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The Looijenga–Lunts–Verbitsky Algebra
and Verbitsky’s Theorem

Alessio Bottini

Abstract. In these notes we review some basic facts about the LLV Lie algebra.
It is a rational Lie algebra, introduced by Looijenga–Lunts and Verbitsky, acting
on the rational cohomology of a compact Kähler manifold. We study its structure
and describe one irreducible component of the rational cohomology in the case of
a compact hyperkähler manifold.

1. Introduction

1.1. Motivation

In the papers [7] and [12] Looijenga–Lunts and Verbitsky introduce and study a Lie
algebra gtot(X) associated to a Kähler manifold X. It is defined as a Lie subalgebra
of the graded endomorphism algebra End(H∗(X,Q)) of the rational cohomology.
Roughly speaking, if X is a hyperkähler manifold, the LLV algebra is generated by
all the images of the sl2-representations on H∗(X,Q) coming from Kähler classes
with respect to every complex structure on X.

Recently, the LLV algebra has found some interesting applications to the theory
of hyperkähler manifolds. For example, in [4] the authors study how the cohomology
of X decomposes in irreducible gtot(X) representations. As a consequence, they
compute Hodge numbers for hyperkähler manifolds of the known deformation type.
See also [9] for more details on this.

Another striking application of the LLV algebra is due to Taelman [10]. He
shows that an equivalence between the bounded derived categories of two hy-
perkähler varieties

Φ : Db(X) ∼− �� Db(Y )

induces an isomorphism between the corresponding LLV algebras. Moreover, the
induced isomorphism ΦH : H∗(X,Q) ∼− �� H∗(Y,Q) in cohomology is equivariant
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with respect to the natural actions. This implies the existence of a “rational Mukai
lattice” preserved under derived equivalences. See [1] for an overview of these results.

1.2. Basic Definitions

Let V =
⊕

k∈Z
Vk be a finite dimensional graded vector space over a field F of

characteristic 0, and denote by h the operator:

h|Vk
= k · id.

Definition 1.1. Let e : V �� V be a degree 2 endomorphism. We say e has the Lef-
schetz property if

ek : V−k
�� Vk

is an isomorphism.

Remark 1.2. The degree two operators with the Lefschetz property form a Zariski
open subset of End2(V ).

Theorem 1.3. (Jacobson–Morozov, [6, Theorem 3]) An operator e has the Lefschetz
property if and only if there exists a unique degree −2 endomorphism f : V �� V
such that

[e, f ] = h.

Moreover, if L ⊂ End(V ) is a semisimple Lie subalgebra and e, h ∈ L, then f ∈ L.

We say that the triple (e, h, f) is an sl2-triple. The reason is that we can define
a representation sl2(F) ��End(V ) of the Lie algebra sl2(F) on the vector space V
as follows

(
0 1
0 0

)
� �� e,

(
1 0
0 −1

)
� �� h,

(
0 0
1 0

)
� �� f.

In the rest of these notes, we will mostly be interested in the graded rational
vector space V = H∗(X,Q)[N ], where X is a compact Kähler manifold of dimension
N . Here [m] indicates the shift by m, so that V0 = HN (X,Q). To any class a ∈
H2(X,Q) we can associate the operator in cohomology obtained by taking cup
product

ea : H∗(X,Q) ��H∗(X,Q), ω � �� a.ω.

The operator h becomes

h|Hk(X,Q) := (k − N)id.

From Theorem 1.3 we see that if ea has the Lefschetz property (for example if a
is a Kähler class), there is an operator fa of degree −2 that makes (ea, h, fa) an
sl2-triple. Moreover, the map

f : H2(X,Q) ��� End−2(H∗(X,Q)),

that sends a to the operator fa is defined on a Zariski open subset and rational.



Vol. 90 (2022) The Looijenga–Lunts–Verbitsky Algebra 405

Remark 1.4. If a ∈ H1,1(X,Q) is a Kähler class, it follows from standard Hodge
theory that everything can be defined at the level of forms. The dual operator is
fa = ∗−1ea∗, where ∗ is the Hodge star operator. The sl2-action preserves the
harmonic forms, so it induces an action on cohomology.

Definition 1.5. ([7,12]) Let X be a compact Kähler manifold. The total Lie algebra
gtot(X) of X is the Lie algebra generated by the sl2-triples

(ea, h, fa),

where a ∈ H2(X,Q) is a class with the Lefschetz property.

The following is a general result about this Lie algebra for compact Kähler
manifolds. Denote by φ the pairing on H∗(X,C) given by

φ(α, β) = (−1)q

∫

X

α.β,

if α has degree N + 2q or N + 2q + 1.

Proposition 1.6. ([7, Proposition 1.6]) The Lie algebra gtot(X) is semisimple and
preserves φ infinitesimally. Moreover, the degree-0 part gtot(X)0 is reductive.

1.3 Now let X be a compact hyperkähler manifold of complex dimension 2n. In
this case, the Lie algebra gtot(X) is also called the Looijenga-Lunts-Verbitsky Lie
algebra. It is well known that for each hyperkähler metric g on X we get an action
of the quaternion algebra H on the real tangent bundle TX. This means that we
have three complex structures I, J, K such that

IJ = −JI = K. (1.1)

To each of these complex structures we can associate Kähler forms ωI := g(I(−), −),
ωJ := (J(−), −), ωK := g(K(−), −) and holomorphic symplectic forms σI = ωJ +
iωK , σJ = ωK + iωI , σK = ωI + iωJ .

Definition 1.7. The characteristic 3-plane F (g) of the metric g is

F (g) := 〈[ωI ], [ωJ ], [ωK ]〉 = 〈[ωI ], [�σI ], [�σI ]〉 ⊂ H2(X,R).

Definition 1.8. ([11]) Denote by gg ⊂ End(H∗(X,R)) the Lie algebra generated by
the sl2-triples (ea, h, fa) where a ∈ F (g).

Remark 1.9. This Lie algebra is generated by the three sl2-triples associated to the
classes [ωI ], [ωJ ], [ωK ]. Indeed, from the discussion in the following section we will
see that the subalgebra generated by these three sl2-triples is semisimple. From the
Jacobson-Morozov Theorem and the linearity of e : H2(X,R) �� End(H∗(X,R)) we
conclude that it contains every sl2-triple (ea, h, fa) with a ∈ F (g).

2. The Algebra Associated to a Metric

2.1 In this section we study the smaller algebra gg and its action on cohomology.
These results are due to Verbitsky [11], see also [5, Proposition 24.2], and [7, Propo-
sition 4.4].
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We start with a general algebraic construction. Let H be the quaternion algebra.
As a real vector space it is generated by 1, I, J, K, where I, J, K satisfy the relations
(1.1). We denote by H0 the pure quaternions, i.e. the linear combinations of I, J, K.

Let V be a left H-module, equipped with an inner product

〈−, −〉 : V × V ��R,

and assume that I, J, K act on V via isometries. The H-action gives three complex
structures I, J, K on V , satisfying the relations (1.1). Consider the forms

ωI = 〈I(−), −〉,
ωJ = 〈J(−), −〉,
ωK = 〈K(−), −〉

and the holomorphic symplectic forms σI = ωJ +iωK , σJ = ωK+iωI , σK = ωI +iωJ .

Remark 2.1. Note that the operators eλ for λ = ωI , ωJ , ωK have the Lefschetz
property; the dual operator is given by fλ = ∗−1eλ∗, where ∗ is the Hodge star
operator on Λ•V ∗ induced by the inner product.

Definition 2.2. Let g(V ) ⊂ End(
∧•

V ∗) be the Lie algebra generated by the sl2-
triples

(eλ, h, fλ)λ=ωI ,ωJ ,ωK
,

where h is the shifted degree operator.

In particular, this definition makes sense for the rank one module H equipped
with the standard inner product. This gives a Lie algebra g(H) ⊂ End(

∧•
H∗). We

denote by g(H)0 the degree-0 component of g(H) (here the degree is viewed as an
endomorphism of the graded vector space). It is a Lie subalgebra, and we denote it
by g(H)′

0 := [g(H)0, g(H)0] its derived Lie algebra.

Theorem 2.3. With the above notation we have the following.
(1) There is a natural isomorphism g(V ) 	 g(H).
(2) There is an isomorphism g(H) 	 so(4, 1).
(3) The algebra decomposes with respect to the degree as

g(H) = g(H)−2 ⊕ g(H)0 ⊕ g(H)2.

Furthermore, g(H)±2 	 H0 as Lie algebras, and g(H)0 = g(H)′
0 ⊕ Rh with

g(H)′
0 	 H0; this last isomorphism is compatible with the actions on

∧•
V ∗.

Proof. (1) Since 〈−, −〉 is H-invariant, we can find an orthogonal decomposition

V = H ⊕ · · · ⊕ H.

Taking exterior powers we get
∧•

V ∗ =
∧•

H∗ ⊗· · ·⊗∧•
H∗. This gives an injective

map g(H) �� End(
∧•

V ∗), given by the natural tensor product representation. It is
a direct check that the image of this morphism is exactly the algebra g(V ).

(2) Consider the subrepresentation W ⊂ ∧•
H∗ given by

W =
0∧
H∗ ⊕ 〈ωI , ωJ , ωK〉 ⊕

4∧
H∗.
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We equip it with the quadratic form given by setting
∧0

H∗ ⊕ ∧4
H∗ to be a hyper-

bolic plane, orthogonal to the 3-plane, and {ωI , ωJ , ωK} to be an orthonormal basis
of the 3-plane. By a direct computation we can see that the action of g(H) respects
infinitesimally this quadratic form. This gives a map

g(H) �� so(W ) 	 so(4, 1), (2.1)

that we next show to be an isomorphism.
Since W has dimension 5, the Lie algebra so(W ) has dimension 10. Now con-

sider the following 10 elements of g(H):

h, eI , eJ , eK , fI , fJ , fK , KIJ , KIK , KJK ,

where KIJ := [eI , fJ ], KIK = [eI , fK ] and KJK = [eJ , fK ]. Verbitsky [11] showed
that KIJ acts like the Weil operator associated with the Hodge structure on

∧•
H∗

given by K, and similarly KJK and KIK . This means that it acts on a (p, q) form
with respect to K as multiplication by i(p − q). It follows that the ten operators
above are linearly independent over W , hence the map is surjective. Moreover they
generate g(H) as a vector space. In fact, they generate g(H) as a Lie algebra, and
one has the following relations (see [11]):

[Kλ,μ, Kμ,ν ] = Kλ,ν , [Kλ,μ, h] = 0,

[Kλ,μ, eμ] = 2eλ, [Kλ,μ, fμ] = 2fλ,

[Kλ,μ, eν ] = 0, [Kλ,μ, fν ] = 0,

where λ, μ, ν ∈ {I, J, K} and ν �= λ, ν �= μ. This implies that they are a basis of
g(H), hence the map (2.1) is an isomorphism.

Point (3) follows using this explicit basis. Indeed we have

g(H)−2 = 〈fI , fJ , fK〉, g(H)2 = 〈eI , eJ , eK〉, and

g(H)0 = 〈KIJ , KJK , KIK〉 ⊕ Rh.

In particular, we have:

g(H)′
0

∼− �� H0,

KIJ
� ��K,

KJK
� �� I,

KIK
� �� J.

Since I, J, K ∈ H0 act on
∧•

H∗ as Weil operators for the corresponding complex
structures on H, the isomorphism is compatible with the actions. �

Now we can compute the Lie algebra gg. As above we denote by (gg)0 the
degree-0 part, and by (gg)′

0 := [(gg)0, (gg)0] its derived Lie algebra.

Proposition 2.4. Let (X, g) be a hyperkähler manifold with a fixed hyperkähler met-
ric.
(1) There is a natural isomorphism of graded Lie algebras gg 	 g(H). In particular

gg 	 so(4, 1).
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(2) The semisimple part (gg)′
0 acts on H∗(X,R) via derivations.

Proof. (1). Consider the Lie subalgebra ĝg ⊂ End(Ω•
X), generated by the sl2-triples

(ea, h, fa) with a ∈ F (g), at the level of forms (in particular fa = ∗−1ea∗). From The-
orem 2.3, we see that for every point x ∈ X there is an inclusion g(H) �

� �� End(Ω•
X,x).

This gives an inclusion g(H) � � ��
∏

x∈X End(Ω•
X,x). It follows from the definitions

that the two algebras g(H) and ĝg are equal as subalgebras of
∏

x∈X End(Ω•
X,x).

Since the metric g is fixed, the sl2-triples (ea, h, fa) preserve the harmonic forms
H∗(X), and so does ĝg. Since H∗(X) 	 H∗(X,R) we get a morphism

g(H) 	 ĝg
�� gg.

This map is surjective, because the image contains the sl2-triples that generate gg.
Moreover, by explicit computations similar to the proof of Theorem 2.3, we can see
that dim gg ≥ 10. Hence the map is an isomorphism.

(2). From the previous proposition we have an isomorphism compatible with
the actions on cohomology

(gg)′
0 	 g(H)′

0 	 H0.

Hence, it suffices to prove the statement for the action of I, J, K. Each of them
gives a complex structure, and acts as the Weil operator on the associated Hodge
decomposition. So, the action on (p, q) forms is given by multiplication by i(p − q),
which is a derivation. �

3. The Total Lie Algebra

The goal of this section is to prove the following result due to Looijenga and Lunts
[7, Proposition 4.5] and Verbitsky [12, Theorem 1.6].

Theorem 3.1. Let X be a hyperkähler manifold. With the above notation, we have
the following.
(1) The total Lie algebra gtot(X) lives only in degrees −2, 0, 2, so it decomposes

as:

gtot(X) = gtot(X)−2 ⊕ gtot(X)0 ⊕ gtot(X)2.

(2) There are canonical isomorphisms gtot(X)±2 	 H2(X,Q).
(3) There is a decomposition gtot(X)0 = gtot(X)′

0 ⊕ Qh with gtot(X)′
0 	

so(H2(X,Q), q), where q is the Beauville–Bogolomov–Fujiki quadratic form,
see [2]. Furthermore gtot(X)′

0 acts on H∗(X,Q) by derivations.

The main geometric input in the proof is the following lemma.

Lemma 3.2. If X is a compact hyperkähler manifold, then [fa, fb] = 0 for every
a, b ∈ H2(X,R) for which f is defined.

The proof relies on the following fact.

Proposition 3.3. The set of characteristic 3-planes is open in the Grassmannian of
3-planes in H2(X,R).
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In turn, this follows from a celebrated theorem by Yau.

Theorem 3.4. (Yau) Let X be a hyperkähler manifold, and let I be a complex struc-
ture on X. If ω is a Kähler class, then there is a unique hyperkähler metric g such
that [ωI ] = ω.

Proof of Lemma 3.2. If we fix a hyperkähler metric g on X, then for every a, b ∈
F (g) we have [fa, fb] = 0. This holds already at the level of forms, using the definition
fa = ∗−1ea∗ and the fact that ∗ depends only on the metric. Let a ∈ H2(X,R) be
a class for which fa is defined. Since f is a rational endomorphism, the condition
[fa, fb] = 0 is Zariski closed with respect to b ∈ H2(X,R). From Proposition 3.3 it
follows that the set

{b ∈ H2(X,R) | a, b ∈ F (g) for some metric g}
is open. Since [fa, fb] = 0 for every b in this open set, we get [fa, fb] = 0 for every b
where fb is defined. �

While the statement of Theorem 3.1 is over Q, we will give the proof over R

following [7].

Proof of Theorem 3.1. Consider the subspace

V := V−2 ⊕ V0 ⊕ V2 ⊂ gtot(X),

where V2 is the abelian Lie subalgebra generated by ea with a ∈ H2(X,R), V−2

is the abelian Lie subalgebra generated by the fa with a ∈ H2(X,R) where fa is
defined, and V0 is the Lie subalgebra generated by [ea, fb]. To prove (1) and (2), it
is enough to show that V is a Lie subalgebra of gtot(X). Indeed, since gtot(X) is
generated by elements contained in V this would imply V = gtot(X). Since V2 and
V−2 are abelian, it suffices to show that [V0, V2] ⊂ V2 and [V0, V−2] ⊂ V−2.

Claim. Define V ′
0 := [V0, V0]. We have V0 = V ′

0 ⊕ Rh where V ′
0 acts on cohomology

via derivations.

Proof of the claim. Proposition 3.3 implies that the set {(a, b) ∈ H2(X,
R) × H2(X,R) | a, b ∈ F (g) for some metric g} is open. Arguing as in the proof of
Lemma 3.2 we see that V0 is generated by the elements [ea, fb] with a, b ∈ F (g) for
some metric g. If we fix a hyperkähler metric g, the elements [ea, fb] with a, b ∈ F (g)
generate the Lie algebra (gg)0 and their brackets the Lie subalgebra (gg)′

0. Thus,
V ′
0 is generated by the Lie algebras (gg)′

0 and their brackets. Since the Lie algebras
(gg)′

0 act on cohomology via derivations, the same is true for their brackets, hence
V ′
0 acts via derivations. Moreover, from point (3) of Theorem 2.3 we get the decom-

position V0 = V ′
0 +Rh. Since gtot(X)0 is reductive (Proposition 1.6) and h is in the

center, we get h �∈ V ′
0 ⊂ gtot(X)′

0, so the sum is direct. �
Now we show that [V0, V2] ⊂ V2. Since the adjoint action of h gives the grading,

it is enough to show that [V ′
0 , V2] ⊂ V2. Let u ∈ V ′

0 and ea ∈ V2. For every x ∈
H2(X,R) we have

[u, ea](x) = u(a.x) − a.u(x) = u(a).x = ea(x), (3.1)

because u is a derivation.
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The inclusion [V0, V−2] ⊂ V−2 is more difficult. Let G′
0 ⊂ GL(H∗(X,R)) be the

closed Lie subgroup with Lie algebra V ′
0 . For every t ∈ G′

0 we have teat−1 = et(a)

and tht−1 = h, by integrating the analogous relations at the level of Lie algebras.
Since the third element of a sl2-triple is unique, we get that tfat−1 = ft(a). This
implies that the adjoint action of G′

0 leaves V−2 invariant, hence so does the Lie
algebra V ′

0 .
To summarize, at this point we showed (1) and (2), and also that gtot(X)′

0 acts
via derivations. It remains to show that gtot(X)′

0 	 so(H2(X,R), q).
We begin by defining the map gtot(X)′

0
�� so(H2(X,R), q). For this, we con-

sider the restriction of the action of gtot(X)′
0 to H2(X,R), and show that it preserves

infinitesimally the Beauville–Bogomolov–Fujiki form q. We can fix a hyperkähler
metric g and check this for (gg)′

0, because these Lie subalgebras generate gtot(X)′
0.

From Theorem 2.3 it is enough to check it for the Weil operators associated to the
three complex structures I, J, K induced from g. Fix one of them, say I; we have to
verify that

q(Iα, β) + q(α, Iβ) = 0,

for every α, β ∈ H2(X,R). This follows from a direct verification using the q-
orthogonal decomposition

H2(X,R) = (H2,0(X) ⊕ H0,2(X)) ∩ H2(X,R) ⊕ H1,1(X,R),

induced by the Hodge decomposition with respect to the complex structure I.
To conclude the proof it remains to show that this map is bijective; we begin

with the surjectivity. Fix a hyperkähler metric g, the image of the Lie algebra
(gg)′

0 in so(H2(X,R), q) is generated (as a vector space) by the Weil operators
associated to I, J, K. Using this, it is easy to see that (gg)′

0 kills the q-orthogonal
complement to the characteristic 3-plane F (g), and it maps onto so(F (g), q|F (g)).
One can check that varying the metric g the Lie subalgebras so(F (g), q|F (g)) generate
so(H2(X,R)), hence the surjectivity.

For the injectivity we proceed as follows. Let SH2(X,R) ⊂ H∗(X,R) be
the graded subalgebra generated by H2(X,R); it is a gtot(X) representation for
Corollary 4.6. By Lemma 4.7, the map gtot(X) �� gl(SH2(X,R)) is injective. Since
gtot(X)′

0 acts via derivations, the map must be injective already at the level of
H2(X,R). �

Definition 3.5. We define the Mukai completion of the quadratic vector space
(H2(X,Q), q) as the quadratic vector space

(H̃(X,Q), q̃) := (H2(X,Q), q) ⊕ U

where U is the quadratic vector space Q2 with the quadratic form
(

0 1
1 0

)

Corollary 3.6. There is a canonical isomorphism

gtot(X) 	 so(H̃(X,Q), q̃).
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Proof. Recall that for a rational quadratic space (V, q) there is an isomorphism
2∧

V �− �� so(V, q),

x ∧ y � �� 1
2
(q(x,−)y − q(y, −)x)

The desired isomorphism follows from this, at least at the level of vector spaces. The
computations to show that it is in fact an isomorphism of Lie algebras are carried
out in [4, Proposition 2.7]. �
Example 3.7. If X is a K3 surface, then the Mukai completion H̃(X,Q) is the
rational cohomology H∗(X,Q) with the usual Mukai pairing. This identification is
compatible with the action of gtot(X).

Corollary 3.8. The Hodge structure on H∗(X,R) is determined by the Hodge struc-
ture on H2(X,R) and by the action of gtot(X)2,R 	 H2(X,R) on H∗(X,R).

Proof. Let I, J, K be the three natural complex structures associated to a hy-
perkähler metric g, and assume I is the given one. As recalled before, the com-
mutator KJK = [eJ , fK ] acts like the Weil operator for I; hence it recovers the
Hodge structure. By definition, it depends only on the classes [ωI ], [ωK ] and their
action on H∗(X,R). Since the Hodge structure is given by the class of the symplectic
form [σI ] = [ωJ ] + i[ωK ], the conclusion follows. �

Recall that if g is a Lie algebra, the universal enveloping algebra Ug of g is the
smallest associative algebra extending the bracket on g. It is defined as the quotient
of the tensor algebra by the elements of the form:

x ⊗ y − y ⊗ x − [x, y] x, y ∈ g.

In particular, if g is abelian, then Ug = Sym∗g.

Corollary 3.9. There is a natural decomposition

Ugtot(X) = Ugtot(X)2 · Ugtot(X)0 · Ugtot(X)−2,

where · denotes the multiplication in Ugtot(X).

Proof. We have to show that every element in x ∈ Ugtot(X) can be written as a
sum of elements of the form x2 · x0 · x−2 with xi ∈ Ugtot(X)i. It is enough to check
this on the images of pure tensors. On these it follows from the fact that the bracket
is graded and the decomposition in Theorem 3.1. �

4. Primitive Decomposition

In this section, we study the relationship between the actions of gtot(X) and gtot(X)0
on H∗(X,Q), where X is a compact hyperkähler manifold of dimension dim(X) =
2n. The main reference is [7], see also [8, Theorem 4.4].

Definition 4.1. Let V be a gtot(X)-representation. We define the primitive subspace
as:

Prim(V ) = {x ∈ V | (gtot(X)−2).x = 0}.
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If V = H∗(X,Q) is the standard representation we denote the primitive sub-
space as Prim(X).

Remark 4.2. This definition is compatible with the usual notion of primitive element
with respect to a Kähler class α in Hodge theory. Indeed, by Lemma 6.24 in [14] we
see that an element x ∈ Hk(X,R) is primitive with respect to α if and only if it is
killed by the dual operator fα.

Remark 4.3. The primitive subspace Prim(V ) is a gtot(X)0-subrepresentation. This
follows from the fact that [gtot(X)0, gtot(X)−2] ⊂ gtot(X)−2.

Definition 4.4. The Verbitsky component SH2(X,Q) ⊆ H∗(X,Q) is the graded sub-
algebra generated by H2(X,Q).

Proposition 4.5. ([7, Corollary 1.13 and Corollary 2.3]) The cohomology H∗(X,Q)
is generated by Prim(X) as a SH2(X,Q)-module. Moreover, if W ⊂ Prim(X) is a
gtot(X)0 irreducible subrepresentation, then SH2(X,Q).W ⊂ H∗(X,Q) is an irre-
ducible gtot(X)-module.

Proof. Since gtot(X) is semisimple, we can decompose the cohomology in irreducible
gtot(X)-representations:

H∗(X,Q) = V1 ⊕ · · · ⊕ Vk.

The primitive part is compatible with this decomposition, so we get the decompo-
sition

Prim(X) = Prim(V1) ⊕ · · · ⊕ Prim(Vk),

of gtot(X)0-representations.
We first want to show that SH2(X,Q).Prim(Vi) = Vi. We have

SH2(X,Q).Prim(Vi) = Ugtot(X)2.Prim(Vi) = Ugtot(X).Prim(Vi) ⊂ Vi, (4.1)

where the first equality follows from the fact that gtot(X)2 is abelian, and the
second from Corollary 3.9 and Remark 4.3. Thus SH2(X,Q).Prim(Vi) is a gtot(X)
subrepresentation of Vi, but Vi is irreducible, so the equality holds. This proves the
first part of the proposition.

To prove the second part it is enough to show that each Prim(Vi) is irreducible
as a gtot(X)0-representation. Assume it is not and write Prim(Vi) = W1 ⊕ W2.
The identities (4.1) show that acting with SH2(X,Q) gives a decomposition Vi =
SH2(X,Q).W1 ⊕ SH2(X,Q).W2. Again, this contradicts the fact that Vi is an irre-
ducible gtot(X)-representation. �

Corollary 4.6. The Verbitsky component SH2(X,Q) ⊂ H∗(X,Q) is an irreducible
gtot(X) subrepresentation.

Proof. By definition we have SH2(X,Q) = SH2(X,Q).H0(X,Q), and H0(X,Q) ⊂
Prim(X). So it is enough to observe that H0(X,Q) is preserved by gtot(X)0, then
we conclude by the previous proposition. �

Lemma 4.7. The restriction map gtot(X)R �� gl(SH2(X,R)) is injective.
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Proof. Let K ⊂ gtot(X)R be the kernel. It is immediate to see that K ⊂ gtot(X)′
0.

The action of K is 0 on H2(X,R), so by (3.1) we get [K, gtot(X)R,2] = 0. Taking
the Lie group of K and the corresponding adjoint action, we see that [K, fa] = 0
for every a ∈ H2(X,R) for which fa is defined. So K has bracket 0 with gtot(X)R,2

and gtot(X)R,−2, thus also with gtot(X)R,0. Since gtot(X) is semisimple this implies
K=0. �

5. Verbitsky’s Theorem

In this section we give a proof of a result by Verbitsky on the structure of the irre-
ducible component SH2(X). This result is particularly useful to study the action of
the LLV algebra on the rational cohomology. As a consequence, one can understand
SH2(X) as a highest weight module for gtot(X), see [9]. The argument presented
here was given by Bogomolov in [3].

Theorem 5.1. There is a natural isomorphism of algebras and gtot(X)0-
representations:

SH2(X,C) 	 Sym∗H2(X,C)/〈αn+1 | q(α) = 0〉.
The key technical fact is the following lemma from representation theory, of

which we omit the proof.

Lemma 5.2. Denote by A the graded C-algebra Sym∗H2(X,C)/〈αn+1 | q(α) = 0〉.
Then we have:
(1) A2n 	 C.
(2) The multiplication map Ak × A2n−k

��A2n induces a perfect pairing.

Proof of the theorem. From the local Torelli Theorem we have that αn+1 = 0 for
an open subset of the quadric {α ∈ H2(X,C) | q(α) = 0}. Since the condition
αn+1 = 0 is Zariski closed, we get that it holds for the entire quadric. Consider the
multiplication map

Sym∗H2(X,C) ��SH2(X,C).

The kernel contains {αn+1 | q(α) = 0}, hence it factors via the ring A. It is an algebra
homomorphism by construction, and a map of gtot(X)0-representations because
gtot(X)′

0 acts via derivations.
The induced map A ��SH2(X,C) is surjective by construction. If it were not

injective, by the above lemma, the kernel would contain A2n. But this is impossible,
because in top degree the map A2n

��H4n(X,C) is non-zero. Indeed if σ is a
holomorphic symplectic form, the form (σ + σ)2n is non-zero. �

Corollary 5.3. There are natural isomorphisms defined over Q

SH2(X,Q)2k 	
{

SymkH2(X,Q) if k ≤ n,

Sym2n−kH2(X,Q) if n < k ≤ 2n.

Proof. From Theorem 5.1 it follows that the properties (1) and (2) in Lemma 5.2
hold for SH2(X,C). Up to up to multiplication with a nonzero scalar, they also
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hold for SH2(X,Q). The multiplication map SymkH2(X,Q) ��SH2(X,Q)2k is an
isomorphism if k ≤ n, because it is so over C. If k > n we have

SH2(X,Q)2k 	 SH2(X,Q)∗
4n−2k 	 Sym2n−kH2(X,Q)∗ 	 Sym2n−kH2(X,Q),

where the last equality is due to the Beauville–Bogomolov–Fujiki form. �

Example 5.4. If X is of K3[2]-type, for dimensional reasons, the Verbitsky compo-
nent SH(X) is the only irreducible component in the cohomology. For higher values
of n the decomposition of H∗(X,Q) in irreducible components is described in [4],
for more details on this see [9].

6. Spin Action

In this section we study how the action of so(H2(X,Q), q) integrates to an action
of the simply connected algebraic group Spin(H2(X,Q), q). Recall that there is an
exact sequence of algebraic groups

1 ��±1 �� Spin(H2(X,Q), q) �� SO(H2(X,Q), q) �� 1.

For more information see [1] and [9].

Proposition 6.1. ([8, Theorem 4.4], [13]) The action of so(H2(X,Q), q) on H∗(X,Q)
integrates to an action of the algebraic group Spin(H2(X,Q), q) via ring isomor-
phisms. On the even cohomology it induces an action of SO(H2(X,Q), q).

Proof. The first part of the statement is clear: we can always lift the action because
the algebraic group Spin(H2(X,Q), q) is simply connected. The group
Spin(H2(X,Q), q) acts via ring isomorphisms because the Lie algebra acts via
derivations.

To show the second part of the statement we proceed as follows. Fix a hy-
perkähler metric g and a compatible complex structure I. The Weil operator with
respect to I is contained in (gg)′

0 	 so(H2(X,Q)). The exponential exp(πI) ∈
Spin(H2(X,Q), q) acts on the (p, q) part of Hk(X,C) as multiplication by ei(p−q)π,
which is just multiplication by (−1)k. In particular, on H2(X,Q) it acts as the
identity, so exp(πI) = −1 ∈ Spin(H2(X,Q), q). We have also shown that −1 ∈
Spin(H2(X,Q), q) acts on Hk(X,Q) as (−1)k, which means that the action on even
cohomology factors through SO(H2(X,Q), q). �
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