solution
and its period using simple techniques from the O.D.E. theory and the definition
and properties of the delayed relay operator.
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The second equation we consider is a linear parabolic P.D.E. with hysteresis in
the boundary conditions:

∂u

∂t
− ∂2u

∂x2
= 0 if 0 < x < L, t > 0, (2)

∂u

∂t
(0, t) = 0 if t > 0, (3)

∂u

∂x
(L, t) = −[F(u(0, .))](t) if t > 0. (4)

Here F represents again a hysteresis operator of relay type, applied to the function
u(0, t).

A parabolic P.D.E. with hysteresis in the boundary conditions of different types
has been already studied before, see e.g. [6], [7], [8]. In [8], A. Friedman and L.-
S. Jiang have studied equation (2) with boundary condition (3) and a different
condition at x = L:

∂u

∂x
(L, t) + u(L, t) = −[F(u, (0, .))](t) if t > 0. (5)

They proved the existence of a periodic solution of this equation. The constructed
solution has two phases, namely

[F(u(0, .))](t)
{ −1 if 0 < t < T1,

+1 if T1 < t < T.
(6)

for some T1 ∈ (0, T ) and u(x, t + t) = u(x, t). This two-phase solution is unique,
if −1 < ρ1 < ρ2 < 1 and 1− |ρ1| < δ, 1− ρ2 < δ, where δ is sufficiently small and
ρ1, ρ2 are threshold values of the relay operator. It is interesting to compare these
results with those obtained here. The authors believe that the here considered
model is more appropriate to be compared with the ordinary differential equation
with time delay (1) since the boundary condition (4) is independent of the value
of u at x = L.

In this paper we will compute a periodic solution of (2)–(4). We will show that
at least one periodic solution exists for arbitrary ρ1, ρ2.

The period of periodic solutions is a convenient tool as well as technically
important and is therefore used for the comparison of both models of the same
system.

2. Physical motivation: Two models for one thermostat

A physical system described by the equations considered here is a solid body kept
around a certain temperature range by a thermostat which heats the body with
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a constant heat rate a if it becomes colder than ρ1 and which cools the body
with a constant heat rate b if it becomes warmer than ρ2. The thermostat reacts
instantaneously as one would expect from an electronic device and is thus correctly
described by a very simple hysteresis operator F defined in Section 3, the relay.

The essential complication examined here is the situation where the tempera-
ture of the body is taken at a place on the body different from the place where the
heat is applied. To specify the system further, the body is taken to be a thin rod
of length L and the thermostat is set up in such a way that the temperature to
which it reacts is taken at one end of the rod (at x = 0) and heating and cooling
is applied to the other end (at x = L).

Two models are offered here:
1. Detailed model. The thermal behavior of the thin rod is described by the

heat equation (2). At the end x = 0, no heat is applied as expressed in equation
(3), while the heat applied at the other end x = L is given by the state of the
thermostat as given in equation (4). The result is a partial differential equation
with a hysteresis operator in the boundary condition. An initial condition has
to be applied, of course.

2. Effective model. On a heuristic level, the essential complication of measuring
and heating in different places is expected to have the following effect: While
the thermostat reacts instantaneously to the temperature at x = 0, it takes
some time till the effect of heating at x = L becomes significant in x = 0. How
long does it take for the heat applied on one end of the rod to get to its other
end? The answer can be given on dimensional grounds: The needed time is
τ = L2. With this time delay, the heating prescribed by the thermostat will
influence the temperature at x = 0. Of course, this is to be taken with a grain
of salt but it allows to propose equation (1) as a description of the situation.
All the particularities of the temperature field along the rod are eliminated and
one is left with an ordinary differential equation with a hysteresis and with time
delay , a significant simplification.

Remark 1. The time delay of the effective model suggested above is L2. But on
dimensional grounds one can only conclude that it has to be proportional to L2.
The factor of proportionality k in the dimensional argument is expected to be a
number of the order 1. The time delay is then

τ = kL2. (7)

To determine the constant k properly, one has to resort to the detailed model. If
this is not possible and the value τ = L2 is used then it is to be expected that any
results will be correct only to first order in L. This is of course useful only if L is
small, L ¿ 1.

The question is now whether there is a price to be paid for using the effective
model or whether it gives in fact a good description comparable to what the
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detailed model provides. To answer this question, the solutions of these rather
different equations have to be understood and compared. In particular, one may
wish to compare the periods of periodic solutions calculated in Section 4.

Remark 2. To avoid further complexity, it is assumed throughout the paper that
no heat is gained from or lost to the environment. Also, only the special case of
the heat rates a, b of heating and cooling being equal, a = b = 1 is discussed in
detail while the results for general a and b are only stated.

3. Delayed relay operator

In this section we will recall the basic definitions of hysteresis operators and define
a special and probably the simplest kind of a hysteresis operator, the so called
delayed relay operator. We will use this operator in the next sections in connection
with the differential equations (1) and (2).

Mathematically, a hysteresis relationship between two functions u and w that
are defined on some time interval [0, t] and attain their values in some sets U and
W , respectively, can be expressed as an operator equation with an operator F :

w = F [u]. (8)

Hysteresis operators are characterized by two main properties:
(i) Memory: at any instant t, w(t) depends on the previous evolution of u. We

also assume that

if u1 = u2 in [0, t], then [F(u1)](t) = [F(u2)](t) (causality). (9)

(ii) Rate independence: the output w is invariant with respect to changes of
the time scale, formally

F [u] ◦ φ = [u ◦ φ] (10)

for all inputs u and all increasing functions φ mapping the considered time interval
onto itself.

At any instant t, the output w(t) usually depends not only on u|[0,t], but
also on the initial state of the system. Hence, the initial value w0 = w(0), or
some equivalent information, must be prescribed. If necessary, we therefore write
F(u,w0) to make the dependence on w0 explicit.
Many hysteresis operators also satisfy other typical properties:

1) Piecewise monotonicity:


∀(u,w0) ∈ Dom(F),∀[t1, t2] ⊂ [0, T ],
if u is nondecreasing (resp. nonincreasing) in [t1, t2],
then so is F(u,w0).

(11)
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2) Order preservation:



∀(u1, w10), (u2, w20) ∈ Dom(F),∀t ∈ (0, T ],
if u1 ≤ u2 in [0, t], and w10 ≤ w20, then
F(u1, w10)(t) ≤ F(u2, w20)(t).

(12)

To define the delayed operator:
For any couple ρ = (ρ1, ρ2) ∈ R2 with ρ1 < ρ2, we introduce the delayed relay
operator

hρ : C0([0, T ])× {−1, 1} → BV (0, T ) ∪ C0
r ([0, T )), (13)

where C0
r ([0, T )) denotes the space of functions right-continuous in [0, T ). For any

u ∈ C0([0, T ]) and any ξ = −1 or 1, hρ(u, ξ) = w : [0, T ] → {−1, 1} is defined as
follows:

w(0) =



−1 if u(0) ≤ ρ1

ξ if ρ1 < u(0) < ρ2

1 if u(0) ≥ ρ2

(14)

for any t ∈ (0, T ], setting Xt = {τ ∈ (0, t], u(τ) = ρ1 or ρ2}

w(t) =




w(0) if Xt = ∅,
−1 if Xt 6= ∅ and u(max Xt) = ρ1,

1 if Xt 6= ∅ and u(max Xt) = ρ2.

(15)

Then w is uniquely defined in [0, T ]. For instance, let u(0) < ρ1; then w(0) =
−1, and w(t) = −1 as long as u(t) < ρ2; if at some instant u reaches ρ2, then w
jumps up to 1, where it remains as long as u(t) > ρ1; if later u reaches ρ1, then w
jumps down to −1; and so on, cf. Figure 1.

The relay operator is characterized by two threshold values ρ1 < ρ2 and two
output values which we assume here to be equal to +1 and −1, respectively.

The delayed relay operator is a rate independent, piecewise monotone, order
preserving and discontinuous hysteresis operator (in any sense).

For more details as well as for definitions of different kinds of hysteresis oper-
ators, see [1].

In the next sections we use the notation [F(u)](t) = w(t) with w(t) defined
above.

4. Main results

In this section we present statements and proofs of our main results. The discussion
and comparison of the models is postponed to Section 5.
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ρ1 2
ρ

w

u

-1

+1

Figure 1. The relay operator. In our models, u has the meaning of the measured temperature
while w describes the heat flow of cooling resp. heating.

4.1. The ordinary differential equation of the effective model

Theorem 1. There exists a periodic continuous solution of equation (1) with
period equal to 2L(ρ2 − ρ1) + 4L2.

Proof. Computational. Suppose that [F(u)](t − τ) = −1 on [0, τ ] and u(0) = ρ1.
Then

du

dt
=

1
L

> 0 on [0, τ ]. (16)

The equation (16) has a solution u1 = 1
L + ρ1 on [0, τ ] and since this solution is

increasing, the solution u of the equation (1) is equal to u1 until t = t1 + τ , where
t1 is the time where u1(t1) = ρ2. A simple computation gives us

1
L

t1 + ρ1 = ρ2,

which implies
t1 = (ρ2 − ρ1)L.

At time t = t1 + τ , there is a jump at the hysteresis output, i.e.

[F(u)](t− τ) = [F(u)](t1) = 1.

On the interval [t1 + τ, t1 + 2τ ]

du

dt
= − 1

L
< 0, (17)

which has a solution
u2 = − 1

L
t + K.

The constant K can be computed from the continuity condition

u2(t1 + τ) = u1(t1 + τ),
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which implies

K = 2ρ2 − ρ1 +
2τ

L
.

Therefore the solution of the equation (1) on [t1 + τ, t1 + 2τ ] is

u2(t) = − 1
L

t + 2ρ2 − ρ1 +
2τ

L
.

This solution is decreasing in time, so the solution of the equation (1) is equal to
u2 until time t2 + τ , where t2 is such that

u2(t2) = ρ1 = − 1
L

t2 + 2ρ2 − ρ1 +
2τ

L
.

It follows immediately from the last equation that

t2 = 2L(ρ2 − ρ1) + 2τ.

At time t2 there is again a jump, this time downwards in the hysteresis output,
i.e.

[F(u)](t2) = −1,

so again by the same arguments as before, the solution u of the equation (1) on
the interval [t2 + τ, t2 + 2τ ] is equal to

u3(t) =
1
L

t + K∗.

The corresponding continuity condition gives us the value of the constant K∗:

u2(t2 + τ) = u3(t2 + τ),

which implies

K∗ = −2ρ2 + 3ρ1 − 4τ

L
.

Therefore the solution of the equation (1) on the interval [t2 + τ, t2 + 2τ ] is equal
to

u3(t) =
1
L

t− 2ρ2 + 3ρ1 − 4τ

L
.

The constructed solution will be periodic if

u3(t3) = ρ1 =
1
L

t3 − 2ρ2 + 3ρ1 +
4τ

L
.

This implies
t3 = 2L(ρ2 − ρ1) + 4τ.
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This is the time it takes the constructed solution to come to its starting position,
therefore t3 is the period and the statement of the Theorem is proved. ¤

Remark 3. A similar computation can be provided for a little bit different, but
perhaps more interesting model, for which the heat transfer rate is different for
heating and cooling. This corresponds to a model with relay hysteresis operator
with output values equal to −a and +b respectively, see also Figure 2, instead
of −1 and +1 as in the model above. This means again that if u(0) < ρ1; then
w(0) = −a and w(t) = −a as long as u(t) < ρ2; if at some instant u reaches ρ2,
then w jumps up to b, where it remains as long as u(t) > ρ1; if later u reaches ρ1,
then w jumps down to −a; and so on, cf. Figure 2.

Let us denote the corresponding hysteresis operator as Fa,b. We assume a > 0,
b > 0. We claim that there exists a periodic solution of equation (1) with F
replaced by Fa,b which period is equal to T = L[1a + 1

b ](ρ2 − ρ1) + L2(a+b)2

ab . The
idea of the proof of this statement is the same as the one of Theorem 1. Notice
that for a = b = 1 the corresponding statements coincide.

w

a

b
uρ1 ρ2

Figure 2. The general relay operator. The two output values of w, the heat flow of heating and
cooling in response to the temperature u(t) do not have the same absolute value.

4.2. The partial differential equation of the detailed model

Solutions of the partial differential equation (2) are supposed to be from a suitable
space of functions, e.g., the space of continuous functions possessing the weak
derivatives necessary to make sense of the equation.

Depending on the value of the right hand side of the boundary condition (4),
a solution of equation (2) can be decomposed into heating and cooling phases.
In a periodic solution, heating and cooling phases will alternate forever and this
alternation has to be synchronized with the period of the solution. It is thinkable
though that the period is reached only after many alterations.

Definition 1. A periodic solution is called two-phase if the period is equal to the
length of two consecutive phases, a cooling and a heating phase.
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Theorem 2. There exists a periodic solution of the equation (2) with boundary
conditions (3) and (4). This solution is a two-phase solution and it is a unique
two-phase solution for L < ρ2−ρ1 in the space of continuous functions possessing
the weak derivatives necessary to make sense of the equation.

Proof. Again by construction. Suppose that we have a solution of the equation
(2), whose initial condition has a Fourier series b0 +

∑∞
n=1 bn cos nπx

L .
For the given space of functions, this Fourier series always exists and it is easy

to check from the results of the construction that the solutions does not leave this
space.

Suppose also that

b0 +
∞∑

n=1

bn = ρ1. (18)

This means we have a solution, which starts at time t = 0 at the jumping position,
and

[F(u(0, .)](0) = −1.

Then the solution of the equation (2) looks initially like

u1(x, t) =
t

L
+

x2

2L
+

(
b0 − L

6

)
+

∞∑
n=1

(
bn − 2L(−1)n

n2π2

)
cos

nπx

L
exp

−n2π2t

L2 . (19)

The solution was constructed by a Fourier series method with adjustment to
nonhomogeneous boundary conditions. From the form of the solution it follows
that this solution evaluated at x = 0 is eventually increasing in time and therefore
there must exist a time t1 for which there will be a jump in the hysteresis output.
At this time the following equation must be satisfied:

u1(0, t1) = ρ2 =
t1
L

+
(

b0 − L

6

)
+

∞∑
n=1

(
bn − 2L(−1)n

n2π2

)
exp

−n2π2t1
L2 . (20)

At time t1 there will be a change in the boundary condition because of the jump
in the hysteresis output. The new boundary condition will be:

∂u

∂x
(L, t) = −[F(u(0, .))](t) = −1

and assuming continuity of our solution, we will get initial condition for an upper
solution u2(x, t) in the form

u2(x, 0) = u1(x, t1) =
t1
L

+
x2

2L
+

(
b0 − L

6

)
+

+
∞∑

n=1

(
bn − 2L(−1)n

n2π2

)
exp

−n2π2t1
L2 cos

nπx

L
.
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To find a solution of our equation by the Fourier series method, we need to have
a Fourier series of the initial condition which in our case is

u2(x, 0) =
t1
L

+ b0+

+
∞∑

n=1

[(
bn − 2L(−1)n

n2π2

)
exp

−n2π2t1
L2 +

2L(−1)n

n2π2

]
cos

nπx

L
.

The corresponding solution, computed again by Fourier series method will be

u2(x, t) = − t

L
− x2

2L
+

(
b0 +

t1
L

+
L

6

)
+

+
∞∑

n=1

[(
bn − 2L(−1)n

n2π2

)
exp

−n2π2t1
L2 +

4L(−1)n

n2π2

]
cos

nπx

L
exp

−n2π2t

L2

(21)
Again, from the form of the solution we can see that the solution will be

eventually decreasing, this means, there must exist a time t2 for which

u2(0, t) = ρ1 = − t2
L

+
(

b0 +
t1
L

+
L

6

)
+

+
∞∑

n=1

[(
bn − 2L(−1)n

n2π2

)
exp

−n2π2t1
L2 +

4L(−1)n

n2π2

]
exp−

n2π2t2
L2 .

At this time t2 there will be a jump in the hysteresis output and in the same
way as before our solution will change to u3. The new boundary condition will be

∂u

∂x
(L, t) = −[F(u(0, .))](t) = 1

and the new initial condition

u3(x, 0) = u2(x, t2) = − t2
L
− x2

2L
+

(
b0 +

t1
L

+
L

6

)
+

+
∞∑

n=1

[(
bn − 2L(−1)n

n2π2

)
exp

−n2π2t1
L2 +

4L(−1)n

n2π2

]
cos

nπx

L
exp−

n2π2t2
L2 .

Its Fourier series is

u3(x, 0) = − t2
L

+
(

b0 +
t1
L

)
+

∞∑
n=1

[(
bn − 2L(−1)n

n2π2

)
e
−n2π2(t1+t2)

L2 +

+
4L(−1)n

n2π2
e
−n2π2t2

L2 − 2L(−1)n

n2π2

]
cos

nπx

L
.
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Therefore the searched solution will now be, again computed by Fourier series
method:

u3(x, t) =
t

L
+

x2

2L
+

(
b0 +

t1
L
− t2

L
− L

6

)
+

+
∞∑

n=1

[(
bn − 2L(−1)n

n2π2

)
exp

−n2π2(t1+t2)

L2 + (22)

+
4L(−1)n

n2π2
exp−

n2π2t2
L2 −4L(−1)n

n2π2

]
cos

nπx

L
exp−

n2π2t

L2 .

To find a periodic solution, it will be sufficient to put

u3(x, t) = u1(x, t).

Comparing corresponding terms in the latest equation we get

t1 = t2 (23)

as well as the condition for the coefficients bn:

bn = −2L(−1)n

n2π2

[
1− e

−n2π2t1
L2

]
[
1 + e

−n2π2t1
L2

] . (24)

This is the necessary condition for our solution to be periodic. We can easily
see that this is also a sufficient condition.

So far, no condition on the parameter b0 is imposed and also t1 has not been
determined yet. This can be done as follows: It follows from (18) and (25) that

ρ1 = b0 −
∞∑

n=1

2L(−1)n

n2π2

[
1− e

−n2π2t1
L2

]
[
1 + e

−n2π2t1
L2

] . (25)

On the other hand it follows from (20) and (24) that

ρ2 =
t1
L

+ b0 +
∞∑

n=1

2L(−1)n

n2π2

[
1− e

−n2π2t1
L2

]
[
1 + e

−n2π2t1
L2

] , (26)
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where we used in the last equation the identity

L

6
= −

∞∑
n=1

2L(−1)n

n2π2
. (27)

Combining (25) and (26), we get

t1 = L(ρ2 + ρ1)− 2Lb0, (28)

or

t1 = L(ρ2 − ρ1)− 2L

∞∑
n=1

2L(−1)n

n2π2

[
1− e

−n2π2t1
L2

]
[
1 + e

−n2π2t1
L2

] . (29)

We will show that for given ρ1, ρ2 and L sufficiently small (L < ρ2 − ρ1), the
equation (29) has a unique solution t1. Then (28) determines b0 uniquely and then
this together with the previous will imply the statement of the theorem.

To show that (30) has a unique solution t1, consider the function

f(t1, L) = t1 + 2l

∞∑
n=1

2L(−1)n

n2π2

[
1− e

−n2π2t1
L2

]
[
1 + e

−n2π2t1
L2

] . (30)

t1 is a solution if and only if

f(t1, L) = L(ρ2 − ρ1) (31)

or, alternatively
1
L2

f(t1, L) =
ρ2 − ρ1

L
(32)

The last expression has the advantage that the left hand side can be understood
to be a function of a single variable only,

z :=
t1
L2

, (33)

and equation (32) can then be written in the form

h(z) := z + 4
∞∑

n=1

(−1)n

n2π2

[1− e−n2π2z]
[1 + e−n2π2z]

=
ρ2 − ρ1

L
(34)
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Figure 3. A graph of the function h(z).

Simple estimates show that the function h(z) takes any positive value only once
for h(z) > 1 with corresponds to L < ρ2 − ρ1. It also follows that (34) has a
solution t1, so existence and uniqueness of the solution of Theorem 2 follows. ¤

Remark 4. The bound on L for uniqueness in Theorem 2 can be clearly improved.
A numerical computation suggests that there may not be a bound at all since the
function h(z) appears to take any positive value exactly once (see Figure 3) but
the authors did not find a suitable estimate for small values of z.

Remark 5. An analogous computation for the model from Remark 1, where the
hysteresis operator F is replaced by Fa,b can be provided. In this case there also
exists a periodic solution of the equation (2) with boundary conditions (3) and (4).
The proof can be done in the same way as the proof of the Theorem 2, there will
be some differences in the form of the corresponding solutions computed by the
Fourier series method because of the different boundary conditions. For example
the solution from (19) will be replaced by

u1(x, t) =
at

L
+

ax2

2L
+

(
b0 − aL

6

)
+

∞∑
n=1

(
bn − 2aL(−1)n

n2π2

)
cos

nπx

L
e
−n2π2t

L2 .

The upper solution u2 will be (compare with (21)):

u2(x, t) = −bt

L
− bx2

2L
+

(
b0 +

at1
L

+
bL

6

)
+

+
∞∑

n=1

[(
bn − 2aL(−1)n

n2π2

)
e
−n2π2t1

L2 +
2L(a + b)(−1)n

n2π2

]
cos

nπx

L
exp−

n2π2t

L2 .



Vol. 53 (2002) Differential equations, hysteresis, and time delay 689

The solution u3 will be (again, compare with (23)):

u3(x, t) =
at

L
+

ax2

L
+

(
b0 +

at1
L
− bt2

L
− aL

6

)
+

+
∞∑

n=1

[(
bn − 2aL(−1)n

n2π2

)
exp

−n2π2(t1+t2)

L2 +

+
2L(a + b)(−1)n

n2π2
exp−

n2π2t2
L2 −2L(a + b)(−1)n

n2π2

]
cos

nπx

L
exp−

n2π2t

L2 .

In the same way as before, the assumption about periodicity of the solution implies
the condition for the coefficients bn, which in this case looks like:

bn = −2L(a + b)(−1)n

n2π2

[
1− e

−n2π2t2
L2

]
[
1− e

−n2π2(t1+t2)

L2

] +
2La(−1)n

n2π2
,

and also a condition for t1 and t2 which takes the form

t1 =
b

a
t2. (35)

A natural question now may be what the period of the periodic solution com-
puted in the proof of Theorem 2 is and how this can be compared with the period
of the periodic solution of the O.D.E. (1) with hysteresis and delay. Unfortu-
nately, because of the complexity of the form of the computed periodic solution,
this question can be answered only partially.

There is one problem with the last equation, namely that b0 still depends on
t1 and in a nonlinear way. For L ¿ ρ2 − ρ1 and thus t1

L2 À 1, we can, using the
indentity (27), compute approximately from (29) that

t1 = L(ρ2 − ρ1) +
L2

3
.

Therefore the approximated period for the periodic solution from the proof of
the Theorem 2 is

T = 2L(ρ2 − ρ1) +
2L2

3
. (36)
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5. Conclusion

The solutions of two equations, the heat equation with relay hysteresis on the
boundary and an ordinary differential equation with hysteresis and time delay
were considered. In both cases, periodic two-phase solutions were calculated and
their periods determined (see Theorem 1 and Theorem 2):

TODE = 2L(ρ2 − ρ1) + 4kL2 for L ¿ 1 (37)

TPDE = 2L(ρ2 − ρ1) +
2
3
L2 for L ¿ ρ2 − ρ1 (38)

The periods are found to agree to first order in L and can be made to agree to
second order if L is small (i.e., L ¿ 1 and L ¿ ρ2 − ρ1) and k is chosen 1

6 .
Thus the ordinary differential equation of the effective model is a good de-

scription for a short rod and can be expected to work well for any spatially small
system, though with a possibly different constant k.

If k is not determined, the obtained results still provide for the scaling of the
precision of the model and are thus useful.

We would like to point out that other periodic solutions not considered here
may exist. The question of the uniqueness of periodic solutions of (2)–(4) is an
open problem and probably a very complex one. Periodic solutions which are not
two-phase may exist. See [9, 10] for some ideas related to this problem.
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