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1. Introduction

The most common models of viscoelasticity with long memory, such as the Maxwell
model (see [4–6,15]), lead to a dynamic evolution governed by a system of partial
differential equations of the form

ü(t) − div((A + B)eu(t)) +
∫ t

−∞

1
β

e− t−τ
β div(Beu(τ))dτ = �(t) (1.1)

in Ω for t ∈ [0, T ], where Ω ⊂ R
d is the reference configuration, [0, T ] is the time

interval, u(t) and eu(t) are the displacement at time t and the symmetric part of
its gradient, A and B are the elasticity and viscosity tensors, β > 0 is a material
constant, and �(t) is the external load at time t. This system is complemented by
boundary and initial conditions

u(t) = z(t) on ∂Ω for t ∈ [0, T ], (1.2)

u(t) = uin(t) in Ω for t ∈ (−∞, 0], (1.3)

where z and uin are prescribed functions, the latter representing the history of the
displacement for t ≤ 0. Existence and uniqueness for (1.1)–(1.3) can be found in [3].

In this paper we study the quasistatic limit of the solutions to this problem, i.e.,
the limit of these solutions when the rate of change of the data tends to zero. More
precisely, given a small parameter ε > 0, we consider the solution uε of (1.1)–(1.3)
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corresponding to �(εt), z(εt), and uin(εt). To study the asymptotic behaviour of uε

as ε → 0+ it is convenient to introduce the rescaled solution uε(t) := uε(t/ε), which
turns out to be the solution of the system

ε2üε(t) − div((A + B)euε(t)) +
∫ t

−∞

1
βε

e− t−τ
βε div(Beuε(τ))dτ = �(t) (1.4)

in Ω for t ∈ [0, T ], with boundary and initial conditions (1.2) and (1.3).
Under different assumptions on �(t), z(t), and uin(t) we prove (Theorems 3.6

and 3.7) that uε(t) converges, as ε → 0+, to the solution u0(t) of the stationary
problem

− div(Aeu0(t)) = �(t) in Ω for t ∈ [0, T ], (1.5)

with boundary condition (1.2).
By using just the energy-dissipation inequality, it is not difficult to prove a

similar result for the Kelvin–Voigt model, in which the viscosity term

− div(Beu(t)) +
∫ t

−∞

1
β

e− t−τ
β div(Beu(τ))dτ (1.6)

is replaced by − div(Beu̇(t)). On the other hand, in the case of the equation of
elastodynamics without damping terms, i.e., when B = 0, by using the Fourier
decomposition with respect to the eigenfunctions of the operator − div(Aeu), we
can easily see that the convergence of uε to u0 does not hold in general. The purpose
of this paper is to prove that the non-local damping term (1.6) is enough to obtain
the convergence of the solutions of the evolution problems to the solution of the
stationary problem.

Our result can be considered in the framework of the study of the quasistatic
limits, i.e. the convergence of the solutions to second order evolution equations
with rescaled times towards the solutions to the corresponding stationary equations.
Similar problems in finite dimension have been studied in [1,7,10,14]. A special case
involving the wave equations on time-dependent intervals in dimension one has been
studied in [8,12]. The main novelty of our problem is the the non-local form of the
damping term, given by (1.6).

The main tools to prove our results are two different estimates (Lemmas 3.8
and 5.2), related to the energy-dissipation balance (2.25) and to the elliptic system
(5.17) obtained from (1.4) via Laplace Transform. After a precise statement of all
assumptions, more details on the line of proof will be given after Theorem 3.7.

2. Hypotheses and Statement of the Problem

Let d be a positive integer and let Ω ⊂ R
d be a bounded open set with Lipschitz

boundary. We use standard notation for Lebesgue and Sobolev spaces. Let Rd×d
sym be

the space of all symmetric d×d matrices. For convenience we set

H := L2(Ω;Rd), H̃ := L2(Ω;Rd×d
sym),

V := H1(Ω;Rd), V0 := H1
0 (Ω;Rd), V ′

0 := H−1(Ω;Rd),
(2.1)
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and we always identify the dual of H with H itself. The symbols (·, ·) and ‖ · ‖
denote the scalar product and the norm in H or in H̃, according to the context.
The duality product between V ′

0 and V0 is denoted by 〈·, ·〉. Given u ∈ V , its strain
eu is defined as the symmetric part of its gradient, i.e., eu := 1

2(∇u + ∇uT ), where
∇u is the Jacobian matrix, whose components are (∇u)ij := ∂jui for i, j = 1, . . . , d.

Under these assumptions, the Second Korn Inequality (see, e.g., [11, Theo-
rem 2.4]) states that there exists a positive constant CK = CK(Ω) such that

‖∇u‖ ≤ CK

(‖u‖2 + ‖eu‖2)1/2
for every u ∈ V. (2.2)

Moreover, there exists a positive constant CP = CP (Ω) such that the following
Korn–Poincaré Inequality holds (see, e.g., [11, Theorem 2.7]):

‖u‖ ≤ CP ‖eu‖ for every u ∈ V0. (2.3)

Thanks to (2.2) we can use on the space V the equivalent norm

‖u‖V := (‖u‖2 + ‖eu‖2)1/2 for every u ∈ V.

Let L (Rd×d
sym;Rd×d

sym) be the space of all linear operators from R
d×d
sym into itself.

We assume that the elasticity and viscosity tensors A and B, which depend on the
variable x ∈ Ω, satisfy the following assumptions:

A,B ∈ L∞(Ω;L (Rd×d
sym;Rd×d

sym)), (2.4)

and for a.e. x ∈ Ω

A(x)ξ1 · ξ2 = ξ1 · A(x)ξ2,

B(x)ξ1 · ξ2 = ξ1 · B(x)ξ2
for every ξ1, ξ2 ∈ R

d×d
sym, (2.5)

cA|ξ|2 ≤ A(x)ξ · ξ ≤ CA|ξ|2,
cB|ξ|2 ≤ B(x)ξ · ξ ≤ CB|ξ|2 for every ξ ∈ R

d×d
sym, (2.6)

where cA, cB, CA, and CB are positive constants independent of x, and the dot
denotes the Euclidean scalar product of matrices.

Let us fix T > 0 and β > 0. To give a precise meaning to the notion of solution
to problem (1.2)–(1.4) we introduce the function spaces

V := L2(0, T ; V ) ∩ H1(0, T ; H) ∩ H2(0, T ; V ′
0),

V0 := L2(0, T ; V0) ∩ H1(0, T ; H) ∩ H2(0, T ; V ′
0),

Vloc := L2
loc(−∞, T ; V ) ∩ H1

loc(−∞, T ; H) ∩ H2
loc(−∞, T ; V ′

0).

Remark 2.1. By the Sobolev Embedding Theorem, if u ∈ V (resp. u ∈ Vloc), then

u ∈ C0([0, T ];H) ∩ C1([0, T ];V ′
0),

(resp.u ∈ C0((−∞, T );H) ∩ C1((−∞, T );V ′
0)).

We study problem (1.2)–(1.4) with �, z, and uin depending on ε. Let us consider
ε > 0 and

fε ∈ L2(0, T ; H), gε ∈ H1(0, T ; V ′
0), zε ∈ H2(0, T ; H) ∩ H1(0, T ; V ), (2.7)
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uε,in ∈ C0((−∞, T );H) ∩ C1((−∞, T );V ′
0) such that

uε,in(0) ∈ V, uε,in(0) − zε(0) ∈ V0,

u̇ε,in(0) ∈ H,

∫ 0

−∞

1
βε

e
τ

βε ‖uε,in(τ)‖V dτ < +∞.
(2.8)

The notion of solution to (1.2)–(1.4) is made precise by the following definition.

Definition 2.2. We say that uε is a solution to the viscoelastic dynamic system (1.2)–
(1.4), with forcing term � = fε + gε, boundary condition zε, and initial condition
uε,in, if

uε ∈ Vloc and uε − zε ∈ V0, (2.9a)

ε2üε(t) − div((A + B)euε(t)) +
∫ t

−∞

1
βε

e− t−τ
βε div(Beuε(τ))dτ

= fε(t) + gε(t) for a.e. t ∈ [0, T ], (2.9b)

uε(t) = uε,in(t) for every t ∈ (−∞, 0]. (2.9c)

In the next remark we shall see that (2.9) can be reduced to the following
problem starting from 0:

uε ∈ V and uε − zε ∈ V0, (2.10a)

ε2üε(t) − div((A + B)euε(t)) +
∫ t

0

1
βε

e− t−τ
βε div(Beuε(τ))dτ

= ϕε(t) + γε(t) for a.e. t ∈ [0, T ], (2.10b)

uε(0) = u0
ε in H and u̇ε(0) = u1

ε in V ′
0 , (2.10c)

with ϕε ∈ L2(0, T ; H), γε ∈ H1(0, T ; V ′
0), u0

ε ∈ V , u0
ε − zε(0) ∈ V0, u1

ε ∈ H.

Remark 2.3. It is easy to see that uε is a solution according to Definition 2.2 if and
only if its restriction to [0, T ], still denoted by uε, solves (2.10) with

ϕε = fε, γε = gε − pε, u0
ε = uε,in(0), u1

ε = u̇ε,in(0), (2.11)

where

pε(t) := e− t
βε g0ε with g0ε :=

∫ 0

−∞

1
βε

e
τ

βε div(Beuε,in(τ))dτ. (2.12)

To solve problem (2.10) it is enough to study the corresponding problem with
homogeneous boundary condition:

vε ∈ V0, (2.13a)

ε2v̈ε(t) − div((A + B)evε(t)) +
∫ t

0

1
βε

e− t−τ
βε div(Bevε(τ))dτ

= hε(t) + �ε(t) for a.e. t ∈ [0, T ], (2.13b)

vε(0) = v0ε in H and v̇ε(0) = v1ε in V ′
0 , (2.13c)

with

hε ∈ L2(0, T ; H), �ε ∈ H1(0, T ; V ′
0), v0ε ∈ V0, v1ε ∈ H. (2.14)



Vol. 89 (2021) Quasistatic Limit of a Dynamic. . . 489

Remark 2.4. The function uε is a solution to (2.10) if and only if vε = uε −zε solves
(2.13) with

hε(t) = ϕε(t) − ε2z̈ε(t),

�ε(t) = γε(t) + div((A + B)ezε(t)) −
∫ t

0

1
βε

e− t−τ
βε div(Bezε(τ))dτ,

v0ε = u0
ε − zε(0), v1ε = u1

ε − żε(0), (2.15)

Therefore, existence and uniqueness for (2.13) imply existence and uniqueness for
(2.10).

Remark 2.5. In [3] problem (2.13) has been studied with initial conditions taken in
the sense of interpolation spaces. Given two Hilbert spaces X and Y , the symbol
[X,Y ]θ denotes the interpolation space between X and Y of exponent θ ∈ (0, 1).
Thanks to [9, Theorem 3.1] we have the following inclusions:

L2(0, T ; V0) ∩ H1(0, T ; H) ⊂ C0([0, T ];V
1
2
0 )

L2(0, T ; H) ∩ H1(0, T ; V ′
0) ⊂ C0([0, T ];V − 1

2
0 ),

where V
1
2
0 := [V0, H] 1

2
and V

− 1
2

0 := [H,V ′
0 ] 12 . Consequently

V0 ⊂ C0([0, T ];V
1
2
0 ) ∩ C1([0, T ];V − 1

2
0 ).

Therefore, the initial conditions in (2.13) are satisfied also in the stronger sense

vε(0) = v0
ε in V

1
2
0 and v̇ε(0) = v1ε in V

− 1
2

0 . (2.16)

The following proposition provides the main properties of the solutions. We
recall that, if X is a Banach space, C0

w([0, T ];X) denotes the space of all weakly
continuous functions from [0, T ] to X, namely, the vector space of all functions
u : [0, T ] → X such that for every x′ ∈ X ′ the function t �→ 〈x′, u(t)〉 is continuous
from [0, T ] to R.

Proposition 2.6. Given ε > 0, assume (2.7) and (2.8). Then there exists a unique
solution uε to the viscoelastic dynamic system (2.9). Moreover, it satisfies

uε ∈ C0([0, T ];V ) ∩ C1([0, T ];H). (2.17)

Proof. By Remarks 2.3 and 2.4 it is enough to prove the theorem for (2.13). Exis-
tence and uniqueness are proved in [3], taking into account Remark 2.5 about the
equivalence between the initial conditions in the sense of (2.13) and (2.16).

After an integration by parts with respect to time, it easy to see that the weak
formulation (2.13) is equivalent to the following one:

− ε2
∫ T

0

(v̇ε(t), ϕ̇(t))dt +
∫ T

0

((A + B)evε(t) −
∫ t

0

1
βε

e− t−τ
βε Bevε(τ), eϕ(t))dt

=
∫ T

0

[
(hε(t), ϕ(t)) + 〈�ε(t), ϕ(t)〉]dt for every ϕ ∈ C∞

c (0, T ; V ). (2.18)
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In [13], in a more general context, it has been proved that if vε satisfies (2.18) and
the initial conditions in the sense of (2.13), then it satisfies also

vε ∈ C0
w([0, T ];V ) and v̇ε ∈ C0

w([0, T ];H),

lim
t→0+

‖vε(t) − v0ε‖V = 0 and lim
t→0+

‖v̇ε(t) − v1ε‖ = 0. (2.19)

We fix s ∈ [0, T ). We want to prove

lim
t→s+

‖vε(t) − vε(s)‖V = 0 and lim
t→s+

‖v̇ε(t) − v̇ε(s)‖ = 0. (2.20)

Thanks to the theory developed in [3] there exists a unique ṽε ∈ L2(s, T ; V0) ∩
H1(s, T ; H) ∩ H2(s, T ; V ′

0) such that

ε2 ¨̃vε(t) − div((A + B)eṽε(t)) +
∫ t

s

1
βε

e− t−τ
βε div(Beṽε(τ))dτ

= hε(t) + �ε(t) −
∫ s

0

1
βε

e− t−τ
βε div(Bevε(τ))dτ for a.e. t ∈ [s, T ], (2.21)

lim
t→s+

‖ṽε(t) − vε(s)‖ = 0 and lim
t→s+

‖ ˙̃vε(t) − v̇ε(s)‖V ′
0

= 0. (2.22)

By the results in [13] the function ṽε satisfies also

lim
t→s+

‖ṽε(t) − vε(s)‖V = 0 and lim
t→s+

‖ ˙̃vε(t) − v̇ε(s)‖ = 0. (2.23)

Since clearly vε satisfies (2.21) and (2.22), by uniqueness we have ṽε(t) = vε(t) for
every t ∈ [s, T ]. In particular, from (2.23) we deduce that (2.20) holds. �

To complete the proof we need the following proposition about the energy-
dissipation balance, where H̃ is defined by (2.1), and Wε(t) represents the work
done in the interval [0, t].

Proposition 2.7. Given ε > 0, we assume (2.14). Let vε be the solution to (2.13) and
let wε : [0, T ] → H̃ be defined by

wε(t) := e− t
βε

∫ t

0

1
βε

e
τ

βε evε(τ)dτ for every t ∈ [0, T ]. (2.24)

Then wε ∈ H1(0, T ; H̃) and the following energy-dissipation balance holds for every
t ∈ [0, T ]:

ε2

2
‖v̇ε(t)‖2 +

1
2
(Aevε(t), evε(t))

+
1
2
(B(evε(t) − wε(t)), evε(t) − wε(t)) + βε

∫ t

0

(Bẇε(τ), ẇε(τ))dτ

=
ε2

2
‖v1ε‖2 +

1
2
((A + B)ev0ε , ev0ε) + Wε(t), (2.25)

where

Wε(t) := 〈�ε(t), vε(t)〉 − 〈�ε(0), v0ε〉

+
∫ t

0

(hε(τ), v̇ε(τ))dτ −
∫ t

0

〈�̇ε(τ), vε(τ)〉dτ.
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Proof. It is convenient to extend the data of our problem to the interval [0, 2T ] by
setting

hε(t) := 0 and �ε(t) := �ε(T ) for every t ∈ (T, 2T ].

It is clear that hε ∈ L2(0, 2T ; H) and �ε ∈ H1(0, 2T ; V ′
0). By uniqueness of the

solution to (2.13), the solution on [0, 2T ] is an extension of vε, still denoted by vε.
We also consider the extension of wε on [0, 2T ] defined by (2.24).

Since evε ∈ L2(0, 2T ; H̃), it follows from (2.24) that wε ∈ H1(0, 2T ; H̃), and

βεẇε(t) = evε(t) − wε(t) for a.e. t ∈ [0, 2T ]. (2.26)

Thanks to (2.20) in [0, 2T ] and (2.26) there exists a representative of ẇε such that

lim
t→s+

‖ẇε(t) − ẇε(s)‖ = 0 for every s ∈ [0, 2T ). (2.27)

Moreover, since vε satisfies (2.13) in [0, 2T ], we have for a.e. t ∈ [0, 2T ]

ε2v̈ε(t) − div(Aevε(t)) − div(B(evε(t) − wε(t))) = hε(t) + �ε(t). (2.28)

Multiplying (2.26) and (2.28) by ψ ∈ H̃ and ϕ ∈ V0, respectively, and then inte-
grating over Ω and adding the results, for a.e. t ∈ [0, 2T ] we get

ε2〈v̈ε(t), ϕ〉 + (Aevε(t), eϕ) + (B(evε(t) − wε(t)), eϕ − ψ)

+ βε(Bẇε(t), ψ) = (hε(t), ϕ) + 〈�ε(t), ϕ〉. (2.29)

Given a function r from [0, 2T ] into a Banach space X, for every η > 0 we
define the sum and the difference σηr, δηr : [0, 2T − η] → X by

σηr(t) := r(t + η) + r(t) and δηr(t) := r(t + η) − r(t).

For a.e. t ∈ [0, 2T − η] we have σηvε(t), δηvε(t) ∈ V0 and σηwε(t), δηwε(t) ∈ H̃. For
a.e. t ∈ [0, 2T−η] we use (2.29) first at time t and then at time t+η, with ϕ := δηvε(t)
and ψ := δηwε(t). By summing the two expressions and then integrating in time on
the interval [0, t] we get

∫ t

0

[ε2Kη(τ) + Aη(τ) + Bη(τ) + εDη(τ)]dτ =
∫ t

0

Wη(τ)dτ, (2.30)

where for a.e. τ ∈ [0, 2T − η]

Kη(τ) := 〈σηv̈ε(τ), δηvε(τ)〉,
Aη(τ) := (Aσηevε(τ), δηevε(τ)),

Bη(τ) := (B(σηevε(τ) − σηwε(τ)), δηevε(τ) − δηwε(τ)),

Dη(τ) := β(Bσηẇε(τ), δηwε(τ)),

Wη(τ) := (σηhε(τ), δηvε(τ)) + 〈ση�ε(τ), δηvε(τ)〉.
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An integration by parts in time gives

∫ t

0

Kη(τ)dτ = (σηv̇ε(t), δηvε(t)) − (σηv̇ε(0), δηvε(0))

−
∫ t

0

(σηv̇ε(τ), δηv̇ε(τ))dτ

=
∫ t+η

t

(σηv̇ε(t), v̇ε(τ))dτ −
∫ η

0

(σηv̇ε(0), v̇ε(τ))dτ

−
∫ t

0

‖v̇ε(τ + h)‖2dτ +
∫ t

0

‖v̇ε(τ)‖2dτ

=
∫ t+η

t

[
(σηv̇ε(t), v̇ε(τ)) − ‖v̇ε(τ)‖2]dτ

−
∫ η

0

[
(σηv̇ε(0), v̇ε(τ)) − ‖v̇ε(τ)‖2]dτ. (2.31)

Moreover

∫ t

0

Aη(τ)dτ =
∫ t+η

t

(Aevε(τ), evε(τ))dτ −
∫ η

0

(Aevε(τ), evε(τ))dτ, (2.32)
∫ t

0

Bη(τ)dτ =
∫ t+η

t

(B(evε(τ) − wε(τ)), evε(τ) − wε(τ))dτ

−
∫ η

0

(B(evε(τ) − wε(τ)), evε(τ) − wε(τ))dτ, (2.33)
∫ t

0

Dη(τ)dτ = β

∫ t

0

∫ τ+η

τ

(Bσηẇε(τ), ẇε(s))dsdτ, (2.34)
∫ t

0

Wη(τ)dτ =
∫ t

0

∫ τ+η

τ

(σηhε(τ), v̇ε(s))dsdτ +
∫ t

t−η

〈ση�ε(τ), vε(τ + η)〉dτ

−
∫ t

η

∫ τ+η

τ−η

〈�̇ε(s), vε(τ)〉dsdτ −
∫ η

0

〈ση�ε(τ), vε(τ)〉dτ. (2.35)

We now divide by η all terms of (2.31)–(2.35). Observing that

σηhε −−−−→
η→0+

2hε strongly in L2(0, T ; H),
∫ t

0

∥∥∥ −
∫ τ+η

τ

v̇ε(s)ds − v̇ε(τ)
∥∥∥2

dτ −−−−→
η→0+

0,

∫ t

η

∥∥∥ −
∫ τ+η

τ−η

�̇ε(s)ds − �̇ε(τ)
∥∥∥2

V ′
0

dτ −−−−→
η→0+

0,

thanks to (2.20) in [0, 2T ) and (2.27), we can pass to the limit as η → 0+, and from
(2.30) we obtain that (2.25) is satisfied for every t ∈ [0, T ]. �
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Proof of Proposition 2.6 (Continuation). Now we want to prove (2.17). By using
(2.25), for every t ∈ [0, T ] we can write

ε2

2
‖v̇ε(t)‖2 +

1
2
((A + B)evε(t), evε(t))

=
ε2

2
‖v1ε‖2 +

1
2
((A + B)ev0ε , ev0ε) + Wε(t)

− 1
2
(Bwε(t), wε(t)) + (Bevε(t), wε(t)) − βε

∫ t

0

(Bẇε(τ), ẇε(τ))dτ. (2.36)

Let Ψε : [0, T ] → [0, +∞) be defined by

Ψε(t) :=
ε2

2
‖v̇ε(t)‖2 +

1
2
((A + B)evε(t), evε(t));

since wε ∈ C0([0, T ]; H̃), thanks to (2.19) and (2.36) we have Ψε ∈ C0([0, T ]).
Now we fix t ∈ [0, T ]. Given a sequence {tk}k ⊂ [0, T ] such that tk → t as

k → +∞, we define

Ek :=
ε2

2
‖v̇ε(tk) − v̇ε(t)‖2 +

1
2
((A + B)(evε(tk) − evε(t)), evε(tk) − evε(t)).

By elementary computations we have

Ek = Ψε(tk) + Ψε(t) − ε2(v̇ε(tk), v̇ε(t)) − ((A + B)evε(tk), evε(t)),

therefore, by (2.3) and (2.6) there exists a positive constant C = C(A,B, Ω) such
that

ε2‖v̇ε(tk) − v̇ε(t)‖2 + ‖vε(tk) − vε(t)‖2V
≤ C

(
Ψε(tk) + Ψε(t) − ε2(v̇ε(tk), v̇ε(t)) − ((A + B)evε(tk), evε(t))

)
.

The right-hand side of the previous inequality tends to 0 as k → +∞ because of
(2.19) and the continuity of Ψε. Since zε ∈ C0([0, T ];V ), by (2.7), and uε = vε + zε,
we obtain (2.17). �

3. Statement of the Main Results

In this section we present the main results about the convergence, as ε → 0+, of
the solutions uε. We assume the following hypotheses on the dependence on ε > 0
of our data:

(H1) {fε}ε ⊂ L2(0, T ; H) and {gε}ε ⊂ H1(0, T ; V ′
0) such that

fε −−−−→
ε→0+

f strongly in L2(0, T ; H),

gε −−−−→
ε→0+

g strongly in W 1,1(0, T ; V ′
0);

(H2) {zε}ε ⊂ H2(0, T ; H) ∩ H1(0, T ; V ) such that

zε −−−−→
ε→0+

z strongly in W 2,1(0, T ; H) ∩ W 1,1(0, T ; V );
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(H3) {uε,in}ε ⊂ C0((−∞, 0];V ) ∩ C1((−∞, 0];H), uin ∈ C0((−∞, 0];V ), and there
exist a > 0 such that

uε,in −−−−→
ε→0+

uin strongly in C0([−a, 0];V ),

εu̇ε,in −−−−→
ε→0+

0 strongly in C0([−a, 0];H),
∫ −a

−∞

1
βε

e
τ

βε ‖uε,in(τ)‖V dτ −−−−→
ε→0+

0,

∫ −a

−∞

1
βε

e
τ

βε ‖uin(τ)‖V dτ −−−−→
ε→0+

0.

Remark 3.1. Let u0
ε = uε,in(0), u1

ε = u̇ε,in(0), and u0 = uin(0). Hypothesis (H3)
implies

u0
ε −−−−→

ε→0+
u0 strongly in V and εu1

ε −−−−→
ε→0+

0 strongly in H.

Our purpose is to show that the solutions uε converge, as ε → 0+, to the
solution u0 of the stationary problem (1.5) with boundary condition (1.2). The
notion of solution to this problem is the usual one:{

u0(t) ∈ V, u0(t) − z(t) ∈ V0, for a.e. t ∈ [0, T ],
− div(Aeu0(t)) = f(t) + g(t) for a.e. t ∈ [0, T ].

(3.1)

Remark 3.2. The existence and uniqueness of a solution u0 to (3.1) follows easily
from the Lax–Milgram Lemma. Since f + g ∈ L2(0, T ; V ′

0), the estimate for the
solution implies also u0 ∈ L2(0, T ; V ).

We shall sometimes use the corresponding problem with homogeneous bound-
ary conditions:{

v0(t) ∈ V0 for a.e. t ∈ [0, T ],
− div(Aev0(t)) = h(t) + �(t) for a.e. t ∈ [0, T ],

(3.2)

with h ∈ L2(0, T ; H) and � ∈ H1(0, T ; V ′
0).

Remark 3.3. The function u0 is a solution to (3.1) if and only if v0 = u0 − z is a
solution to (3.2) with

h(t) = f(t) and �(t) = g(t) + div(Aez(t)).

The following lemma will be used to prove the regularity with respect to time
of the solution to (3.1).

Lemma 3.4. Let m ∈ N and p ∈ [1, +∞). If f = 0, g ∈ Wm,p(0, T ; V ′
0), and z ∈

Wm,p(0, T ; V ), then the solution u0 to problem (3.1) satisfies u0 ∈ Wm,p(0, T ; V ).

Proof. By Remark 3.3 it is enough to consider the case z = 0. Let R : V ′
0 → V0 be

the resolvent operator defined as follows:

R(ψ) = ϕ ⇐⇒
{

ϕ ∈ V0,

− div(Aeϕ) = ψ.

Since u0(t) = R(g(t)), the conclusion follows from the continuity of the linear oper-
ator R. �
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Remark 3.5. If f = 0, since g ∈ W 1,1(0, T ; V ′
0) and z ∈ W 1,1(0, T ; V ), we can apply

Lemma 3.4 to obtain that the solution u0 to (3.1) belongs to W 1,1(0, T ; V ), hence
u0 ∈ C0([0, T ];V ).

In the final statement of the next theorem, besides (H1)–(H3) we assume fε =
0 and the following compatibility condition: there exists an extension of g (still
denoted by g) such that

g ∈ W 1,1(−a, T ; V ′
0) and − div(Aeuin(t)) = g(t) for t ∈ [−a, 0]. (3.3)

The meaning of (3.3) is that uin(t) is in equilibrium with external loads for t ∈
[−a, 0]. This condition must be required if we want to obtain uniform convergence
of uε to u0 also near t = 0.

We are now in a position to state the main results of this paper.

Theorem 3.6. Let us assume (H1)–(H3). Let uε be the solution to the viscoelastic
dynamic system (2.9) and let u0 be the solution to the stationary problem (3.1).
Then

uε −−−−→
ε→0+

u0 strongly in L2(0, T ; V ), (3.4)

εu̇ε −−−−→
ε→0+

0 strongly in L2(0, T ; H). (3.5)

If, in addition, fε = 0 for every ε > 0, then

uε −−−−→
ε→0+

u0 strongly in L∞(η, T ; V ) for every η ∈ (0, T ), (3.6)

εu̇ε −−−−→
ε→0+

0 strongly in L∞(η, T ; H) for every η ∈ (0, T ). (3.7)

If fε = 0 for every ε > 0 and the compatibility condition (3.3) holds, then we have
also

uε −−−−→
ε→0+

u0 strongly in L∞(0, T ; V ), (3.8)

εu̇ε −−−−→
ε→0+

0 strongly in L∞(0, T ; H). (3.9)

In the case of solutions to problems (2.10) we have the following results, as-
suming that

u0
ε −−−−→

ε→0+
u0 strongly in V and εu1

ε −−−−→
ε→0+

0 strongly in H. (3.10)

Theorem 3.7. Let us assume (H1), (H2), and (3.10). Let uε be the solution to the
viscoelastic dynamic system (2.10), with ϕε = fε and γε = gε, and let u0 be the
solution to the stationary problem (3.1). Then (3.4) and (3.5) hold. Moreover, if
fε = 0 for every ε > 0, then (3.6) and (3.7) hold.

Theorems 3.6 and 3.7 will be proved in several steps. First, we prove (3.8) and
(3.9) when fε = 0 and the compatibility condition (3.3) holds (Theorem 4.1). For
g ∈ H2(0, T ; V ′

0) the proof is based on the estimate in Lemma 3.8 below, which is
derived from the energy-dissipation balance (2.25). The general case is obtained by
an approximation argument based on the same estimate.

Next, we prove that (3.4) holds for the solutions of (2.10) if γε = γ = 0,
zε = 0, u0

ε = 0, and u1
ε = 0 (Proposition 6.1). The proof is obtained by means
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of a careful estimate of the solutions to the elliptic system (5.17) obtained from
(2.13) via Laplace Transform (Section 5). Under the general assumptions (H1), (H2),
and (3.10) the same result is deduced from the previous one by an approximation
argument based again on Lemma 3.8 below.

Then, (3.5) is obtained from (3.4) using a suitable test function in (2.10) (The-
orem 6.3). A further approximation argument gives (3.4) and (3.5) under the as-
sumptions (H1), (H2), and (H3) (Theorem 6.4).

Finally, if fε = 0, we obtain (3.6) and (3.7) from (3.4) and (3.5) (Lemma 7.1),
concluding the proof of Theorems 3.6 and 3.7.

The following lemma, derived from the energy-dissipation balance (2.25) of
Proposition 2.7, will be frequently used to approximate the solutions of (2.13) by
means of solutions corresponding to more regular data.

Lemma 3.8. Given ε > 0, ϕε ∈ L2(0, T ; H), �ε ∈ H1(0, T ; V ′
0), v0ε ∈ V0, and v1ε ∈ H,

let vε be the solution to (2.13) with hε = εϕε. Then there exists a positive constant
CE = CE(A,B, Ω, T ), independent of ε, such that

ε2‖v̇ε‖2L∞(0,T ;H) + ‖vε‖2L∞(0,T ;V )

≤ CE

(
ε2‖v1ε‖2 + ‖v0ε‖2V + ‖ϕε‖2L1(0,T ;H) + ‖�ε‖2W 1,1(0,T ;V ′

0 )

)
.

Proof. By the energy-dissipation balance (2.25) proved in Proposition 2.7 and by
(2.3) and (2.6) there exists a positive constant C = C(A,B, Ω) such that for every
t ∈ [0, T ] we have

ε2‖v̇ε(t)‖2 + ‖vε(t)‖2V ≤ C
(
ε2‖v1ε‖2 + ‖v0ε‖2V + Wε(t)

)
, (3.11)

where the work is now defined by

Wε(t) = 〈�ε(t), vε(t)〉 − 〈�ε(0), v0ε〉

−
∫ t

0

〈�̇ε(τ), vε(τ)〉dτ +
∫ t

0

(ϕε(τ), εv̇ε(τ))dτ. (3.12)

Let Kε := ε‖v̇ε(t)‖L∞(0,T ;H) and Eε := ‖vε(t)‖L∞(0,T ;V ), which are finite by (2.17).
Thanks to (3.11) and (3.12) for every t ∈ [0, T ] we get

ε2‖v̇ε(t)‖2 + ‖vε(t)‖2V
≤ C

(
ε2‖v1ε‖2 + ‖v0ε‖2V +

(
3 + 2

T

)‖�ε‖W 1,1(0,T ;V ′
0 )

Eε + ‖ϕε‖L1(0,T ;H)Kε

)
.

By passing to the supremum with respect to t and using the Young Inequality we
can find a positive constant CE = CE(A,B, Ω, T ) such that

K2
ε + E2

ε ≤ CE

(
ε2‖v1ε‖2 + ‖v0ε‖2V + ‖ϕε‖2L1(0,T ;H) + ‖�ε‖2W 1,1(0,T ;V ′

0 )

)
,

which concludes the proof. �

In the proof of Theorem 3.6 we shall use the following lemma, which ensure
that it is enough to consider the case zε = 0 and z = 0.

Lemma 3.9. If Theorem 3.6 holds when zε = 0 for every ε > 0, then it holds for
arbitrary {zε}ε and z satisfying (H2).
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Proof. It is not restrictive to assume div(Bezε(0)) = div(Bez(0)) = 0. Indeed, if this
is not the case, we can consider the solutions z0ε and z0 to the stationary problems{

z0ε ∈ V0,

− div(Bez0ε) = div(Bezε(0)),
and

{
z0 ∈ V0,

− div(Bez0) = div(Bez(0)),

and we can replace zε(t) and z(t) by z̃ε(t) := zε(t) + z0ε and z̃(t) := z(t) + z0. It is
clear that div(Bez̃ε(0)) = div(Bez̃(0)) = 0 and that problems (2.9) and (3.1) do not
change passing from zε and z to z̃ε and z̃.

Let ψε, ψ : [0, T ] → V ′
0 be the functions defined by

ψε(t) :=

⎧⎪⎨
⎪⎩

0 if t ∈ (−∞, 0),
div(Bezε(t)) if t ∈ [0, T ],
div(Bezε(T )) if t ∈ (T, +∞),

(3.13)

ψ(t) :=

⎧⎪⎨
⎪⎩

0 if t ∈ (−∞, 0),
div(Bez(t)) if t ∈ [0, T ],
div(Bez(T )) if t ∈ (T, +∞).

(3.14)

Since

div(Bezε(0)) = div(Bez(0)) = 0, zε ∈ H1(0, T ; V ), z ∈ W 1,1(0, T ; V ),

we obtain ψε ∈ H1
loc(R; V ′

0) and ψ ∈ W 1,1
loc (R; V ′

0). Moreover, thanks to (H2) we
have

ψε −−−−→
ε→0+

ψ strongly in W 1,1
loc (R; V ′

0). (3.15)

Since uε is the solution to (2.9), by Remark 2.3 it solves (2.10) with γε = gε−pε

and initial conditions defined by (2.11), where pε is defined by (2.12). By Remark 2.4
the function vε = uε − zε is the solution to (2.13) with

hε(t) = fε(t) − ε2z̈ε(t),

�ε(t) = gε(t) − pε(t) + div((A + B)ezε(t))

−
∫ t

0

1
βε

e− t−τ
βε div(Bezε(τ))dτ, (3.16)

and initial conditions v0
ε and v1ε defined by (2.15). We define the family of convolution

kernels {ρε}ε ⊂ L1(R) by

ρε(t) :=

{
1

βεe− t
βε if t ∈ [0, +∞),

0 if t ∈ (−∞, 0),
(3.17)

and notice that, by (3.14) and (3.13), the integral in (3.16) coincides with (ρε∗ψε)(t),
hence

�ε(t) = gε(t) − pε(t) + div(Aezε(t)) + ψε(t) − (ρε ∗ ψε)(t) for every t ∈ [0, T ].

By Remark 3.3 the function v0 = u0 − z is the solution to (3.2) with h = f and
� = g +div(Aez). By the definition of vε and v0 it is clear that to prove the theorem
it is enough to show that the conclusions of Theorem 3.6 holds for vε and v0. To this
aim, we introduce the solution ṽε to (2.13) with hε = fε, �ε = gε − pε + div(Aezε),
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and v0ε , v1ε defined by (2.15). Then the function v̄ε := vε − ṽε satisfies (2.13) with
hε = −ε2z̈ε, �ε = ψε − ρε ∗ ψε, and homogeneous initial conditions. By Lemma 3.8
we can write

ε2‖ ˙̄vε‖2L∞(0,T ;H) + ‖v̄ε‖2L∞(0,T ;V )

≤ CE

(
ε2‖z̈ε‖2L1(0,T ;H) + ‖ψε − ρε ∗ ψε‖2W 1,1(0,T ;V ′

0 )

)
. (3.18)

By (3.15) and by classical results on convolutions we obtain

ψε − ρε ∗ ψε −−−−→
ε→0+

0 strongly in W 1,1(0, T ; V ′
0).

Since {z̈ε}ε is bounded in L1(0, T ; H) by (H2), from (3.18) we deduce

vε − ṽε −−−−→
ε→0+

0 strongly in L∞(0, T ; V ), (3.19)

ε(v̇ε − ˙̃vε) −−−−→
ε→0+

0 strongly in L∞(0, T ; H). (3.20)

By Remark 2.3 the function ṽε is the solution to (2.9) with gε replaced by
gε + div(Aezε) and zε = 0. Thanks to (H1) and (H2) we have

gε + div(Aezε) −−−−→
ε→0+

g + div(Aez) strongly in W 1,1(0, T ; V ′
0).

Since by hypothesis, Theorem 3.6 holds in the case of homogeneous boundary con-
dition, its conclusions are valid for ṽε and v0. Thanks to (3.19) and (3.20) the same
results hold for vε and v0. This concludes the proof. �

In a similar way we can prove the following result.

Lemma 3.10. If Theorem 3.7 holds when zε = 0 for every ε > 0, then it holds for
arbitrary {zε}ε and z satisfying (H2).

4. The uniform convergence

In this section we shall prove (3.8) and (3.9) of Theorem 3.6 under the compatibility
condition (3.3).

Theorem 4.1. Let us assume (H1)–(H3), the compatibility condition (3.3), and fε =
0 for every ε > 0. Let uε be the solution to the viscoelastic dynamic system (2.9)
and let u0 be the solution to the stationary problem (3.1), with f = 0. Then (3.8)
and (3.9) hold.

To prove the theorem we need the following lemma, which gives the result when
g is more regular.

Lemma 4.2. Under the assumptions of Theorem 4.1, if g ∈ H2(0, T ; V ′
0), then (3.8)

and (3.9) hold.

Proof. Thanks to Lemma 3.9 we can suppose z = 0 and zε = 0 for every ε > 0.
Let pε be defined by (2.11). Since uε is the solution to (2.9), thanks to Remark 2.3
it solves (2.13) with hε = 0, �ε = gε − pε, v0ε = uε,in(0), and v1ε = u̇ε,in(0). We
fix b > a > 0 and we extend the function g in (3.3) to (−∞, T ) in such a way
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g ∈ W 1,1(−∞, T ; V ′
0) and g(t) = 0 for every t ∈ (−∞,−b]. Since z = 0 we can

extend u0 by solving the following problem:{
u0(t) ∈ V0 for every t ∈ (−∞, T ],
− div(Aeu0(t)) = g(t) for every t ∈ (−∞, T ].

We observe that u0 = 0 on (−∞,−b] and u0 = uin on [−a, 0] by the compatibility
condition (3.3).

Assume g ∈ H2(0, T ; V ′
0). By Lemma 3.4 (with z = 0) we have u0 ∈ H2(0, T ; V ),

hence by (3.1) we get for a.e. t ∈ [0, T ]

ε2ü0(t) − div((A + B)eu0(t)) +
∫ t

0

1
βε

e− t−τ
βε div(Beu0(τ))dτ

= ε2ü0(t) + g(t) − div(Beu0(t)) + (ρε ∗ div(Beu0))(t) − p̃ε(t), (4.1)

where ρε is defined by (3.17) and

p̃ε(t) := e− t
βε g̃0ε with g̃0ε :=

∫ 0

−b

1
βε

e
τ

βε div(Beu0(τ))dτ.

Let qε := gε − g + div(Beu0) − (ρε ∗ div(Beu0)) − pε + p̃ε. By (4.1) the function
ūε := uε − u0 satisfies (2.13) with hε = −ε2ü0, �ε = qε, v0ε = uε,in(0) − u0(0), and
v1ε = u̇ε,in(0) − u̇0(0).

Since g ∈ W 1,1(−∞, T ; V ′
0) and g = 0 on (−∞,−b], by Lemma 3.4 we ob-

tain u0 ∈ W 1,1(−∞, T ; V ) and therefore div(Beu0) ∈ W 1,1(−∞, T ; V ′
0). Then the

properties of convolutions imply

ρε ∗ div(Beu0) −−−−→
ε→0+

div(Beu0) strongly in W 1,1(−∞, T ; V ′
0). (4.2)

As we have already observed, by the compatibility condition (3.3) we have
u0 = uin on [−a, 0], hence

‖g̃0ε − g0ε‖V ′
0

≤
∫ −a

−∞

1
βε

e
τ

βε
(‖ div(B(euε,in(τ))‖V ′

0
+ ‖ div(B(eu0(τ))‖V ′

0

)
dτ

+ ‖ div(B(euε,in − euin))‖L∞(−a,0;V ′
0 )

.

Thanks to (H3) we obtain g̃0ε − g0ε → 0 strongly in V ′
0 as ε → 0+. Hence

p̃ε − pε −−−−→
ε→0+

0 strongly in W 1,1(0, T ; V ′
0). (4.3)

By (H1), (4.2), and (4.3) we have

qε −−−−→
ε→0+

0 strongly in W 1,1(0, T ; V ′
0). (4.4)

Since u0(0) = uin(0), (H3) gives

u0
ε,in := uε,in(0) − u0(0) −−−−→

ε→0+
0 strongly in V, (4.5)

εu1
ε,in := ε(u̇ε,in(0) − u̇0(0)) −−−−→

ε→0+
0 strongly in H. (4.6)
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By using Lemma 3.8 we get

ε2‖ ˙̄uε‖2L∞(0,T ;H) + ‖ūε‖2L∞(0,T ;V )

≤ CE

(
ε2‖u1

ε,in‖2 + ‖u0
ε,in‖2V + ε2‖ü0‖2L1(0,T ;H) + ‖qε‖2W 1,1(0,T ;V ′

0 )

)
,

therefore thanks to (4.4), (4.5), and (4.6) we obtain the conclusion. �

In the proof of Theorems 4.1, 6.2, and 6.4 we shall use the following density
result.

Lemma 4.3. Let X,Y be two Hilbert spaces such that X ↪→ Y continuously, with
X dense in Y . Then for every m,n ∈ N with m ≤ n, and p ∈ [1, 2] the space
Hn(0, T ; X) is dense in Wm,p(0, T ; Y ).

Proof. Since every simple function with values in Y can be approximated by simple
functions with values in X, it is easy to see that L2(0, T ; X) is dense in Lp(0, T ; Y ).

To prove the result for m = 1 we fix u ∈ W 1,p(0, T ; Y ). By the density of
L2(0, T ; X) in Lp(0, T ; Y ) we can find a sequence {ψk}k ⊂ L2(0, T ; X) such that
ψk → u̇ strongly in Lp(0, T ; Y ) as k → +∞. By the density of X in Y there exists
{u0

k}k ⊂ X such that u0
k → u(0) strongly in Y as k → +∞. Now we define

uk(t) :=
∫ t

0

ψk(τ)dτ + u0
k.

It is easy to see that {uk}k ⊂ H1(0, T ; X) and

uk −−−−−→
k→+∞

u strongly in W 1,p(0, T ; Y ).

Arguing by induction we can prove that for every integer m ≥ 0 the space
Hm(0, T ; X) is dense in Wm,p(0, T ; Y ). Since Hn(0, T ; X) is dense in Hm(0, T ; X),
the conclusion follows. �

We are now in a position to deduce Theorem 4.1 from Lemma 4.2 by means of
an approximation argument.

Proof of Theorem 4.1. Thanks to Lemma 3.9 we can suppose z = 0 and zε = 0 for
every ε > 0. We fix δ > 0. By Lemma 4.3 there exists a function ψ ∈ H2(0, T ; V ′

0)
such that

‖ψ − g‖W 1,1(0,T ;V ′
0 )

< δ. (4.7)

By (H1) there exists a positive number ε0 = ε0(δ) such that

‖ψ − gε‖W 1,1(0,T ;V ′
0 )

< δ for every ε ∈ (0, ε0). (4.8)

Let pε be defined by (2.12). Since uε is the solution to (2.9) with fε = 0 and
zε = 0, thanks to Remark 2.3 it solves (2.13) with hε = 0, �ε = gε−pε, v0ε = uε,in(0),
and v1ε = u̇ε,in(0). Moreover, let ũε be solution to (2.13) with hε = 0, �ε = ψ − pε,
v0ε = uε,in(0), and v1ε = u̇ε,in(0), and let ũ0 be the solution to (3.2) with h = 0 and
� = ψ. Thanks to Remark 2.3 the function ũε is the solution to (2.9) with fε = 0,
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gε = ψ, and zε = 0, hence by Lemma 4.2 we have

ũε −−−−→
ε→0+

ũ0 strongly in L∞(0, T ; V ), (4.9)

ε ˙̃uε −−−−→
ε→0+

0 strongly in L∞(0, T ; H). (4.10)

We now consider the functions ū0 := ũ0 −u0 and ūε := ũε −uε. Since ū0 is the
solution to (3.2), with h = 0 and � = ψ − g, by the Lax-Milgram Lemma we get

‖ū0‖L∞(0,T ;V ) ≤ C2
P +1
cA

‖ψ − g‖L∞(0,T ;V ′
0 )

≤ C2
P +1
cA

(1 + 1
T )‖ψ − g‖W 1,1(0,T ;V ′

0 )
.

(4.11)

Moreover, since ūε is the solution to (2.13), with hε = 0, �ε = ψ − gε, v0ε = 0, and
v1ε = 0, thanks to Lemma 3.8 we get

ε2‖ ˙̄uε‖2L∞(0,T ;H) + ‖ūε‖2L∞(0,T ;V ) ≤ CE‖ψ − gε‖2W 1,1(0,T ;V ′
0 )

. (4.12)

By combining (4.7), (4.8), (4.11), and (4.12), we can find a positive constant C =
C(A,B, Ω, T ) such that

ε‖ ˙̄uε‖L∞(0,T ;H) + ‖ūε‖L∞(0,T ;V ) + ‖ū0‖L∞(0,T ;V ) ≤ Cδ (4.13)

for every ε ∈ (0, ε0). Since

‖uε − u0‖L∞(0,T ;V ) ≤ ‖ūε‖L∞(0,T ;V ) + ‖ũε − ũ0‖L∞(0,T ;V ) + ‖ū0‖L∞(0,T ;V ),

ε‖u̇ε‖L∞(0,T ;H) ≤ ε‖ ˙̄uε‖L∞(0,T ;H) + ε‖ ˙̃uε‖L∞(0,T ;H),

by (4.9), (4.10), and (4.13) we have

lim sup
ε→0+

‖uε − u0‖L∞(0,T ;V ) ≤ Cδ and lim sup
ε→0+

‖εu̇ε‖L∞(0,T ;H) ≤ Cδ.

The conclusion follows from the arbitrariness of δ > 0. �

5. Use of the Laplace Transform

In this section we shall use the Laplace Transform to prepare the proof of the
convergence, as ε → 0+, of the solutions of the problems

vε ∈ V0, (5.1a)

ε2v̈ε(t) − div((A + B)evε(t))+
∫ t

0

1
βε

e− t−τ
βε div(Bevε(τ))dτ =hε(t)

for a.e. t ∈ [0, T ], (5.1b)

vε(0) = 0 in H and v̇ε(0) = 0 in V ′
0 , (5.1c)

to the solution v0 of the problem{
v0(t) ∈ V0 for a.e. t ∈ [0, T ],
− div(Aev0(t)) = h(t) for a.e. t ∈ [0, T ],

(5.2)

when {hε}ε ⊂ L2(0, T ; H), h ∈ L2(0, T ; H), and

hε −−−−→
ε→0+

h strongly in L2(0, T ; H), (5.3)
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This partial result will be the starting point for the proof of the convergence in
L2(0, T ; V ) under the general assumptions of Theorem 3.6.

5.1. The Laplace Transform for Functions with Values in Hilbert Spaces

Given a complex Hilbert space X, let r ∈ L1
loc(0, +∞; X) be a function such that∫ +∞

0

e−αt‖r(t)‖X dt < +∞ for every α > 0, (5.4)

and let C+ := {s ∈ C : �(s) > 0}. The Laplace Transform of r is the function
r̂ : C+ → X defined by

r̂(s) :=
∫ +∞

0

e−str(t)dt for every s ∈ C+. (5.5)

Besides r̂, we shall also use the notation L(r), which is sometimes written as Lt(r(t)),
with dummy variable t. In the particular case r ∈ L∞(0, +∞; X) we have

‖r̂(s)‖X ≤ 1
s1

‖r‖L∞(0,+∞;X) for every s = s1 + is2 ∈ C+, with s1, s2 ∈ R.

There is a close connection between the Laplace Transform and the Fourier
Transform, defined for every ρ ∈ L1(R; X) as the function F(ρ) ∈ L∞(R; X) given
by

F(ρ)(ξ) =
∫ +∞

−∞
e−iξtρ(t)dt for every ξ ∈ R. (5.6)

For F(ρ) we use also the notation Ft(ρ(t)) with dummy variable t. For the main
properties of the Fourier and Laplace Transforms of functions with values in Hilbert
spaces we refer to [2].

We extend the function r satisfying (5.4) by setting r(t) = 0 for every t < 0.
By (5.5) and (5.6) we have

Lt(r(t))(s) = Ft(e−s1tr(t))(s2) for every s = s1 + is2 ∈ C+, s1, s2 ∈ R.

We remark that the Laplace Transform commutes with linear transformations,
as shown in the following proposition (see, for instance [2, Proposition 1.6.2]).

Proposition 5.1. Let X and Y be two complex Hilbert spaces, let r ∈ L1
loc(0, +∞; X),

and let T be a continuous linear operator from X to Y . Then T ◦r ∈ L1
loc(0, +∞; Y ).

If in addition, r satisfies (5.4), then the same property holds also for T ◦ r, with X
replaced by Y , and L(T ◦ r)(s) = (T ◦ r̂)(s) for every s ∈ C+.

Now we consider the Inverse Laplace Transform. Let R : C+ → X be a function.
Suppose that there exists r ∈ L1

loc(0, +∞; X) such that (5.4) holds and L(r)(s) =
R(s) for every s ∈ C+. In this case we say that r is the Inverse Laplace Transform
of R, and we use the notation r = L−1(R) or r = L−1

s (R(s)) with dummy variable
s. It can be proven that r is uniquely determined up to a negligible set (see [2,
Theorem 1.7.3]). Moreover, r can be obtained by the Bromwich Integral Formula:

r(t) = L−1(R)(t) =
es1t

2π
lim

k→+∞

∫ k

−k

eis2tR(s1 + is2)ds2, (5.7)
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where s1 is an arbitrary positive number. Clearly (5.7) can be expressed in terms of
the Inverse Fourier Transform, namely

r(t) = L−1
s (R(s))(t) = es1tF−1

s2
(R(s1 + is2))(t), (5.8)

where F−1
s2

(R(s1 + is2)) denotes the Inverse Fourier Transform with respect to the
variable s2.

To use the Laplace Transform, we extend our problems from the interval [0, T ]
to [0, +∞). To do this, we extend the functions hε and h, introduced in (5.3), by
setting them equal to zero in (T, +∞), and we consider the solution to (5.1) in
[0, +∞), which we still denote vε. Moreover, we consider the solution to (5.2) in
[0, +∞), which we still denote v0. Notice that, thanks to the choice of the extension
we have

hε −−−−→
ε→0+

h strongly L2(0, +∞; H).

By Proposition 3.8 and by using the equality hε = 0 on (T, +∞), we get

vε ∈ L∞(0, +∞; V0) and v̇ε ∈ L∞(0, +∞; H). (5.9)

Since h ∈ L2(0, T ; H) and h = 0 on (T, +∞), by means of standard estimates for
the solution to (5.2) we obtain

v0 ∈ L2(0, +∞; V0) and v0 = 0 on (T, +∞). (5.10)

From (2.4), (5.1), and (5.9) we can deduce

v̈ε ∈ L2(0, T ; V ′
0) ∩ L∞(T, +∞; V ′

0). (5.11)

To study our problem by means of the Laplace Transform we introduce the
complexification of the Hilbert spaces H, V0, and V ′

0 defined by

Ĥ := L2(Ω;Cd), V̂0 := H1(Ω;Cd), V̂ ′
0 := H−1(Ω;Cd).

The symbols (·, ·) and ‖ · ‖ denote the hermitian product and the norm in Ĥ or in
other complex L2 spaces. For every s ∈ C+ the Laplace Transforms ĥε(s) and ĥ(s) of
hε and h in Ĥ are well defined. Thanks to (5.9) and (5.10) the Laplace Transforms
v̂ε(s) and v̂0(s) in V̂0 are well defined for every s ∈ C+. By (5.11) the Laplace
Transform ˆ̈vε(s) of v̈ε(s) in V̂ ′

0 is well defined for every s ∈ C+. Using (5.9) we can
integrate by parts two times in the integral which defines ˆ̈vε and, since vε(0) = 0
and v̇ε(0) = 0, we obtain

ˆ̈vε(s) = s2v̂ε(s) for every s ∈ C+. (5.12)

By considering the operators SA, SB : V̂0 → V̂ ′
0 defined by

SA(ψ) := − div(Aeψ) and SB(ψ) := − div(Beψ),

we can rephrase (5.1) and (5.2) for a.e. t ∈ [0, +∞) as equalities in V̂ ′
0 :

ε2v̈ε(t) = SB

( ∫ t

0

1
βε

e− t−τ
βε vε(τ)dτ

)
− (SA + SB)(vε(t)) + hε(t), (5.13)

SA(v0(t)) = h(t). (5.14)
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Now we want to consider the Laplace Transforms, in the sense of V̂ ′
0 , of both

sides of these equations. By Proposition 5.1 we can say

L(SA(vε)) = SA(v̂ε), L(SB(vε)) = SB(v̂ε), L(SA(v0)) = SA(v̂0), (5.15)

where v̂ε and v̂0 are the Laplace Transforms of vε and v0, respectively, in the sense
of V̂0. Moreover, since we have

sup
t∈[0,+∞)

∥∥∥
∫ t

0

1
βε

e− t−τ
βε vε(τ)dτ

∥∥∥
V0

≤ ‖vε‖L∞(0,+∞;V0),

this integral admits Laplace Transform in the sense of V̂0, which for every s ∈ C+

satisfies

Lt

( ∫ t

0

1
βε

e− t−τ
βε vε(τ)dτ

)
(s) =

1
βεs + 1

v̂ε(s).

Hence, by using Proposition 5.1 again, we obtain

Lt

(
SB

( ∫ t

0

1
βε

e− t−τ
βε vε(τ)dτ

))
(s) =

1
βεs + 1

SB(v̂ε(s)). (5.16)

5.2. Properties of the Laplace Transform of the solutions

Thanks to (5.12), (5.15), and (5.16) we can apply the Laplace Transform to both
sides of (5.13) and (5.14) to deduce for every s ∈ C+ the following equalities in V̂ ′

0 :

ε2s2v̂ε(s) − div((A + B)ev̂ε(s)) +
1

βεs + 1
div(Bev̂ε(s)) = ĥε(s), (5.17)

− div(Aev̂0(s)) = ĥ(s). (5.18)

Our purpose is to prove that for every s1 > 0 we have∫ +∞

−∞
‖v̂ε(s1 + is2) − v̂0(s1 + is2)‖2V̂0

ds2 −−−−→
ε→0+

0. (5.19)

To prove (5.19) we need two lemmas. In the first one we deduce from (5.17) an
estimate for v̂ε(s), which is used in the second lemma to prove a convergence result
for v̂ε(s).

Lemma 5.2. For every s ∈ C+ there exists a positive constant M(s) such that

‖v̂ε(s)‖V̂0
≤ M(s)‖ĥε(s)‖ for every ε ∈ (0, 1). (5.20)

Proof. We fix ε ∈ (0, 1) and for every s ∈ C+ we define the operator Sε(s) : V̂0 → V̂ ′
0

in the following way:

Sε(s)(ψ) := ε2s2ψ − div((A + B)eψ) +
1

βεs + 1
div(Beψ) for every ψ ∈ V̂0.

Since Sε(s)(v̂ε(s)) = ĥε(s) by (5.17), the Lax-Milgram Lemma, together with the
Korn-Poincaré Inequality (2.3), implies (5.20) if we can show that for every s ∈ C+

there exists a positive constant K(s), independent of ε, such that

|〈Sε(s)(ψ), ψ〉| ≥ cAK(s)‖eψ‖2 for every ψ ∈ V̂0, (5.21)
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where

|〈Sε(s)(ψ), ψ〉| =
|(βε3s3 + ε2s2)‖ψ‖2 + βεs((A + B)eψ, eψ) + (Aeψ, eψ)|

|βεs + 1| .

We can suppose ψ ∈ V̂0\{0}, otherwise the inequality is trivially satisfied, and
we set

a :=
(Aeψ, eψ)

‖ψ‖2 and b :=
((A + B)eψ, eψ)

‖ψ‖2 ,

which satisfy, thanks to the Korn-Poincaré Inequality (2.3) and to (2.4)–(2.6), the
following relations

a ≥ cA‖eψ‖2
‖ψ‖2 ≥ cA

C2
P

=:a0, b ≥ (cA + cB)‖eψ‖2
‖ψ‖2 ≥ cA + cB

C2
P

=: b0,

a ≤ c0a ≤ b ≤ c1a,

(5.22)

where c0 := 1 + cB
CA

and c1 := 1 + CB

cA
. Therefore, to prove (5.21) it is enough to

obtain ∣∣∣∣βε3s3 + ε2s2 + βbεs + a

βεs + 1

∣∣∣∣ ≥ K(s) a for every s ∈ C+. (5.23)

For simplicity of notation we set z = εs and we consider two cases.
Case b > 2

3β2 . In this situation, thanks to (A.2) and (A.3) we know that the poly-
nomial βz3 + z2 +βbz + a has one real root z0 and two complex and conjugate ones
w and w̄. Therefore, thanks to Lemmas A.1 and A.2, we can write∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ =
∣∣∣∣β(z − z0)(z − w)(z − w̄)

βz + 1

∣∣∣∣
≥

∣∣∣∣β(z − z0)
βz + 1

∣∣∣∣ |�(w)||�(w)|

=
∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣ |�(w)|
√

3|�(w)|2 +
2
β

�(w) + b

≥
∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣ α

√
b − 1

3β2

≥
∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣ α

√
b

2
≥ α√

3

∣∣∣∣ z

βz + 1

∣∣∣∣ , (5.24)

where in the last inequality we used z0 < 0.
If a ≤ 2|z|2, then |z| ≥ a

2|z| and, thanks to (5.24), we deduce
∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ α

2
√

3
a

|z(βz + 1)| . (5.25)

For a > 2|z|2 we have

1
a

∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ =
∣∣∣∣z

2

a
+

βbz + a

a(βz + 1)

∣∣∣∣ ≥
∣∣∣∣ βbz + a

a(βz + 1)

∣∣∣∣ − 1
2
,
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and, by writing z = x + iy, we obtain
∣∣∣∣ βbz + a

a(βz + 1)

∣∣∣∣ =
∣∣∣∣ βbx + a + iβby

βax + a + iβay

∣∣∣∣ =

√
(βbx + a)2 + β2b2y2

(βax + a)2 + β2a2y2
≥ 1,

which implies ∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ a

2
. (5.26)

By (5.25) and (5.26) in the case b > 2
3β2 we conclude

∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ min
{1

2
,

α

2
√

3
1

|z(βz + 1)|
}

a. (5.27)

Case b0 ≤ b ≤ 2
3β2 . In this case, thanks to (5.22), we have a0 ≤ a ≤ 2

3β2 . We define

R :=

√
2(2 + c1)

3β2
.

Then for z ∈ C+, with |z| > R, we get

1
a

∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ =
∣∣∣∣z

2

a
+

βbz + a

a(βz + 1)

∣∣∣∣
≥ 3β2|z|2

2
− b

a

∣∣∣∣ βz

βz + 1

∣∣∣∣ − 1
|βz + 1| ≥ 1, (5.28)

where we used the inequalities |βz| ≤ |βz + 1| and 1 ≤ |βz + 1|.
To deal with the case z ∈ C+, with |z| ≤ R, we define

I :=
{
a, b ∈ R : b0 ≤ b ≤ 2

3β2 , a0 ≤ a ≤ 2
3β2

}
,

γ := min
{∣∣∣∣βz3 + z2 + βbz + a

a(βz + 1)

∣∣∣∣ : �(z) ≥ 0, |z| ≤ R, a, b ∈ I

}
,

and we claim γ > 0. Indeed the function under examination is continuous with re-
spect to (z, a, b), and by Lemma A.1 it does not vanish in the compact set considered
in the minimum problem. By using also (5.28) we conclude that for b0 ≤ b ≤ 2

3β2

we have ∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ min{γ, 1}a. (5.29)

for every z ∈ C+ and every a satisfying (5.22). Since ε ∈ (0, 1) we have

1
|εs(βεs + 1)| ≥ 1

|s(βs + 1)| ,

therefore, by setting

K(s) := min
{1

2
,

α

2
√

3
1

|s(βs + 1)| , γ
}

,

from (5.27) and (5.29) we obtain (5.23), which concludes the proof. �
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5.3. Convergence of the Laplace Transform of the Solutions

We begin by proving the pointwise convergence.

Lemma 5.3. For every s ∈ C+ we have

v̂ε(s) −−−−→
ε→0+

v̂0(s) strongly in V̂0.

Proof. Thanks to (5.3) and to the Hölder Inequality for every s ∈ C+ we get

‖ĥε(s) − ĥ(s)‖ ≤
∫ +∞

0

e−�(s)t‖hε(t) − h(t)‖dt

≤ 1√
2�(s)

‖hε − h‖L2(0,T ;H) −−−−→
ε→0+

0. (5.30)

Consequently, thanks to Lemma 5.2, for every s ∈ C+ there exist two constants
M̄(s) > 0 and ε(s) ∈ (0, 1) such that

‖v̂ε(s)‖V̂0
≤ M̄(s) for every ε ∈ (0, ε(s)). (5.31)

By (5.31) we can say that for every s ∈ C+ there exist a sequence εj −→ 0+ and
v∗(s) ∈ V̂0 such that

v̂εj
(s) −−−−⇀

j→+∞
v∗(s) weakly in V̂0. (5.32)

Thanks to (2.5) and (5.32) for every ψ ∈ V̂0 we deduce

((A + B)ev̂εj
(s), eψ) −−−−→

j→+∞
((A + B)ev∗(s), eψ),

|ε2js2(v̂εj
(s), ψ)| ≤ ε2j |s|2M̄(s)‖ψ‖ −−−−→

j→+∞
0,

∣∣∣ 1
βεjs + 1

(Bev̂εj
(s), eψ) − (Bev∗(s), eψ)

∣∣∣
≤ ∣∣(B(ev̂εj

(s) − ev∗(s)), eψ)
∣∣ +

βεj |s|
|βεjs + 1| |(Bev̂εj

(s), eψ)|

≤ ∣∣(ev̂εj
(s) − ev∗(s),Beψ)

∣∣ + βεj |s|CBM̄(s)‖eψ‖ −−−−→
j→+∞

0.

Therefore by (5.30) we have{
v∗(s) ∈ V̂0,

− div(Aev∗(s)) = ĥ(s).
(5.33)

Since, by (5.18), v̂0(s) is a solution to (5.33), by uniqueness v∗(s) = v̂0(s). Moreover,
since the limit does not depend on the subsequence, the whole sequence satisfies

v̂ε(s) −−−−⇀
ε→0+

v̂0(s) weakly in V̂0 for every s ∈ C+. (5.34)

To prove the strong convergence we use v̂ε(s) and v̂0(s) as test function in
(5.17) and (5.18), respectively. By subtracting the two equalities, we obtain

(Aev̂ε(s), ev̂ε(s)) − (Aev̂0(s), ev̂0(s))

= (ĥε(s), v̂ε(s)) − (ĥ(s), v̂0(s)) − ε2s2‖v̂ε(s)‖2 − βεs

βεs + 1
(Bev̂ε(s), ev̂ε(s)),
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from which we deduce

|(Aev̂ε(s), ev̂ε(s)) − (Aev̂0(s), ev̂0(s))|
≤ |(ĥε(s), v̂ε(s)) − (ĥ(s), v̂0(s))| + ε2|s|2‖v̂ε(s)‖2 + βε|s|CB‖ev̂ε(s)‖2.

By using again (5.30), (5.31), and (5.34), we can deduce

lim
ε→0+

(Aev̂ε(s), ev̂ε(s)) = (Aev̂0(s), ev̂0(s)) for every s ∈ C+. (5.35)

Thanks to the coerciveness assumption (2.6), the conclusion follows from the weak
convergence (5.34) together with (5.35). �

Now we are in a position to prove the following result about the convergence
in the space L2 on the lines {s1 + is2 : s2 ∈ R}.

Proposition 5.4. The functions v̂ε and v̂0 satisfy (5.19).

Proof. For every s ∈ C+, by using v̂ε(s) as test function in (5.17) we obtain
(
βε3s3 + ε2s2 + β

((A + B)ev̂ε(s), ev̂ε(s))
‖v̂ε(s)‖2 εs +

(Aev̂ε(s), ev̂ε(s))
‖v̂ε(s)‖2

)
‖v̂ε(s)‖2

= (βεs + 1)(ĥε(s), v̂ε(s)). (5.36)

As before, we set

a :=
(Aev̂ε(s), ev̂ε(s))

‖v̂ε(s)‖2 and b :=
((A + B)ev̂ε(s), ev̂ε(s))

‖v̂ε(s)‖2 , (5.37)

and we observe that (5.22) holds. Therefore, thanks to (5.24), Lemma A.1, and
(5.29) we can deduce∣∣∣∣βε3s3 + ε2s2 + βbεs + a

βεs + 1

∣∣∣∣ ≥
∣∣∣∣β(εs − z0)

βεs + 1

∣∣∣∣ α

√
b

2

≥ β |z0|α
√

a

2
≥ βα2

√
2

√
a for b >

2
3β2

,

∣∣∣∣βε3s3 + ε2s2 + βbεs + a

βεs + 1

∣∣∣∣ ≥ min{γ, 1}a ≥ min{γ, 1}√
a0

√
a for b ≤ 2

3β2
,

where in the first line we used the inequality |z0(βεs + 1)| ≤ |εs − z0| for every
s ∈ C+, which follows from the condition z0 < 0.

As a consequence of these inequalities and of (5.36) there exists a positive
constant C = C(α, β, γ, a0) such that for every s ∈ C+ we have

‖v̂ε(s)‖2 =
∣∣∣∣ βεs + 1
βε3s3 + ε2s2 + βbεs + a

∣∣∣∣ |(ĥε(s), v̂ε(s))| ≤ C√
a
‖ĥε(s)‖‖v̂ε(s)‖.

Therefore, by using (5.37) and the coerciveness assumption (2.6), we can write
√

cA‖ev̂ε(s)‖ ≤
√

(Aev̂ε(s), ev̂ε(s)) ≤ C‖ĥε(s)‖,

from which, recalling (2.3), we deduce

‖v̂ε(s)‖V̂0
≤ (CP + 1)

C√
cA

‖ĥε(s)‖ for every s ∈ C+. (5.38)
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By extending the function hε to (−∞, 0) with value 0, we can write

ĥε(s) =
∫ +∞

0

e−sthε(t)dt =
∫ +∞

−∞
e−sthε(t)dt = Ft(e−s1thε(t))(s2).

Since for every s = s1 + is2 ∈ C+ the function t �→ e−s1thε(t) belongs to L2(R; H),
by the properties of the Fourier Transform we deduce that s2 �→ ĥε(s1+is2) belongs
to L2(R; Ĥ) for every ε > 0. Moreover, by using (5.3) and the Plancherel Theorem,
we can write ∫ +∞

−∞
‖ĥε(s1 + is2) − ĥ(s1 + is2)‖2ds2

=
∫ +∞

−∞
‖Ft(e−s1t(hε(t) − h(t)))(s2)‖2ds2

=
∫ +∞

−∞
‖e−s1t(hε(t) − h(t))‖2 dt

≤
∫ T

0

‖hε(t) − h(t)‖2 dt −−−−→
ε→0+

0. (5.39)

Since v̂ε(s) → v̂0(s) strongly in V̂0 by Lemma 5.3 and ĥε(s) → ĥ(s) strongly in
Ĥ by (5.30), thanks to (5.38) and (5.39) we can apply the Generalized Dominated
Convergence Theorem to get the conclusion. �

6. L2 Convergence

In this section we shall prove (3.4) and (3.5) under the assumptions of Theorems 3.6
and 3.7. We begin by proving the following partial result.

Proposition 6.1. Let {hε}ε ⊂ L2(0, T ; H) and h ∈ L2(0, T ; H) be such that (5.3)
holds. Let vε and v0 be the solutions to problems (5.1) and (5.2). Then

vε −−−−→
ε→0+

v0 strongly in L2(0, T ; V ).

Proof. By the Plancherel Theorem we deduce from (5.8) and Proposition 5.4 that
for every s1 > 0

‖vε − v0‖2L2(0,T ;V ) =
∫ T

0

‖vε(t) − v0(t)‖2V dt =
∫ T

0

‖L−1(v̂ε − v̂0)(t)‖2V dt

≤ es1T

∫ +∞

−∞
‖F−1

s2
(v̂ε(s1 + is2) − v̂0(s1 + is2))(t)‖2V dt

= es1T

∫ +∞

−∞
‖v̂ε(s1 + is2) − v̂0(s1 + is2)‖2V̂0

ds2 −−−−→
ε→0+

0,

which concludes the proof. �

Theorem 6.2. Let us assume (H1), (H2), and (3.10). Let uε be the solution to the
viscoelastic dynamic system (2.10), with ϕε = fε and γε = gε, and let u0 be the
solution to the stationary problem (3.1). Then (3.4) holds.
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Proof. Thanks to Lemma 3.10 it is enough to prove the theorem in the case z = 0
and zε = 0 for every ε > 0. We divide the proof into two steps.

Step 1. The case u1
ε = 0. We reduce the problem to the case of homogeneous

initial conditions by considering the functions

vε(t) := uε(t) − u0
ε and v0(t) := u0(t) − u0 for a.e. t ∈ [0, T ]. (6.1)

Let us define

qε(t) := gε(t) + div(Aeu0
ε) + e− t

βε div(Beu0
ε) for every t ∈ [0, T ], (6.2)

q(t) := g(t) + div(Aeu0) for every t ∈ [0, T ]. (6.3)

Since u1
ε = 0, it is easy to see that vε satisfies (2.13) with hε = fε, �ε = qε, v0ε = 0,

and v1ε = 0, while v0 satisfies (3.2) with h = f and � = q. By (3.10) and (6.1), to
prove (3.4) it is enough to show that

vε −−−−→
ε→0+

v0 strongly in L2(0, T ; V ). (6.4)

In order to apply Proposition 6.1, we approximate the forcing terms of the
problems for vε and v0 by means of functions in H1(0, T ; H) and we consider the cor-
responding solutions ṽε and ṽ0, for which Proposition 6.1 yields ṽε → ṽ0 strongly in
L2(0, T ; V ) as ε → 0+. Finally we show that ‖ṽε−vε‖L2(0,T ;V ) and ‖ṽ0−v0‖L2(0,T ;V )

are small uniformly with respect to ε, and this leads to the proof of (6.4).
Let us fix δ > 0. Thanks to the density of H in V ′

0 and to Lemma 4.2 we can
find ψ ∈ H1(0, T ; H) and h0

A
, h0

B
∈ H such that

‖ψ − g‖W 1,1(0,T ;V ′
0 )

< δ, (6.5)

‖h0
A

− div(Aeu0)‖V ′
0

< δ, ‖h0
B

− div(Beu0)‖V ′
0

< δ. (6.6)

Thanks to (H1) and (3.10) there exist ε0 = ε0(δ) ∈ (0, 1
β ) such that for every

ε ∈ (0, ε0) we have

‖ψ − gε‖W 1,1(0,T ;V ′
0 )

< δ, (6.7)

‖h0
A

− div(Aeu0
ε)‖V ′

0
< δ, ‖h0

B
− div(Beu0

ε)‖V ′
0

< δ. (6.8)

Let ϕε, ϕ : [0, T ] → H be defined for every t ∈ [0, T ] by

ϕε(t) := ψ(t) + h0
A

+ e− t
βε h0

B
and ϕ(t) := ψ(t) + h0

A
. (6.9)

By (6.2), (6.3), (6.5), (6.6), (6.7), (6.8), and (6.9) for every ε ∈ (0, ε0) we obtain

‖ϕε − qε‖W 1,1(0,T ;V ′
0 )

≤ ‖ψ − gε‖W 1,1(0,T ;V ′
0 )

+ T‖h0
A

− div(Aeu0
ε)‖V ′

0

+ (βε + 1)‖h0
B

− div(Beu0
ε)‖V ′

0
≤ (3 + T )δ, (6.10)

‖ϕ − q‖L∞(0,T ;V ′
0 )

≤ (1 + 1
T )‖ψ − g‖W 1,1(0,T ;V ′

0 )
+ ‖h0

A
− div(Aeu0

ε)‖V ′
0

≤ (2 + 1
T )δ. (6.11)

Since t �→ e− t
βε ψ0

B
converges to 0 strongly in L2(0, T ; H) as ε → 0+, by (6.9) we

have

ϕε −−−−→
ε→0+

ϕ strongly in L2(0, T ; H). (6.12)
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Let ṽε be the solution to (5.1) with hε = fε + ϕε and let ṽ0 be the solution to
(5.2) with h = f + ϕ. By (H1) and (6.12) we have

fε + ϕε −−−−→
ε→0+

f + ϕ strongly in L2(0, T ; H),

hence Proposition 6.1 yields

ṽε −−−−→
ε→0+

ṽ0 strongly in L2(0, T ; V ). (6.13)

To estimate the difference ṽε − vε we observe that it solves (2.13) with hε = 0,
�ε = ϕε − qε, v0ε = 0, and v1

ε = 0. Therefore, by Lemma 3.8 we have

‖ṽε − vε‖L2(0,T ;V ) ≤
√

CET‖ϕε − qε‖W 1,1(0,T ;V ′
0 )

. (6.14)

To estimate the difference ṽ0 − v0 we observe that it solves (3.2) with h = 0 and
� = ϕ − q. Therefore by the Lax-Milgram Lemma we obtain

‖ṽ0 − v0‖L2(0,T ;V ) ≤
√

T (C2
P +1)

cA
‖ϕ − q‖L∞(0,T ;V ′

0 )
. (6.15)

By (6.10), (6.11), (6.14), and (6.15) there exists a positive constant C =
C(A,B, Ω, T ) such that

‖ṽε − vε‖L2(0,T ;V ) + ‖ṽ0 − v0‖L2(0,T ;V ) ≤ Cδ,

hence

‖vε − v0‖L2(0,T ;V )

≤ ‖vε − ṽε‖L2(0,T ;V ) + ‖ṽε − ṽ0‖L2(0,T ;V ) + ‖ṽ0 − v0‖L2(0,T ;V )

≤ ‖ṽε − ṽ0‖L2(0,T ;V ) + Cδ.

This inequality, together with (6.13), gives

lim sup
ε→0+

‖vε − v0‖L2(0,T ;V ) ≤ Cδ.

By the arbitrariness of δ > 0 we obtain (6.4), which concludes the proof of Step 1.
Step 2. The general case. Let ũε be the solution to (2.13) with hε = fε, �ε = gε,

v0ε = u0
ε, and v1ε = 0. By Step 1

ũε −−−−→
ε→0+

u0 strongly in L2(0, T ; V ). (6.16)

The function uε − ũε is the solution to (2.13) with all data equal to 0 except v1
ε ,

which is now equal to u1
ε. Therefore, Lemma 3.8 and (3.10) yield

‖uε − ũε‖L∞(0,T ;V ) ≤ ε
√

CE‖u1
ε‖ −−−−→

ε→0+
0,

which, together with (6.16), gives (3.4). �

In the following theorem, under the assumptions of Theorem 3.7 we deduce
(3.5) from (3.4).

Theorem 6.3. Let us assume (H1), (H2), and (3.10). Let uε be the solution to the
viscoelastic dynamic system (2.10), with ϕε = fε and γε = gε, and let u0 be the
solution to the stationary problem (3.1). Then (3.5) holds.
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Proof. Thanks to Lemma 3.10 we can suppose z = 0 and zε = 0 for every ε > 0. It
is convenient to extend the data of our problem to the interval [0, 2T ] by setting for
every t ∈ (T, 2T ]

fε(t) := 0, f(t) := 0, gε(t) := gε(T ), g(t) := g(T ).

Since (H1) holds, it is clear that {fε}ε ⊂ L2(0, 2T ; H), {gε}ε ∈ H1(0, 2T ; V ′
0),

fε −−−−→
ε→0+

f strongly in L2(0, 2T ; H) (6.17)

gε −−−−→
ε→0+

g strongly in W 1,1(0, 2T ; V ′
0). (6.18)

Moreover, the solution to (2.10) on [0, 2T ] with the extended data is an extension
of uε, which is still denoted by uε. Similarly, the solution to (3.1) on [0, 2T ] is still
denoted by u0. Since (6.17) and (6.18) hold, Theorem 6.2 gives

uε −−−−→
ε→0+

u0 strongly in L2(0, 2T ; V ). (6.19)

We further extend uε to R by setting uε(t) = 0 for every t ∈ R\[0, 2T ], and we
define

wε(t) :=
∫ t

0

1
βε

e− t−τ
βε euε(τ)dτ = (ρε ∗ euε)(t) for every t ∈ R,

where ρε is as in (3.17). By the properties of convolutions and (6.19) we get

euε − wε −−−−→
ε→0+

0 strongly in L2(R; H̃). (6.20)

Thanks to (6.19) and (6.20), by using (2.10) and (3.1) we obtain

ε2üε −−−−→
ε→0+

0 strongly in L2(0, 2T ; V ′
0). (6.21)

Since

ε2u̇ε(t) = ε2u1
ε + ε2

∫ t

0

üε(τ)dτ for every t ∈ [0, 2T ],

(3.10) and (6.21) imply

ε2u̇ε −−−−→
ε→0+

0 strongly in L2(0, 2T ; V ′
0). (6.22)

By (6.19) and (6.22) there exists a sequence εj −→ 0+ such that for a.e. t ∈ [0, 2T ]
we have

uεj
(t) −−−−→

j→+∞
u0(t) strongly in V, (6.23)

ε2j u̇εj
(t) −−−−→

j→+∞
0 strongly in V ′

0 . (6.24)

We choose T0 ∈ (T, 2T ) such that (6.23) and (6.24) hold at t = T0. This implies

ε2j(u̇εj
(T0), uεj

(T0)) = 〈ε2j u̇εj
(T0), uεj

(T0)〉 −−−−→
j→+∞

0. (6.25)
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Since zε = 0 for a.e. t ∈ [0, T0] we can use uε(t) ∈ V0 as test function in (2.10).
Then we integrate by parts in time on the interval (0, T0) to obtain

− ε2j

∫ T0

0

‖u̇εj
(t)‖2dt +

∫ T0

0

(Aeuεj
(t), euεj

(t))dt

+
∫ T0

0

(B(euεj
(t) − wεj

(t)), euεj
(t))dt =

∫ T0

0

(fεj
(t), uεj

(t))dt

+
∫ T0

0

〈gεj
(t), uεj

(t)〉dt − ε2j(u̇εj
(T0), uεj

(T0)) + ε2j(u
0
εj

, u1
εj

).

Thanks to (3.1), (3.10), (6.17), (6.19), (6.20), and (6.25) the first term on the left-
hand side of the previous equation tends to 0 as j → +∞. Since T0 > T we have

ε2j

∫ T

0

‖u̇εj
(t)‖2dt −−−−→

j→+∞
0.

By the arbitrariness of the sequence {εj}j we have

ε2
∫ T

0

‖u̇ε(t)‖2dt −−−−→
ε→0+

0,

which concludes the proof. �

We now use Theorems 6.2 and 6.3 to obtain (3.4) and (3.5) under the assump-
tions of Theorem 3.6.

Theorem 6.4. Let us assume (H1)–(H3). Let uε be the solution to the viscoelastic
dynamic system (2.9) and let u0 be the solution to the stationary problem (3.1).
Then (3.4) and (3.5) hold.

Proof. Thanks to Lemma 3.9 we can suppose z = 0 and zε = 0 for every ε > 0.
Let pε be defined by (2.12). Since zε = 0, by Remark 2.3 the function uε solves
(2.13) with hε = fε, �ε = gε − pε, v0ε = uε,in(0), and v1ε = u̇ε,in(0). To obtain (3.4)
and (3.5) we cannot apply Theorems 6.2 and 6.3 directly, because {pε}ε does not
converge to 0 in W 1,1(0, T ; V ′

0) as ε → 0+ and, in general, pε /∈ L2(0, T ; H).
To overcome this difficulty we construct a family {qε}ε ⊂ H1(0, T ; H) such

that ‖qε − pε‖W 1,1(0,T ;V ′
0 )

is uniformly small and qε → 0 strongly in L2(0, T ; H) as
ε → 0+. Then we can apply Theorems 6.2 and 6.3 to the solutions vε to (2.13) with pε

replaced by qε, obtaining that vε → u0 strongly in L2(0, T ; V ) and εv̇ε → 0 strongly
in L2(0, T ; H). Finally, we show that ‖vε − uε‖L2(0,T ;V ) and ε‖v̇ε − u̇ε‖L2(0,T ;H) are
small uniformly with respect to ε, and this leads to the proof of (3.4) and (3.5).

To construct qε we consider g0ε introduced in (2.12) and we define

g̃0ε :=
∫ 0

−∞

1
βε

e
τ

βε div(Beuin(τ))dτ = (ρε ∗ div(Beuin))(0),

where ρε is the convolution kernel (3.17). By (H3) we have div(Beuin)∈ C0((−∞, 0];
V ′
0), hence the properties of convolutions imply

g̃0ε −−−−→
ε→0+

g0 := div(Beuin(0)) strongly in V ′
0 . (6.26)
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Since

‖g0ε − g̃0ε‖V ′
0

≤
∫ −a

−∞

1
βε

e
τ

βε
(‖ div(B(euε,in(τ))‖V ′

0
+ ‖ div(B(euin(τ))‖V ′

0

)
dτ

+ ‖ div(B(euε,in − euin))‖L∞(−a,0;V ′
0 )

,

thanks to (H3) we have g0ε − g̃0ε → 0 strongly in V ′
0 as ε → 0+, hence (6.26) implies

g0ε −−−−→
ε→0+

g0 strongly in V ′
0 . (6.27)

Let us fix δ > 0. By the density of H in V ′
0 we can find h0 ∈ H such that

‖h0 − g0‖V ′
0

< δ. By (6.27) there exists ε0 = ε0(δ) ∈ (0, 1
β ) such that

‖h0 − g0ε‖V ′
0

< δ for every ε ∈ (0, ε0). (6.28)

Let qε ∈ H1(0, T ; H) be defined by qε(t) := e− t
βε h0 for every t ∈ [0, T ]. Then

qε −−−−→
ε→0+

0 strongly in L2(0, T ; H). (6.29)

Since pε(t) = e− t
βε g0ε , by (6.28) we have also

‖qε−pε‖W 1,1(0,T ;V ′
0 )

≤(βε + 1)‖h0 − g0ε‖V ′
0
≤2δ for every ε ∈ (0, ε0). (6.30)

Let vε be the solution to (2.13) with hε = fε − qε, �ε = gε, v0ε = uε,in(0), and
v1ε = u̇ε,in(0). By (H1) and (6.29) we have

fε − qε −−−−→
ε→0+

f strongly in L2(0, T ; H)

gε −−−−→
ε→0+

g strongly in W 1,1(0, T ; V ′
0).

By (H3) we have

uε,in(0) −−−−→
ε→0+

uin(0) strongly in V

εu̇ε,in(0) −−−−→
ε→0+

0 strongly in H.

Therefore we can apply Theorems 6.2 and 6.3 to obtain

vε −−−−→
ε→0+

u0 strongly in L2(0, T ; V ) (6.31)

εv̇ε −−−−→
ε→0+

0 strongly in L2(0, T ; H). (6.32)

To estimate the difference vε − uε we observe that it solves (2.13) with hε = 0,
�ε = pε − qε, v0ε = 0, and v1

ε = 0. Therefore, by Lemma 3.8 and (6.30) we have

ε2‖v̇ε − u̇ε‖2L2(0,T ;H) + ‖vε − uε‖2L2(0,T ;V ) ≤ CE‖qε − pε‖2W 1,1(0,T ;V ′
0 )

≤ 4CEδ2.

(6.33)

Since by (6.33)

‖uε − u0‖L2(0,T ;V ) ≤ ‖uε − vε‖L2(0,T ;V ) + ‖vε − u0‖L2(0,T ;V )

≤ ‖vε − u0‖L2(0,T ;V ) + 2
√

CEδ,

ε‖u̇ε‖L2(0,T ;H) ≤ ε‖u̇ε − v̇ε‖L2(0,T ;H) + ε‖v̇ε‖L2(0,T ;H)

≤ ε‖v̇ε‖L2(0,T ;H) + 2
√

CEδ,
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thanks to (6.31) and (6.32) we have

lim sup
ε→0+

‖uε − u0‖L2(0,T ;V ) ≤ 2
√

CEδ,

lim sup
ε→0+

ε‖u̇ε‖L2(0,T ;H) ≤ 2
√

CEδ.

By the arbitrariness of δ > 0 we obtain (3.4) and (3.5), which concludes the proof.
�

7. The Local Uniform Convergence

In this section we shall prove (3.6) and (3.7) under the assumptions of Theorems 3.6
and 3.7. The proof is based on the following lemma.

Lemma 7.1. Let {�ε}ε ⊂ H1(0, T ; V ′
0) and � ∈ W 1,1(0, T ; V ′

0) be such that

�ε −−−−→
ε→0+

� strongly in W 1,1(η, T ; V ′
0) for every η ∈ (0, T ). (7.1)

Let vε be a solution to the viscoelastic dynamic system (2.13) with hε = 0 and
arbitrary initial data. Moreover, let v0 be the solution to the stationary problem
(3.2) with h = 0. We assume that

vε −−−−→
ε→0+

v0 strongly in L2(0, T ; V ), (7.2)

εv̇ε −−−−→
ε→0+

0 strongly in L2(0, T ; H). (7.3)

Then

vε −−−−→
ε→0+

v0 strongly in L∞(η, T ; V ) for every η ∈ (0, T ), (7.4)

εv̇ε −−−−→
ε→0+

0 strongly in L∞(η, T ; H) for every η ∈ (0, T ). (7.5)

Proof. We divide the proof into two steps.
Step 1. Let us assume �ε = � ∈ H2(0, T ; V ′

0) for every ε > 0. By Lemma 3.4
(with z = 0) we have v0 ∈ H2(0, T ; V ), hence recalling (3.2) we get for a.e. t ∈ [0, T ]

ε2v̈0(t) − div((A + B)ev0(t)) +
∫ t

0

1
βε

e− t−τ
βε div(Bev0(τ))dτ

= ε2v̈0(t) + �(t) − div(Bev0(t)) +
∫ t

0

1
βε

e− t−τ
βε div(Bev0(τ)). (7.6)

Now we define v̄ε := vε − v0 and observe that by (7.2) and (7.3) we have

v̄ε −−−−→
ε→0+

0 strongly in L2(0, T ; V ), (7.7)

ε ˙̄vε −−−−→
ε→0+

0 strongly in L2(0, T ; H). (7.8)

Let us consider

qε(t) := div(Bev0(t)) −
∫ t

0

1
βε

e− t−τ
βε div(Bev0(τ))dτ.
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Since vε satisfies (2.13) with hε = 0, by (7.6) the function v̄ε satisfies (2.13) with
hε = −ε2v̈0 and �ε = qε. After two integrations by parts in time we deduce

∫ t

0

1
βε

e− t−τ
βε div(Bev0(τ))dτ = div(Bev0(t)) − e− t

βε div(Bev0(0))

− βε div(Bev̇0(t)) + βεe− t
βε div(Bev̇0(0)) + βε

∫ t

0

e− t−τ
βε div(Bev̈0(τ))dτ,

hence

qε −−−−→
ε→0+

0 strongly in W 1,1(η, T ; V ′
0) for every η ∈ (0, T ). (7.9)

Now we fix δ ∈ (0, T ), and we consider η ∈ (0, δ) and ζ ∈ (η, δ). We define the
family of functions {w̄ε}ε ⊂ H1(0, T ; H̃) by

w̄ε(t) :=
∫ t

0

1
βε

e− t−τ
βε ev̄ε(τ)dτ = (ρε ∗ ev̄ε)(t) for every t ∈ [0, T ],

where ρε is defined by (3.17) and v̄ε is extended to R by setting v̄ε(t) = 0 on R\[0, T ].
By properties of convolutions we have

ev̄ε − w̄ε −−−−→
ε→0+

0 strongly in L2(0, T ; H̃). (7.10)

By the energy-dissipation balance (2.25) of Proposition 2.7, for every t ∈ [η, T ]
and s ∈ (η, ζ) we can write

ε2

2
‖ ˙̄vε(t)‖2 +

1
2
(Aev̄ε(t), ev̄ε(t)) +

1
2
(B(ev̄ε(t) − w̄ε(t), ev̄ε(t) − w̄ε(t))

+ βε

∫ t

s

(B ˙̄wε(τ), ˙̄wε(τ))dτ =
ε2

2
‖ ˙̄vε(s)‖2 +

1
2
(Aev̄ε(s), ev̄ε(s))

+
1
2
(B(ev̄ε(s) − w̄ε(s), ev̄ε(s) − w̄ε(s)) + Wε(t, s), (7.11)

where the work is defined by

Wε(t, s) = 〈qε(t), v̄ε(t)〉 − 〈qε(s), v̄ε(s)〉

−
∫ t

s

〈q̇ε(τ), v̄ε(τ)〉dτ − ε

∫ t

s

(v̈0(τ), ε ˙̄vε(τ))dτ.

Now we take the mean value with respect to s of all terms of (7.11) on (η, ζ), and
we pass to the supremum with respect to t on [η, T ]. Thanks to (2.3) and (2.6) we
deduce

ε2

2
‖ ˙̄vε‖2L∞(η,T ;H) +

cA
2(C2

P + 1)
‖v̄ε‖2L∞(η,T ;V )

≤ ε2

2
−
∫ ζ

η

‖ ˙̄vε(s)‖2ds +
CA

2
−
∫ ζ

η

‖v̄ε(s)‖2V ds

+
CB

2
−
∫ ζ

η

‖ev̄ε(s) − w̄ε(s)‖2ds + −
∫ ζ

η

sup
t∈[η,T ]

|Wε(t, s)|ds. (7.12)
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Notice that for every s ∈ (η, ζ) we have

sup
t∈[η,T ]

|Wε(t, s)| ≤ (
2‖qε‖L∞(η,T ;V ′

0 )
+ ‖q̇ε‖L1(η,T ;V ′

0 )

)‖v̄ε‖L∞(η,T ;V )

+ ε‖v̈0‖L1(η,T ;H)‖ε ˙̄vε‖L∞(η,T ;H)

≤ (
3 + 2

T

)‖qε‖W 1,1(η,T ;V ′
0 )

‖v̄ε‖L∞(η,T ;V )

+ ε‖v̈0‖L1(η,T ;H)‖ε ˙̄vε‖L∞(η,T ;H),

hence thanks to the Young Inequality and (7.12) there exists a positive constant
C = C(A,B, Ω, T ) such that

ε2‖ ˙̄vε‖2L∞(η,T ;H) + ‖v̄ε‖2L∞(η,T ;V ) ≤ C
(
ε2 −

∫ ζ

η

‖ ˙̄vε(s)‖2ds + −
∫ ζ

η

‖v̄ε(s)‖2V ds

+ −
∫ ζ

η

‖ev̄ε(s) − w̄ε(s)‖2ds + ‖qε‖2W 1,1(η,T ;V ′
0 )

+ ε2‖v̈0‖2L1(η,T ;H)

)
. (7.13)

By passing to the limit in (7.13) as ε → 0+, thanks to (7.7), (7.8), (7.9), and
(7.10) we obtain

ε‖ ˙̄vε‖L∞(η,T ;H) + ‖v̄ε‖L∞(η,T ;V ) −−−−→
ε→0+

0,

which, by the definition of v̄ε, concludes the proof of (7.4) and (7.5) in the case
� ∈ H2(0, T ; V ′

0).
Step 2. In the general case � ∈ W 1,1(0, T ; V ′

0) we use an approximation argu-
ment. Given δ > 0, by Lemma 4.3 there exists a function ψ ∈ H2(0, T ; H) such
that

‖ψ − �‖W 1,1(0,T ;V ′
0 )

< δ. (7.14)

Thanks to (7.1) for every σ ∈ (0, T ) there exists a positive number ε0 = ε0(δ, σ)
such that

‖ψ − �ε‖W 1,1(σ,T ;V ′
0 )

< δ for every ε ∈ (0, ε0). (7.15)

Let ṽε be the solution to (2.13) in the interval [σ, T ] with hε = 0, �ε = ψ, ṽε(σ) =
vε(σ), and ˙̃vε(σ) = v̇ε(σ), and let ṽ0 be the solution to (3.2) in the interval [0, T ]
with h = 0 and � = ψ. By applying Step 1 in the interval [σ, T ] we obtain

ṽε −−−−→
ε→0+

ṽ0 strongly in L∞(η, T ; V )for every η ∈ (σ, T ), (7.16)

ε ˙̃vε −−−−→
ε→0+

0 strongly in L∞(η, T ; H) for every η ∈ (σ, T ). (7.17)

We set v̄0 := ṽ0 − v0 and v̄ε := ṽε − vε. We observe that v̄0 is the solution to
(3.2) with h = 0 and � replaced by ψ − �, hence by the Lax-Milgram Lemma we get

‖v̄0‖L∞(0,T ;V ) ≤ C2
P +1
cA

‖ψ − �‖L∞(0,T ;V ′
0 )

≤ C2
P +1
cA

(1 + 1
T )‖ψ − �‖W 1,1(0,T ;V ′

0 )
.

(7.18)

Moreover, v̄ε is the solution to (2.13) in the interval [σ, T ] with hε = 0, �ε replaced
by ψ − �ε, and homogeneous initial conditions. Thanks to Lemma 3.8 we obtain

ε‖ ˙̄vε‖2L∞(σ,T ;H) + ‖v̄ε‖2L∞(σ,T ;V ) ≤ CE‖ψ − �ε‖2W 1,1(σ,T ;V ′
0 )

. (7.19)
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By combining (7.14), (7.15), (7.18), and (7.19), we can find a positive constant
C = C(A,B, Ω, T ) such that

ε‖ ˙̄vε‖L∞(σ,T ;H) + ‖v̄ε‖L∞(σ,T ;V ) + ‖v̄0‖L∞(σ,T ;V ) ≤ Cδ. (7.20)

Since for every η ∈ (σ, T ) we have

‖vε − v0‖L∞(η,T ;V ) ≤ ‖v̄ε‖L∞(η,T ;V ) + ‖ṽε − ṽ0‖L∞(η,T ;V ) + ‖v̄0‖L∞(η,T ;V ),

ε‖v̇ε‖L∞(η,T ;H) ≤ ε‖ ˙̄vε‖L∞(η,T ;H) + ε‖ ˙̃vε‖L∞(η,T ;H),

thanks to (7.16), (7.17), and (7.20) we obtain

lim sup
ε→0+

‖vε − v0‖L∞(η,T ;V ) ≤ Cδ and lim sup
ε→0+

‖εv̇ε‖L∞(η,T ;H) ≤ Cδ,

for every η ∈ (σ, T ). By the arbitrariness of δ > 0 and σ > 0 we conclude. �

Now we are in a position to prove (3.6) and (3.7).

Theorem 7.2. Let us assume (H1), (H2), (3.10), and fε = 0 for every ε > 0. Let uε

be the solution to the viscoelastic dynamic system (2.10), with ϕε = 0 and γε = gε,
and let u0 be the solution to the stationary problem (3.1), with f = 0. Then (3.6)
and (3.7) hold.

Proof. By Theorems 6.2 and 6.3 we obtain (3.4) and (3.5). Since fε = 0 and gε → g
strongly in W 1,1(0, T ; V ′

0) as ε → 0+ by (H1), we can apply Lemma 7.1 to conclude.
�

Theorem 7.3. Let us assume (H1)–(H3) and fε = 0 for every ε > 0. Let uε be the
solution to the viscoelastic dynamic system (2.9) and let u0 be the solution to the
stationary problem (3.1), with f = 0. Then (3.6) and (3.7) hold.

Proof. Thanks to Lemma 3.9 we can suppose z = 0 and zε = 0 for every ε > 0. By
Theorem 6.4 we obtain (3.4) and (3.5). Since uε is a solution to (2.9) with fε = 0,
by Remark 2.3 it solves (2.13) with hε = 0 and �ε = gε − pε, where pε is defined by
(2.12). Since

gε − pε −−−−→
ε→0+

g strongly in W 1,1(η, T ; V ′
0) for every η ∈ (0, T ),

we can apply Lemma 7.1 to conclude. �

Finally we can prove Theorems 3.6 and 3.7.

Proof of Theorem 3.6. It is enough to combine Theorems 4.1, 6.4, and 7.3. �

Proof of Theorem 3.7. It is enough to combine Theorems 6.2, 6.3, and 7.2. �
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bilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
(INdAM).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Appendix A.

Throughout this section we fix a0 > 0, b0 > 0, and c1 ≥ c0 > 1. For every a, b with

c0a ≤ b ≤ c1a, b ≥ b0, a ≥ a0, (A.1)

we consider the polynomial p(z) := βz3 + z2 + βbz + a depending on the complex
variable z. The following result about the roots of this polynomial is used in the
proof of Lemma 5.2 and Proposition 5.4.

Lemma A.1. There exists a positive constant α = α(β, a0, b0, c0, c1) such that, for
every a, b ∈ R satisfying (A.1), the roots of the polynomial p have real parts in the
interval (− 1

β ,−α).

Proof. Let us set z := x + iy with x, y ∈ R. Then p(z) = 0 if and only if{
βx3 + x2 + βbx − (3βx + 1)y2 + a = 0,

y(−βy2 + 3βx2 + 2x + βb) = 0,

from which we derive{
q(x) := βx3 + x2 + βbx + a = 0,

y = 0,
(A.2)

{
r(x) := 8βx3 + 8x2 + 2

(
1
β + βb

)
x + b − a = 0,

y2 = 3x2 + 2
β x + b.

(A.3)

By recalling a > 0 and b − a ≥ (c0 − 1)a > 0, for every x ≥ 0 we have q(x) > 0 and
r(x) > 0, and so the real part of the roots cannot be positive or zero. Moreover,
since for every x ≤ − 1

β we have βx3 + x2 ≤ 0, we obtain

q(x) ≤ −b + a ≤ (1 − c0)a < 0

r(x) ≤ b − a − 2
(

1
β2 + b

)
= −b − a − 2

β2 < 0,

which imply that the real part of the roots does not belong to (−∞,− 1
β ]. Therefore,

by calling z1, z2, z3 ∈ C the three roots of the polynomial p, we can say

�(zi) ∈ (− 1
β , 0) for i = 1, 2, 3. (A.4)

Case 1: there is only one real root. In this case by (A.3) there exists a unique
x1 ∈ (− 1

β , 0) which satisfies r(x1) = 0 and 3x2
1 + 2

β x1 + b > 0. Indeed by setting
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y1 :=
√

3x2
1 + 2

β x1 + b we obtain that x1+ iy1 and x1− iy1 are two distinct non-real
roots of p. Since

r(− 1
2β ) = − 1

β2 + 2
β2 − 1

β2 − b + b − a = −a < 0,

r(− β(b−a)
2(bβ2+1)) = β2(b−a)2((a+b)β2+2)

(bβ2+1)3 > 0,

then x1 ∈ (− 1
2β ,− β(b−a)

2(bβ2+1)). Moreover

q(− 1
β ) = − 1

β2 + 1
β2 − b + a = −b + a < 0,

q(− a
βb) = − a3

b3β2 + a2

b2β2 − a + a = a2(b−a)
b3β2 > 0,

hence there exists x0 ∈ (− 1
β ,− a

βb) such that q(x0) = 0. As a consequence of this,
(x0, 0) satisfies the system in (A.2), which implies that x0 is the real root of p,
hence we have �(zi) ∈ (− 1

β , max{− a
βb ,− β(b−a)

2(bβ2+1)}). Thanks to (A.1) we can say

− a
βb ≤ − 1

c1β and − β(b−a)
2(bβ2+1) ≤ β(1−c0)a

2(c1aβ2+1) ≤ β(1−c0)a0
2(c1a0β2+1) , where in the last inequality

we use the decreasing property of the function a �→ β(1−c0)a
2(c1aβ2+1) . This implies

�(zi) ∈ (− 1
β , max{− 1

c1β , β(1−c0)a0
2(c1a0β2+1)}) for i = 1, 2, 3. (A.5)

Case 2: there are only real roots. In this case we have b ≤ 1
3β2 , otherwise

q′(x) > 0 for every x ∈ R, which forces p to have also non-real roots. Thanks to
(A.1) we have also a < b ≤ 1

3β2 . By setting b̃0 := 1 −
√

1 − 3b0β2, we can write

−b̃0a0β ≥ −b̃0aβ ≥ −(1 −
√

1 − 3bβ2)aβ >
−1+

√
1−3bβ2

3β > − 1
β ,

which implies

q′(x) > 0 for every x ∈ [−b̃0a0β,+∞). (A.6)

Since

q(−b̃0a0β) ≥ β2b̃20a
2
0(1 − β2b̃0a0) + a0(1 − β2b̃0b)

> a0(1 + β2b̃20a0)(1 − β2b̃0b) > 0,

thanks to (A.1), (A.4), and (A.6) we get

�(zi) ∈ (− 1
β ,−b̃0a0β), for i = 1, 2, 3. (A.7)

By combining (A.5) and (A.7), we obtain the conclusion with

α := min{b̃0a0β,
1

c1β
,

β(c0 − 1)a0

2 (c1a0β2 + 1)
}.

�

The following easy estimate is used in the proof of Lemma 5.2.

Lemma A.2. For every z, w ∈ C with �(z) > 0 and �(w) < 0 the following inequal-
ity holds:

|(z − w)(z − w̄)| ≥ |�(w)||�(w)|.
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Proof. Without loss of generality we can suppose �(w) > 0, otherwise we exchange
the role of w with w̄. If �(z) > 0, then

|z − w| ≥ |�(z − w)| = |�(z) + �(−w)| = �(z) + �(−w) ≥ |�(w)|,
|z − w̄| ≥ |�(z − w̄)| = |�(z) + �(w)| = �(z) + �(w) ≥ |�(w)|,

which give the conclusion in this case. If �(z) < 0, then

|z − w| ≥ |�(z − w)| = | − �(−z) − �(w)| = �(−z) + �(w) ≥ |�(w)|,
|z − w̄| ≥ |�(z − w̄)| = |�(z) + �(−w)| = �(z) + �(−w) ≥ |�(w)|,

which conclude the proof. �
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[3] Dafermos, C.: An abstract Volterra equation with applications to linear viscoelasticity.
J. Differ. Equ. 7, 554–569 (1970)

[4] Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and
Technology, vol. 1. Original French edition published by Masson, S.A., Paris, Physical
Origins and Classical Methods (1984)

[5] Fabrizio, M., Giorgi, C., Pata, V.: A new approach to equations with memory. Arch.
Rational. Mech. Anal. 198, 189–232 (2010)

[6] Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM Stud.
Appl. Math. 12 (1992)

[7] Gidoni, P., Riva, F.: A vanishing inertia analysis for finite dimensional rate-independent
systems with nonautonomous dissipation and an application to soft crawlers. Calc. Var.
Partial Differ. Equ. 60, 191 (2021)

[8] Lazzaroni, G., Nardini, L.: On the quasistatic limit of dynamic evolutions for a peeling
test in dimension one. J. Nonlinear Sci. 28, 269–304 (2018)

[9] Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applica-
tions, vol. 181. Springer, Berlin (1972)

[10] Nardini, L.: A note on the convergence of singularly perturbed second order potential-
type equations. J. Dyn. Differ. Equ. 29, 783–797 (2017)

[11] Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and
Homogenization. Studies in Mathematics and its Applications, vol. 26. North-Holland
Publishing Co., Amsterdam (1992)

[12] Riva, F.: On the approximation of quasistatic evolutions for the debonding of a thin
film via vanishing inertia and viscosity. J. Nonlinear Sci. 30, 903–951 (2020)

[13] Sapio, F.: A dynamic model for viscoelasticity in domains with time–dependent cracks.
NoDEA Nonlinear Differ. Equ. Appl. 28, 67 (2021)

[14] Scilla, G., Solombrino, F.: A variational approach to the quasistatic limit of viscous
dynamic evolutions in finite dimension. J. Differ. Equ. 267, 6216–6264 (2019)



522 G. Dal Maso and F. Sapio Vol. 89 (2021)

[15] Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Foundations of Engineer-
ing Mechanics. Springer, Berlin (2002)

Gianni Dal Maso and Francesco Sapio
SISSA
via Bonomea 265
34136 Trieste
Italy
e-mail: dalmaso@sissa.it

Francesco Sapio
e-mail: fsapio@sissa.it

Received: June 16, 2021.
Accepted: September 28, 2021.


	Quasistatic Limit of a Dynamic Viscoelastic Model with Memory
	Abstract
	1. Introduction
	2. Hypotheses and Statement of the Problem
	3. Statement of the Main Results
	4. The uniform convergence
	5. Use of the Laplace Transform
	5.1. The Laplace Transform for Functions with Values in Hilbert Spaces
	5.2. Properties of the Laplace Transform of the solutions
	5.3. Convergence of the Laplace Transform of the Solutions

	6. L2 Convergence
	7. The Local Uniform Convergence
	Acknowledgements
	Appendix A.
	References




