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1. Introduction

As it is well known, many linear differential equations have their solutions repre-
sented by integrals. This is true for example for equations such the Laplace equa-
tion, the heat equation, or the wave equation, and one can consider these results
as a particular instance of the Fundamental Principle of Ehrenpreis [5], that states
that every solution of an overdetermined system of homogeneous partial differential
equations with constant coefficients can be represented as an integral, with respect
to an appropriate measure, over the characteristic variety of the system. This variety
is the algebraic variety determined by the symbol of the system, and it is therefore
natural to imagine that such an integral representation must be connected to the
geometry of the variety itself. The main goal of this paper is to study the specific
case in which we consider a single partial differential equation whose symbol is a
homogeneous polynomial. We will show how the use of classical instruments from
algebraic geometry allow us to find integral representations for its solutions. We will
show how these ideas were already present in their infancy in Bateman’s [1], where
the author showed how to obtain an integral representation for the solutions of the
Laplace equation. Since the argument is essentially a counting argument, it is not
surprising that in order to obtain solution of suitable differential equations, we are
forced to delve into existence theorems of the classical theory of algebraic curves,
the Riemann-Roch theorem, the Cayley-Bacharach theorem, Serret’s theorem, and
more generally those theorems that give us the dimensions of suitable cohomology
groups, such as the Brill-Noether Restsatz theorem.

The plan of the paper is as follows: Section 2 offers a first concrete example of
the ideas behind twistor theory; specifically the entire section is devoted to the use of
differential geometry in partial differential equations, and we follow [10] to interpret
the Laplace and ultrahyperbolic equations in terms of vector bundles. In Section 3
we first consider the case of the Laplace equation in Section 3.1, and later on we
study, in Section 3.2, integral representations of general partial differential equations
in three variables, whose symbols are homogeneous polynomials thus recoveringr
the results of [10,11]. We finally generalize the theory of Section 3.2 to more than
three variables in Section 4. The paper concludes with one appendix on the twistor
correspondence that we have isolated in an appendix to facilitate the reading of the
rest of the article.

The novelty of our presentation lies in the fact that throughout the paper we
insist on the profound role of different aspects of classical algebraic geometry in the
study of partial differential equations. We should conclude this introduction to point
out that our own interest in this topic stems from our desire to better understand
the interconnections between the theory of twistors and the Fundamental Principle
of Ehrenpreis-Palamodov-Malgrange, at least in the case of elliptic and strictly
hyperbolic systems. This interest was stimulated by our reading of Ehrenpreis’ [6],
[7] and we are currently investigating further how to clarify those interconnections.
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2. Differential Geometry and Partial Differential Equations

This part was inspired to us by [10]. It has been known for some time that problems
in real differential geometry can often be simplified by using complex coordinates.
For example in the plane R

2 we can write z = x + iy and thereby identify R
2 � C.

We then discover that a C2 function f : R2 → R is harmonic if and only if we can
write it as

f = ψ + ψ

where ψ : C → C is a holomorphic (complex-analytic) function. This is because a
C2 real-valued function f is harmonic if and only if its laplacian is zero and the
Laplace operator ∂2

∂x2 + ∂2

∂y2 is proportional to the operator ∂2

∂z∂z . This shows us how
to connect harmonic real-valued functions-an object from real differential geometry
in the plane- to holomorphic functions of one complex variable- the natural objects
of complex analysis. If we try the same technique in R

3 we have to accept the fact
that odd dimensional spaces cannot be identified with complex spaces C

n, for any
integer n. We can however form another space closely associated to the geometry
of T = R

3 that is intrinsically complex, and this is the fundamental idea behind
twistor theory. Consider therefore the space M of all oriented lines of R3. The generic
element of the space M is the oriented line L(u, v) given by

L(u, v) = {v + tu, t ∈ R}
where ||u|| = 1 and u, v ∈ R

3. Consider now the tangent bundle of the 2-sphere S2

defined by

TS2 = {(u, v) ∈ R
3 × R

3 : ‖u‖ = 1, (u, v) = 0}
with (u, v) denoting the Euclidean scalar product of u and v. We can now define a
bijection

M → TS2

L(u, v) �→ (u, v − (v, u)u)

where the second component is the point on L(u, v) closest to the origin of T = R3.
Remark that the map is indeed TS2-valued and is clearly surjective. It is injective
because if (u, v−(v, u)u) = (u1, v1−(v1, u1)u1) then u = u1 and v−v1 = (v−v1, u)u
which gives L(u, v) = L(u1, v1). The mapping and its inverse mapping (u, v) ∈
TS2 �→ L(u, v) ∈ M are smooth, a fact that shows that M and TS2 are at least
diffeomorphic.

To get to the next stage, we recall that the unit sphere S2 can be endowed
with a structure of complex manifold by choosing a covering atlas {U0, U1}, where
U0 = S2 \ {(0, 0, 1)} and U1 = S2 \ {(0, 0,−1)}. We define complex coordinates on
U0 by

ξ0(x, y, z) =
x + iy

1 − z
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which is the stereographic projection of the point (x, y, z) from the north pole and
on U1 by

ξ1(x, y, z) =
x − iy

1 + z

which is the stereographic projection of the point (x, y, z) from the south pole. We
have by construction

ξ0(x, y, z) =
1

ξ1(x, y, z)
= F (ξ1(x, y, z))

where F (w) =
1
w

, on U0 ∩ U1. This defines a complex structure on S2. To define a

complex structure on TS2 we use standard constructions in differential geometry; for
example a chart on TS2 corresponding to the chart ξ0 is given in local coordinates
(u, v) where u ∈ U0 and v ∈ R

3 by

(ξ(u, v), η(u, v)) =
(

u1 + iu2

1 − u3
, dξu(v) =

v1 + iv2
1 − u3

+
(u1 + iu2)v3

(1 − u3)2

)
. (2.1)

By definition the points of M are oriented lines on R
3. Moreover any point p in

R
3 defines a 2-sphere of lines, namely all oriented lines going through that point.

Specifically the set of all lines through p is the set of all (u, v) ∈ S2 ×R
3 satisfying

v = p − (p, u)u.

We call this a real section of M and denote it by Xp. Let us explore in more detail
the geometry of these real sections.

First we observe that these Xp are called sections because the map

ρp : S2 → M

u �→ (u, p − (p, u)u) (2.2)

defines a section of the projection π : M → S2 (namely π(ρp(u)) = u, for all u ∈ S2),
and, with some abuse of notation, the image of this section is Xp. To understand
why we called the sections Xp real sections, we need to define a real structure on
M , through a map

τ : M → M

called a real structure. This map is defined as the involution that sends an oriented
line to the same line with opposite orientation, i.e.

τ(u, v) = (−u, v).

This real structure fixes the set Xp because

τ(u, p − (p, u)u) = (−u, p − (p, u)u) = (−u, p − (p,−u)(−u)),

and this explains why Xp is called a real section.
If p = (x, y, z) is a point of R3 then Xp is the set of all (u, v) that correspond

to lines through p:

Xp = {(u, p − (p, u)u), u ∈ S2}.



Vol. 89 (2021) Geometric Methods in Partial Differential Equations 457

If we substitute v = p − (p, u)u into equation (2.1) and simplify, we see that the
equation of Xp as a subset of M is

η =
1
2
((x + iy) + 2zξ − (x − iy)ξ2) (2.3)

when we identify Xp with its image by the local chart given in equation (2.1). Hence
under a similar identification, in coordinates, ρp is given by

ρp(ξ) = (ξ,
1
2
((x + iy) + 2zξ − (x − iy)ξ2)).

We will call any section that can be written in this way a holomorphic section. It is
then possible to show that all holomorphic sections S2 → M take the form

ξ �→ (ξ, a + bξ + cξ2), a, b, c ∈ C

in local coordinates (this is because the holomorphic line TCP1 is the line bun-
dle O(2) whose holomorphic sections are given by degree two homogeneous com-
plex polynomials in two variables, hence by a second degree trinomial in non-
homogeneous coordinates). With our choice of coordinates and the definition of
a real structure one can show that if (ξ, η) are the coordinates of a point m ∈ M ,
then

(
−1
ξ

,− η

ξ
2

)
are the coordinates of τ(m). So τ is anti-holomorphic. Therefore a

section is real (i.e. invariant under the anti-holomorphic involution τ) if and only if
the equation

η = a + bξ + cξ2

defines the same subset of M as

− η

ξ
2 = a + b

(−1
ξ

)
+ c

1

ξ
2 .

This immediately implies that a = −c and that b is real. Hence the real sections
defined by points of R

3 as in equation (2.3) are precisely all the real sections of
M . Thus we have a surjection between points of R

3 and real sections of M . The
correspondence we have now established between R

3 and T is completely symmetric:
points in M define special subsets (oriented lines) in R

3 and points in R
3 define

spacial subsets (holomorphic real sections) in M .
Set ω = g(ξ, η)dξ a differential one form on M . If

φ(x, y, z) =
∫

g

(
ξ,

1
2
((x + iy) + 2zξ − (x − iy)ξ2)

)
dξ

and we differentiate under the integral sign we have

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂x2
= 0

that is φ is harmonic.
Consider now the ultrahyperbolic equation in R

4 given by

∂2ϕ

∂x∂y
− ∂2ϕ

∂s∂z
= 0.
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Let T = R
3 and f : R3 → R be an arbitrary element of the Schwartz space S(R3)

and identify locally M with R
4. Choose local coordinates (s, x, y, z) for M , on the

open set where the third coordinate of v does not vanish or again on the open set
of lines which do not lie on the planes of constant x3. A typical line in this open set
is given by

L = {(s + ty, x + tz, t), t ∈ R}.

Define a function ϕ on M by

ϕ(L) =
∫

L

f

which gives in coordinates

ϕ(s, x, y, z) =
∫ +∞

−∞
f(s + ty, x + tz, t)dt.

Now there are four variables s, x, y, z and f is defined on R
3 so we expect a differ-

ential condition on ϕ (constraint). Indeed differentiating under the integral sign one
has

∂2ϕ

∂x∂y
− ∂2ϕ

∂s∂z
=

∫ +∞

−∞
t

(
∂2

∂x∂y
− ∂2

∂x∂y

)
f(s + ty, x + tz, t)dt = 0.

It is natural to ask if this procedure, which goes under the name of John transform,
can be inverted. This the case as shown by John in [11].

This example illustrates the defining philosophy of “twistor” theory. Namely,
an unconstrained function on “twistor” space T yields the solution to a differential
equation on Minkowski space M , by means of an integral transform. We also have a
simple geometric correspondence, another characteristic feature of twistor methods.
More precisely we see

T ←→ M

{point in T} −→ {oriented lines through point}
{line in T} ←− {point in M}.

Remark 2.1. We recall that the tautological line bundle H over CP1, also denoted
by O(−1), is the holomorphic line bundle whose fibre over a point [z] = [z0 : z1]
is given by the line [z]. This can be written also as H = {([z] , w) |w = λz, λ ∈
C − {0}} ⊂ CP1 × C

2. The projection map π : H → CP1 is the restriction of the
projection from CP1×C

2, that is ([z] , w) �→ [z]. By covering CP1 with the two open
sets U0 = {[z] = [z0 : z1] , z0 
= 0} and U1 = {[z] = [z0 : z1] , z1 
= 0} we see that the
transition function for the line bundle H is given by

g01 : U0 ∩ U1 → C×,

[z] �→ z1
z0

.

This follows from the fact that one can define local sections ψi : Ui → H, i ∈ {0, 1}
by

ψ0([z]) =
(

[z] ,
(

1,
z1
z0

))
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and

ψ1([z]) =
(

[z] ,
(

z0
z1

, 1
))

.

And one sees that ψ0([z]) =
z1
z0

ψ1([z]). By dualizing the line bundle H one obtains

the line bundle O(1) with transition function g�
01([z]) =

z0
z1

and taking the tensor

product of O(1) with itself one gets the line bundle O(2) with transition function

given by [z] �→
(

z0
z1

)2

.

Set ξ =
z0
z1

on U1 and w =
z1
z0

on U0, the two coordinates associated to U1

and U0 respectively. We have ξ =
1
w

on U0 ∩ U1. This gives dξ = − 1
w2

dw, i.e.

dw = −ξ−2dξ, and therefore ∂w = −ξ2∂ξ. This shows that the line bundles O(2)
and TCP1 on CP1 have the same transition functions and as a consequence they
are isomorphic.

3. The Solution of Partial Differential Equations by Means of

Definite Integrals

We want to begin this section with what Atiyah regarded as the beginning of twistor
theory, intended as the representation of solutions of linear homogeneous (as a
polynomial in the partial derivatives) partial differential equations with constant
coefficients on R

n or C
n by means of definite integrals. We will soon need some

results from classical algebraic geometry, but we begin here with a relatively simple
example where all the calculations can be made explicit.

3.1. The Laplace Equation and Some its Solutions

Consider two points P = (a, b, c) and M = (x, y, z) in the usual Euclidean
space R

3, and assume they are subjected to Newtonian attraction, with P being
the attracting point, and M the attracted one. By a suitable normalization we
have that the force exerted by P on M is 
F = −

−−→
PM

‖−−→
PM‖3

. We set r = ‖−−→
PM‖ =

√
(x − a)2 + (y − b)2 + (z − c)2. Then the components of the force 
F are

X = −x − a

r3
, Y = −y − b

r3
, Z = −z − c

r3
,

and this attraction derives from the potential

U(x, y, z) =
1
r
,

since
∂U

∂x
=

∂U

∂r

∂r

∂x
= −x − a

r3

(the same calculation holds for the other partial derivatives of U).
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If instead of an attracting point P , one has a finite attracting volume V , then
the potential U is given for points (x, y, z) lying outside the volume V by

U(x, y, z) =
∫ ∫ ∫

V

dadbdc√
(x − a)2 + (y − b)2 + (z − c)2

.

By computing now the derivatives of U(x, y, z) we obtain

∂U

∂x
= −

∫ ∫ ∫

V

(x − a)dadbdc

[(x − a)2 + (y − b)2 + (z − c)2]
3
2

and
∂2U

∂x2
= −

∫ ∫ ∫

V

dadbdc

[(x − a)2 + (y − b)2 + (z − c)2]
3
2

+ 3
∫ ∫ ∫

V

(x − a)2dadbdc

[(x − a)2 + (y − b)2 + (z − c)2]
5
2
.

This gives

∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
= 0

and so

ΔU = 0.

In the introduction we made reference to how Whittaker, [16,17], found a way
to write some solutions to this Laplace equation by means of definite integrals. We
will now review in detail how that can be achieved.

The first observation is the fact that the Laplace differential operator Δ =
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is elliptic. This means that there is no non-zero element of R3 which
satisfies x2 + y2 + z2 = 0. Hence by the elliptic regularity theorem any solution to
the Laplace partial differential equation is real analytic.

Let then U(x, y, z) be a solution to the Laplace differential equation expressed
as a convergent power series with respect to the three variables x, y, z, in the
neighborhood of a given point x0, y0, z0, and set

x = x0 + X, y = y0 + Y, z = z0 + Z.

The series

U=a0 + a1X + b1Y + c1Z + a2X
2 + b2Y

2+c2Z
2+2d2Y Z + 2e2ZX + 2f2XY + . . .

is therefore convergent for |X| + |Y | + |Z| sufficiently small. To determine the coef-
ficients a0, a1, . . ., we will calculate the second order partial derivatives of U with
respect to X, Y , Z, and put the resulting expressions in the equation

∂2U

∂X2
+

∂2U

∂Y 2
+

∂2U

∂Z2
= 0.

By identification, this will give us linear relations from which we can deduce the
values of the coefficients. Now note that if we consider, in the series of U , the ho-
mogenous part Un of degree n in X, Y , Z, the number of its coefficients is (n+1)(n+2)

2 ,
because this is the dimension of the space of homogeneous polynomials of degree
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n in three variables. As the laplacian is of second order, when n � 2, its action on
Un will give a homogeneous polynomial of degree n − 2. This term has to vanish
identically so we have n(n−1)

2 (dimension of the space of homogeneous polynomials
of degree n − 2 in three variables) linear relations among the coefficients of Un.
Therefore in the terms of degree n of Un, there will be

(n + 1)(n + 2)
2

− n(n − 1)
2

= 2n + 1

arbitrary coefficients when n � 2 (the dimension of the space of homogeneous
polynomials of degree n satisfying the Laplace equation is 2n + 1). Note that for
n = 0, 1, (n+1)(n+2)

2 = 2n + 1, and so there are 2n + 1 arbitrary coefficients in Un

regardless of the value of n. By superposition these terms will be linear combinations
of 2n + 1 particular polynomial solutions, of degree n, to the Laplace equation. Let
us look for such solutions (a basis of solutions).

For that let us start with the expression

En := (Z + iX cos(u) + iY sin(u))n, u ∈ R,

which is clearly a solution to the Laplace equation of degree n. We can develop En

into a Fourier series because it is smooth and 2π-periodic in u. This gives
∞∑
0

gm(X,Y, Z) cos(mu) +
∞∑
0

hj(X,Y, Z) sin(ju);

with coefficients gm and hj linearly independent polynomials in X,Y, Z.
However the development in Fourier series of En contains only a finite number

of terms. This follows by computing En via the binomial formula, by linearizing the
various powers of cos(u), sin(u) and by uniqueness of the Fourier expansion of a
continuous 2π-periodic function. Therefore one can write

En =
n∑
0

gm(X,Y, Z) cos(mu) +
n∑
1

hj(X,Y, Z) sin(ju)

where by Fourier one has

πgm(X,Y, Z) =
∫ π

−π

(Z + iX cos u + iY sin u)n cos(mu)du

πhj(X,Y, Z) =
∫ π

−π

(Z + iX cos u + iY sin u)n sin(ju)du.

To show that En may be written in such a form one can use an induction based on
the classical formulas, valid for a, b ∈ R

cos(a) cos(b) = (cos(a − b) + cos(a + b))/2,

sin(a) sin(b) = (cos(a − b) − cos(a + b))/2

cos(a) sin(b) = (sin(a + b) − sin(a − b))/2.

We remark that the gm are even in Y and that the hj are odd in Y . For instance
one has by definition

πgm(X, −Y,Z) =
∫ π

−π

(Z + iX cos u − iY sin u)n cos(mu)du;
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by setting u = −v, we obtain

πgm(X,Y, Z) =
∫ −π

π

(Z + iX cos v + iY sin v)n cos(mv)(−dv) = πgm(X, −Y, Z).

Also the highest power of Z present in gm or hj is n − m (respectively n − j). To
see this one may use an induction based on the formula

En =
n∑
0

gm(X,Y, Z) cos(mu) +
n∑
1

hj(X,Y, Z) sin(ju)

and the fact that

En+1 = (Z + iX cos(u) + iY sin(u))En.

Now we can use these properties of gm and hj to show that they are linearly inde-
pendent (and therefore form a basis of the vector space of homogenous polynomials
in X,Y, Z solution to the Laplace equation, X,Y, Z are still considered to be suffi-
ciently small). Let λ0, λ1, . . ., λn and μ1, μ2, . . ., μn be scalars such that

λ0g0 + . . . + λngn + μ1h1 + . . . μnhn = 0.

Then since the gm are even and the hj are odd, we have separately

λ0g0 + . . . + λngn = 0

and

μ1h1 + . . . μnhn = 0.

Therefore from the fact that gm and hm are of degree n − m in Z, one deduces
immediately that all the coefficients λm and μm are zero.

This being said every linear combination of the independent 2n + 1 solutions
can then be put in the form

∫ π

−π

(Z + iX cos u + iY sin u)nfn(u)du.

Here for each n fn(u) = 1
π (

∑n
0 αm cos(mu) +

∑n
1 βj sin(ju)), for some αm and βj .

Assuming that |X|+ |Y |+ |Z| < B < 1 (for instance) and choosing D > 0 such that
for each n |(αm)0�m�n| < D and |(βj)1�j�n| < D we shall have

U(X,Y, Z) =
∞∑
0

∫ π

−π

(Z + iX cos u + iY sin u)nfn(u)du

≡
∫ π

−π

Φ(Z + iX cos u + iY sin u, u)du,

for Φ a suitable well-defined function in two variables. We have therefore obtained
a local integral representation of some solutions to the Laplace equation in R

3.
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3.2. The Kernel of the Partial Differential Operator F
(

∂
∂x

, ∂
∂y

, ∂
∂z

)

In this subsection we will show how to generalize the result of the previous subsection
to the case in which the Laplacian is replaced by another partial differential operator,
whose symbol is still a homogeneous polynomial in three variables. As we will see,
it is not so easy to calculate the dimensions of the spaces of coefficients in the series
expansion of the solution, and therefore we have to resort to some pretty significant
results from classical algebraic geometry.

To this end, we introduce some classical terminology before being able to prove
the theorem stated later in this section. Let C be a smooth projective plane algebraic
curve and let C̃ be its associated compact Riemann surface. A divisor D on C is a
formal sum D =

∑
p∈C npp with np an element of the set of integers and all but a

finite number of the np’s are equal to zero. The degree of a divisor D is defined by
deg D :=

∑
p∈C np. A divisor D =

∑
p∈C npp is called effective, and we will write

D ≥ 0, when np ≥ 0 for all p ∈ C. Two divisors D and D′ are linearly equivalent if
there exists a rational function f on C such that D−D′ = (f), where (f) stands for
f−1(0) − f−1(∞). Equivalence between divisors is easily seen to be an equivalence
relation. One important example of a divisor class on a smooth algebraic curve is
the class of the divisor of any given rational differential on the curve. It will be
called the canonical divisor class and will be denoted K. Let K (C) be the field of
rational functions on C. Let us introduce now the following vector space associated
to a given divisor D

L(D) = {0} ∪ {f, f ∈ K (C) , (f) + D ≥ 0}. (3.1)

The dimension of L(D) is denoted by l(D). Note that l(D) only depends on the
divisor class of D. The fundamental theorem which enables one to compute l(D) in
general is the Riemann-Roch theorem

Theorem 3.1. (R-R, [8]) Let C be a smooth projective plane algebraic curve of degree
d, D a divisor on C, K the canonical divisor class of C and g the genus of C. Then

l(D) = deg D + 1 − g + l(K − D).

The following result is a simple consequence of the Riemann-Roch theorem.

Theorem 3.2. Any rational function f on a nonsingular plane curve C can be written
as the quotient of two homogeneous polynomials in three variables and of the same
degree, restricted to C:

f =
Q

R
|C

Let L be a line on CP2 not containing C; we set H :=
∑

p∈L∩C Ip(C,L)p, where
Ip(C,L) is the intersection multiplicity at p between C and L. More generally, let X
be any plane curve intersecting C only in isolated points; then we define the divisor
cut on C by X, denoted by C · X, by the formula C · X :=

∑
p∈X∩C Ip(C,X)p.

Remark that any two such divisors C · X and C · X ′ associated to different such
curves X and X ′ of the same degree, are linearly equivalent. This is because if
X = {F = 0} and X ′ = {F ′ = 0} then C · X − C · X ′ =

(
F
F ′ |C

)
.

Let us now recall the Bézout’s theorem
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Theorem 3.3. (Bézout) If C is a smooth plane curve of degree d. If X is a plane
curve of degree e not containing C, then the degree of the divisor C ·X cut by X on
C is d · e.

It follows from Bézout’s theorem [8, p. 86] that the degree of H is equal to n.
We also have
Theorem 3.4. (M = AF + BG) Let C = {F = 0} be a smooth curve and X =
{G = 0} a curve not containing C. Then if a curve Y = {M = 0} contains C · X
one can write M = AF + BG, with A and B homogeneous polynomials of degrees,
respectively, deg(M) − deg(F ) and deg(M) − deg(G).

One of the central results in the classical theory of plane algebraic curves is the
following theorem of Brill and Noether
Theorem 3.5. (Brill-Noether Restsatz) Let C be a non-singular plane curve, and let
X be any plane curve not containing C. Then for any divisor linearly equivalent to
C · X, there is a plane curve X ′ not containing C, and such that C · X ′ = D.

An important important consequence of the Brill-Noether theorem [4, cor. 6]
is
Corollary 3.6. Let C be a smooth plane curve of degree d, and let Λ be a subset of λ
distinct points of C considered as an effective divisor on C. Then the dimension of
the space of homogeneous polynomials of degree m in three variables modulo those
vanishing on Λ is equal to

l(mH) − l(mH − Λ). (3.2)
Proof. We apply the Restsatz to the curve C and to the m-th power of a generic line.
The vector space of homogeneous polynomials of degree m cuts out on C the family
of divisors linearly equivalent to mH. This family denoted |mH| is isomorphic to
the projective space P (L(mH)). This set has the same dimension as the projective
space associated to the vector space of homogeneous polynomials of degree m not
containing C or, in other words, the projective space of the vector space of homoge-
neous polynomials of degree m modulo those homogeneous polynomials vanishing
on C.

To see this, take a divisor D linearly equivalent to mH. We have D = C · X
for some X of degree m not containing C. Therefore the map

P (V ) → |mH|
X �→ C · X = D

is surjective. Suppose that D = C · X ′ for another curve X ′. We show that the
defining polynomials of X and X ′ are proportional. The fact that X and X ′ do not
contain C is equivalent to the fact that their defining polynomials F and F1 (resp)
are not divisible by the polynomial P which defines C. From Theorem 3.4 we can
write F = A1F1 + B1P and F1 = A2F + B2P with A1 and A2 complex numbers.
Moreover F (1−A1A2) = (A1B2 +B1)P and F1(1−A1A2) = (A2B1 +B2)P . So we
have a contradiction unless B1 = B2 = 0 and F1 = λ0F . Hence the map

P (V ) → |mH|
X �→ C · X = D
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is injective.
We have thus shown that P (V ) � |mH| � P (L(mH)). This gives dimV =

l(mH) = dim(L(mH)). Likewise one shows that l(mH−Λ) = dim L(mH−Λ) is the
dimension of V ′, the vector space of homogeneous polynomials of degree m passing
through the points of Λ modulo those vanishing on C. This follows from the fact
that L(mH −λ) � Γ(C̃, [mH − Λ]), where [mH − Λ] is the line bundle, [9, chap. 1],
associated to the divisor mH − Λ. This latter line bundle is O(m)|C̃ ⊗ OC̃([−Λ])
and this concludes the proof. �

Lemma 3.7. Given a divisor D on a nonsingular projective algebraic curve C, the
set

|D| := {D′ ∼ D,D′ � 0} � P (L(D)).

Proof. For every D′ ∈ |D|, there exists f ∈ K (C) such that D′ = (f)+D. And any
two such f ∈ K (C) differ by a non-zero constant. Indeed if (f)+D = (g)+D then
(f) = (g) so (f/g) = 0. Let us take two representatives of f and g, still denoted f
and g (f 
= 0 and g 
= 0). One sees then that f/g has no zeros or poles (so it is in
particular holomorphic on C̃) therefore it is an element of C× because OC(C) = C.
Therefore we have a bijective map

P (L(D)) → |D|
f �→ (f) + D

�

We will need the following version of Cayley-Bacharach’s theorem [4, th. CB4]

Theorem 3.8. (C-B1) Let X1, X2 be plane curves of degrees m and n respectively,
with X1 smooth and meeting in a collection of mn distinct points Γ = {p1, . . . , pmn}.
If X ⊂ CP2 is any plane curve of degree m + n − 3 containing all but one point of
Γ, then X contains all of Γ.

Corollary 3.9. (Chasles’ theorem) Let X1, X2 ⊂ CP2 be cubic plane curves, with
X1 smooth, meeting in nine points P1, P2, . . . , P9. If X ⊂ CP2 is any cubic plane
curve containing 8 among them, then X contains the remaining point as well.

Let us introduce the following theorem of Serret [14, p. 99]

Theorem 3.10. (Serret) Let p = [a, b, c] be a point of CP2 and associate to it the
linear form lp(x, y, z) = ax + by + cz. Then the necessary and sufficient condition
that a curve Cr, of degree r, which passes through q − 1 of a set of q given points of
CP2, passes through the remaining one, is that there is a linear relation or syzygy
(with all coefficients non-zero) connecting the rth powers of the linear forms (or, by
abuse of language, tangential equation) associated to each given point.

Proof. If one has a relation of the form
q∑

i=1

λi(lpi
)r = 0
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and the equation of the curve Cr is given by h, then h
(

∂
∂x , ∂

∂y , ∂
∂z

)
(lpi

)r = r!h(pi).
So if q−1 of the points lie on Cr the remaining one also does. The converse is shown
along similar lines, see [14, p. 99] �

Corollary 3.11. When q =
(

m + 2
m

)
Serret’s theorem gives the necessary and suffi-

cient condition that q points should lie on a curve of degree m.

Proof. Indeed it follows from the Riemann-Roch theorem (see below in the proof of
Theorem 3.12) that there always exists a curve of degree m which passes through
any q − 1 = 1

2m(m + 3) given points of the fixed smooth curve C. So if there is
linear relation between the mth powers of the linear terms associated to the q points,
then necessarily all the q points lie on that curve of degree m. The converse is the
necessity statement of Serret’s theorem. �

We finally prove the following generalized Cayley-Bacharach theorem inspired
by [14] and which easily follows from Serret’s theorem and The Riemann-Roch
theorem.

Theorem 3.12. (C-B2) Let X1 and X2 be plane curves of degrees m and n re-
spectively, with X1 smooth and meeting X2 in a collection of mn distinct points
Γ = {p1, . . . , pmn}. Every curve Cm+n−γ (γ > 3) of degree m + n − γ which passes

through mn − 1
2
(γ − 1)(γ − 2) of the points X1 ∩ X2 passes through the remainder

except when these remaining
1
2
(γ − 1)(γ − 2) points lie on a curve Cγ−3 of degree

γ − 3.

Proof. Denote by [as, bs, cs] the points of X1 ∩ X2. From the Cayley-Bacharach
Theorem 3.8 every curve Cm+n−3 which passes through all but one point of X1∩X2

necessarily passes through the remaining point. Therefore from Serret’s theorem we
have a syzygy

mn∑
s=1

ks(asx + bsy + csz)m+n−3 = 0, ks ∈ C
×.

Since this last equation is an identity in x, y, z, it can be differentiated repeatedly
with respect to the variables x, y, z. Then, if F

(
∂
∂x , ∂

∂y , ∂
∂z

)
is a homogeneous poly-

nomial of degree ν in the operators, we evidently have
mn∑
s=1

ksF (as, bs, cs)(asx + bsy + csz)m+n−3−ν = 0.

In particular, taking ν = m + n − γ
mn∑
s=1

ksF (as, bs, cs)(asx + bsy + csz)γ−3 = 0.

Thus if F is the equation of the curve Cm+n−γ provided by the hypothesis of the

theorem, we obtain an identity involving only
1
2
(γ − 1)(γ − 2) of the points. But
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from the Riemann-Roch theorem we know that there always exists a curve Cγ−3

passing through any given
1
2
γ(γ − 3) given points of X1. Indeed if Λ is that set of

points considered as an effective divisor

l((γ − 3)H) − l((γ − 3)H − Λ)

=
1
2
γ(γ − 3) + l(K − (γ − 3)H) − l(K − (γ − 3)H + Λ),

with K and H defined with respect to X1. Because Λ ≥ 0 it follows that l(K − (γ −
3)H)− l(K − (γ −3)H +Λ) ≤ 0, by definition. Thus l((γ −3)H)− l((γ −3)H −Λ) ≤
1
2
γ(γ − 3) which is strictly less than the dimension

1
2
(γ − 1)(γ − 2) of the vector

space of homogeneous polynomials of degree γ − 3 in three variables. Given the
interpretation we gave of the quantity l((γ − 3)H) − l((γ − 3)H − Λ), we conclude
that there exists a non-trivial polynomial of degree γ − 3 vanishing on Λ. Hence if

the remaining
1
2
(γ − 1)(γ − 2) points do not lie on a Cγ−3, they must all lie on the

given curve of degree m + n − γ, by Serret’s theorem. �

We are finally ready for the main result of this work:

Theorem 3.13. Let C be a smooth projective plane curve of degree n � 2 with equa-
tion given by F (ξ, η, ζ) = 0. Let [ξ, η, ζ] be the coordinates of its points expressed as
functions of a uniformizing parameter t. Then any real analytic solution V of the
equation

F

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
φ(x, y, z) = 0 (3.3)

on a sufficiently small open set can be put in the form

V (x, y, z) =
∫

Φ(ξx + ηy + ζz, t)dt, (3.4)

for a suitable path of integration. The function Φ depends naturally on F . It also
depends on V and determines it, if the necessary differentiations are allowed.

Proof. Without loss of generality we assume V to be real analytic near the origin
as a function of x, y, z. Expand V as an absolutely and uniformly convergent power
series in x, y, z near the origin itself.

We now apply F

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
to this series, and we set to zero the coefficients

of the various powers. Let us look at the homogeneous part of F

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
V

of degree m; when m ≥ n we find

1
2
(m − n + 1)(m − n + 2)

relations among the coefficients since the action of F
(

∂
∂x , ∂

∂y , ∂
∂z

)
on V (x, y, z) will

leave a polynomial of degree m − n and 1
2(m − n + 1)(m − n + 2) represents the di-

mension of the space of homogeneous polynomials of degree m−n in three variables.
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But when m < n no such relations arise, because the operation of F
(

∂
∂x , ∂

∂y , ∂
∂z

)

on the homogeneous parts of V (x, y, z) of degree m < n will cancel them entirely.
As the dimension of the space of homogeneous polynomials of degree m in three

variables is
(
m+2

m

)
, the homogeneous part of degree m of the solution V is a linear

combination of at most
1
2
(m + 1)(m + 2) − 1

2
(m − n + 1)(m − n + 2) = mn + 1 − 1

2
(n − 1)(n − 2)

linearly independent terms when m � n, and of at most 1
2(m+1)(m+2) independent

terms when m < n.
We first consider the case m � n. In order to express the terms of order m into

integral form (3.4) we proceed as follows. If we take M := mn+1− 1
2
(n− 1)(n− 2)

arbitrary points [ξi, ηi, ζi] , 1 � i � M , on the curve {F = 0} (belonging to the same
domain D of the uniformizing parameter), then the corresponding powers (of linear
forms) (ξx + ηy + ζz)m will in general be linearly independent.

For, if not, there would be a linear relation between them, of the form

M∑
1

λi(ξix + ηiy + ζiz)m = 0, λi ∈ C, ∀ i. (3.5)

Leaving out one of the M points, say (ξ1, η1, ζ1), we can draw a curve of the m-th
order f(ξ, η, ζ) = 0 through the remaining M − 1 points. Indeed with the notations
introduced above we have

l(mH − Λ) = deg(mH − Λ) + 1 − g + l(K − mH + Λ),

where Λ is the set of the mn−1
2
(n−1)(n−2) chosen points, considered as an effective

divisor. From this last equality we deduce that l(mH − Λ) ≥ 1. Because L(mH −
Λ) is interpreted [4] as the vector space of homogeneous polynomials of degree m
vanishing on Λ modulo those of degree m vanishing on C, we can ascertain that there

exists a curve f of degree m passing through the mn − 1
2
(n − 1)(n − 2) remaining

points, and not vanishing identically on C. We now operate on the equation (3.5) by
F

(
∂
∂x , ∂

∂y , ∂
∂z

)
. Then the terms corresponding to the points disappear on account

of the relation

F

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
(ξx + ηy + ζz)m = m!F (ξ, η, ζ) (3.6)

and we are left with the equation

λ1F (ξ1, η1, ζ1) = 0. (3.7)

Therefore either F (ξ1, η1, ζ1) = 0, in which case all the points lie on a curve of the
m-th degree and they would not have been chosen arbitrarily; or λ1 = 0. But λ1

can be taken to be anyone of the coefficients; hence all the coefficients are zero and
the syzygy or linear relation (3.5) does not exist.
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This shows that we have M = mn + 1 − 1
2
(n − 1)(n − 2) independent solutions

(sj)1�j�M (or tangential equation) of the equation F
(

∂
∂x , ∂

∂y , ∂
∂z

)
φ(x, y, z) = 0.

Similarly, when m < n we may take
(
m+2

m

)
points on the curve C which do not

lie on a curve of the mth degree. This is possible by Corollary 3.11 and the fact that
m < n.

We observe that for these so chosen
(
m+2

m

)
the corresponding tangential equa-

tions are linearly independent. This follows from the fact that one can always draw

a curve Cm of degree m through any
1
2
m(m + 3) given points by Riemann-Roch

theorem, as before. Thus we obtain a linear relation between the mth powers of the

tangential equations of any
1
2
(m + 2)(m + 1) + 1 points on the curve, and which

satisfy the equation (3.3).
So the conclusion of what we have said so far is that we can find a basis of the

space of homogeneous polynomials of degree m which satisfy the partial differential
equation:

F

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
φ(x, y, z) = 0

in the form (ξix + ηiy + ζiz)m, 1 � i � r for r well-chosen points on C with

r = mn + 1 − 1
2(n − 1)(n − 2) in case m � n and r =

(
m + 2

2

)
when m < n.

In the two cases if r is the number of independent solutions, we have that

(ξ(t)x + η(t)y + ζ(t)z)m =
r∑
1

(ξix + ηiy + ζiz)mμi(t) (3.8)

is a solution of the partial differential equation (3.3) with [ξ, η, ζ] ∈ C, expressed as
a function of the uniformizing parameter t.

Indeed when m < n we have F
(

∂
∂x , ∂

∂y , ∂
∂z

)
(ξx + ηy + ζz)m = 0 for degree

reasons. And when m � n we have

F

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
(ξix + ηiy + ζiz)m = F (ξi, ηi, ζi)(ξix + ηiy + ζiz)m−n.

The μi are analytic functions of t because if (χi)1�i�r is the basis dual to {(ξix +
ηiy + ζiz)m}1�i�r then χi((ξ(t)x + η(t)y + ζ(t)z)m) = μi(t).

Let us take the μi as in (3.8); we remark that the μi are linearly independent
over C as functions of t. Indeed if not, (ξ(t)x+ η(t)y + ζ(t)z)m would be expressible
as a linear combination of r − 1 solutions to equation (3.3), and we would be able
to obtain a syzygy among the tangential equations of any r points on the curve.
More precisely if for instance μ1 is expressed as a linear combination of the other
(μi)2�i�r then we have a relation of the form

(ξ(t)x + η(t)y + ζ(t)z)m =
r−1∑
1

αj(t)Hj(x, y, z)
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for fixed (Hj(x, y, z))1�j�r−1 (solution to (3.3)). Let us take now r arbitrary points[
ξ0k, η0

k, ζ0k
]
1�k�r

on the curve C in the domain of the uniformizing parameter t.
Then there exists (tk)1�k�r so that

[
ξ0k, η0

k, ζ0k
]

= [ξ(tk), η(tk), ζ(tk)], 1 � k � r.
Thus the corresponding m-th powers of linear forms (ξ0i x + η0

i y + ζ0kz)m, 1 � k � r
are expressed as linear combinations of the r − 1 fixed given vectors Hj . Hence by
linear algebra, (ξ0i x+ η0

i y + ζ0kz)m are linear dependent. This contradicts the above.
We consider r functions (fs)1�s�r (analytic). We have

∫
(ξx + ηy + ζz)mfs(t)dt =

r∑
1

(ξix + ηiy + ζiz)m

∫
μi(t)fs(t)dt. (3.9)

and the determinant of the matrix (θs,i)1�s�r,1�i�r := (
∫

μi(t)fs(t)dt)1�i�r,1�s�r

will, in general, be non zero (this follows by a suitable generalization of Lemma 3.14
below).

Accordingly we may choose r constants λj , so that the expressions

λ1θ1,i + λ2θ2,i + . . . + λrθr,i (i = 1, 2, . . . , r) (3.10)

take any r assigned values p1,. . .,pr, and we have
∫

(ξ(t)x + η(t)y + ζ(t)z)m
r∑
1

(λsfs)(t)dt =
r∑
1

pi(ξix + ηiy + ζiz)m. (3.11)

But any homogeneous polynomial of degree m solution of equation (3.3) can be
expressed in the form

r∑
1

pi(ξix + ηiy + ζiz)m, (3.12)

and can therefore be put in the form
∫

(ξx + ηy + ζz)mgm(t)dt, gm(t) =
r∑
1

(λsfs)(t). (3.13)

The series
∑
m�0

((ξx + ηy + ζz)mgm)(t) converges uniformly on compact sets of the

domain D of the uniformizing parameter t provided that |x| + |y| + |z| is small.
Hence if we integrate on a compact path L of D , we can write

V =
∫ ∑

m�0

(ξx + ηy + ζz)mgm(t)dt =
∫

Φ(ξx + ηy + ζz, t)dt (3.14)

which is the desired form of the solution. �

Lemma 3.14. Let ν1, . . ., νN be linearly independent over C, continuous on a seg-
ment [a, b], with −∞ < a < b < +∞ to fix ideas. Then there exists N continuous
functions l1, . . ., lN with

det

(∫ b

a

νi(u)lj(u)du

)

= 0.
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Proof. We define

Fk(s) =
∫ b

a

νk(u)esudu, s ∈ C.

Fk is entire, for every k. Besides F1, F2, . . ., FN are linearly independent. Indeed if
one has a relation

N∑
k=1

ckFk = 0

then
∑N

k=1 ck

∫ b

a
νk(u)esudu = 0 for all s ∈ C. Therefore

∫ b

a
(
∑N

1 ckνk(u))upesudu =
0 for all s ∈ C and p � 0. So

∫ b

a
(
∑N

1 ckνk(u))R(u)du = 0 for every polynomial R(u)
by linearity and taking s = 0. Hence by the Stone-Weiertrass theorem

∑N
1 ckνk = 0

and ck = 0 for every k by linear independence of the νk. Now the (Fk)1�k�N

are linearly independent and they form a basis of solutions of the linear differential
equation W (y, F1, . . . , FN ) = 0 where W is the Wronskian. And then the Wronskian
determinant of F1, . . ., FN is non identically zero, hence it does not vanish for some
s0 ∈ C. So taking lj(u) = uj−1es0u, 1 � j � N we find that

det

(∫ b

a

νi(u)lj(u)du

)

= 0.

�

4. The Kernel of the Partial Differential Operator

F
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

)

In this section we prove that one can always represent any real analytic function in
the kernel of F

(
∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xd

)
on a sufficiently small open set, by means of a

definite integral. Here F (x1, . . . , xd) is homogeneous polynomial of degree n whose
associated hypersurface is smooth. Before doing so we introduce some notations.

Let X ⊂ CPd a projective variety with vanishing ideal I(X) ⊂ C[z0, . . . , zd].
For m � 1, we denote by I(X)m the m-th homogeneous part I(X) ∩C[z0, . . . , zd]m
of I(X), where C[z0, . . . , zd]m is the subset of homogeneous polynomials of degree
m in C[z0, . . . , zd]. Since I(X) is a homogeneous ideal, the homogeneous coordinate
ring S(X) is a graded ring with decomposition

S(X) =
⊕
m�0

S(X)m

where S(X)m = C[z0, . . . , zd]/I(X)m. Each homogeneous part I(X)m is a linear
subspace of the

(
d+m

d

)
dimensional C-vector space C[z0, . . . , zd]m. The dimension of

I(X)m is the number of independent hypersurfaces of degree m containing X.
If X ⊂ CPd is a hypersurface given by some irreducible homogeneous polyno-

mial F of degree n. The m-th homogeneous part I(X)m then consists of all polyno-
mials of degree m divisible by F . So we can identify I(X)m with C[z0, . . . , zd]m−n
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for m � n. So that

dim(I(X)m) =
(

m − n + d

d

)
.

Let us introduce the following theorem of Serret [14, p. 99-100]

Theorem 4.1. (Serret) Consider p = [a0, a1, . . . , ad] a point of CPd and associate to
it the linear form lp(z0, z1, . . . , zd) = a0z0 + a1z1 + . . . anzd. Then the necessary and
sufficient condition that any given hypersurface Cr, of given degree r, which passes
through q − 1 of a set of q given points of CPd should pass through the remaining
point, is that there should be a linear relation (or syzygy) connecting the rth powers
of the linear forms (or by abuse of language, tangential equations) associated to each
given point.

Proof. The proof is similar to the case d = 2. See [14, p. 99-100]. �

Corollary 4.2. When q =
(
m+d

d

)
Serret’s theorem gives the necessary and sufficient

condition that q points should lie on a hypersurface of degree m.

Proof. Indeed there always exists a hypersurface of degree m which passes through
any q−1 =

(
m+d

d

)−1 given points of the fixed smooth hypersurface C. So if there is
linear relation between the mth powers of the linear terms associated to the q points,
then necessarily all the q points lie on a hypersurface of degree m. The converse is
the necessity statement of Serret’s theorem. �

Theorem 4.3. If [ξ1, ξ2, . . . , ξd] are the coordinates of a point on the smooth projective
hypersurface X of equation F (ξ1, ξ2, . . . , ξd) = 0 and of degree n � 2, expressed as
functions of uniformizing parameters t1, t2, . . . , td−1, then any real analytic solution
of the equation

F

(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xd

)
φ(x1, x2, . . . , xd) = 0, d � 4 (4.1)

on a sufficiently small open set can be put in the form

V =
∫

Φ(ξ1x1 + ξ2x2 + . . . + ξdxd, t1, t2, . . . , td−1)dt1dt2 . . . dtd−1, (4.2)

for a suitable region of integration. The function Φ depends naturally on F . It also
depends on V and determines it, if the necessary differentiations are allowed.

Proof. To prove this we choose for origin a point in the vicinity of which V is a real
analytic function of x1, x2, . . . , xd: we can expand V as a power series in x1, x2, . . . ,
xd converging absolutely and uniformly within a certain region.

Operating on this series with F
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

)
and equating to zero the

coefficients of the various powers: we have when m � n (we look at the homogeneous
part of F

(
∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xd

)
V of degree m)

(
m − n + (d − 1)

d − 1

)
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relations among the coefficients of the homogeneous parts of degree m as the action
of F

(
∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xd

)
on V (x1, x2, . . . , xd) will leave a polynomial of degree m−n

and
(
m−n+(d−1)

d−1

)
represents the dimension of the space of homogeneous polynomials

of degree m−n in d variables. But when m < n no such relations exist, because the
operation of F

(
∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xd

)
on the homogeneous parts of V (x1, x2, . . . , xd)

of degree m < n will kill them entirely.
As the dimension of the space of homogeneous polynomials of degree m in d

variables is
(
m+(d−1)
(d−1)

)
, the terms of order m are a linear combination of at most

M1 =
(

m + (d − 1)
(d − 1)

)
−

(
m − n + (d − 1)

d − 1

)
,

linearly independent elements when m � n; and of at most
(
m+(d−1)

d−1

)
independent

terms when m < n.
In order to express the terms of order m in the form (4.2) in the case m � n we

proceed as follows. Take M1 arbitrary points on the hypersurface F (ξ1, ξ2, . . . , ξn) =
0 (belonging to the same domain D of the uniformizing parameters t1, . . . , td−1);
then the corresponding quantities (ξ1x1 + ξ2x2 + . . . + ξdxd)m will in general be
linearly independent.

For, if not, there would be a linear relation between them; let it be
M1∑
1

λi(ξi
1x1 + ξi

2x2 + . . . + ξi
dxd)m = 0. (4.3)

Leaving out one of the points, say (ξ11 , ξ
1
2 , . . . , ξ

1
n), we can draw a hypersurface of the

m-th order f(ξ1, ξ2, . . . , ξn) = 0 through the remainder and not vanishing identically
on X. Indeed with the notations introduced above we have

dim(I(X)m) =
(

m − n + d − 1
d − 1

)

and this number is positive for d � 4 and m � n. This quantity is the dimension
of the space of hypersurfaces of degree m containing X. Since we are considering
M1 − 1 points of X, the codimension of the space of forms of degree m in the
variables z1, z2, . . . , zd in the space of forms of degree m in those variables and
vanishing on X is at most M1 − 1. So the dimension of the space of forms of degree
m in the d variables z1, z2, . . . , zd and passing through the M1 − 1 points is at least
dimC[z1, z2, . . . , zd]m −M1 +1 =

(
m−n+(d−1)

d−1

)
+1. So there is at least one non-zero

homogeneous polynomial f , of degree m in the d variables vanishing on the chosen
M1 − 1 points but not vanishing entirely on X.

We now operate on the equation (4.3) with F
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

)
. Then the

terms corresponding to the points disappear on account of the relation

F

(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xd

)
(ξ1x1 + ξ2x2 + . . . + ξdxd)m = m!F (ξ1, ξ2, . . . , ξd) (4.4)

and we are left with the equation

λ1F (ξ11 , ξ
1
2 , . . . , ξ

1
d) = 0. (4.5)
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Therefore either F (ξ11 , ξ
1
2 , . . . , ξ

1
d) = 0, in which case all the points lie on a hypersur-

face of the m-th degree and they would not have been chosen arbitrarily; or λ1 = 0.
But λ1 can be taken to be anyone of the coefficients; hence all the coefficients are
zero and the syzygy or linear relation (4.3) does not exist.

Thus we have M1 independent solutions (or tangential equations) of the equa-
tion

F

(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xd

)
φ(x1, x2, . . . , xd) = 0.

In other words, there exists a linear relation between the m-th powers of the
tangential equations of any M1 + 1 sufficiently general points on the hypersurface.

Similarly, when m < n we may take
(
m+(d−1)

d−1

)
points on the hypersurface which

do not lie on a hypersurface of the mth degree. This is possible by Corollary 4.2 and
the fact that m < n.

Having so chosen the
(
m+(d−1)

d−1

)
points on X we observe that the corresponding

tangential equations are linearly independent. This follows from the fact that one
can always draw a hypersurface of degree m through any

(
m+(d−1)

d−1

)−1 given points
on X.

Again we have the corresponding assertion that when m < n there is a linear
relation between the mth powers of the tangential equations of any

(
m+(d−1)

d−1

)
+ 1

points on the curve, and which satisfy the equation (4.1).
So the conclusion of what we have said so far is that we can find a basis of the

space of homogeneous polynomials which satisfy (4.1) in the form (ξi
1x1 + ξi

2x2 +
. . . + ξi

dxd)m, 1 � i � r for r well-chosen points on X with r = M1 in case m � n

and r =
(
m+(d−1)

d−1

)
when m < n.

Let us take the two cases together, and denote by r the number of independent
solutions, we see that

(ξ1(t1, t2, . . . , td−1)x1 + ξ2(t1, t2, . . . , td−1)x2 + . . . + ξd(t1, t2, . . . , td−1)xd)m

=
r∑
1

(ξi
1x1 + ξi

2x2 + . . . + ξi
dxd)mμi(t1, t2, . . . , td−1) (4.6)

is a solution of the pde (4.1) with [ξ1, ξ2, . . . , ξd] ∈ X, expressed as a function of the
uniformizing parameters t1, t2, . . . , td−1.

Indeed when m < n then F
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

)
(ξ1x1 + ξ2x2 + . . .+ ξdxd)m = 0

for degree reasons. And in case m � n we have

F

(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xd

)
(ξi

1x1 + ξi
2x2 + . . . + ξi

dxd)m

= F (ξi
1, ξ

i
2, . . . , ξ

i
d)(ξ

i
1x1 + ξi

2x2 + . . . + ξi
dxd)m−n. (4.7)

The μi are analytic functions of (t1, t2, . . . , td−1) because if (χi)1�i�r is the basis dual
to {(ξi

1x1 + ξi
2x2 + . . . + ξi

dxd)}1�i�r then χi((ξ1(t1, t2, . . . , td−1)x1+
ξ2(t1, t2, . . . , td−1)x2 + . . . + ξd(t1, t2, . . . , td−1)xd)m) = μi(t1, t2, . . . , td−1).

Let us take the μi as in (4.6); we remark that the μi are linearly independent
over C as functions of (t1, t2, . . . , td−1) by a reasoning similar to the one given in
the proof of Theorem 3.13.
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We consider r functions (fs)1�s�r of d − 1 variables (t1, t2, . . . , td−1). We have
∫

(ξ1x1 + ξ2x2 + . . . + ξdxd)mfs(t1, t2, . . . td−1)dt1dt2 . . . dtd−1

=
r∑
1

(ξi
1x1 + ξi

2x2 + . . . + ξi
dxd)m

∫
μifs(t1, t2, . . . td−1)dt1dt2 . . . dtd−1 (4.8)

and the vectors (θs,i)1�i�r := (
∫

μifs(t1, t2, . . . td−1)dt1dt2 . . . dtd−1)1�i�r, where

we have s = 1, . . . , r, will in general, be linearly independent (by a several variable
lemma analogue to Lemma 3.14).

Accordingly we may choose r constants λj , so that the expressions

λ1θ1,i + λ2θ2,i + . . . + λrθr,i (i = 1, 2, . . . , r) (4.9)

take any r assigned values p1,. . .,pr, and we have
∫

(ξ1x1 + ξ2x2 + . . . + ξdxd)m
r∑
1

λsfs(t1, t2, . . . , td−1)dt1dt2 . . . dtd−1

=
r∑
1

pi(ξi
1x1 + ξi

2x2 + . . . + ξi
dxd)m. (4.10)

But any homogeneous polynomial of the degree m solution of (4.1) can be expressed
in the form

r∑
1

pi(ξi
1x1 + ξi

2x2 + . . . + ξi
dxd)m, (4.11)

and therefore admits the representation∫
(ξ1x1 + ξ2x2 + . . . + ξdxd)mgm(t1, t2, . . . , td−1)dt1dt2 . . . dtd−1. (4.12)

The series∑
m�0

((ξ1x1 + ξ2(t1, t2, . . . , td−1)x2 + . . . + ξdxd)mgm)(t1, t2, . . . , td−1)

converges uniformly on compact sets of the domain D of the uniformizing parameters
t1, t2, . . . , td−1 provided that |x1| + |x2| + . . . + |xd| is small. Hence if we integrate
on a compact submanifold S of D , we can write

V =
∫ ∑

m�0

((ξ1x1 + . . . + ξdxd)mgm(t1, . . . , td−1)dt1 . . . dtd−1

=
∫

Φ(ξ1x1 + ξ2x2 + . . . + ξdxd, t1, t2, . . . , td−1)dt1dt2 . . . dtd−1. (4.13)

which is the desired form of the solution.
This being done for all values of m, our series for V takes the required form

V (x1, . . . , xd) =
∫

Φ(ξ1x1+ξ2x2+. . .+ξdxd, t1, t2, . . . , td−1)dt1dt2 . . . dtd−1. (4.14)

�



476 A. Sebbar et al. Vol. 89 (2021)

Example 4.4. We treat the example of the partial differential equation

∂n−1

∂x1∂x2 . . . ∂xn−1
φ(x1, x2, . . . , xn−1) =

∂n−1

∂xn−1
n

φ(x1, x2, . . . , xn).

Using the following embedding of (C×)n−2 into the associated characteristic variety
of the equation: z1z2 . . . zn−1 = zn−1

n

(t1, t2, . . . , tn−2) �→
(

t1, t2, . . . , tn−2,
1

t1t2 . . . tn−2
, 1

)

we obtain an integral representation∫

S
Φ(x1t1, x2t2, . . . xn−3tn−2,

xn−2

t1t2 . . . tn−2
, xn, t1, t2, . . . , tn−2)dt1dt2 . . . dtn−2

for a suitable region S in (C×)n−2.
We consider now the example of the partial differential equation(

∂3

∂x3
+

∂3

∂y3
+

∂3

∂z3

)
φ(x, y, z) = 0.

We explain how a parametrization of the Fermat cubic x3 + y3 = 1 arises, following
Dixon [3]. A natural idea to parametrize this curve is to find two meromorphic
(eventually multivalued) functions c(u), s(u) such that

c3(u) + s3(u) = 1.

We require, following [3] the nonlinear differential system

s′ = c2, c′ = −s2

s(0) = 0, c(0) = 1. (4.15)

These functions are analytic about the origin from the theory of ordinary differential
equations. Besides

s3(u) + c3(u) = 1

because

(s3 + c3)′ = 3s2c2 − 3c2s2 = 0

and by making use of the initial conditions. So (s(u), c(u)) gives a parametriza-
tion of the curve x3 + y3 = 1 near the point (0, 1). Dixon established that the
functions are meromorphic in the whole of the complex plane and doubly periodic
(that is, elliptic), hence they provide a global parametrization of the Fermat cubic.
More precisely one can solve the differential system for s(u) and c(u) as usual by
elimination

s′ = c2 =⇒ s′′ = 2cc′ = −2cs2 = −2s2
√

s′.

This gives

s′′√s′ = −2s2s′.

Thus after one integration we have
2
3
(s′)3/2 = −2

3
s3 + K.
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Since s(0) = 0, s′(0) = 1 we get K = 2/3 and

(s′)3/2 = −s3 + 1.

This gives
ds

du
= (1 − s3)2/3,

du

ds
= (1 − s3)−2/3 =⇒ du = (1 − s3)−2/3ds.

So

u =
∫ u

0

dz =
∫ s(u)

0

dt

(1 − t3)2/3
.

Similarly we obtain

u =
∫ u

0

dz =
∫ 1

c(u)

dt

(1 − t3)2/3
.

Expanding (1 − t3)2/3 near 0 (respectively near 1) and using Lagrange inversion we
arrive at the formulas given by

s(u) = u − 4
u4

4!
+ 160

u7

7!
− 20800

u10

10!
+ 6476800

u13

13!
− . . .

c(u) = 1 − 2
u3

3!
+ 40

u6

6!
− 3680

u9

9!
+ 8880000

u12

12!
− . . . . (4.16)

Using this we have an integral representation for the solution

V (x, y, z) =
∫

γ

Φ(c(u)x + s(u)y − z, t)dt

for a suitable path γ.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

5. Appendix 1: The Twistor Correspondence and Solutions of

Differential Equations

In this appendix we present an interesting approach to the determination of the
solutions of linear partial differential equations due to [12]. Let f(z0, z1, · · · , zn) be
a complex homogeneous polynomial of degree k > 1 in the indicated variables with
n > 1. In this section we will show how to use a general twistor correspondence to
describe all the solutions of

Dfφ := f

(
∂

∂z0
, . . . ,

∂

∂zn

)
φ(z0, . . . , zn) = 0. (5.1)

We will do so by showing that there is a twistor space Z, a vector space
Hn−1(Z,O(−n − 1 + k)) of Dolbeault cohomology classes and a twistor correspon-
dence

T : Hn−1(Z,O(−n − 1 + k)) → H0(Cn+1,O), (5.2)
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whose image is the space of solutions of 5.1. Here and in what follows we will denote
by O the sheaf of holomorphic functions on C

m for some m ∈ N
×, and we will show

that T is an injective map, obtained by integrating the cohomology class against “a
cycle”, and onto the space of analytic functions in the kernel of Df for all k > 1.

To begin with, we recall that the complex projective space CPn is the set of all
lines through the origin in C

n+1, namely the set of all [z], z ∈ C
n+1-{0} with

[z] := [z0 : z1 : . . . : zn] = {λz, λ ∈ C
×}.

It is a compact complex manifold with a covering family of charts given by the open
sets Ui where the i-th homogeneous coordinate is non-zero.

Ui → C
n

[z0 : z1 : . . . : zn] �→
(

z0
zi

, . . . ,
zi−1

zi
,
zi+1

zi
, . . . ,

zn

zi

)
.

As in the previous sections let H be the tautological line bundle over CPn whose
fibre over a point [z] ∈ CPn is just the line [z], i.e.

H = {([z] , w), w = λz, λ ∈ C
×} ⊂ CPn × C

n+1. (5.3)

We define local sections ψi : Ui → H for each i = 0, . . . , n by

Ui → H

ψi([z]) =
(

[z] ,
(

z0
zi

, . . . ,
zi−1

zi
, 1,

zi+1

zi
, . . . ,

zn

zi

))
. (5.4)

Note that ψi is H-valued because(
z0
zi

, . . . ,
zi−1

zi
, 1,

zi+1

zi
, . . . ,

zn

zi

)
=

1
zi

(z0 : z1 : . . . : zn) .

From the definition of the ψi we have that

ψi([z]) =
zj

zi
ψj([z])

and hence the transition functions of H are

gij =
zj

zi
.

We set O(−1) := H. For p > 0 we define O (p) =
⊗p

1 H�, with H� the line bundle
dual to H. We also define O (p) =

⊗−p
1 H, for p < 0 and O(0) as the trivial line

bundle on CPn.
For a given sheaf S on CPn, we denote by Hp(CPn,S) its p-th cohomology

group p � 0. The dimension of the vector space Hp(CPn,S) (which is finite by
Hodge theory) is denoted by hp(CPn,S). We have the following formulas of Bott
[13, p. 4]

hq(CPn,O(k)) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
k + n

k

)
, k � 0, q = 0

( −k − 1
−k − 1 − n

)
, q = n, k � −n − 1

0 otherwise.

(5.5)
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We have [9, p. 165]

Symd((Cn+1)�) � H0(CPn,O(d))

here Symd((Cn+1)�) is the space of homogeneous polynomials of degree d in the
variables z0, . . . , zn. Moreover from [9, p. 135] one knows that to any global section
in H0(CPn,O(d)), one can associate an effective divisor which is precisely where
the considered section vanishes.

Definition 5.1. A divisor D is a locally finite formal linear combination

D =
∑

aiVi

of irreducible analytic subvarieties Vi, of codimension 1. If all the ai � 0, D is called
effective.

Let us now go back to the homogeneous polynomial f(z0, z1, . . . , zn) of degree
k we started with. From what we have explained we can associate to it a section
f(ξ0, . . . , ξn) of O(k) which vanishes exactly on an effective divisor denoted X.

We then have the exact sequence of sheaves

0 −−−−→ O(−k) −−−−→ OCPn
−−−−→ OX −−−−→ 0. (5.6)

By taking the tensor product of the sequence (5.6) with the locally free sheaf O(p)
and using the Bott’s formulas we get (by the long exact sequence in cohomology)
the short exact sequences

0 −−−−−→ H0(CPn,O(p − k)) −−−−−→ H0(CPn,O(p)) −−−−−→ H0(X,O(p)) −−−−−→ 0. (5.7)

and

0 −−−−−→ Hn−1(CPn,O(p)) −−−−−→ Hn(CPn,O(p − k)) −−−−−→ Hn(CPn,O(p)) −−−−−→ 0

(5.8)
Set p = −n − 1 = k in (5.8). Then since k > 0 we have −n − 1 + k > −n − 1

and from formulas (5.5) we get

Hn−1(CPn,O(−n − 1 + k)) � Hn(CPn,O(−n − 1)) � C

where the last isomorphism also follows from (5.5).
If we assume X to be smooth, this isomorphism can be realized by integrating

smooth (0, n − 1)-forms with values in O(−n − 1 + k).

0 −−−−→ O(−n − 1 + k) −−−−→ ξ0,• ⊗ O(−n − 1 + k). (5.9)

Recall now that H0(CPn,O(1)) is the space of homogeneous polynomials of de-
gree 1 in C

n+1, and let ξ0, . . . , ξn be a basis of H0(CPn,O(1)). We then have an
isomorphism

C
n+1 → H0(CPn,O(1))

(x0, . . . , xn) �→
n∑

i=0

xiξi. (5.10)

Moreover the restriction map

H0(CPn,O(1)) → H0(X, O(1)) (5.11)
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is an isomorphism by Lefschetz’s hyperplane theorem, and therefore if X is the
divisor defined by f we obtain

C
n+1 = H0(CPn,O(1)) = H0(X, O(1)). (5.12)

Remark 5.2. If E is a vector bundle over a manifold M then there is a sequence of
induced jet bundles JpE, p = 0, 1, . . .. The fibre of JpE at m ∈ M is the vector
space of all p-jets at m or of equivalence classes of local sections about m where
two sections are equivalent if they have the same Taylor series up to order p. This
equivalence relation is independent of the charts necessary to define it and the fibers
fit together to form smooth vector bundles. There is a natural projection from JpE
to Jp−1E which “forgets” the p-th term in the Taylor series. Associated with the
jet bundles one has the following exact sequence

0 −−−−→ SpT �M
⊗

E −−−−→ JpE −−−−→ Jp−1E −−−−→ 0. (5.13)

In this invariant language a pth order differential operator acting on sections of E
is just a bundle map

D : JpE → E. (5.14)
When E = C

n+1 × C, JpE will be denoted Jp
C and (5.13) becomes

0 −−−−→ (Cn+1 × Sp
C

n+1) −−−−→ Jp
C −−−−→ Jp−1

C −−−−→ 0, (5.15)

where C
n+1 is identified with its dual. If p = k, then the natural flat connection

on C
n+1, which is just the exterior derivative, defines a splitting Jk

C → (Cn+1 ×
Sk

C
n+1) and composing with the projection on C

n+1 followed by the composition
with f defines the homogeneous polynomial differential operator

Df : Jk
C → C. (5.16)

This is how one should interpret the differential operator given in equation (5.1).

Now let us define the twistor space Z as the total space of the line bundle O(1)
on CPn restricted (or pulled-back) to X.

The relation between Z and C
n+1 revolves around the following double fibration

where we identify C
n+1 with H0(X, O(1)) via the isomorphism (5.12).

C
n+1 × X

μ

�����
���

���
�

ν

���
���

���
���

�

C
n+1 Z

(5.17)

If (
∑n

0 xiξi, z) ∈ C
n+1 × X, then the left hand map sends it to (x1, . . . , xn) and the

right hand arrow sends it to
∑n

0 ξi(z). If we fix a point x ∈ C
n+1 then the image of

the section
n∑
0

xiξi : X → Z (5.18)

is a subvariety Xx of Z which is identified with X by the projection map π : Z → X.
We will need various line bundles on Z. We use the mappping π to pull-back line
bundles from X. That is if L is a line bundle on X, we define a line bundle π�L on Z
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by (π�L)z = Lπ(z) (the fiber of (π�L) over z is by definition given by Lπ(z)). Notice
that a peculiar thing happens for the bundle O(1). Here if z is an element of Z then
because Z is itself the line bundle O(1), z ∈ O(1)π(z), that is z ∈ (π�O(1))z. We
denote this section of O(1), the one that sends z to z, by η. It is the section whose
divisor is the zero section Z0 of the line bundle Z

π→ X. Notice that the subvariety
Xx in this notation is the subset of Z where

η =
n∑
0

ξixi. (5.19)

Let ωl, l = 0, . . . ,m be (0, n − 1) forms on X with values in O(−n − 1 + k − l).
Consider now the (0, n − 1) form on Z with values in O(−n − 1 + k) defined by

ω =
m∑
0

π�(ωl)ηl. (5.20)

Because each Xx is a copy of X we can restrict ω to Xx and integrate. We obtain
∫

Xx=π−1(X)

ω =
∫

Xx

m∑
0

π�(ωl)ηl

=
∫

Xx

m∑
0

π�(ωl)(
n∑
0

ξixi)l

=
∫

X

m∑
0

ωl(
n∑
0

ξixi)l =: φ(x). (5.21)

This φ is clearly in kerDf , because if we apply a monomial differential operator
(

∂

∂x0

)i0 (
∂

∂xi1
1

)i1

. . .

(
∂

∂xn

)in

to φ(x) we obtain
∫

X

m∑
l=k

ωll(l − 1) . . . (l − k + 1)

(
n∑
0

ξixi

)l−k

ξi1ξi2 . . . ξik .

Hence if we apply Df to φ(x) we obtain
∫

X

m∑
0

ωll(l − 1) . . . (l − k + 1)(
n∑
0

ξixi)l−kf(ξ0, ξ1, . . . , ξk)

which vanishes because f vanishes on X.
In [12] it is shown that more generally one should integrate over Xx elements

belonging to Hn−1(Z, π�O(−n − 1 + k)).
Finally, as we indicated at the beginning of this section, one has in full generality

the twistor transform

T : Hn−1(Z, π�O(−n − 1 + k)) → H0(Cn+1,O)

T (ω)(x) =
∫

Xx

ω, (5.22)
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which is a bijection onto the kernel of Df for k � n.

Remark 5.3. Hn−1(Z, π�O(−n − 1 + k)) is an infinite dimensional vector space be-
cause Z is non-compact and −n − 1 + k < 0 as k � n. Also the appearance
of O(−n − 1 + k) is due to the fact that the canonical bundle of X is exactly
O(−n−1+k). Moreover the fact that one should integrate (0, n−1)-forms is a con-
sequence of the Dolbeault resolution which implies that Hn−1(X,O(−n− 1+k)) �
Hn−1(Γ(X, E0,•(O(−n−1+k)))). Finally if f(x0, x1, . . . , xn) is a homogenous poly-
nomial then f(ξ) = f(ξ0, ξ1, . . . , ξn) defines a section of the line bundle O(k) which
vanishes precisely on X, namely {f = 0}.

Let us now see from what we have said in this section how the classical contour
integral formula, for the Laplacian in three dimensions given in [17], arises. First,
from [17], the general solution of the Laplacian in three dimensions is

φ(x, y, z) =
∫ π

−π

f(z + ix cos u + iy sinu, u)du (5.23)

for an arbitrary real analytic function f . In three dimensions the manifold X is the
quadric Q which is the vanishing set in CP2 of z20+z21+z22 . We have CP2 ⊇ Q � CP1.
From equation (5.21) the general solution is

φ(x, y, z) =
∫

Q

∞∑
0

fp(ξ)(xξ0 + yξ1 + zξ2)pdξ. (5.24)

Indeed from (5.21), and with the notations used before,
∑m

0 ωp(
∑n

0 ξixi)p is a (0, 1)
form with values in O(−1). A crucial remark is that for any complex projective
hypersurface M = {g = 0}, of degree k of CPn, its canonical bundle with sheaf of
sections given by the local holomorphic one forms on M, is isomorphic to O(−n −
1 + k). Therefore in the case at hand O(−1) is the canonical bundle of Q, and∑m

0
ωp(

∑n

0
ξixi)p is a (1, 1)-form on Q (where we interpret dξ as a local (1, 0)-

form on Q).
But f(ξ0, ξ1, ξ2) = 0 precisely on Q. Thus we can identify (ξ0, ξ1, ξ2) as a

variable point which lies on Q. The embedding of C in the quadric which will be
used is

w �→ [
i(w2 + 1), (w2 − 1), 2w

]
.

Restricting to the circle this gives

u �→ [
i(e2iu + 1), (e2iu − 1), 2eiu

]
, u ∈ [−π, π]

where square brackets denote the point of CP2 which is the line through (i(e2iu +
1), (e2iu − 1), 2eiu). So (xξ0 + yξ1 + zξ2) becomes

2eiu(xi cos u + yi sin u + z).
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Therefore we have

φ(x, y, z) =
∫ π

−π

∑
p

fp(u)2peipu(z + ix cos u + iy sin u)ph(u)du

=
∫ π

−π

f(z + ix cos u + iy sin u, u)du (5.25)

by change of variables and this recovers the result (5.23).
We now note that the formula in [17] for a solution of the wave equation is

φ(x, y, z, t) =
∫ π

−π

∫ π

−π

f(t + x sin u cos v + y sin u sin v + z cos u, u, v)dudv. (5.26)

Again the hypersurface X ⊆ CP3 is the quadric z20 + z21 + z22 − z23 = 0 which is
simply CP1 × CP1, which accounts for the double coutour integral in (5.26) and
Z = O(1)|X . To obtain (5.26) one uses the 2-1 ramified map given by

C × C → Q ⊆ CP3,

(ξ, ξ′) �→ [
(1 + ξ2)(−1 + ξ′2),−i(−1 + ξ2)(−1 + ξ′2), 2i(1 + ξ2)ξ′, 4iξξ′] .

Setting ξ = eiu, ξ′ = eiv (we restrict to the product of circles) and using formula
(5.21), we obtain

φ(x, y, z, t) =
∫

ξ

∫

ξ′

∑
p

fp(ξ, ξ′)(2i(1 + ξ2)ξ′z + x(1 + ξ2)(−1 + ξ′2)

− i(−1 + ξ2)(−1 + ξ′2)y + 4iξξ′t)pdξdξ′

=
∫ π

−π

∫ π

−π

∑
p

fp(u, v)(t + x sin u cos v + y sin u sin v + z cos u)pdudv

=
∫ π

−π

∫ π

−π

f(t + x sin u cos v + y sin u sin v + z cos u, u, v)dudv. (5.27)
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