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c© 2001 Birkhäuser Verlag, Basel

Zeitschrift für angewandte
Mathematik und Physik ZAMP

A thermodynamic framework for the study of
crystallization in polymers

I. J. Rao and K. R. Rajagopal

Abstract. In this paper, we present a new thermodynamic framework within the context of
continuum mechanics, to predict the behavior of crystallizing polymers. The constitutive models
that are developed within this thermodynamic setting are able to describe the main features
of the crystallization process. The model is capable of capturing the transition from a fluid
like behavior to a solid like behavior in a rational manner without appealing to any adhoc
transition criterion. The anisotropy of the crystalline phase is built into the model and the
specific anisotropy of the crystalline phase depends on the deformation in the melt. These
features are incorporated into a recent framework that associates different natural configurations
and material symmetries with distinct microstructural features within the body that arise during
the process under consideration. Specific models are generated by choosing particular forms for
the internal energy, entropy and the rate of dissipation. Equations governing the evolution of
the natural configurations and the rate of crystallization are obtained by maximizing the rate
of dissipation, subject to appropriate constraints. The initiation criterion, marking the onset of
crystallization, arises naturally in this setting in terms of the thermodynamic functions. The
model generated within such a framework is used to simulate bi-axial extension of a polymer
film that is undergoing crystallization. The predictions of the theory that has been proposed are
consistent with the experimental results (see [28] and [7]).

Keywords. Crystallization, natural configurations, material symmetry, semi-crystalline poly-
mers, entropy production.

Introduction

The manner in which a polymer is processed determines its mechanical, optical and
electrical properties. Consequently, manufacturing processes have to be designed
to fabricate products having the desired properties. Some common examples of
processes used to manufacture different polymers are fiber spinning, film blowing,
injection molding, blow molding and sheet forming.

The majority of plastic products are manufactured by heating the polymer
to above its melting temperature and then cooling it in a mold (e.g., injection
molding) or deforming the melt while simultaneously cooling it to get it into the
desired shape (e.g., film blowing and fiber spinning). The properties of the final
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product depend on the processing conditions the polymer is subjected to during
its manufacture, for e.g., in the case of film blowing the crystalline orientation
depends on the amount of stretch imparted in the machine direction as well as the
transverse direction. Bi-axial extension strengthens the film in the plane, by virtue
of which films find widespread use as packaging materials. Uni-axial extension of
melts is used to form high strength fibers, in these fibers the polymer molecules
crystallize with their backbone parallel to the fiber direction. The successful use
of polyester bottles for carbonated drinks was made possible by the development
of a special blow molding process that ensures that the polymer in the bottle is bi-
axially oriented. At times the crystallization can have detrimental consequences.
For instance, the surface layer of an injection-molded article is highly oriented;
this can have an adverse effect on the product’s quality, for instance it can result
in products that are easily cleaved. The above examples illustrate the impor-
tance of understanding the phase transition from the melt to a semi-crystalline or
amorphous solid as this determines the properties of the final product.

Polymer melts are generally modeled as isotropic viscoelastic liquids. Depend-
ing on the molecular structure and processing conditions, the final solid can be
either in an amorphous or semi-crystalline state. Polymers that are unable to
crystallize, on cooling to below their glass transition temperature form amorphous
solids. If these solids are formed by deforming the polymer while cooling through
glass transition, they can exhibit anisotropy in their mechanical behavior. As the
deformed amorphous polymer melt cools below its glass transition temperature
the molecules lose their mobility and are ”frozen” in this oriented configuration.
Polymers having a regular molecular structure, when kept at temperatures below
the melting temperature for a sufficiently long time, form a semi-crystalline solid.
Under quiescent conditions the crystallization process can be very slow (especially
at temperatures just below the equilibrium melting temperature) and the solid
usually has a spherulitic morphology.

The rate of crystallization depends on the molecular orientation in the melt.
Subjecting the melt to deformations that align the molecules dramatically increases
the rate of crystallization. When the temperature falls below the glass transition
temperature there is a cessation of molecular motion and the crystallization pro-
cess ceases. As the crystallinity increases, it retards the crystallization process,
decreasing the mobility of the polymer molecule in the amorphous fraction. A
number of polymeric solids like polyethylene find applications at temperatures be-
tween their melting temperature and the glass transition temperature. At these
temperatures the solid consists essentially of rigid crystals and a flexible amorphous
fraction resulting in a solid that is both flexible and tough. The mechanical prop-
erties of the final product are dependent on the final morphology of the amorphous
and semi-crystalline regions. The morphology in turn depends on the thermal and
deformation history undergone by the material during processing. Many products
such as fibers and films are subjected to large inelastic deformations after manu-
facture. During the course of these inelastic deformations, further crystallization
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takes place and the morphology and consequently the mechanical behavior evolves
with the deformation.

Semi-crystalline polymers have a wide array of uses, ranging from hi-tech ap-
plications at one extreme to common everyday applications such as grocery bags
at the other extreme. There is no comprehensive theory in place that is capable
of predicting the outcome of polymeric processes under different conditions. The
problem is vast in its scope and its resolution would require fusing elements of
fluid mechanics, solid mechanics, thermodynamics and polymer physics. There is
a need for models that can be used in the simulation of the different processes
used to manufacture plastics. For instance, for film blowing, polymer companies
are able to manufacture different types of resins with differing molecular archi-
tectures. However, to determine which of these resins will produce a film having
desirable qualities, they need to set up a pilot plant to manufacture large quantities
of each resin. Then each resin is blown into film; mechanical tests are subsequently
carried out on the film to determine its properties. This process is both expensive
and time consuming. Consequently, a model for crystallization which can pre-
dict the final properties of the solidified polymer based on the properties of the
melt and the processing conditions can increase the efficiency of production and
help in designing manufacturing processes that produce components with desirable
properties.

The early work on phase transitions was devoted to analyzing problems where
conduction was the dominant mechanism. Such studies can be traced back to the
works of Lamé [38] and Stefan [67], in which temperature is considered to be the
basic variable (see [10], [16], [6], [61]). Another popular approach is the ”Phase-
Field” model which involves a parameter (other than temperature) called the order
parameter. The order parameter takes on extreme values of +1 (for pure liquid)
and −1 (for pure solid). The heat conduction equation is modified to incorporate
the effect of the order parameter that leads to an additional equation whose origin
can be traced back to the Landau-Ginzburg theory of phase transitions (see [39]).
In most practical situations in which fluid to solid phase transitions take place,
several other mechanisms other than conduction come into play, for e.g., convection
in the liquid and deformation in the solid. This shortcoming is overcome partially
by introducing the kinematics to take into account the flow field (see [21]), however
the forming solid is still assumed to be completely quiescent. These approaches
result in a model that cannot predict the structural and mechanical properties of
the newly formed solid. The ability to predict the properties of the newly formed
solid are however essential in all applications, especially so in polymers where the
properties of the final solid depend strongly on the processing conditions. Solid –
liquid phase transitions present additional challenges as there is a discontinuous
transition in the symmetry of the material. Since the issue of symmetry enters
the problem only when the kinematical fields of the fluid and solid are taken
into account, both the Stefan approach and the Phase-Field approach do not
deal with one of the thorniest issues in phase transitions. In many materials
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after crystallization is initiated the material goes through an intermediate set of
states where it is a mixture of a liquid and solid (a mush) before being completely
transformed into a solid. There have been few attempts to describe the mechanics
of these mixed regions. A theory of mushy zones has been developed (see [24],
[25], [26]) using a mixture theory approach, however, these works do not address
the issue of changes in symmetry associated with the phase change and the large
deformations of the solid. Baldoni and Rajagopal [5] developed a continuum theory
for phase transitions, accounting for changes in symmetry. However, in the specific
model developed they assume that the solid is isotropic and the response is like
that of a neo- Hookean solid.

In polymers as in other materials, crystallization is first initiated at nucleation
sites from which the crystals grow until an equilibrium state is reached. If the
nuclei are larger than a critical size, they form stable crystals that grow into the
melt. Crystallization ceases when the crystals begin to impinge on one another,
reducing the mobility of the polymer chains. The traditional way to model crystal-
lization in polymers is based on the work of Avrami (see [2], [3], [4]). The Avrami
equation that has been used widely in modeling quiescent crystallization is based
on the theory of filling the space through the nucleation and growth of one phase
into another. A discussion of the different variations of the basic Avrami equation
to account for isothermal and non-isothermal conditions can be found in a recent
detailed review (see [15]). Experimental correlation’s for Avrami’s equations can
be found in the text by Mandelkern [43]. Many polymer-processing applications
however take place at very high cooling rates under non-isothermal conditions.
Recently, experiments (see [11], [68]) have been carried out to examine the crys-
tallization behavior of polyethylene and polypropylene at high cooling rates. The
results show a sharp drop in the temperature till crystallization is initiated, after
which there is a plateau region in which vigorous crystallization takes place at a
nearly constant temperature, followed by a drop in the temperature to the ambient
value after the cessation of crystallization.

In most practical processes, crystallization rarely takes place under quiescent
conditions. When the phase transition takes place in a flowing polymer melt, the
morphology of the final solid depends on the temperature and deformation history.
Crystallization under flow conditions increases the rate of crystallization by orders
of magnitude (see [23], [37], [15], [46]). Usually, a highly oriented row-nucleated
crystalline morphology is obtained ([32], [31]) in contrast to the spherulitic mor-
phology observed under conditions of quiescent crystallization. The effect of differ-
ent manufacturing processes on the orientation and morphology has been widely
studied (see [50], [73], [74]). In spun fibers the lamellae are found to be perpen-
dicular to the fiber axis and in the case of blown film the lamellae are distributed
in the plane of the film. The outer layer of injection molded articles has lamellae
oriented perpendicular to both the surface and injection directions while the in-
terior is spherulitic, in the intermediate layers the lamellae remain perpendicular
to the surface but lose their preferred orientation with respect to the direction of
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injection.
A number of experiments have been conducted concerning crystallization in

sheared polymer melts. One of the early experiments concerning crystallization
during a simple shear flow between parallel plates was carried out by Haas and
Maxwell [23]. In their experiments tiny samples of polyethylene and polybutene-1
(less than 0.5mm thick) were sheared between two parallel glass plates by applying
a constant load under isothermal conditions at a temperature below their melting
point. At low loads, spherulitic growth was observed while at sufficiently high
loads flow induced crystallization was so profuse that no textural detail was ob-
served in the polarizing microscope. Also, the time required for crystallization was
orders of magnitude less than that for quiescent crystallization. Similar experi-
ments have been conducted by others (see [30], [49], [37]). Lagasse and Maxwell
[37] carried out experiments under conditions of constant shear rate instead of
constant load. At low shear rates spherulitic crystallization was observed and at
higher shear rates flow induced crystallization was observed, the two regions being
clearly demarcated. Enhanced crystallization was determined to be due to chain
extension arising from entanglements between molecules. Flow induced crystal-
lization has also been studied in rotational viscometers (see [33], [71], [63], [76]),
the results are similar to those obtained in simple shear experiments. In more
recent experiments (see [34], [35]) transient shear stresses were imposed on the
polymer melt and the microstructural development was monitored in situ using
optical and x-ray scattering techniques. The crystallization time was observed to
reduce dramatically with the imposition of a brief shear pulse on the melt. Other
experiments on flow-induced crystallization have also been carried out in ducts
of rectangular cross- section (see [14]). The main conclusion to be gleaned from
these works is that the relaxation of the melt has a significant impact on the final
thickness of the highly oriented surface layer.

There are not as many extensional flow experiments as shear flow experiments,
the main reason being the extreme sensitivity of crystallization to extensional
flow, often resulting in flow blockage due to massive crystallization (see [72]).
Early work on extensional flows was carried out by Mackley and Keller [41] and
Mackley et al. [42], and they reported qualitative rheo-optical characteristics
of extensional flow induced crystallization in a confined geometry. In a more
recent paper [45] the crystallization of polyethylene was studied in extensional
flows by suspending a high-density polyethylene droplet at the stagnation point
of a four-roll mill extensional device with linear-low density polyethylene as the
carrier phase. The crystallization rate was enhanced by orders of magnitude and
the accompanying analysis demonstrates that the melting point elevation model
cannot predict the phenomena observed.

From the experiments concerning phase transitions in polymers that crystallize
it is clear that the transition from a melt to a semi-crystalline solid is continuous,
i.e., during this process the material is a mixture of an amorphous polymer melt
and a crystalline solid. On the completion of crystallization the solid that is
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formed is a mixture of a crystalline and amorphous solid. Orientation in the
melt tremendously accelerates the process of phase transition. However, as the
melt is a viscoelastic fluid the orientation of the molecules can either build up or
relax depending on the deformation history and the relaxation time of the melt.
Orientation of the crystallites formed depends on the orientation of the molecules
in the melt just prior to crystallization.

Flow induced crystallization in melts has been modeled in a number of different
ways. The classical work of Flory [17] on stress-induced crystallization of rubber
has been used to model crystallization of melts. Extension of Flory’s work to melts
requires the assumption that the temporary network junctions play the same role
as the chemical cross-links in the theory of rubber crystallization. Flory’s theory
rests on the connection between decrease in entropy of the stretched molecule and
the tendency of the polymer to crystallize. This work by Flory has been extended
by using more complicated expressions for the Helmholtz potential which describe
the morphological effects in greater detail (see [20], [19], [64], [65]). Another
approach that has been used to model flow induced crystallization is to modify
the Avrami equation to account for enhanced crystallization rates due to the flow.
In this approach, the effect of flow is built into the equation by the inclusion of
an orientation factor, which depends on the flow (see [78], [79], [80], [15], [62]).
Recently crystallization in polymers has been modeled using Hamiltonian Poisson
bracket formalism ( see [9]) and this model has been used to study the fiber-
spinning problem [12]. In their model the Avrami equation is used to describe the
crystallization kinetics and the equilibrium melting point temperature is used to
indicate the onset of crystallization.

Currently there are no theories that can adequately describe the behavior of
polymers from the melt like state to the solid state that can take account the
evolution of symmetry. Here we will outline the approach that will be used to
model the crystallization process described above.

In this paper we propose a methodology for formulating constitutive equations
capable of modeling the process of crystallization in polymers. The aim of con-
tinuum theories is to describe the macroscopic behavior of a material without
explicitly accounting for all the details at the microscopic level. This does not
imply that the microstructural processes are ignored, but that the theory deals
with these effects in an averaged sense retaining only the salient features. A good
understanding of the microstructural mechanisms can aid in formulating better
continuum theories. In this work a model is developed using a continuum the-
ory based on the concept of ”multiple natural configurations” (multiple stress free
states modulo rigid body motions). For materials undergoing large deformations,
Eckart [13], seems to have been the first to realize that materials can posses mul-
tiple stress free states, that he called “variable relaxed states”, and study them in
some detail. However, a clear exposition of the central role played by natural con-
figurations in a variety of dissipative processes with associated symmetry changes
and the change of the response characteristics of the body have only recently been
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demonstrated (see Rajagopal [52]). This approach has been able to explain the
material response of a large class of materials under one framework: multi-network
theory [51], classical metal plasticity [55], twinning [53], solid to solid phase tran-
sitions [56], viscoelastic liquids [57], anisotropic fluids [58] and geological materials
[47] have all been modeled within this frame-work and classical elasticity and clas-
sical linearly viscous fluids arise naturally as sub-cases. The robustness of this
approach in describing the mechanical behavior of a wide array of processes makes
it an appropriate choice to model crystallization in polymers. The key feature of
this framework is that a body can exist stress free in numerous “natural configu-
rations”, the underlying “natural configuration” of the body changing during the
process, with the response of the body being elastic from these evolving “natural
configurations”.

Next, we describe briefly the thermodynamic framework to be used in this work.
The internal energy, entropy and rate of dissipation of the material are prescribed
and in general depend on the temperature, mass fraction of the crystalline phase
and kinematic variables, which are measured from the ”natural configurations” of
the body. The reduced energy-dissipation equation is used to enforce the second
law, this will be explained in greater detail later in the next section. The forms
chosen for the constitutive equations are ones that are sufficient to satisfy the
second law. We look for sufficient conditions as we are interested in the simplest
forms that can model the phenomenon observed. Evolution equations for the
natural configuration and mass fraction of the crystalline material are obtained by
maximizing the prescribed rate of dissipation and not ad hoc prescriptions.

We discuss the general framework in detail and then derive specific constitutive
equations within the framework. The model is used to analyze the bi-axial exten-
sion of a film, a deformation that is common in a number of polymer manufacturing
processes.

Preliminaries

Consider a body B in a configuration κR(B)∗. Let X denote a typical position of
a material point in κR. Let κt be the configuration at a time t, then the motion
χκR

assigns to each particle in configuration a κR position in the configuration κt

at time t, i.e.,

x = χκR
(X, t) (1)

The deformation gradient FκR
is defined through

F :=
∂χκR

∂X
. (2)

∗ We shall, for the ease of notation, use κR to mean κR(B).



372 I. J. Rao and K. R. Rajagopal ZAMP

The left and right Cauchy-Green stretch tensors BκR
and CκR

are defined through

BκR
:= FκR

FT
κR

, (3)

CκR
:= FT

κR
FκR

. (4)

Any acceptable process has to satisfy the appropriate balance laws. The balance
equations appropriate for studying the process of crystallization in polymers are
the conservation of mass, linear and angular momentum, and energy. We assume
that the material is incompressible and that the density of the melt and the semi-
crystalline solid are the same. This assumption is made to simplify the problem,
in actuality a density change ranging from a few percent to about seven percent
has been observed during the transition from melt to solid for different polymers
and this can be taken into account by appropriately modifying the theory. The
conservation of mass for an incompressible material reduces to

div(v) = 0, (5)

where v is the velocity. The conservation of linear momentum is

ρ

[
∂v
∂t

+ [∇v]v
]

= divT + ρg, (6)

where g is the acceleration due to gravity, ρ is the density and T is the Cauchy
stress tensor. For an incompressible material the stress tensor T reduces to

T = −pI + TE , (7)

where p is the Lagrange multiplier due to the constraint of incompressibility, and
TE is the constitutively determined extra stress. The balance of angular momen-
tum for a body in the absence of internal couples requires that the stress tensor
be symmetric. The balance of energy takes the form:

ρε̇ + divq = T · L + ρr, (8)

where ε is the internal energy,q is the heat flux vector and r is the radiant heating.
The second law is often introduced in continuum mechanics in the form of the

Clausius-Duhem inequality (see [70]). In this work however we will introduce the
second law in the form of an equality by introducing a balance law for entropy. This
is similar to the approach of Green and Naghdi [22] and Rajagopal and Srinivasa
[56]. The balance law for entropy than takes the form

ρη̇ + div
(q

θ

)
= ρ

r

θ
+ ρξ, (9)

where η is the entropy, θ is the absolute temperature and ξ is the rate of entropy
production. Combining the balance of energy, Eq.(8), and the balance of entropy,
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Eq. (9) results in the reduced energy-dissipation equation. The reduced energy-
dissipation equation is

T · L− ρε̇ + ρθη̇ − q · grad θ

θ
= +ρθξ := ζ ≥ 0, (10)

where ζ is the rate of dissipation. Both ξ and ζ are constrained to be non-negative
for an acceptable process. Here it should be noted that the rate of dissipation
is positive if and only if the rate of entropy production is positive. Sometimes
the term, rate of dissipation, is exclusively used to denote the rate of entropy
production due to mechanical working. Here we do not use it in such a restrictive
sense. As the entropy production can take place because of a variety reasons, for
e.g., due to phase change, chemical reactions, heat conduction etc., and not just
mechanical working, the rate of dissipation as defined through Eq. (10) is non-zero
whenever entropy production is non-zero. On account of this we sometimes use
the terms rate of dissipation and rate of entropy production interchangeably with
the tacit understanding that the rate of dissipation is defined through the rate of
entropy production, as given by Eq. (10). Note that Eq. (10) can be also written
as

T · L− ρψ̇ − ρηθ̇ − q · grad θ

θ
= ρθξ := ζ ≥ 0, (11)

where ψ is the Helmholtz potential and is given by ψ = ε − θη. In this work
we use the reduced energy-dissipation equation to place restrictions on the con-
stitutive equations. For reversible processes the rate of entropy production and
consequently the rate of dissipation is identically zero. For irreversible processes,
to which most thermo- mechanical processes belong the rate of entropy production
is greater than zero. In addition it is usually assumed that the rate of dissipation
can be split into a part that is due to heat conduction and another part that is a
consequence of other irreversible effects, i.e.,

T · L− ρψ̇ − ρηθ̇ − q · grad θ

θ
= ρθξ := ζ = ζc + ζd ≥ 0, (12)

where ζc is the rate of dissipation due to heat conduction and ζd is the rate of
dissipation due to other processes. The rate of dissipation due to heat conduction
is assumed to be given by

ζc = −q · grad θ

θ
≥ 0. (13)

Substituting Eq. (13) into Eq. (12) we obtain

T · L− ρψ̇ − ρηθ̇ = ζd ≥ 0. (14)

As mentioned earlier there can be many different inelastic mechanisms which result
in a positive rate of dissipation. In crystallizing polymeric systems the material
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starts out as a viscoelastic melt and then crystallizes into a semi-crystalline solid
which has an amorphous part and a crystalline part. When the material is a melt
the primary source of dissipation is the viscous behavior of the melt. After the
onset of crystallization, entropy production takes place not only due to viscous
effects in the amorphous phase but is augmented by another term that depends
on the crystallization process. Therefore the rate of dissipation due to inelastic
processes taking place in the crystallizing polymer are split into

ζd = ζa + ζp, (15)

where ζa is the rate of dissipation due to viscous effects in the amorphous phase and
ζp is the rate of dissipation due to crystallization. It is also further assumed that
each of these mechanisms for entropy production are independent and therefore
the associated rates of dissipation are both independently positive, i.e.,

ζa ≥ 0, ζp ≥ 0. (16)

Traditionally the second law has been used in the form of the Clausius-Duhem
inequality to obtain necessary and sufficient conditions on the forms of the con-
stitutive equations. In those approaches no explicit prescription is usually made
for the rate of dissipation. In this work in addition to specifying the internal
energy and entropy we also prescribe the rates of dissipation associated with the
two different mechanisms. In this we follow the approach used by Rajagopal and
Srinivasa [56] who treat the rate of dissipation as a primitive and prescribe a con-
stitutive equation for it. The reduced energy-dissipation equation in the form of
Eq. (14) is then used to place restrictions on the constitutive equations. We also
use the reduced energy-dissipation equation to obtain sufficient conditions since
our primary interest is to deduce the simplest possible forms for the constitutive
equations that are capable of describing the physical phenomenon of interest and
not the necessarily the most general forms.

The modeling of crystallization can be separated into two main parts, namely,
the modeling of the amorphous polymer prior to the onset of crystallization and
the modeling of semi-crystalline polymer after crystallization begins.

Modeling of the melt

We model the amorphous state as a viscoelastic fluid using a rate type model.
The derivation of the constitutive equations for the stress in a viscoelastic fluid
closely follows [57] based on the theory of evolving natural configurations. In this
approach the Helmholtz potential and the stress in the fluid are determined from
the mapping between the tangent spaces of the natural configuration of the fluid
at a material point to the current configuration occupied by it. In figure 1, κR

is a reference configuration, κc(t) is the configuration currently occupied by the
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Figure 1. Natural configurations associated with the viscoelastic melt.

material and κp(t) is the natural configuration associated with the material that
is currently in the configuration κc(t), that is if the tractions on κc(t) are removed,
the body will take the configuration κp(t) (the notation is to suggest the preferred
configuration at time t). It is possible for the material to possess more than one
natural configuration (see [53], [55], [56], [57], [58], [47], [60], [51], [75], [52]) and
in polymeric materials with more than one relaxation mechanism it is common
to use models with more than one relaxation time. These models with multiple
relaxation times are equivalent to viscoelastic fluid models with multiple sets of
natural configurations. Here we shall formulate the model assuming that the melt
has multiple relaxation mechanisms.

We assume that the melt has multiple natural configurations associated with
it and that it has an instantaneous elastic response from each of these natural
configurations. The deformation gradient FκR

denotes the mapping between the
tangent space associated with κR, at a point in the reference configuration to the
tangent space associated with κc(t). Also, let Fκpi(t)

denote the mapping between
the tangent space associated with the configuration κpi(t), at a material point to
the tangent space associated with the current configuration κc(t). Note the index
i in κpi(t) will range from 1 to the number of relaxation mechanisms, n (or the
number of natural configurations, denoted here by n) related to the response of
the melt. The natural configurations, κpi(t), are not fixed as in the case of an
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elastic solid but evolve as the material is deformed, and this change in the natural
configurations is associated with the dissipative response of the material. We also
define Gi to be the mapping between the tangent spaces of κR and the natural
configuration κpi(t), i.e.,

Gi := FκR→κpi(t)
= F−1

κpi(t)
FκR

, i = 1, 2, . . . , n. (17)

We define the velocity gradient, Lκpi(t)
, and the symmetric part of Lκpi(t)

, Dκpi(t)

to be
Lκpi(t)

= ĠiG−1
i , i = 1, 2, . . . n, (18)

Dκpi(t)
=

1
2

(
Lκpi(t)

+ LT
κpi(t)

)
, i = 1, 2, . . . n. (19)

In this approach the left Cauchy Stretch tensors Bκpi(t)
play the role of physically

motivated internal variables. When crystallization is initiated the orientation of
the crystals and consequently their mechanical response is anisotropic. The in-
duced anisotropy depends on the direction in which the molecules in the melt
have been extended. The tensors Bκpi(t)

contain information about the orienta-
tion of the molecules in the melt, albeit in an averaged way. We shall use these
tensors to determine the direction of anisotropy in the crystalline solid that is
formed. The manner in which this is implemented is discussed in detail in the
next section.

Using the definition of Bκpi(t)
, Eq. (17) and Eq. (19) it is easy to show that

∇
Bκpi(t)

:= Ḃκpi(t)
−LBκpi(t)

−Bκpi(t)
LT = −2Fκpi(t)

Dκpi(t)
FT

κpi(t)
, i = 1, 2, . . . n.

(20)
where the inverted triangle denotes the upper convected Oldroyd derivative and
the dot is the material time derivative. Specification of Dκpi(t)

is tantamount to
prescribing the manner in which the underlying natural configurations evolve. As
the material is incompressible we shall assume that the motion associated with
these natural configurations are isochoric, i.e.,

tr
(
Dκpi(t)

)
= 0, i = 1, 2, . . . n. (21)

We derive the forms for Dκpi(t)
, using the second law in the form of the reduced

energy- dissipation equation and by requiring that the rate of dissipation be max-
imized.

We assume that the internal energy and the entropy of the melt depend on the
temperature and the mappings Fκpi(t)

, i = 1, 2, . . . n, i.e.,

εa = εa(θ,Fκp1(t)
,Fκp2(t)

, . . . ,Fκpn(t)
), (22)

ηa = ηa(θ,Fκp1(t)
,Fκp2(t)

, . . . ,Fκpn(t)
). (23)
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The above forms can be further simplified since the melt is isotropic and incom-
pressible, due to which the internal energy and entropy depend on Fκpi(t)

through
the first two invariants of Bκpi(t)

, i.e.,

Ii = tr
(
Bκpi(t)

)
, IIi = tr

(
B2

κpi(t)

)
, i = 1, 2, . . . n. (24)

Therefore the internal energy and entropy have the forms

εa = εa(θ, I1, II1, I2, II2, . . . , In, IIn), (25)
ηa = ηa(θ, I1, II1, I2, II2, . . . , In, IIn), (26)

and consequently the Helmholtz potential has the following form

ψa = ψa(θ, I1, II1, I2, II2, . . . , In, IIn). (27)

Also because the melt is isotropic the configurations κpi(t) can be chosen such that

Fκpi(t)
= Vκpi(t)

, i = 1, 2, . . . n. (28)

We also assume that the dissipation in the melt is due to the effect of viscosity
and that the rate of dissipation has the form:

ζd = ζa(θ,Bκp1(t)
, . . . ,Bκpn(t)

,Dκp1(t)
, . . . ,Dκpi(t)

), (29)

where ζa is the rate of dissipation. When the underlying natural configurations
do not change, i.e., when Dκpi(t)

are null tensors (Dκpi(t)
= 0 , i = 1, 2, . . . n.) the

rate of dissipation ζa is expected to be identically zero. This is the case during
rapid processes wherein the melt behaves like an elastic solid. Substituting these
forms into the reduced energy dissipation equation, Eq. (14), and using Eq. (20)
and Eq. (27) and Eq. (29) we get

(
T−

n∑
i=1

2ρ

[
∂ψa

∂Ii
Bκpi(t)

+ 2
∂ψa

∂IIi
B2

κpi(t)

])
·D+

n∑
i=1

2ρ

[
∂ψa

∂Ii
Bκpi(t)

+ 2
∂ψa

∂IIi
B2

κpi(t)

]
·Dκpi(t)

−
(

∂ψa

∂θ
+ ηa

)
θ̇ = ζa ≥ 0. (30)

Since we are looking for forms that are sufficient to satisfy the above equation it
seems reasonable to assume that the stress is given by

T = −pI +
n∑

i=1

2ρ

[
∂ψa

∂Ii
Bκpi(t)

+ 2
∂ψ

∂IIi
B2

κpi(t)

]
, (31)
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and that the Helmholtz potential and the entropy are related through

∂ψa

∂θ
= −ηa, (32)

where p is the Lagrange multiplier due to the constraint of incompressibility. Equa-
tion (31) is sufficient to ensure that for all motions for which there is no change in
the natural configuration the material behaves elastically. Also Eq. (32) is equiv-
alent to the following relationship between the internal energy and the entropy

∂εa

∂θ
= θ

∂ηa

∂θ
. (33)

Substituting Eq. (31) and Eq. (32) into Eq. (30) we get

n∑
i=1

Ti ·Dκpi(t)
= ζa ≥ 0, (34)

where the partial stress is given by

Ti = 2ρ

[
∂ψa

∂Ii
Bκpi(t)

+ 2
∂ψ

∂IIi
B2

κpi(t)

]
, i = 1, 2, . . . n. (35)

Equation (34) places restrictions on the tensors Dκpi(t)
, i = 1, 2, . . . n. We assume

(similar to [57]) that the actual values of Dκpi(t)
, i = 1, 2, . . . n chosen satisfy the

constraints given by Eq. (34) and Eq. (21) and also corresponds to a maximum
for the rate of dissipation. This is enforced using the method of Lagrange mul-
tipliers by extremizing the rate of dissipation, given by Eq. (29), subject to the
constraints Eq.(34) and Eq. (21). On doing this we obtain the following equations
for determining Dκpi(t)

,

Ti = β1i
∂ζa

∂Dκpi(t)

− β2iI = 0, i = 1, 2, . . . n. (36)

where β1i and β2i, i = 1, 2, . . . n are Lagrange multipliers which are associated
with the constraints that are enforced. Using Eq. (36) and Eq. (31) we can
obtain equations for Dκpi(t)

, which contain information about the evolution of
the different natural configurations associated with the melt. To proceed further
with the derivation and to formulate specific constitutive equations we need to
prescribe specific forms for the thermodynamic functions, i.e., the internal energy,
ε, the entropy, η, and the rate of dissipation, ζa.

In polymer melts as in the case of rubber, deformation strongly affects the
configurational entropy while the internal energy does not change significantly. In
light of this it is reasonable to assume that the internal energy is a function of
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only the temperature while the entropy depends on both the temperature and the
invariants of Bκpi(t)

, i.e.,
εa = εa(θ)†, (37)

ηa = ηa(θ, I1, II1, . . . , In, IIn). (38)

We further assume that the entropy of the melt satisfies an additive split into a
part that depends only on temperature and another part that depends only on the
deformation.

ηa = η̂a(θ) +
n∑

i=1

η̃a(Ii, IIi). (39)

For the part of the entropy that depends on the deformation, we chose a form
consistent with that of a mixture of neo-Hookean materials, i.e.,:

ηa = η̂a(θ)−
n∑

i=1

µ̄i(Ii − 3). (40)

If the internal energy can be represented, in the temperature range of interest, as
a linear function of the temperature, then

εa = Caθ + Aa, (41)

where Ca is the specific heat of the amorphous melt and Aa is a constant. The
corresponding form for the entropy reduces to:

ηa = Ca ln(θ) + Ba −
n∑

i=1

µ̄i(Ii − 3), (42)

where Ba is a constant and µ̄i, i = 1, 2, . . . n, are material constants related to
the shear moduli associated with the different relaxation mechanisms. The forms
chosen in Eq. (41) and Eq. (42) satisfy the constraint given by Eq. (32). Substi-
tuting the forms chosen for the entropy and internal energy into Eq. (31), we get
the following equation for the stress,

T = −pI +
n∑

i=1

µiBκpi(t)
, (43)

with the shear moduli of the melt, µi, given by

µi = 2ρθµ̄i, i = 1, 2, . . . n. (44)

†In general the internal energy can also depend on the deformation through the invariants

of Bκpi(t)
.
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The form for the stress given by Eq. (43) is identical to that of a mixture of neo-
Hookean materials. This represents the elastic response of the body. However, its
dissipative response determines the evolution of the natural configurations. As in
rubber elasticity, we shall assume that the shear moduli are linearly dependent on
the temperature. The rate of dissipation is assumed to have the following form.

ζa =
n∑

i=1

2νiDκpi(t)
·Bκpi(t)

Dκpi(t)
, (45)

where νi
‡ is the viscosity associated with the ith relaxation mechanism and can

depend in general on both the temperature and the deformation through the tensor
Bκpi(t)

, i.e.,
νi = νi(θ,Bκpi(t)

), i = 1, 2, . . . n. (46)

Substituting Eq. (45) into Eq. (36) and eliminating β1i by using Eq. (21) and
Eq. (34) we obtain

Ti = 2νiBκpi(t)
Dκpi(t)

+ β2iI, i = 1, 2, . . . n. (47)

From Eq. (43) and Eq. (47) and using Eq. (21), we obtain the following equation
for Dκpi(t)

,

Dκpi(t)
=

µi

2νi

(
I− 3

tr(B−1
κpi(t)

)
B−1

κpi
(t)

)
, i = 1, 2, . . . n. (48)

Substituting Eq. (48) into Eq. (20) we obtain the evolution equation for Bκpi(t)

as

∇
Bκpi(t)

:= Ḃκpi(t)
− LBκpi(t)

−Bκpi(t)
LT =

µi

νi

(
3

tr(B−1
κpi(t)

)
I−Bκpi(t)

)
,

i = 1, 2, . . . n. (49)

The ratio of the viscosity, νi, to the shear modulus , µi, has units of time and is
known as the relaxation time, λi, i.e.,

λi =
νi

µi
, i = 1, 2, . . . n. (50)

‡ Usually in fluid dynamics ν is used to denote the kinematic viscosity and η or µ normally
denotes the dynamic viscosity. In this work, however, we use ν to denote the dynamic viscosity
in order to avoid any confusion with the entropy, η, or the shear modulus, µ.
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Finally we obtain the energy equation by substituting the internal energy given
by Eq. (37) into the energy equation, Eq. (8) to give

ρ
∂ε

∂θ
θ̇ + divq = T · L + ρr. (51)

This can be further simplified by using the specific form for the internal energy
given by Eq. (41), this results in

ρCaθ̇ + divq = T · L + ρr. (52)

This completes the development of the constitutive theory for the melt.
At this juncture it would be appropriate to point out that models similar to

the one derived in this section have been investigated by Leonov and Prokunin
[40] using non-equilibrium thermodynamics. However, the methodology used to
develop the constitutive equations in our work is very different and is the part
of a much more general framework, which as we shall see in the next section
can account for symmetry changes that are observed in crystallization. Also the
thermo-mechanical framework is quite different and more importantly, the sig-
nificance attached to many of the quantities are quite different. In yet another
approach, viscoelastic fluids are modeled using an internal variable called the con-
figuration tensor. In viscoelastic fluid models based on the configuration tensor,
the stress is related to the configuration tensor in the same way as in Eq. (43), i.e.,
with Bκpi(t)

(for a model with a single relaxation time) replaced by configuration
tensor. In these models an evolution equation is prescribed for the configuration
tensor. More details concerning these models can be found in [40]. The main
difference between these two approaches is the meaning given to Bκpi(t)

and the
configuration tensor. The tensor Bκpi(t)

has a specific kinematic meaning, which
implies that it satisfies the constraint due to incompressibility, i.e.,

det(Bκpi(t)
) = 1. (53)

The configuration tensor however does not satisfy any such a constraint. Just
as in the case of the tensor Bκpi(t)

, the configuration tensor contains information
about the orientation and stretch of the polymer molecules, albeit in an averaged
sense, but it will lack appropriate physical meaning or a proper thermodynamic
framework. In the next section we shall augment the model developed in this
section to incorporate the presence of the crystalline phase.

Modelling of the amorphous-crystalline mixture

Crystallization can be initiated in polymers either due to changes in temperature
(by cooling) or by deformation. In this section we first develop the structure of the
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thermodynamic quantities such as entropy, internal energy and rate of dissipation,
from which follow the forms for the stress tensor, crystallization rate and a criterion
for the initiation of crystallization. These constitutive equations are applicable to
general crystallizing polymers. The framework is general enough that specific
details of different polymers can be added to the model.

After the onset of crystallization the material is a mixture of an amorphous
phase and a crystalline phase. The presence of the crystalline phase effects the
response of the material. We treat the mixture of the crystalline and amorphous
phases as a constrained mixture. We allow for the co-occupancy of the phases
in an averaged sense reminiscent of traditional mixture theory (see [69], [8], [1],
[54]). We assume that the amorphous and crystalline components are constrained
to move together, i.e., the two phases do not diffuse relative to each other. For
polymers this is a reasonable assumption as the same molecule traverses both the
amorphous and crystalline phase and the crystalline phase pins down the molecule
preventing it from diffusing.

The newly formed crystalline material is assumed to be an elastic solid. For
elastic solids the stress depends on the deformation gradient from a configuration
of known stress (usually a stress free configuration) and the current configuration.
Here we assume that the crystalline material is born in a stress free state. This
is similar to the approach used by Rajagopal and Wineman [51] for their multi-
network theory for polymers. As further deformation takes place this newly formed
solid is deformed. The solid that is subsequently formed is also born in a stress free
state. The crystallized solid can be thought of as a mixture of elastic solids with
different natural configurations. The stress free configuration of the solid fraction
born at some time t is the configuration of the body at the time t. If solidification
is initiated at time τs, in figure 2, let τ be some time later than τs at which
solidification is taking place. We assume that the thermodynamic quantities, the
internal energy and entropy (at time t) in the body due to the solid fraction born
at time τ is determined by the deformation gradient from the configuration of the
body at time τ to the current configuration at time t, i.e., Fκc(τ)

, while the internal
energy and entropy of the amorphous phase are determined by Fκpi(t)

, i = 1, . . . n.
through Bκpi(t)

, i = 1, . . . n. Note, in figure 2 we illustrate this with an amorphous
phase having a single relaxation mechanism. With these assumptions the internal
energy and entropy of the newly formed crystalline phase are given by

εc = εc(θ,Fκc(τ)
), (54)

ηc = ηc(θ,Fκc(τ)
). (55)

The above assumptions imply that the crystalline phase is an elastic solid. The
assumption of Material Frame Indifference places additional restrictions on the
form of εc and ηc in that they depend on Fκc(τ)

through the right Cauchy stretch
tensor, Cκc(τ)

, i.e.,
εc = εc(θ,Cκc(τ)

), (56)
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Figure 2. Natural configurations associated with the crystallizing fluid–solid mixture.

ηc = ηc(θ,Cκc(τ)
). (57)

The Helmholtz potential will also have the same dependence on Cκc(τ)
,

ψc = ψc(θ,Cκc(τ)
). (58)

In polymers, as we have discussed earlier, the anisotropy in the solid that is
formed depends on the orientation of the molecules in the melt at the time of
crystallization. The tensors Bκpi(τ)

, i = 1, . . . n, give us information about the
orientation of the molecules in the melt at time t = τ , albeit in an averaged
sense. If a melt can be described by a single relaxation mechanism, i.e., it has one
relaxation time associated with it, then the three principal directions of Bκp(τ)

give us the directions of the principal stretchs in the melt. Experiments suggest
that we can use these mutually perpendicular principal directions to determine the
directions of anisotropy in the solid. The principal directions can be quantified
by any two of the three eigenvectors of Bκp(τ)

, namely nκc(τ)
and mκc(τ)

(see
[59]). In the more general case wherein the melt is described by a number of
natural configurations, i.e., a number of relaxation mechanisms, the situation is
not as transparent. In this case the orientation of the molecules is represented by
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the tensors Bκpi(τ)
, i = 1, . . . n. This information can be used to determine the

orientation of crystalline phase in a number of ways, for e.g., the orientation of
the crystalline phase can be determined by the eigenvectors associated with one
of the n tensors, Bκpi(τ)

, i = 1, . . . n. This was done by Rao and Rajagopal [60]
while modeling crystallization in polyethylene terephthalate (PET) films, wherein
the behavior of PET was described using a model with two relaxation times.
In that work the orientation of the crystalline phase was determined from the
eigenvectors of the tensor Bκpn(t)

associated with the largest relaxation time, here
we shall do the same. The symmetry group of an orthotropic solid is determined
by three mutually perpendicular directions, and it is this form of anisotropy that
seems appropriate for the solid formed under conditions of unequal stretch in three
principal directions. For this reason, we assume that the elastic solid that is formed
at each instant is an orthotropic elastic solid. The three principal directions of the
orthotropic solid formed at time t = τ are determined by nκc(τ)

and mκc(τ)
and in

general can change with time. Thus we assume that the functional form for the
Helmholtz potential is consistent with that of an orthotropic solid with respect to
the configuration κc(τ). The directions associated with nκc(τ)

and mκc(τ)
are used

in order to incorporate the dependence of anisotropy in the elastic response of the
crystalline solid. The Helmholtz potential of an incompressible orthotropic elastic
solid depends on the first two invariants of the right Cauchy-Green stretch tensor,
,which we denote by IC , IIC , and the following scalars (see [66]):

J1 = nκc(τ)
·Cκc(τ)

nκc(τ)
, K1 = mκc(τ)

·Cκc(τ)
mκc(τ)

,

J2 = nκc(τ)
·C2

κc(τ)
nκc(τ)

, K2 = mκc(τ)
·C2

κc(τ)
mκc(τ)

, (59)

The most general form of the Helmholtz potential for an orthotropic elastic solid
can then be written as:

ψc = ψc(θ, IC , IIC , J1, J2,K1,K2), (60)

where the invariants depend on t and τ . It is worth noting here that this is not
the only way in which anisotropy in the solid that is formed can depend on the
fluid motion. Alternate ways of inducing the anisotropy can be easily included,
however, their forms will have to be motivated by experimental data. It should
be recognized that εc and ηc can also depend on the conditions in the melt at
the instant of formation through the eigenvalues or the invariants of the tensors
Bκpi(τ)

, i = 1, . . . n.
The entropy and internal energy for the mixture are assumed to be additive,

i.e., they take the form:

ε =

t∫
τs

εc
dα

dτ
dτ + iε + (1− α)εa, (61)
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η =

t∫
τs

ηc
dα

dτ
dτ + iη + (1− α)ηa, (62)

where iε is the interfacial energy per unit mass of the amorphous-crystalline mix-
ture and iη is the interfacial entropy per unit mass of the amorphous-crystalline
mixture. These interfacial components are added to take into account the presence
of phase boundaries. These phase boundaries will lead to a deviation of the prop-
erties of the mixture from that of the averaged properties of the pure amorphous
and crystalline phase. This is because their presence will change the structure of
the amorphous and crystalline regions in the vicinity of the interface. In polymers
this term is expected to be important as the crystalline lamellae are small and
there is a substantial amount of material in the interfacial region in between the
crystalline and amorphous regions (see [44], [18], [36]). Also, εa and ηa are as-
sumed to have the same form as that for the melt and are given by Eq. (25) and
Eq. (26) respectively. The Helmholtz potential for the mixture is then given by

ψ =
∫ t

τs

ψc
dα

dτ
dτ + iψ + (1− α)ψa. (63)

Note, that in the above equation for the Helmholtz potential for the mixture in
Eq. (61) and Eq. (62) for the internal energy and entropy of the mixture there is
an integral as the crystalline phase is formed gradually and not at an instant. In
addition the forms for εc, ηc and ψc can in general be different for the crystalline
material formed at different times.

Now we specify the rate of dissipation. There is dissipation in the material
due to the viscosity of the amorphous phase, on the other hand, the crystalline
phase formed is assumed to be elastic and hence there is no dissipation associated
with the deformation of the crystalline phase. The process of crystallization is an
entropy producing process. This can be discerned clearly from the experiments
carried out on the quiescent crystallization of polyethylene where the material
is first cooled till it crystallizes and is subsequently heated to a melt like state.
The temperatures at which the majority of the crystallization takes place is lower
than the temperature at which melting takes place, a clear indicator of a entropy
producing process as the state of the melt before and after the crystallization-
melting cycle is the same. We assume that the rate of dissipation can be split
into two parts, the first related to the dissipation due to the viscous effects in the
amorphous phase and the second related to the phase change, i.e.,

ζd = ζa + ζp, (64)

where ζa is the rate of dissipation due to viscous effects in the amorphous phase
and ζp is the rate of dissipation due to crystallization. We assume that both ζa

and ζp are individually non negative. We expect the rate of dissipation of the



386 I. J. Rao and K. R. Rajagopal ZAMP

amorphous phase, ζa to have a form similar to that for a purely amorphous phase
and therefore assume that it is given by

ζa = ζa(α, θ,Bκp1(t)
, . . . ,Bκpn(t)

,Dκp1(t)
, . . . ,Dκpn(t)

). (65)

Note that ζa in the above equation also depends on the crystallinity, α. As in the
case of the melt we stipulate that when the underlying natural configurations do
not change, i.e., when Dκpi(t)

are null tensors (Dκpi(t)
= 0, i = 1, ..n), then the

rate of dissipation due to viscous effects in the amorphous phase, ζa is identically
zero.

Next, we assume that ζp depends on the crystallinity, α, the rate of change
of crystallinity, α̇ and the temperature, θ and in addition it can depend on other
kinematic variables i.e.,

ζp = ζp(θ, α, α̇ . . . ) ≥ 0. (66)

The rate of dissipation due to crystallization, ζp, has to be exactly zero when no
crystallization is taking place, i.e.,

ζp

∣∣
α̇=0 = 0. (67)

Substituting the Helmholtz potential from Eq. (63) with ψa given by Eq. (27)
and ψc given by Eq. (60) and the forms for the rate of dissipation with ζa given
by Eq. (65) and ζp given by Eq. (66) into the reduced energy dissipation equation
, Eq. (14) we obtain(

T−
n∑

i=1

(1− α)2ρ
[
∂ψa

∂Ii
Bκpi(t)

+ 2
∂ψa

∂IIi
B2

κpi(t)

]

−2ρ


 t∫

τs

Fκc(τ)

∂ψc

∂Cκc(τ)

FT
κc(τ)

dα

dτ
dτ





 ·D+

n∑
i=1

(1− α)
(

2ρ

[
∂ψa

∂Ii
Bκpi(t)

+ 2
∂ψa

∂IIi
B2

κpi(t)

]
·Dκpi(t)

)
−

(
∂ψ

∂θ
+ η

)
θ̇+

ρ

(
ψa − ψc

∣∣
Cκ

c(t)
=I
− ∂iψ

∂α

)
α̇ = ζa + ζp ≥ 0. (68)

We shall look for a form for the stress that is sufficient to satisfy the above equation,
we shall assume that the stress is given by

T = −pI +
n∑

i=1

2(1− α)ρ
[
∂ψa

∂Ii
Bκpi(t)

+ 2
∂ψa

∂IIi
B2

κpi(t)

]
+

2ρ


 t∫

τs

Fκc(τ)

∂ψc

∂Cκc(τ)

FT
κc(τ)

dα

dτ
dτ


 , (69)
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and the entropy and Helmholtz potential are related through

∂ψ

∂θ
= −η. (70)

We also note that for a Helmholtz potential consistent with that of an orthotropic
elastic solid with ψc given by Eq. (60), we obtain the following representation

Fκc(τ)

∂ψc

∂Cκc(τ)

FT
κc(τ)

=
∂ψc

∂I1
Bκc(τ)

− ∂ψc

∂I2
B−1

κc(τ)
+ Fκc(τ)

(
∂ψc

∂J1
nκc(τ)

⊗ nκc(τ)
+

∂ψc

∂K1
mκc(τ)

⊗mκc(τ)
+

∂ψc

∂J2

(
nκc(τ)

⊗Cκc(τ)
nκc(τ)

+ Cκc(τ)
nκc(τ)

⊗ nκc(τ)

)
+

∂ψc

∂K2

(
mκc(τ)

⊗Cκc(τ)
mκc(τ)

+ Cκc(τ)
mκc(τ)

⊗mκc(τ)

))
FT

κc(τ)
. (71)

We define the partial stress in the amorphous phase through

Tai
= 2(1− α)ρ

[
∂ψa

∂Ii
Bκpi(t)

+ 2
∂ψa

∂IIi
Bκpi(t)

]
, i = 1, . . . n. (72)

Using Eq. (69), Eq. (70) and Eq. (72) in Eq. (68) we obtain

n∑
i=1

Tai
·Dκpi(t)

+ ρ

(
ψa − ψc

∣∣∣
Cκ

c(t)
=I
− ∂iψ

∂α

)
α̇ = ζα + ζp. (73)

For the forms selected for ψa, ψc, ζa and ζp it is clear that the following relation-
ships hold,

n∑
i=1

Tai
·Dκpi(t)

= ζa, (74)

ρ

(
ψa − ψc

∣∣∣
Cκ

c(t)
=I
− ∂iψ

∂α

)
α̇ = ζp (75)

Equation (74) places restrictions on the values that the tensors Dκpi(t)
, i = 1, .., n

can take. At this stage we invoke the assumption of maximization of dissipation
to determine the values of Dκpi(t)

, i = 1, .., n, and α̇ that are allowable. Stated
differently we choose values of Dκpi(t)

i = 1, .., n, that maximizes ζa satisfying
the constraints given by Eq. (74) and Eq. (21) and we choose α̇ such that ζp is
maximized subject to the constraint given by Eq. (75). Maximizing subject to the
above mentioned constraints we obtain the following equations

Tai
− β1i

∂ζa

∂Dκpi(t)

− β2iI = 0, i = 1, . . . , n, (76)
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where β1i and β2i are Lagrange multipliers associated with the constraints that are
enforced. At this stage we need to prescribe the thermodynamic functions in order
to proceed further with the derivation of an equation for Dκpi(t)

. For the internal
energy and entropy of the amorphous phase we use the same forms as the ones
used in the melt region, i.e., Eq. (41) and Eq. (42) respectively. For crystalline
materials there is not a significant change in the configurational entropy with
deformation while the internal energy does depend on the deformation, because
of which, we assume the following forms the internal energy and entropy of the
crystalline phase,

εc = εc(θ, IC , IIC , J1, J2,K1,K2), (77)

ηc = ηc(θ). (78)

We further assume that the internal energy can be split into a part that depends
on the temperature and a part that depends on the deformation.

εc = ε̂c(θ) + ε̃c(IC , IIC , J1, J2,K1,K2), (79)

and we use a simple polynomial form for the dependence of the internal energy on
the kinematical variables, consistent with that of a orthotropic elastic solid. The
specific form chosen is

εc = ε̂c(θ) +
1
2ρ

(µc(IC − 3) + µc1(J1 − 1)2 + µc2(K1 − 1)2), (80)

where µc, µc1 and µc2 are material moduli associated with the crystalline phase.
In addition, if the thermal component of the internal energy can be represented
as a linear function of the temperature in the temperature interval of interest the
internal energy takes the form:

εc = Ccθ + Ac +
1
2ρ

(µc(IC − 3) + µc1(J1 − 1)2 + µc2(K1 − 1)2), (81)

where Cc is the specific heat associated with the crystalline phase and Ac is a
constant. In general these material moduli can depend on the deformation in
the amorphous phase at the instant of crystallization through the tensors Bκpi(t)

i = 1, . . . n. The entropy for the crystalline phase is given by

ηc = Cc ln(θ) + Bc, (82)

where Bc is a constant. With the specification of these thermodynamic functions
the Helmholtz potential for the mixture is completely specified and is obtained by
substituting Eq. (41), Eq. (42) , Eq. (81) and Eq. (82) into Eq. (63) . The stress
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tensor for the mixture is given by substituting the Helmholtz potential into Eq.
(69) and using Eq. (71) to obtain:

T = −pI +
n∑

i=1

(1− α)
(
µiBκpi(t)

)
+

t∫
τs

µcBκc(τ)

dα

dτ
dτ+

2

t∫
τs

(
Fκc(τ)

(
µc1(J1 − 1)nκc(τ)

⊗ nκc(τ)
+ (µc2(K1 − 1)mκc(τ)

⊗mκc(τ)

)
FT

κc(τ)

)dα

dτ
dτ.

(83)

The form for Tai
is obtained from Eq. (72) as

Tai
= (1− α)µiBκpi(t)

. (84)

The rate of dissipation in the amorphous part of the amorphous-crystalline
mixture due to viscous effects, ζa, is assumed to be

ζa =
n∑

i=1

(1− α)2νiDκpi(t)
·Bκpi(t)

Dκpi(t)
. (85)

This form is different from Eq. (45) for a purely amorphous melt in that the rate
of dissipation is proportional to the amount of amorphous material remaining.
Also, the formation of a crystalline phase affects the mobility of the molecules
in the amorphous phase as the molecules are pinned down due to the crystalline
phase. This manifests itself at the macroscopic level as an increase in the relaxation
time of the amorphous phase. We incorporate this into the model by making the
viscosity of the amorphous phase a function of the crystallinity, i.e.,

νi = νi(θ, α,Bκpi(t)
), i = 1, . . . , n. (86)

Now, using the form for given ζa by Eq. (85) and utilizing Eq. (84) and Eq. (76)
we obtain equations for Dκpi(t)

, i = 1, . . . , n, which are identical to Eq. (48) except
for the viscosity which is given by Eq. (86) and depends on the crystallinity. In a
manner identical to that used for the melt, from Eq. (48), we obtain rate equations
for Bκpi(t)

, i = 1, . . . , n:

∇
Bκpi(t)

:= Ḃκpi(t)
− LBκpi(t)

−Bκpi(t)
LT =

µi

νi

(
3

tr(B−1
κpi(t)

)
I−Bκpi(t)

)

, i = 1, . . . , n. (87)

Note, Eq. (87) is identical to Eq. (49) with the exception that the viscosity is now
given by Eq. (86) and is a function of crystallinity. This completes the specification
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of an evolution equation for the natural configuration of the amorphous part in
the mixture region.

The internal energy for the mixture is given by Eq. (61) with εa and εc given
by Eq. (37) and Eq. (77) respectively. The energy equation for the mixture is
derived by substituting the internal energy into the energy equation, Eq. (8), and
using Eq. (69) and Eq. (71),

ρ

(
α

∂εc

∂θ
+ (1− α)

∂εc

∂θ

)
θ̇ + divq =

n∑
i=1

Tai
·L + ρ

(
εa − εc − ∂iε

∂α

)
α̇ + ρr. (88)

The above equation can be further simplified by substituting the specific forms for
the internal energies given by Eq. (41), Eq. (81) and Tai

, i = 1, . . . , n given by
Eq. (84) to obtain:

ρ(αCc + (1− α)Ca) + divq =
n∑

i=1

(1− α)µBκpi(t)
· L+

ρ

(
Caθ + Aa − Ccθ −Ac − ∂iε

∂α

)
α̇ + ρr. (89)

This completes the development of the equations for the mixture region. In the
following sections we shall look more closely at the activation criterion indicating
the onset of crystallization and the derivation of an equation for the rate at which
crystallization takes place.

Initiation criterion

The initiation criterion for crystallization and the crystallization rate or the growth
criterion are crucial ingredients that go into a crystallization model. The initiation
criterion indicates the conditions in the melt at which crystallization begins while
the growth criterion is an equation which gives the amount of material converted
into the crystalline phase. We use Eq. (75) to derive both these equations. Note,
in Eq. (75) the term in the brackets on the left hand side is the difference between
the Helmholtz potential of the amorphous phase and the crystalline phase and this
term acts as the driving force for crystallization. In the absence of this driving
force crystallization will not take place. We define,

Df :=

(
ψa − ψc

∣∣∣
Cκ

c(t)
=I
− ∂iψ

∂α

)
, (90)

where Df is defined to be the driving force behind the phase transition. This is
analogous to the stress in Eq. (74) which acts the driving force to change the
natural configuration of the amorphous phase.
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When crystallization is initiated the crystallinity is identically zero and the
driving force is given by

Df

∣∣∣
α=0

:=

(
ψa − ψc

∣∣∣
Cκ

c(t)
=I
− ∂iψ

∂α

∣∣∣∣
α=0

)
. (91)

We define the activation function through the driving force as

φ
(
θ,Bκp1(t)

,Bκp2(t)
, . . . ,Bκpn(t)

)
= Df

∣∣∣
α=0

−A, (92)

where A is the initiation barrier and is a positive constant. Note that because of
the forms chosen for ψa and ψc together with the assumption that the crystalline
material is born in a stress free state the activation criterion depends on the
temperature, θ, and the tensors Bκpi(t)

, i = 1, 2 . . . n. Crystallization cannot take
place for negative values of the activation function as the driving force has not
exceeded the initiation barrier, i.e.,

φ
(
θ,Bκp1(t)

,Bκp2(t)
, . . . ,Bκpn(t)

)
< 0⇒ α̇ = 0, (93)

When the temperature, θ, and Bκpi(t)
, i = 1, 2 . . . n, at a material point are such

that
φ

(
θ,Bκp1(t)

,Bκp2(t)
, . . . ,Bκpn(t)

)
= 0, (94)

crystallization is about to begin and that particular material point is on the acti-
vation surface. Now if θ, and Bκpi(t)

, i = 1, 2 . . . n, are varied such that the value
of φ decreases, crystallization will not be initiated. If, however θ, and Bκpi(t)

,
i = 1, 2 . . . n are varied such that φ increases and exceeds zero, crystallization is
initiated. The activation criterion for the initiation of crystallization can be stated
more precisely as follows:

φ
(
θ,Bκp1(t)

,Bκp2(t)
, . . . ,Bκpn(t)

)
> 0 or

φ
(
θ,Bκp1(t)

,Bκp2(t)
, . . . ,Bκpn(t)

)
= 0,

∂φ

∂θ
θ̇ +

n∑
i=1

∂φ

∂Bκpi(t)

· Ḃκpi(t)
> 0.

(95)

The above equation is similar to the strain space loading criterion in plasticity
(see [48]). This completes the specification of the initiation criterion. In the next
section we shall outline the methodology used to derive the crystallization rate.
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Crystallization rate

In the literature devoted to polymer physics, crystallization kinetics are usually
studied using an Avrami type approach which is based on the notion of filling space
through the nucleation and growth of one phase into another. In this approach it is
assumed that nucleation is initiated at certain locations known as nucleation sites.
After the nucleation has taken place the growth of the crystalline material at these
nucleation sites is prescribed by a growth rate. The nucleation rate and the growth
rate are usually prescribed as functions of time. With these two inputs it is possible
to derive equations governing the crystallization kinetics. The Avrami approach
has however some significant draw backs. In such a theory there is no notion of an
activation criterion, making it difficult to apply the equation to problems where
the exact instant when crystallization is initiated is not known. This is specially
true of non-isothermal problems. Another drawback is the lack of connection with
the thermodynamic quantities in the problems such as the internal energy and
entropy. Due to this, the deformation of the melt, which influences the entropy of
the melt, cannot be introduced into the theory in a consistent manner. Also, there
are certain polymers such as polyethylene terephthalate which at temperatures
just above the glass transition temperature crystallize only due to deformation.
The kinetics of such crystallization does not follow the behavior predicted by the
Avrami equation, hence it is not general enough to capture the various types of
crystallization behavior observed in polymers. For these reasons we do not pursue
this approach here (more information on the Avrami approach can be found in
[43], [77] and [15]).

After the initiation of crystallization we use the assumption of maximization
of dissipation along with Eq. (75) to determine an equation for the amount of
crystalline material formed. Re-writing Eq. (75) and using Eq. (90) we obtain

ρDf α̇ = ζp. (96)

The equation for the crystallization rate, α̇, is obtained by solving Eq. (96) for α̇.
As Eq. (96) is in general nonlinear, more than one value of α̇ are possible. The
value of α̇ chosen is the one that maximizes the rate of dissipation. The exact form
for the rate of crystallization depends on the specific form chosen for ζp, the choice
of which depends on the specific polymer being modeled. The rate of dissipation
due to crystallization, ζp, is expected to depend on the crystallinity, α, the rate of
change of crystallinity, α̇, and in general it can also depend on other variables like
temperature and other kinematical variables as well, i.e.,

ζp = ζp(α, α̇, θ,Bκp1(t)
,Bκp2(t)

, . . .Bκpn(t)
). (97)

Note, ζp has to be exactly zero when no crystallization is taking place, this can be
written as

ζp

∣∣∣
α̇=0

= 0. (98)
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To derive the specific rate equations for crystallization, we need to prescribe a form
for the rate of dissipation. We shall derive a specific rate equation for α̇ when we
formulate a model and apply it to bi-axial extension. Here it should be noted that
the Avrami equation can be directly obtained by choosing appropriate forms for
the rate of dissipation.

Transition to solid-like behavior

The transition to solid-like behavior takes place when the mobility of the molecules
in the amorphous phase decreases. This can happen because of a drop in the
temperature or if the amount of crystalline phase is sufficiently high to pin down
the motion of the molecules. The amount of material crystallized is determined
form the rate equation derived from Eq. (96). The amount of crystalline material
formed and the temperature have a bearing on the behavior of the amorphous
phase. The viscosity of the amorphous phase is a function of both the temperature
and crystallinity, with the viscosity increasing with an increase in crystallinity and
also increasing with a decrease in temperature. Consequently the relaxation time,
given by Eq. (50) also increases with an increase in crystallinity and a decrease in
the temperature.

The amorphous phase has been modeled as a viscoelastic fluid. These fluid
models transition to that of an elastic solid for large values of relaxation time (or
large values of viscosity for finite values of the shear modulus). This is evident
from Eq. (87), as νi →∞ for finite values of µi, Eq. (87) reduces to

∇
Bκpi(t)

:= Ḃκpi(t)
− LBκpi(t)

−Bκpi(t)
LT = 0, , i = 1, 2 . . . n. (99)

The above equation is also obtained by taking the material time derivative of the
tensors Bκpi(t)

, i = 1, 2 . . . n, keeping the reference configuration fixed, which is the
case for an elastic solid. The underlying natural configurations of the amorphous
phase do not evolve and the response of the amorphous material is that of a mixture
of isotropic elastic solids, the specific model is given by the form chosen for the
Helmholtz potential, i.e., by the elastic response embedded in the viscoelastic fluid
model. It is important to note that increasing the viscosity in a Newtonian fluid
does not give a solid model but only a fluid with a large viscosity and thus doing
so is an inaccurate way to model the transition from a fluid like behavior to a solid
like behavior. Also, not all viscoelastic fluid models will transition to an elastic
solid model for large values of relaxation time. After the transition to a solid is
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complete the stress is given by

T = −pI +
n∑

i=1

2(1− α0)ρ
[
∂ψa

∂Ii
Bκpi(t)

+ 2
∂ψa

∂IIi
B2

κpi(t)

]
+

2ρ


 τe∫

τs

Fκc(t)

∂ψc

∂Cκc(t)

FT
κc(t)

dα

dτ
dτ


 , (100)

where α0 is the final crystallinity in the material and τe is the time at which
crystallization ended. The final behavior of the semi-crystalline material is that of
a mixture of an isotropic elastic solid and an anisotropic elastic solid. The energy
equation for the solid with internal energies of the amorphous and crystalline
phases given by Eq. (37) and Eq. (77) is

ρ

(
α

∂εc

∂θ
+ (1− α)

∂εa

∂θ

)
θ̇ + divq =

n∑
i=1

Tai
· L + ρr. (101)

With the specific forms for the internal energies given by Eq. (41) and Eq. (81)
and Tai

given by Eq. (84), the energy equation reduces to

ρ(αCc + (1− α)Ca)θ̇ + divq =
n∑

i=1

(1− α)µiBκpi(t)
· L + ρr. (102)

Equation (88) is different from Eq. (89) as crystallization has ceased and thus the
contribution due to the latent energy term is zero. This completes the development
of the equations to describe the process of crystallization.

Application of the model to bi-axial extension

In this section we illustrate the application of the model to bi-axial extension. First
we develop a simplified model containing all the main features of crystallization and
apply it to a problem of bi-axial extension. For the model used in this calculation
we assume that the amorphous phase has a single relaxation time, i.e., a single
natural configuration associated with it. For this case the stress in the melt is
given by

T = −pI + µBκp(t)
, (103)

note that since there is a single relaxation mechanism, we do not use the subscript
i as in Eq. (43). The evolution of the natural configuration is given by

∇
Bκp(t)

:= Ḃκp(t)
− LBκp(t)

−Bκp(t)
LT =

µ

ν

(
3

tr(Bκp(t)
)
I−Bκp(t)

)
, (104)
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where the viscosity, ν, for polymer melts is commonly described through the fol-
lowing relationship (see [40])

ν = ν0 exp
(

Lθ

(
1
θ
− 1

θR

))
. (105)

In the above equation, ν0 is the viscosity at a given reference temperature, θR, and
Lθ is a constant. The energy equation is given by Eq. (52), and in this example we
neglect the effect of radiant heating. After the onset of crystallization the stress
tensor takes the form

T = −pI + (1− α)(µBκp(t)
) +

t∫
τs

µcBκc(τ)

dα

dτ
dτ+

2

t∫
τs

(
Fκc(τ)

(
µc1(J1 − 1)nκc(τ)

⊗ nκc(τ)
+ µc2(K2 − 1)mκc(τ)

⊗mκc(τ)

)
FT

κc(τ)

) dα

dτ
dτ.

(106)

The unit vectors nκc(τ)
and mκc(τ)

depend on the directions of stretch in the
amorphous phase through the eigenvalues of Bκp(τ)

at the instant at which the
crystals were formed, as has been described in the earlier sections. The equation
for the evolution of the natural configuration of the amorphous phase after the
onset of crystallization is given by Eq. (104), except that the viscosity is now a
function of both the temperature and crystallinity and is given by

ν = ν0 exp
(

Lθ

(
1
θ
− 1

θR

))
exp(Lαα), (107)

where Lα is a constant. This dependence of the viscosity on the temperature
and crystallinity is similar to the form used in [29]. The energy equation for the
mixture is given by Eq. (89). The activation function, φ, takes the form

φ(θ,Bκp(t)
) =

(
θ0

m − θ

θ0
m

)
− 1

∆Hf

∂iψ
∂α

∣∣∣∣
α=0

+
µ(tr(Bκp(t)

)− 3)

2ρ∆Hf
, (108)

where ∆Hf is the latent heat. Note, in the above equation the latent energy near
the vicinity of the equilibrium melting temperature has been derived assuming
that the energy and entropy of the two phases are independent in this temperature
range (see [27]). To derive an equation for the rate of crystallization, we need to
prescribe a form for the rate of dissipation due to crystallization. The form chosen
for this example is

ζp =
α̇m

Ḡ(α0 − α)k
, (109)
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where the constant α0 represents the maximum crystallinity and Ḡ, k and m
are constants. Note when the crystallinity approaches α0 the rate of dissipation
becomes very large effectively curtailing any further crystallization. In addition
the form chosen for ζp satisfies the condition described by Eq. (98). For this choice
for the rate of dissipation the rate of crystallization takes the form

α̇ = G(α0 − α)k/m−1

((
θ0

m − θ

θ0
m

)
− 1

∆Hf

∂iψ
∂α

+
µ(tr(Bκp(t)

)− 3)

2ρ∆Hf

)1/m−1

,

(110)
where G is a constant. At the end of crystallization the stress in the mixture is
given by Eq. (106) with upper limit of the integral replaced by τe.

Figure 3. Stretch vs. time for T
(0)
11 /µ = 0.05, 0.1, 0.15, 0.2.

The film is stretched by subjecting it to a constant force in two perpendicular
directions (say the x and y direction) while the third surface is traction free. In
addition, the film also loses thermal energy to its environment, the magnitude of
which is determined by a prescribed heat transfer coefficient. The initial temper-
ature of the film is above the crystallization temperature in these calculations, we
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Figure 4. Temperature vs. time for T
(0)
11 /µ = 0.05, 0.1, 0.15, 0.2.

take it to be 160◦C, therefore the film is initially an amorphous melt. As the film
cools and is simultaneously being deformed, crystallization is initiated. This prob-
lem is similar to what is commonly encountered in film blowing and film stretching
applications wherein the film is simultaneously being cooled and stretched during
crystallization. In both these processes, the film is stretched in two perpendicular
directions while being cooled. The kinematics for homogenous bi-axial extension
is given by

x = Λ(t)X, y = Λ(t)Y, z =
Z

Λ(t)2
, (111)

where X,Y, Z are the co-ordinates in undeformed configuration, x, y, z are the
co-ordinates in the deformed configuration and Λ(t) is the stretch. The velocity
gradient is given by

L = diag

(
Λ̇
Λ

,
Λ̇
Λ

,−2
Λ̇
Λ

)
. (112)

The other kinematical tensors, namely Bκp(t)
, Fκc(τ)

, Cκc(τ)
are also diagonal.
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Figure 5. Crystallinity vs. time for T
(0)
11 /µ = 0.05, 0.1, 0.15, 0.2.

The tensors Fκc(τ)
and Cκc(τ)

are given by

Fκc(τ)
= diag

(
Λ(t)
Λ(τ)

,
Λ(t)
Λ(τ)

,

(
Λ(τ)
Λ(t)

)2
)

, (113)

Cκc(τ)
= diag

((
Λ(t)
Λ(τ)

)2

,

(
Λ(t)
Λ(τ)

)2

,

(
Λ(τ)
Λ(t)

)4
)

. (114)

Since the film is stretched equally in two perpendicular directions, we need consider
the stress in any one of the two directions, here we consider the x direction. As
the film is stretched by the application of a constant force, ignoring inertial effects,
the stress is given by

T
(0)
11 =

F

wh
=

T11

Λ
, (115)

where T
(0)
11 is the stress per unit initial area, w is the initial width of the film

perpendicular to the x direction and h is the initial thickness of the film and F
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Figure 6. Stretch vs. time for H/ρCh = .01, .02, .03, .04.

is the applied force. Initial conditions on Λ(t) are obtained by recognizing that
initially the film is an amorphous melt (viscoelastic material) and on the sudden
application of a force, it reacts instantaneously like an elastic solid. The initial
value of Λ(t), i.e., Λ(0) is given as a solution to the following equation

T11 = T
(0)
11 Λ(0) = µ

(
Λ(0)2 − 1

Λ(0)4

)
. (116)

The energy equation for this problem simplifies to

dθ

dt
= −HΛ2

ρCh
(θ − θa) +

∆Hf

C
α̇ +

µ(1− α)Bκp(t)
· L

C
, (117)

where C is an averaged value for the specific heat, H is the heat transfer coefficient
and θa is the ambient temperature (in this work θa = 25◦C). Since our aim here
is to illustrate the general behavior of the model for this calculation, we ignore
the affects of the interfacial energy on the crystallization kinetics. The governing
system of integro-differential equations (Eq. (104), Eq.(106), Eq.(110), Eq.(115)
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Figure 7. Temperature vs. time for H/ρCh = .01, .02, .03, .04.

and Eq. (117) are solved numerically. The material constants used are consistent
with values for polyethylene: C = 2.96kJ/kg0C, ρ = 900kg/m3, θ0

m = 141◦C,
∆Hf = 275kJ/kg, α0 = 0.3, µ = 2.0E + 5 Pa, ν0 = 2.0E + 5 Pa-s, θR = 150◦C,
m = 4/3, n = 1/3, G = 4000s−1 Lθ = 5000 oK, Lα = 30, µc

µ = 10, µc1
µ = 2,

µc2
µ = 2. The initial thickness of the film, h, is taken to be 1 mm. The results are

discussed in the next section.

Results and discussion

For the problem under consideration we present two sets of results. For the first
set of results we vary the stretching force and observe its effect on the stretch, Λ,
temperature, θ and crystallinity, α. For these calculations H/ρhC = 0.025s−1. A
plot of the stretch versus time is shown in figure 3. When the material is subject
to the stretching force it instantaneously acts like an elastic solid, therefore the
stretch at time t = 0 is greater than unity. Initially, the stretch increases, until the
temperature drops and crystallization begins. After the onset of crystallization,
the film becomes stiffer, finally deformation ceases and the material becomes a
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Figure 8. Crystallinity vs. time for H/ρCh = .01, .02, .03, .04.

solid. For higher loads, the value of the final stretch increases. A plot of the tem-
perature versus time is shown in figure 4. The temperature decreases steadily until
crystallization begins. After the onset of crystallization latent energy is released
and the temperature profile exhibits a plateau associated with crystallization. Af-
ter the completion of crystallization, the temperature continues to drop towards
the ambient temperature. Figure 5 shows the evolution of crystallinity with time,
for the four different cases. The crystallinity increases monotonically with time.
We note that the plateau in the temperature curves, and the decrease in the rate
of stretch coincide with the onset of crystallization. For higher stretching forces,
the film stretches more rapidly, enhancing the heat transfer resulting in the earlier
onset of crystallization. Figures 6, 7 and 8 present the stretch, temperature and
crystallinity for four different cooling rates with T

(0)
11 /µ = 0.05. At higher cooling

rates, crystallization is initiated earlier and the final stretch of the film is lower
than the value for lower cooling rates. These results are consistent with what has
been observed in the literature for film blowing and film stretching(see [28], [7]).
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Summary

In this paper we have developed a general framework to construct models that
can describe crystallization in polymers. The framework is general enough that
models capable of describing the crystallization behavior of different polymers can
be easily generated. Models applicable to specific polymers have been developed
within this framework and have been used to solve different boundary value prob-
lems. The framework is built on the idea of evolving natural configurations and
the maximization of the rate of dissipation. Specific models are constructed by
specifying forms for the internal energy, entropy and rate of dissipation. The re-
duced energy-dissipation equation is used to obtain the constitutive relation for the
stress and the maximization of the rate of dissipation is used to obtain equations
for the evolution of the underlying natural configuration and the rate of crystal-
lization. The behavior of the amorphous phase is described by the use of rate
type models while the crystalline phase is described by the use of models consis-
tent with those for an anisotropic elastic solid. The anisotropy in the mechanical
behavior of the crystalline phase depends on the deformation in the amorphous
phase at the instant of formation. The activation criterion that indicates the onset
of crystallization is defined in terms of the driving force behind the phase transi-
tion, namely, the difference in the Helmholtz potential between the amorphous and
crystalline phase. Finally, it should be noted that the exact mechanisms governing
the details of polymer crystallization are still not well understood, the framework
presented here is general enough that most specific details can be incorporated
into the model in a direct way.
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