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1. Introduction

The most common models of viscoelasticity with long memory, such as the Maxwell
model (see [4-6,15]), lead to a dynamic evolution governed by a system of partial
differential equations of the form

t

1 t—71
i(t) — div((A + B)eu(t)) + / BefT div(Beu(r))dr = £(t) (1.1)

— 00
in Q for t € [0, 7], where Q C R? is the reference configuration, [0,77] is the time
interval, u(t) and eu(t) are the displacement at time ¢ and the symmetric part of
its gradient, A and B are the elasticity and viscosity tensors, § > 0 is a material
constant, and £(t) is the external load at time ¢. This system is complemented by
boundary and initial conditions

u(t) = z(t) on 9 for t € [0,T], (1.2)

u(t) = uin(t) in Q for ¢t € (—o0, 0], (1.3)

where z and u;, are prescribed functions, the latter representing the history of the
displacement for ¢ < 0. Existence and uniqueness for (1.1)—(1.3) can be found in [3].
In this paper we study the quasistatic limit of the solutions to this problem, i.e.,

the limit of these solutions when the rate of change of the data tends to zero. More
precisely, given a small parameter € > 0, we consider the solution u* of (1.1)—(1.3)
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corresponding to ¢(et), z(et), and w;y, (et). To study the asymptotic behaviour of u®
as ¢ — 0T it is convenient to introduce the rescaled solution u.(t) := u(t/¢), which
turns out to be the solution of the system
t

i () — div((A + B)eus (1)) + / ~5 div(Beu. (r))dr = £(t)  (1.4)

o
in Q for t € [0,T], with boundary and initial conditions (1.2) and (1.3).

Under different assumptions on ¢(t), z(t), and w;y,(t) we prove (Theorems 3.6
and 3.7) that u.(t) converges, as ¢ — 0, to the solution ug(t) of the stationary
problem

—div(Aeug(t)) = £(t) in Q for t € [0,T], (1.5)

with boundary condition (1.2).

By using just the energy-dissipation inequality, it is not difficult to prove a

similar result for the Kelvin—Voigt model, in which the viscosity term

t

— div(Beu(t)) + / le_t% div(Beu(r))dr (1.6)

—o B
is replaced by —div(Bew(t)). On the other hand, in the case of the equation of
elastodynamics without damping terms, i.e., when B = 0, by using the Fourier
decomposition with respect to the eigenfunctions of the operator — div(Aeu), we
can easily see that the convergence of u. to ug does not hold in general. The purpose
of this paper is to prove that the non-local damping term (1.6) is enough to obtain
the convergence of the solutions of the evolution problems to the solution of the
stationary problem.

Our result can be considered in the framework of the study of the quasistatic
limits, i.e. the convergence of the solutions to second order evolution equations
with rescaled times towards the solutions to the corresponding stationary equations.
Similar problems in finite dimension have been studied in [1,7,10,14]. A special case
involving the wave equations on time-dependent intervals in dimension one has been
studied in [8,12]. The main novelty of our problem is the the non-local form of the
damping term, given by (1.6).

The main tools to prove our results are two different estimates (Lemmas 3.8
and 5.2), related to the energy-dissipation balance (2.25) and to the elliptic system
(5.17) obtained from (1.4) via Laplace Transform. After a precise statement of all
assumptions, more details on the line of proof will be given after Theorem 3.7.

2. Hypotheses and Statement of the Problem

Let d be a positive integer and let QO C R? be a bounded open set with Lipschitz
boundary. We use standard notation for Lebesgue and Sobolev spaces. Let Rg@j,g be
the space of all symmetric dxd matrices. For convenience we set

H:=L*(%RY), H:= L (R0,

2.1
V= H (%GRY), Vo= Hy(RY), Vi=H '(QRY, 2
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and we always identify the dual of H with H itself. The symbols (-,-) and || - ||
denote the scalar product and the norm in H or in H, according to the context.
The duality product between Vj and Vj is denoted by (-,-). Given u € V, its strain
eu is defined as the symmetric part of its gradient, i.e., eu := %(Vu + Vul), where
Vu is the Jacobian matrix, whose components are (Vu),; := d;u; for i, =1,...,d.

Under these assumptions, the Second Korn Inequality (see, e.g., [11, Theo-
rem 2.4]) states that there exists a positive constant C'x = Ck(£2) such that

IVul| < Ci (Jlul]? + [leu]?)?  for every u € V. (2.2)

Moreover, there exists a positive constant Cp = Cp(€2) such that the following
Korn—Poincaré Inequality holds (see, e.g., [11, Theorem 2.7]):

|lul| < Cplleul| for every u € Vj. (2.3)
Thanks to (2.2) we can use on the space V' the equivalent norm
lullv == (ul® + |leul|?)/? for every u € V.

Let Z(RIx2:RI<T) be the space of all linear operators from RZ%X? into itself.
We assume that the elasticity and viscosity tensors A and B, which depend on the

variable x € (2, satisfy the following assumptions:

AB € L(Q; L(RIXd, Rixd)y (2.4)

sym>s “rsym
and for a.e. £ € Q)
A(x)fl &y =& - Ax)&o, Rixd

B(z)¢, - €2 = &1 - B(2)s for every &1,& € REyT,  (2.5)
2 <A . 5
U for every & € R&XL, (2.6)

cel¢|* < B(2)€ - € < Cal¢f?

where ¢y, cg, Ca, and Cp are positive constants independent of x, and the dot
denotes the Euclidean scalar product of matrices.

Let us fix T'> 0 and 8 > 0. To give a precise meaning to the notion of solution
to problem (1.2)—(1.4) we introduce the function spaces

V:=L*0,T;V)n HY0,T;H)N H*0,T;Vy),
Vo := L*(0,T; Vo) N HY(0,T; H) N H?*(0,T; V),
Vie 1= Lipo(—00, T3 V) N Hypo(—00, T H) N Hiyo(—00, T V).
Remark 2.1. By the Sobolev Embedding Theorem, if u € V (resp. u € Vi), then
ue GO0, T]: H)n CH([0, TT: Vy),
(resp.u € C°((—o00, T); H) N C*((—o0,T); VQ)).

We study problem (1.2)—(1.4) with ¢, z, and u;,, depending on . Let us consider
e >0 and

fe € L*(0,T;H), g.€ HY 0, T;Vy), =z € H*0,T;H)NHY0,T;V), (2.7)
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Ue in € CV((—00,T); H) N CY((—00,T); V) such that
u87in(0) € ‘/7 us,in(o) - ZE(O) € VE),
. o1 . (2.8)
Ue,in(0) € H, ﬁeﬂa || te in (T)||vdT < 400.
The notion of solution to (1.2)—(1.4) is made precise by the following definition.

Definition 2.2. We say that u. is a solution to the viscoelastic dynamic system (1.2)—
(1.4), with forcing term ¢ = f. + g., boundary condition z., and initial condition
Ue in, if

Ue € Vioe and u, — 2. € Vg, (2.9a)
t

e (t) — div((A + B)eue(t)) + / Blee—‘[,g div(Beu.(7))dr

= £.(t) + g-(¢) for ne. £ € 0,7, (2.9b)
Ue(t) = ue in(t) for every t € (—o0,0]. (2.9¢)

In the next remark we shall see that (2.9) can be reduced to the following
problem starting from 0:

u: €V and wu. — z. € Vo, (2.10a)
t
1 t—T1
€201, () — div((A + B)eud(t)) + / e div(Beu(r)dr
0
= p:(t) +7:(t) for a.e.t€0,T], (2.10Db)
uc(0) =u? in H and 4.(0) = u! in V, (2.10¢)
with . € L*(0,T5 H), - € H'(0,T5Vg), ul € V, u? — 2:(0) € Vo, ul € H.

Remark 2.3. 1t is easy to see that u. is a solution according to Definition 2.2 if and
only if its restriction to [0, 77, still denoted by wu., solves (2.10) with

pe=fer Ve=9c—pe ul=1cin(0), uc=1icin(0), (2.11)
where
¢ SR
pe(t) :=e 7eg? with ¢ := / ﬁ—eﬁ div(Beue i (7))dT. (2.12)
5
—00

To solve problem (2.10) it is enough to study the corresponding problem with
homogeneous boundary condition:

ve € Vo, (2.13a)
2. (t) — div((A + Bev.(t)) + /0 t ﬁlge_tﬁ‘; div(Bev. (7))dr
= he(t) + L(t) fora.e. te0,T], (2.13Db)
v.(0)=v2in H and ©.(0) =v! in V, (2.13c)
with
h. € L*(0,T; H), (. HY0,T;Vy), °ecVy, vl

3

€ H. (2.14)
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Remark 2.4. The function u. is a solution to (2.10) if and only if v. = u. — 2. solves
(2.13) with

hs(t) = ‘~P€<t) - 5225(15);
le(t) = 7:(t) + div((A + B)ez(t / 5 div(Bez.(7))dr,
v =l — 2.(0), w!=ul—2.(0), (2.15)

Therefore, existence and uniqueness for (2.13) imply existence and uniqueness for
(2.10).

Remark 2.5. In [3] problem (2.13) has been studied with initial conditions taken in
the sense of interpolation spaces. Given two Hilbert spaces X and Y, the symbol
[X,Y]p denotes the interpolation space between X and Y of exponent 6 € (0,1).
Thanks to [9, Theorem 3.1] we have the following inclusions:

L2(0,T; Vo) N H'Y(0,T; H) € C°([0,T; V?)
L2(0,T; H) 0 H'Y(0,T; V) < C°0,T); Vg *),

where Vo% = [Vb, H]1 and VO_% := [H, Vj]1. Consequently

1 1
2 2

Vo © CO([0,T); Vi) N CH([0, T); Vy ?).

Therefore, the initial conditions in (2.13) are satisfied also in the stronger sense

-

v-(0) = v in Vo% and 9.(0) =} in V, 2. (2.16)

The following proposition provides the main properties of the solutions. We

recall that, if X is a Banach space, C?([0,T]; X) denotes the space of all weakly

continuous functions from [0,7] to X, namely, the vector space of all functions

u: [0,T] — X such that for every 2’ € X’ the function t — (2, u(t)) is continuous
from [0, 7] to R.

Proposition 2.6. Given ¢ > 0, assume (2.7) and (2.8). Then there exists a unique
solution u. to the viscoelastic dynamic system (2.9). Moreover, it satisfies

u. € C°([0,T]; V) N CY([0,T); H). (2.17)

Proof. By Remarks 2.3 and 2.4 it is enough to prove the theorem for (2.13). Exis-
tence and uniqueness are proved in [3], taking into account Remark 2.5 about the
equivalence between the initial conditions in the sense of (2.13) and (2.16).

After an integration by parts with respect to time, it easy to see that the weak
formulation (2.13) is equivalent to the following one:

—62/; (6-(1), <>>dt+/0T (A + B)eve (1) / 5 Bev(r), ep(t))dt

T
= /0 [(hg(t), o(t)) + (L(1), go(t))]dt for every ¢ € C°(0,T; V). (2.18)
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In [13], in a more general context, it has been proved that if v. satisfies (2.18) and
the initial conditions in the sense of (2.13), then it satisfies also

ve € Co([0,T);V) and o € Coy([0,T]; H),
li (1) =%y =0 and lim ||0.(t) — vl|| = 0. 2.19
i [ve(t) — vellv and  lim, [0(2) — || (2.19)

We fix s € [0,7). We want to prove
lim+ |lve(t) —ve(s)|lv =0 and lim [[oz(t) — 0:(s)|| = 0. (2.20)
t—s

t—st

Thanks to the theory developed in [3] there exists a unique 9. € L*(s,T;Vp) N
H (s, T; H) N H?(s,T;V{) such that

e20.(t) — div((A + B)ed.(t) / S div(Bed.(7))dr
= he( / 5 div(Bev.(7))dr  for ae. t € [s,T), (2.21)
Tim [~ ve(9) =0 and lim [e(t) — 5-(s) vy = 0 (2.22)

By the results in [13] the function v, satisfies also
lim+ 10e(t) —ve(s)|ly =0 and lim+ |6 (t) — 0-(s)|| = 0. (2.23)
t—s t—s
Since clearly v. satisfies (2.21) and (2.22), by uniqueness we have 0.(t) = v(t) for
every t € [s,T)]. In particular, from (2.23) we deduce that (2.20) holds. O

To complete the proof we need the following proposition about the energy-
dissipation balance, where H is defined by (2.1), and #.(t) represents the work
done in the interval [0, t].

Proposition 2.7. Given e > 0, we assume (2.14). Let v be the solution to (2.13) and
let we: [0,T] — H be defined by
t
1 =
we(t) := eﬂtE/ ?eﬁevg(T)dT for every t € [0,T]. (2.24)
0 g

Then w. € H*(0,T; ﬁ) and the following energy-dissipation balance holds for every
te[0,7]:

g2 . 5 1
NI + 5 (Aewa(t), eva(1)

- %aweve(t) — (). eve(t) = we(0) + e [ (Bie(r). i (r))ar

= Tl + (A + B)eof, exd) + #(1), (2.25)

where
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Proof. Tt is convenient to extend the data of our problem to the interval [0,27] by
setting

he(t):=0 and £.(t):=((T) foreveryte (T,2T].

It is clear that h. € L?(0,2T;H) and ¢. € H'(0,2T;Vy). By uniqueness of the
solution to (2.13), the solution on [0,27] is an extension of v., still denoted by v..
We also consider the extension of w. on [0,27] defined by (2.24).

Since ev. € L?(0,2T; H), it follows from (2.24) that w. € H'(0,2T; H), and

Bee(t) = eve(t) — we(t) for a.e. t € [0,27]. (2.26)
Thanks to (2.20) in [0,277] and (2.26) there exists a representative of w. such that

11m ||we(t) —we(s)]| =0 for every s € [0,2T). (2.27)

t—s

Moreover, since v, satisfies (2.13) in [0, 277], we have for a.e. ¢ € [0, 27
20 (t) — div(Aev.(t)) — div(B(evs(t) — w-(t))) = he(t) + (1) (2.28)

Multiplying (2.26) and (2.28) by 1 € H and ¢ € Vj, respectively, and then inte-
grating over 2 and adding the results, for a.e. t € [0,27] we get

eX(0e(t), ) + (Aeve(t), e) + (B(eve(t) — we(t)), ep — ¥)
+ Be(Bue(t), 1) = (he(t), ) + (Le(t), ©)- (2.29)

Given a function r from [0,27] into a Banach space X, for every n > 0 we
define the sum and the difference o, 6"r: [0,2T — n] — X by

or(t):=r(t+mn)+rt) and §"r(t):=rt+n)—r).

For a.e. t € [0,2T — 1] we have 0", (t), 8v.(t) € Vi and 0w, (t),"w.(t) € H. For
a.e. t € (0,27 —n] we use (2.29) first at time ¢ and then at time ¢+, with ¢ := §7v.(t)
and ¢ := §"w,(t). By summing the two expressions and then integrating in time on
the interval [0,t] we get

/ (2 (7) Ay (7) 4+ By () + 2Dy (7)]dr = / Wy, (2.30)
0 0

where for a.e. 7 € [0,27 — 7]

Koy (7) := (0"0:(7), 670(7)),
Ay(7) == (Ao"ev:(7),0"ev: (7)),
By (1) := (B(0"ev.(1) — 0"w. (7)), 0"ev. (1) — §"w. (7)),
Dy () := BB 0" (1), "we (7)),
W, (1) := (6"he(T), 0" (1)) + (0"l (T), 0 v (T)).
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An integration by parts in time gives

/o K, (7)dr = (6"0:(t), 6"ve(t)) — (670:(0),8"v:(0))
- / (076 (7), 876 (7))dr
0
t+n n
_ / (0. (1), 6. (7)) dr — / (70.(0), 6. (7)) dr
/ lo-(7 + b dT+/ 6. () [12dr
t+n
= [ o7 = i) P
_ /O " 1(076.(0), 5.(7)) = |6 (1) 2] dr- (2.31)
Moreover
t t+n n
/O A, (r)dr = /t (Aev. (), ev.(7))dr — /0 (Aev. (), ev.(7))dr, (2.32)
t t+n
/ By (T)dr = / (B(eve (1) — we(T)), eve(T) — we(7))dT
0 t
—/ (B(eve(r) — we (7)), eve (1) — we(7))dr, (2.33)
/ D, (t)dr = ﬂ/ / (B o (1), we(s))dsdr, (2.34)
T+n
/ W, ( dT_/ / (6"h(7), bo(s ))dsdr+/t (070 (7, v (7 + m))dr
¢ T+n n !
—/ / (Ea(s),va(T»dsdT—/ (el (T),ve(T))dT.  (2.35)
n T—n 0
We now divide by 7 all terms of (2.31)—(2.35). Observing that

o"h, —+> 2h. strongly in L*(0,T; H),

s)ds — v (1 ‘ dr —— 0,

n—0+t
+n . 2
][ le(s)ds — b(T)|| dr —— 0,
n ' Jr—n

\%4 n—0+t

thanks to (2.20) in [0,27) and (2.27), we can pass to the limit as n — 0%, and from
(2.30) we obtain that (2.25) is satisfied for every ¢ € [0, T]. O
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Proof of Proposition 2.6 (Continuation). Now we want to prove (2.17). By using
(2.25), for every t € [0,T] we can write

IO + (A + Ber (1), ev.(1)

62
= Sl + 5((A+ Blend, en?) + # (1)

1

- §(Bw€ (t), we(t)) + (Beve(t), we(t)) — 65/ (Bue(7), e (7))dT (2.36)
0

Let W.: [0,T] — [0, +00) be defined by

Ve (t) = i\\@s(t)HQ + 1((A +B)eve(t), eve(1));

since w. € C°([0, T]; H), thanks to (2.19) and (2.36) we have ¥, € C°([0,T]).
Now we fix t € [0,T]. Given a sequence {tx}r C [0,7] such that ¢, — t as
k — 400, we define

B 1= S ia(tx) — (DI + (A + B)(eve(ta) — eve(t)), e (ti) — eve (1)),

By elementary computations we have

G = We(te) + We(t) — €% (0e(tr), e (1) — (A + B)eve(tr), eve(1)),

therefore, by (2.3) and (2.6) there exists a positive constant C' = C(A, B, 2) such
that

20 (ti) = (DI + Jue(ta) = v (DI}
< C(Welti) + () = 25 (1), 5:(1)) = (A + Blewa (ty), eve (1)) ).

The right-hand side of the previous inequality tends to 0 as £k — 400 because of
(2.19) and the continuity of W.. Since z. € C°([0,T]; V), by (2.7), and u. = v + 2.,
we obtain (2.17). O

3. Statement of the Main Results

In this section we present the main results about the convergence, as ¢ — 07, of
the solutions u.. We assume the following hypotheses on the dependence on € > 0
of our data:

(H1) {f-}- € L*(0,T; H) and {g.}. C H(0,T;Vy) such that
fo —— f strongly in L*(0,T; H),
e—0t

ge —— g strongly in Wh1(0, T; V);

e—07t
(H2) {z.}c € H*(0,T; H) N H'(0,T;V) such that
z. — 2z strongly in W0, T; H)n W1 (0,T;V);

e—0t



494 G. Dal Maso and F. Sapio Vol. 89 (2021)

(H3) {tte,in}e € CO((—00,0]; V) N CH(~00,0); H), tin € CO((—00,0]; V), and there
exist ¢ > 0 such that

Ue,in —— Uin strongly in C’O([—a, 0; V),
E—
ele in — 0 strongly in CY([—a, 0]; H),
e—0

R
| e e lvar ——o,

[ R
/ @QE Uin(T)HVdT F 0.

— 00

Remark 3.1. Let u? = uc i, (0), ul = 1. n(0), and u® = u;,(0). Hypothesis (H3)
implies

u) —— u® strongly in V' and eul —— 0 strongly in H.
e—0+t e—0+

Our purpose is to show that the solutions u. converge, as ¢ — 0T, to the

solution wug of the stationary problem (1.5) with boundary condition (1.2). The
notion of solution to this problem is the usual one:

ug(t) €V, wup(t) — z(t) € Vo, for a.e. t € [0,T], (3.1)
—div(Aeug(t)) = f(t) + g(t) for a.e. t € [0,T]. '

Remark 3.2. The existence and uniqueness of a solution ug to (3.1) follows easily
from the Lax-Milgram Lemma. Since f + g € L?(0,T;V]), the estimate for the
solution implies also uy € L2(0,T;V).

We shall sometimes use the corresponding problem with homogeneous bound-
ary conditions:

3.2
—div(Aevy(t)) = h(t) + £(t) for a.e. t € [0,T], (3:2)
with h € L2(0,T; H) and ¢ € HY(0,T;Vy).

Remark 3.3. The function wug is a solution to (3.1) if and only if vg = up — z is a
solution to (3.2) with

h(t) = f(t) and £(t) = g(t) + div(Aez(t)).

The following lemma will be used to prove the regularity with respect to time
of the solution to (3.1).

Lemma 3.4. Let m € N and p € [1,+00). If f =0, g € W™P(0,T;Vy), and z €
WmP(0,T;V), then the solution ug to problem (3.1) satisfies uy € W"™P(0,T;V).

Proof. By Remark 3.3 it is enough to consider the case z = 0. Let R : Vj — V; be
the resolvent operator defined as follows:

_ v € Vo,
Ry =¢ {—div(Aeap) = .

Since ug(t) = R(g(t)), the conclusion follows from the continuity of the linear oper-
ator R. 0

{vo(t) eW for a.e. t € [0,T],
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Remark 3.5. If f =0, since g € WH1(0,T;V]) and z € WH(0,T; V), we can apply
Lemma 3.4 to obtain that the solution wug to (3.1) belongs to W(0,T; V), hence
ug € C°([0,T]; V).

In the final statement of the next theorem, besides (H1)-(H3) we assume f. =
0 and the following compatibility condition: there exists an extension of g (still
denoted by g¢) such that

geWhl(—a,T;Vy)) and — div(Aeu;,(t)) = g(t) forte[—a,0]. (3.3)
The meaning of (3.3) is that u;,(t) is in equilibrium with external loads for t €
[—a,0]. This condition must be required if we want to obtain uniform convergence

of u, to ug also near ¢t = 0.
We are now in a position to state the main results of this paper.

Theorem 3.6. Let us assume (H1)-(HS3). Let u. be the solution to the viscoelastic
dynamic system (2.9) and let ug be the solution to the stationary problem (3.1).
Then

Ue 7 Uo strongly in L*(0,T; V), (3.4)
el S 0 strongly in L*(0,T; H). (3.5)
If, in addition, f- = 0 for every e > 0, then
Us —— = Uo strongly in L (n,T; V) for every n € (0,T), (3.6)
£l o 0 strongly in L*°(n,T; H) for everyn € (0,T). (3.7)

If fo =0 for every e > 0 and the compatibility condition (3.3) holds, then we have
also

Ue —— Up strongly in L*°(0,T;V), (3.8)
e—0

el — 0 strongly in L*(0,T; H). (3.9)
e—0

In the case of solutions to problems (2.10) we have the following results, as-
suming that

u) —— u® strongly in V. and eul —— 0 strongly in H.  (3.10)

€ ot e—0t

Theorem 3.7. Let us assume (H1), (H2), and (3.10). Let u. be the solution to the
viscoelastic dynamic system (2.10), with p. = f. and v. = g, and let uy be the
solution to the stationary problem (3.1). Then (3.4) and (3.5) hold. Moreover, if
fe =0 for every e > 0, then (3.6) and (3.7) hold.

Theorems 3.6 and 3.7 will be proved in several steps. First, we prove (3.8) and
(3.9) when f. = 0 and the compatibility condition (3.3) holds (Theorem 4.1). For
g € H?(0,T;V{) the proof is based on the estimate in Lemma 3.8 below, which is
derived from the energy-dissipation balance (2.25). The general case is obtained by
an approximation argument based on the same estimate.

Next, we prove that (3.4) holds for the solutions of (2.10) if 7. = v = 0,
ze = 0, u? = 0, and u! = 0 (Proposition 6.1). The proof is obtained by means



496 G. Dal Maso and F. Sapio Vol. 89 (2021)

of a careful estimate of the solutions to the elliptic system (5.17) obtained from
(2.13) via Laplace Transform (Section 5). Under the general assumptions (H1), (H2),
and (3.10) the same result is deduced from the previous one by an approximation
argument based again on Lemma 3.8 below.

Then, (3.5) is obtained from (3.4) using a suitable test function in (2.10) (The-
orem 6.3). A further approximation argument gives (3.4) and (3.5) under the as-
sumptions (H1), (H2), and (H3) (Theorem 6.4).

Finally, if f. = 0, we obtain (3.6) and (3.7) from (3.4) and (3.5) (Lemma 7.1),
concluding the proof of Theorems 3.6 and 3.7.

The following lemma, derived from the energy-dissipation balance (2.25) of
Proposition 2.7, will be frequently used to approximate the solutions of (2.13) by
means of solutions corresponding to more regular data.

Lemma 3.8. Givene >0, p. € L*(0,T;H), {- € H*(0,T;Vy), v € Vp, and v} € H,
let ve be the solution to (2.13) with he = ep.. Then there exists a positive constant
Crp =Cg(AB,Q,T), independent of €, such that

52H06”%°°(07T;H) + HveH%W((LT;V)
< Ci (0112 + W23 + e o,z + Il 0.z )-

Proof. By the energy-dissipation balance (2.25) proved in Proposition 2.7 and by
(2.3) and (2.6) there exists a positive constant C' = C(A,B, Q) such that for every
t € [0,T] we have

(O + oI} < C (ol + 1213+ #2(1)). (3.11)

where the work is now defined by

%(t) = <£€(t)7 Ue(t)> - <€8(0)7US>

- [ vopdr + [ (oulr),eintrar (3.12)
0 0

Let K. := e[|t (1) Lo 0,7 ) and E. := ||ve(t)| o< (0,7;v), which are finite by (2.17).
Thanks to (3.11) and (3.12) for every t € [0,T] we get

o)1 + lv-(®)1I3
< C(eﬂ\vé\F 21 + (3 + ) Iellwraorvg Be + H%HLwo,T;mKs)-

By passing to the supremum with respect to ¢ and using the Young Inequality we
can find a positive constant Cp = Cg(A,B,Q, T) such that

K2+ 12 < Co (Il + 1020 + loelBa oz + 1EelBraozovg) )
which concludes the proof. ]

In the proof of Theorem 3.6 we shall use the following lemma, which ensure
that it is enough to consider the case z. = 0 and z = 0.

Lemma 3.9. If Theorem 3.6 holds when z. = 0 for every € > 0, then it holds for
arbitrary {z:}e and z satisfying (H2).
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Proof. 1t is not restrictive to assume div(Bez.(0)) = div(Bez(0)) = 0. Indeed, if this
is not the case, we can consider the solutions z{ and 2° to the stationary problems

ze € Vo, and 47 € Vo,
—div(Bez?) = div(Bez.(0)), —div(Bez?) = div(Bez(0)),

and we can replace z.(t) and z(t) by Z.(t) := 2.(t) + 20 and Z(t) := 2(¢t) + 2°. It is
1

clear that div(Bez.(0)) = div(Bez(0)) = 0 and that problems (2.9) and (3.1) do not
change passing from z. and z to Z. and Z.
Let ¢, [0,T] — V{ be the functions defined by

0 if t € (—00,0),

e (t) = ¢ div(Bez(t)) ift € [0,T], (3.13)
div(Bez.(T)) ift e (T,+00),
0 if t € (—00,0),

P(t) :=  div(Bez(t)) ift € [0,T], (3.14)

div(Bez(T)) ift e (T,+00).
Since
div(Bez.(0)) = div(Bez(0)) =0, z. € H'(0,T;V), z¢€W"0,T;V),
we obtain 1. € HL (R;Vy) and ¢ € W,o!(R; V). Moreover, thanks to (H2) we
have

Yo — 1 strongly in WLH(R; Vy). (3.15)

e—0t
Since wu. is the solution to (2.9), by Remark 2.3 it solves (2.10) with 7. = g. —p-
and initial conditions defined by (2.11), where p. is defined by (2.12). By Remark 2.4
the function v. = u. — 2. is the solution to (2.13) with

he(t) = fs( ) —e%Z(t),
Ce(t) = ge(t) — pe(t) + div((A + B)ezc(t))

/ — e div(Bez.(7))dr, (3.16)

and initial conditions v? and v} defined by (2.15). We define the family of convolution
kernels {p.}. C L*(R) by

Be iftelo
pult) o= { €7 TEE[0 o), (3.17)
0 it t € (—o0,0),

and notice that, by (3.14) and (3.13), the integral in (3.16) coincides with (p*1) (1),
hence

Lo(t) = ge(t) — pe(t) + div(Aez. (1)) + e (t) — (pe x ) (t) for every ¢ € [0,T].
By Remark 3.3 the function vy = ug — z is the solution to (3.2) with A = f and
¢ = g+div(Aez). By the definition of v. and vy it is clear that to prove the theorem
it is enough to show that the conclusions of Theorem 3.6 holds for v. and vg. To this
aim, we introduce the solution o to (2.13) with h. = f., b = g — p + div(Aez.),
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and v?, v! defined by (2.15). Then the function v, := v. — ¥, satisfies (2.13) with
he = —2%., 0. = 1. — p. * 1., and homogeneous initial conditions. By Lemma 3.8
we can write

11012 0,71y + 10|70 (0,71
< (U3 oz + e = pe Vel ). (318)
By (3.15) and by classical results on convolutions we obtain

we — Pe ¥ 1/)8 —+> 0 Strongly in Wl’l(O’T; VO/)

e—0

Since {%.}. is bounded in L*(0,7T; H) by (H2), from (3.18) we deduce

ve =T ——0 strongly in L*°(0,7;V), (3.19)
e—0

(e — Ve) ——0 strongly in L*°(0,7; H). (3.20)
e—0

By Remark 2.3 the function o. is the solution to (2.9) with g. replaced by
ge + div(Aez.) and z. = 0. Thanks to (H1) and (H2) we have

ge + div(Aez.) Y + div(Aez) strongly in W(0,T;Vy).

Since by hypothesis, Theorem 3.6 holds in the case of homogeneous boundary con-
dition, its conclusions are valid for 0. and vg. Thanks to (3.19) and (3.20) the same
results hold for v, and vg. This concludes the proof. O

In a similar way we can prove the following result.

Lemma 3.10. If Theorem 3.7 holds when z. = 0 for every € > 0, then it holds for
arbitrary {z:}e and z satisfying (H2).

4. The uniform convergence

In this section we shall prove (3.8) and (3.9) of Theorem 3.6 under the compatibility
condition (3.3).

Theorem 4.1. Let us assume (H1)—-(H3), the compatibility condition (3.3), and f. =
0 for every € > 0. Let u. be the solution to the viscoelastic dynamic system (2.9)
and let ug be the solution to the stationary problem (3.1), with f = 0. Then (3.8)
and (3.9) hold.

To prove the theorem we need the following lemma, which gives the result when
g is more regular.

Lemma 4.2. Under the assumptions of Theorem 4.1, if g € H*(0,T;Vy), then (3.8)
and (3.9) hold.

Proof. Thanks to Lemma 3.9 we can suppose z = 0 and z. = 0 for every € > 0.
Let p. be defined by (2.11). Since u, is the solution to (2.9), thanks to Remark 2.3
it solves (2.13) with h. = 0, £. = g. — pe, v = uc ,(0), and v! = 1. ;,(0). We

fix b > a > 0 and we extend the function g in (3.3) to (—o0,T) in such a way
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g € Whl(—o00,T;Vy) and g(t) = 0 for every t € (—oo,—b]. Since z = 0 we can
extend ug by solving the following problem:

uo(t) € Vo for every t € (—o0, T,
—div(Aeug(t)) = g(t) for every t € (—o0,T].

We observe that ug = 0 on (—oo, —b] and ug = u;, on [—a,0] by the compatibility
condition (3.3).

Assume g € H?(0,T;Vy). By Lemma 3.4 (with z = 0) we have ug € H?(0,T;V),
hence by (3.1) we get for a.e. t € [0, 7]

e2iio(t) — div((A + B)euo(t)) + /0 ﬂlee—% div(Beug (7)) dr
= e%iig(t) + g(t) — div(Beuo(t)) + (pe * div(Beuo))(t) — p(t),  (4.1)
where p. is defined by (3.17) and

0
De(t) == e_ﬁgg with  g¢ ::/ ﬂlgegs div(Beug(7))dr.
—b
Let ¢c := g — g+ div(Beug) — (pe * div(Beug)) — pe + pe. By (4.1) the function
Ue = u. — up satisfies (2.13) with h. = —£2iig, le = ¢, v2 = e in(0) — up(0), and
’U; == 1'11571'”(0) - Uo(O)
Since g € Wht(—o00,T;V]) and g = 0 on (—o0,—b], by Lemma 3.4 we ob-
tain ug € Whl(—oo,T; V) and therefore div(Beug) € Whl(—o0,T; V). Then the
properties of convolutions imply

pe * div(Beuy) — div(Beup) strongly in Wt (—oo, T;Vy). (4.2)
e—0
As we have already observed, by the compatibility condition (3.3) we have
Uy = Ui on [—a, 0], hence
—a

192 — g2 lv: s/ @eé(HdiV(E(eu&m(T))HVO/—l—Hdiv(IB%(euo(T))HVO/)dT

+ | div(B(eue,in — etin))|| Lo (—a0,vg)-
Thanks to (H3) we obtain g — ¢g° — 0 strongly in V{ as e — 0*. Hence

Pe — Pe — 0 strongly in W(0, T; V). (4.3)
£—

By (H1), (4.2), and (4.3) we have
g. — 0 strongly in W1 (0, T; V). (4.4)

e—0t

Since uo(0) = u;,(0), (H3) gives

Ug,m = Ue,in(0) — uo(0) — 0 strongly in V, (4.5)
ul i, = e(tte,in(0) — 9 (0)) —— 0 strongly in H. (4.6)

e—0*t
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By using Lemma 3.8 we get
e tie | Fos (0,10 + el Zow (0,730
< Cr (0l inl + 10 il + i3 02,00y + el 02w )
therefore thanks to (4.4), (4.5), and (4.6) we obtain the conclusion. O

In the proof of Theorems 4.1, 6.2, and 6.4 we shall use the following density
result.

Lemma 4.3. Let X,Y be two Hilbert spaces such that X — Y continuously, with
X dense in Y. Then for every m,n € N with m < n, and p € [1,2] the space
H™(0,T;X) is dense in W™P(0,T;Y).

Proof. Since every simple function with values in Y can be approximated by simple
functions with values in X, it is easy to see that L?(0,T; X) is dense in LP(0,T;Y).

To prove the result for m = 1 we fix u € W1P(0,7T;Y). By the density of
L?(0,T;X) in LP(0,T;Y) we can find a sequence {t}r C L?(0,T; X) such that
Y —  strongly in LP(0,T;Y) as k — +oo. By the density of X in Y there exists
{ud}r C X such that u) — u(0) strongly in Y as k — +oo. Now we define

wn(t) :_/0 D(7)dr + .

It is easy to see that {uy}r C H'(0,7;X) and

Up strongly in WHP(0,T;Y).
— 400
Arguing by induction we can prove that for every integer m > 0 the space
H™(0,T; X) is dense in W P(0,T;Y). Since H"(0,T"; X) is dense in H™(0,T; X),
the conclusion follows. O

We are now in a position to deduce Theorem 4.1 from Lemma 4.2 by means of
an approximation argument.

Proof of Theorem 4.1. Thanks to Lemma 3.9 we can suppose z = 0 and z. = 0 for
every ¢ > 0. We fix § > 0. By Lemma 4.3 there exists a function ¢ € H?(0,T; V)
such that

¥ = gllwra0,m:vy) < 6. (4.7)

By (H1) there exists a positive number g = £¢(d) such that

10 = gellwrsoaivg) <8 for every e € (0,20) 48)

Let p. be defined by (2.12). Since u. is the solution to (2.9) with f. = 0 and
ze = 0, thanks to Remark 2.3 it solves (2.13) with h. = 0, £c = g. —pe, v0 = e in(0),
and v} = 1. ;,(0). Moreover, let @, be solution to (2.13) with h. = 0, £. = — p,
v = u. 4, (0), and v} = 1. ;,,(0), and let o be the solution to (3.2) with h = 0 and

€

¢ = 4. Thanks to Remark 2.3 the function @, is the solution to (2.9) with f. =0,
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ge = ¢, and z. = 0, hence by Lemma 4.2 we have

Ue — Uo strongly in L>°(0,7;V), (4.9)
el o 0 strongly in L>°(0,T; H). (4.10)

We now consider the functions ug := g — ug and 4. := U — u.. Since g is the
solution to (3.2), with h = 0 and ¢ = ) — g, by the Lax-Milgram Lemma we get

CZ+1
ca

C%Z+1
’;:r 19 — gll Lo 0,757y <

(L4 F)v = gllwrao,rv-
(4.11)

|0 o= (0,75v) <

Moreover, since 1. is the solution to (2.13), with he = 0, £c = ¢ — g, v = 0, and
v} =0, thanks to Lemma 3.8 we get

& \[ellZoo (o oy + el Low 0,1y < CEIY = el o, 1v)- (4.12)

By combining (4.7), (4.8), (4.11), and (4.12), we can find a positive constant C' =
C(A,B,Q,T) such that

el|tie || oo (0,7:1) + el Lo 0,73v) + G0l Lo 0,7y < C6 (4.13)
for every € € (0,¢). Since
lue —uoll oo, m3v) < lUellLo(o,r;v) + e — @0l o0, 75v) + [[Tol| Lo (0,7;v),
el oo 0,711y < lltic| Los 0,711y + €llttel| Lo (0,751,
by (4.9), (4.10), and (4.13) we have

limsup |[ue — uol| g 0,r;vy < C6 and  limsup ||t o 0,71y < CO.
e—0*t e—0+

The conclusion follows from the arbitrariness of § > 0. O

5. Use of the Laplace Transform

In this section we shall use the Laplace Transform to prepare the proof of the
convergence, as ¢ — 07, of the solutions of the problems

ve € Vo, (5.1&)

20, (t) — div((A + B)evs(t))—i-/o ﬂlge_tﬁ; div(Bev. (7))dT = h.(t)

for a.e. t € [0,T7, (5.1b)
v-(0)=0 in H and ©.(0)=0 inVj, (5.1¢)
to the solution vy of the problem
vo(t) € Vo for a.e. t € [0,T], (5.2)
—div(Aeuvy(t)) = h(t) for a.e. t € [0,T], '

when {h.}. C L*(0,T;H), h € L?>(0,T; H), and
h. —— h  strongly in L*(0,T; H), (5.3)

e—0t
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This partial result will be the starting point for the proof of the convergence in
L?(0,T;V) under the general assumptions of Theorem 3.6.

5.1. The Laplace Transform for Functions with Values in Hilbert Spaces
Given a complex Hilbert space X, let r € L} (0,+00; X) be a function such that

loc

“+o0
/ e ||r(t)||x dt < +oo for every a > 0, (5.4)
0

and let Cy := {s € C: R(s) > 0}. The Laplace Transform of r is the function
7: 