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Abstract. We collect and present in a unified way several results in recent years
about the elastic flow of curves and networks, trying to draw the state of the art of
the subject. In particular, we give a complete proof of global existence and smooth
convergence to critical points of the solution of the elastic flow of closed curves in
R

2. In the last section of the paper we also discuss a list of open problems.
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1. Introduction

The study of geometric flows is a very flourishing mathematical field and geometric
evolution equations have been applied to a variety of topological, analytical and
physical problems, giving in some cases very fruitful results. In particular, a great
attention has been devoted to the analysis of harmonic map flow, mean curvature
flow and Ricci flow. With serious efforts from the members of the mathematical
community the understanding of these topics gradually improved and it culminated
with Perelman’s proof of the Poincaré conjecture making use of the Ricci flow,
completing Hamilton’s program. The enthusiasm for such a marvelous result en-
couraged more and more researchers to investigate properties and applications of
general geometric flows and the field branched out in various different directions,
including higher order flows, among which we mention the Willmore flow.

In the last two decades a certain number of authors focused on the one di-
mensional analog of the Willmore flow (see [26]): the elastic flow of curves and
networks. The elastic energy of a regular and sufficiently smooth curve γ is a linear
combination of the L2-norm of the curvature κ and the length, namely

E (γ) :=
∫

γ

|κ|2 + μ ds.

where μ ≥ 0. In the case of networks (connected sets composed of N ∈ N curves
that meet at their endpoints in junctions of possibly different order) the functional
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is defined in a similar manner: one sum the contribution of each curve (see Defini-
tion 2.1). Formally the elastic flow is the L2 gradient flow of the functional E (as
we show in Section 2.3) and the solutions of this flow are the object of our interest
in the current paper.

To the best of our knowledge the problem was taken into account for the first
time by Polden. In his Doctoral Thesis [46, Theorem 3.2.3.1] he proved that, if we
take as initial datum a smooth immersion of the circle in the plane, then there exists
a smooth solution to the gradient flow problem for all positive times. Moreover, as
times goes to infinity, it converges along subsequences to a critical point of the
functional (either a circle, or a symmetric figure eight or a multiple cover of one
of these). Polden was also able to prove that if the winding number of the initial
curve is ±1 (for example the curve is embedded), then it converges to a unique circle
[46, Corollary 3.2.3.3]. In the early 2000s Dziuk, Kuwert and Schätzle generalize the
global existence and subconvergence result to R

n and derive an algorithm to treat
the flow and compute several numerical examples. Later the analysis was extended
to non closed curve, both with fixed endpoint and with non–compact branches. The
problem for networks was first proposed in 2012 by Barrett, Garcke and Nürnberg
[7].

Beyond the study of this specific problem there are quite a lot of catchy variants.
For instance, as for a regular C2 curve γ : I → R

2 it holds k = ∂sτ , where τ is
the unit tangent vector and ∂s denotes derivative with respect to the arclength
parameter s of the curve, we can introduce the tangent indicatrix : a scalar map
θ : I → R such that τ = (cos θ, sin θ). Then we can write the elastic energy in terms
of the angle spanned by the tangent vector. By expressing the L2 corresponding
gradient flow by means of θ one get another geometric evolution equation. This is a
second order gradient flow and it has been first considered by [54] and then further
investigated by [30,31,42,45,55].

Critical points of total squared curvature subject to fixed length are called
elasticae, or elastic curves. Notice that for any μ > 0 the elasticae are (up to
homothety) exactly the critical points of the energy E . Elasticae have been studied
since Bernoulli and Euler as the elastic energy was used as a model for the bending
energy of an elastic rod [53] and more recently Langer and Singer contributed to
their classification [27,28] (see also [20,32]).

The L2-gradient flow of
∫ |κ|2 ds when the curve is subjected to fixed length is

studied in [12,13,21,49].
It is worth to mention also results about the Helfrich flow [17,56], the elastic

flow with constraints [25,43,44] and other fourth (or higher) order flows [1,2,36,37,
57].

In the following table we collect some contributions on the elastic flow of curves
(closed or open) and networks. The first column concerns papers containing detailed
proofs of short time existence results. The initial datum can be a function of a
suitably chosen Sobolev space, or Hölder space, or the curves are smooth. In the
second column we place the articles that show existence for all positive times or
that describe obstructions to such a desired result. When the flow globally exists, it
is natural to wonder about the behavior of the solutions for t → +∞. Papers that
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answer this question are in the third column. The ambient space may vary from
article to article: it can be R

2, Rn, or a Riemannian manifold.

Short time
existence

Long time
behavior

Asymptotic
analysis

Closed curves [46] [21,46] [21,35,46,47]
Open curves Navier b.c. [40] [40] [40,41]
Open curves, clamped b.c. [52] [29] [18,41]
Non compact curves [40] [40]
Networks [15,22,23] [14,22] [14]

We refer also to the two recent PhD theses [38,48].
The aim of this expository paper is to arrange (most of) this material in a

unitary form, proving in full detail the results for the elastic flow of closed curves
and underlying the differences with the other cases.

For simplicity we restrict to the Euclidean plane as ambient space. In Section 2
we define the flow, deriving the motion equation and the necessary boundary condi-
tions for open curves and networks. In the literature curves that meet at junctions
of order at most three are usually considered, while here the order of the junctions
is arbitrary.

In Section 3 we show short time existence and uniqueness (up to reparametriza-
tions) for the elastic flow of closed curve, supposing that the initial datum is Hölder-
regular (Theorem 3.18). The notion of L2-gradient flow gives rise to a fourth order
parabolic quasilinear PDE, where the motion in tangential direction is not specified.
To obtain a non–degenerate equation we fix the tangential velocity, then getting first
a special flow (Definition 2.12). We find a unique solution of the special flow (The-
orem 3.14) using a standard linearization procedure and a fixed point argument.
Then a key point is to ensure that solving the special flow is enough to obtain a
solution to the original problem. How to overcome this issue is explained in Sec-
tion 2.4. The short time existence result can be easily adapted to open curves (see
Remark 3.15), but present some extra difficulties in the case of networks, that we
explain in Remark 3.16.

One interesting feature following from the parabolic structure of the elastic
flow is that solutions are smooth for any (strictly) positive times. We give the idea
of two possible lines of proof of this fact and we refer to [15,22] for the complete
result.

Section 4 is devoted to the prove that the flow of either closed or open curves
with fixed endpoint exists globally in time (Theorem 4.15). The situation for network
is more delicate and it depends on the evolution of the length of the curves composing
the network and on the angles formed by the tangent vectors of the curves concurring
at the junctions (Theorem 4.18).

In Section 5 we first show that, as time goes to infinity, the solutions of the
elastic flow of closed curve convergence along subsequences to stationary points of
the elastic energy, up to translations and reparametrizations. We shall refer to this
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phenomenon as the subconvergence of the flow. We then discuss how the subcon-
vergence can be promoted to full convergence of the flow, namely to the existence
of the full asymptotic limit as t → +∞ of the evolving flow, up to reparametriza-
tions (Theorem 5.4). The proof is based on the derivation and the application of a
�Lojasiewicz–Simon gradient inequality for the elastic energy.

We conclude the paper with a list of open problems.

2. The Elastic Flow

A regular curve γ is a continuous map γ : [a, b] → R
2 which is differentiable on (a, b)

and such that |∂xγ| never vanishes on (a, b). Without loss of generality, from now
on we consider [a, b] = [0, 1].

In the sequel we will abuse the word “curve” to refer both to the parametriza-
tion of a curve, the equivalence class of reparametrizations, or the support in R

2.
We denote by s the arclength parameter and we will pass to the arclength

parametrization of the curves when it is more convenient without further mention-
ing. We will also extensively use the arclength measure ds when integrating with
respect to the volume element μg on [0, 1] induced by a regular rectifiable curve γ,
namely, given a μg-integrable function f on [0, 1] it holds

∫
[0,1]

f dμg =
∫ 1

0

f(x)|∂xγ(x)| dx =
∫ �(γ)

0

f(x(s)) ds =:
∫

γ

f ds,

where �(γ) is the length of the curve γ.

Definition 2.1. A planar network N is a connected set in R
2 given by a finite union

of images of regular curves γi : [0, 1] → R
2 that may have endpoints of order one

fixed in the plane and curves that meet at junctions of different order m ∈ N≥2.
The order of a junction p ∈ R

2 is the number
∑

i{0, 1} ∩ �(γi)−1(p).

As special cases of networks we find:
• a single curve (either closed or not);
• a network of three curves whose endpoints meet at two different triple junction

(the so-called Theta);
• a network of three curves with one common endpoint at a triple junction and

the other three endpoint of order one (the so called Triod).
Notice that when it is more convenient, we will parametrize a closed curve as

a map γ : S1 → R
2.

In order to calculate the integral of an N -tuple f = (f1, . . . , fN ) of functions
along the network N composed of the N curves γi we adopt the notation

∫
N

f ds :=
N∑

i=1

∫
γi

f|γi ds =
N∑

i=1

∫ 1

0

f i|∂xγi| dx.

If μ = (μ1, . . . , μN ) with μi ≥ 0, then the notation
∫

N μf ds stands for
∑N

i=1

∫ 1

0
μif i

|∂xγi| dx.
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Let γ : [0, 1] → R
2 be a regular curve and f : (0, 1) → R a Lebesgue measurable

function. For p ∈ [1,∞) we define

‖f‖p
Lp(ds) :=

∫
γ

|f |p ds =
∫ 1

0

|f(x)|p|∂xγ(x)| dx

and

Lp(ds) :=
{

f : (0, 1) → R Lebesgue measurable with ‖f‖p
Lp(ds) < +∞

}
.

We will also use the L∞-norm

‖f i‖L∞(ds) := ess supL∞(ds) |f i|.
Whenever we are considering continuous functions, we identify the supremum norm
with the L∞ norm and denote it by ‖·‖∞.

We remark here that for sake of notation we will simply write ‖ · ‖Lp instead
of ‖·‖Lp( ds) both for p ∈ [1,∞) and p = ∞ whenever there is no risk of confusion.

We will analogously write

‖f‖Lp :=
N∑

i=1

‖f i‖Lp(ds) for all p ∈ [1,∞) and ‖f‖L∞ :=
N∑

i=1

‖f i‖L∞(ds),

for an N -tuple of functions f along a network N .
Assuming that γi is of class H2, we denote by κi := ∂2

sγi the curvature vector
to the curve γi, which is defined at almost every point and the curvature is nothing
but κi := |κi|. We recall that in the plane we can write the curvature vector as
κi = kiνi where νi is the counterclockwise rotation of π

2 of the unit tangent vector
τ i := |∂xγi|−1(∂xγi) to a curve γi and then ki is the oriented curvature.

Definition 2.2. Let μi ≥ 0 be fixed for i ∈ {1, . . . , N}. The elastic energy functional
Eμ of a network N given by N curves γi of class H2 is defined by

Eμ (N ) :=
∫

N
|κ|2 ds + μ L(N ) :=

N∑
i=1

(∫
N i

(ki)2 ds + μi �(γi)
)

, (2.1)

and μL(N ) is named weighted global length of the network N .

2.1. First Variation of the Elastic Energy

The computation of the first variation has been carried several times in full details in
the literature, both in the setting of closed curves or networks. We refer for instance
to [7,35].

Let N ∈ N, i ∈ {1, . . . , N}. Consider a network N composed of N curves,
parametrized by γi : [0, 1] → R

2 of class H4. In order to compute the first variation
of the energy we can suppose that the curves meet at one junction, which is of order
N and γi(1) is some fixed point in R

2 for any i. That is

γ1(0) = · · · = γN (0), γi(1) = P i ∈ R
2.

The case of networks with other possible topologies can be easily deduced from the
presented one. We consider a variation γi

ε = γi+εψi of each curve γi of N with ε ∈ R

and ψi : [0, 1] → R
2 of class H2. We denote by Nε the network composed of the
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curves γi
ε, which are regular whenever |ε| is small enough. We need to impose that

the structure of the network N is preserved in the variation: we want the network
Nε to still have one junction of order N and we want to preserve the position of the
other endpoints γi

ε(1) = P i. To this aim we require

ψ1(0) = · · · = ψN (0), ψi(1) = 0 ∀ i ∈ {1, . . . , N}.

By definition of the elastic energy functional of networks, we have

Eμ(Nε) =
N∑

i=1

∫
γi

ε

(ki
ε)

2 + μi ds =
N∑

i=1

∫
γi

ε

|κi
ε|2 + μi ds.

We introduce the operator ∂⊥
s (that acts on a vector field ϕ) defined as the normal

component of ∂sϕ along the curve γ, that is ∂⊥
s ϕ = ∂sϕ − 〈∂sϕ, ∂sγ〉 ∂sγ. Then a

direct computation yields the following identities:

∂ε dsε = 〈∂sψ
i, τ i

ε〉 dsε =
(
∂s〈ψi, τ i

ε〉 − 〈ψi,κi
ε〉
)

dsε,

∂ε∂s − ∂s∂ε =
(〈κi

ε, ψ
i〉 − ∂s〈τ i

ε, ψ
i〉) ∂s,

∂ετ
i
ε = ∂⊥

s (ψi)⊥ + 〈τ i
ε, ψ

i〉κi
ε,

∂εκ
i
ε = (∂⊥

s )2(ψi)⊥ − 〈∂⊥
s (ψi)⊥,κi

ε〉τ i
ε + 〈τ i

ε, ψ
i〉∂sκ

i
ε + 〈κi

ε, ψ
i〉κi

ε,

(2.2)

for any i on (0, 1), where s is the arclength parameter of γε for any ε. Therefore,
evaluating at ε = 0, we obtain

d

dε
Eμ(Nε)

∣∣∣
ε=0

=
N∑

i=1

[∫
γi

2〈κi, ∂2
sψi〉 ds +

∫
γi

(−3|κi|2 + μi)
〈
τ i, ∂sψ

i
〉

ds

]
. (2.3)

Moreover, denoting by ∂⊥
s (·) := ∂s(·) − 〈∂s(·), τ〉τ , we have

∂sκ
i = ∂⊥

s κi − |κi|2τ i,

∂2
sκi = (∂⊥

s )2κi − 3〈∂sκ
i,κi〉∂sγ

i − |κi|2κi,

then, using these identities and integrating (2.3) by parts twice, one gets

d

dε
Eμ(Nε)

∣∣∣
ε=0

=
N∑

i=1

∫
γi

〈
2(∂⊥

s )2κi + |κi|2κi − μiκi, ψi
〉

ds

+
N∑

i=1

[
2 〈κi, ∂sψ

i〉∣∣1
0

+ 〈−2∂⊥
s κi − |κi|2τ i + μiτ i, ψi〉∣∣1

0

]
(2.4)

=
N∑

i=1

∫
γi

〈
2(∂⊥

s )2κi + |κi|2κi − μiκi, ψi
〉

ds

+
N∑

i=1

2〈κi(1), ∂sψ
i(1)〉 − 2〈κi(0), ∂sψ

i(0)〉

+

〈(
N∑

i=1

−2∂⊥
s κi(0) − |κi(0)|2τ i(0) + μiτ i(0)

)
, ψ1(0)

〉
. (2.5)
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As we chose arbitrary fields ψi, we can split ∂sψ
i into normal and tangential com-

ponents as

∂sψ
i = ∂⊥

s ψi + ∂‖
sψi =

〈
∂sψ

i, νi
〉
νi +

〈
∂sψ

i, τ i
〉
τ i =:

(
ψi

s

)⊥
νi +

(
ψi

s

)‖
τ i.

This allows us to write〈
κi, ∂sψ

i
〉

=
〈
kiνi,

(
ψi

s

)⊥
νi +

(
ψi

s

)‖
τ i
〉

= ki
(
ψi

s

)⊥
,

and we can then partially reformulate the first variation in terms of the oriented
curvature and its derivatives:

d

dε
Eμ(Nε)

∣∣∣
ε=0

=
N∑

i=1

∫
γi

(
2∂2

ski + (ki)3 − μiki
) (

ψi
)⊥

ds

+ 2
N∑

i=1

ki
(
ψi

s

)⊥∣∣∣1
0

+

〈(
N∑

i=1

−2∂⊥
s κi(0) − |κi(0)|2τ i(0) + μiτ i(0)

)
, ψ1(0)

〉
.

(2.6)

2.2. Second Variation of the Elastic Energy

In this part we compute the second variation of the elastic energy functional Eμ. We
are interested only in showing its structure and analyze some properties, instead
of computing it explicitly (for the full formula of the second variation we refer
to [18,47]). In fact, we will exploit the properties of the second variation only in
the proof of the smooth convergence of the elastic flow of closed curves in Section
5. In particular, we we will not need to carry over boundary terms in the next
computations.

Let γ : (0, 1) → R
2 be a smooth curve and let ψ : (0, 1) → R

2 be a vector field
in H4(0, 1) ∩ C0

c (0, 1), that is, ψ identically vanishes out of a compact set contained
in (0, 1). In this setting, we can think of γ as a parametrization of a part of an arc
of a network or of a closed curve. We are interested in the second variation

d2

dε2
Eμ(γ + εψ)

∣∣∣
ε=0

.

By (2.4) we have

d2

dε2
Eμ(γ + εψ)

∣∣∣
ε=0

=
d

dε

∣∣∣
ε=0

∫
γε

〈
2(∂⊥

s )2κε + |κε|2κε − μκε, ψ
〉

dsε,

where κε is the curvature vector of γε = γ + εψ, for any ε sufficiently small.
We further assume that γ is a critical point for Eμ and that ψ is normal along

γ. Then

d2

dε2
Eμ(γ + εψ)

∣∣∣
ε=0

=
∫

γ

〈
∂ε

∣∣
ε=0

(
2(∂⊥

s )2κε + |κε|2κε − μκε

)
, ψ
〉

ds.

Using (2.2), if φε is a normal vector field along γε for any ε and we denote φ:=φ0,
a direct computation shows that

∂ε|ε=0∂
⊥
s φε − ∂⊥

s ∂ε|ε=0φε = 〈ψ, κ〉∂⊥
s φ − 〈∂⊥

s φ, ∂⊥
s ψ〉τ + 〈φ,κ〉∂⊥

s ψ.
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Hence ∂ε|ε=0(∂
⊥
s )2κε can be computed applying the above commutation rule twice,

first with φε = ∂⊥
s κε and then with ψε = κε. One easily obtains

∂ε|ε=0(∂
⊥
s )2κε = (∂⊥

s )4ψ + Ω(ψ),

where Ω(ψ) ∈ L2(ds) is a normal vector field along γ, depending only on k, ψ and
their “normal derivatives” ∂⊥

s up to the third order. Moreover the dependence of Ω
on ψ is linear. For further details on these computations we refer to [35].

Using (2.2) it is immediate to check that ∂ε|ε=0

(|κε|2κε − μκε

)
yields terms

that can be absorbed in Ω(ψ). Therefore we conclude that

d2

dε2
Eμ(γ + εψ)

∣∣∣
ε=0

=
∫

γ

〈
2(∂⊥

s )4ψ + Ω(ψ), ψ
〉

ds.

By polarization, we see that the second variation of Eμ defines a bilinear form
δ2Eμ(ϕ,ψ) given by

δ2Eμ(ϕ,ψ) =
∫

γ

〈
2(∂⊥

s )4ϕ + Ω(ϕ), ψ
〉

ds,

for any normal vector field ϕ,ψ of class H4 ∩ C0
c along γ, which is a smooth critical

point of Eμ.

2.3. Definition of the Flow

In this section we define the elastic flow for curves and networks. We formally derive
it as the L2-gradient flow of the elastic energy functional (2.1). We need to derive
the normal velocity defining the flow. The reasons why a gradient flow is defined in
term of a normal velocity are related to the invariance under reparametrization of
the energy functional and we will come back on this point more deeply in Section
2.4.

The analysis of the boundary terms appeared in the computation of the first
variation play an important role in the definition of the flow. Indeed, a correct
definition of the flow depends on the fact that the velocity defining the evolution
should be the opposite of the “gradient” of the energy. Hence we need to identify
such a gradient from the formula of the first variation and, in turn, analyze the
boundary terms appearing.

Suppose first that the network is composed only of one closed curve γ ∈
C∞([0, 1],R2). This means that for every k ∈ N we have ∂k

xγ(0) = ∂k
xγ(1) and

γ can be seen as a smooth periodic function on R. Then a variation field ψ is just a
periodic function as well and no further boundary constraints are needed and then
the boundary terms in (2.4) are automatically zero. Then (2.5) reduces to

d

dε
Eμ(γε)|ε=0 =

∫
γ

〈
2(∂⊥

s )2κ + |κ|2κ − μκ, ψ
〉

ds.

We have formally written the directional derivative of Eμ of each curve in the direc-
tion ψ as the L2-scalar product of ψ and the vector 2(∂⊥

s )2κ + |κ|2κ − μκ. Hence
we can understand 2(∂⊥

s )2κ + |κ|2κ − μκ to be the gradient of Eμ. We then set the
normal velocity driving the flow to be the opposite of such a gradient, that is

(∂tγ)⊥ = −2(∂⊥
s )2κ − |κ|2κ + μκ, (2.7)
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where, again, (·)⊥ denotes the normal component of the velocity ∂tγ of the curve
γ:

(∂tγ)⊥ = ∂tγ − 〈∂tγ, τ〉 τ.

In R
2 it is possible to express the evolution equation in terms of the scalar curvature:

〈∂tγ, ν〉 ν = (∂tγ)⊥ = 2(∂⊥
s )2κ + |κ|2κ − μκ =

(
2∂2

sk + (k)2k − μk
)
ν.

This last equality can be directly deduced from (2.6). In this way we have derived
an equation that describe the normal motion of each curve.

We pass now to consider, exactly as in Section 2.1, a network composed of
N curves, parametrized by γi : [0, 1] → R

2 with i ∈ {1, . . . , N}, that meet at one
junction of order N at x = 0 and have the endpoints at x = 1 fixed in R

2. We denote
by Nε the network composed of the curves γi

ε = γi + εψi with ψi : [0, 1] → R
2 such

that

ψ1(0) = · · · = ψN (0), ψi(1) = 0 ∀ i ∈ {1, . . . , N}.

Since the energy of a network is defined as the sum of of the energy of each
curve, it is reasonable to define the gradient of Eμ as the sum of the gradient of
the energy of each curve composing the network, that we have identified with the
vectors 2(∂⊥

s )2κi + |κi|2κi −μiκi. Hence, a network is a critical point of the energy
when the the vectors 2(∂⊥

s )2κi + |κi|2κi − μiκi vanish and the boundary terms
in (2.5) are zero. Depending on the boundary constraints imposed on the network,
i.e., its topology or possible fixed endpoints, we aim now to characterize the set of
networks fulfilling boundary conditions that imply

N∑
i=1

[
2 〈κi, ∂sψ

i〉∣∣1
0

+ 〈−2∂⊥
s κi − |κi|2τ i + μiτ i, ψi〉∣∣1

0

]
= 0.

Let us discuss the main possible cases of boundary conditions separately.
Curve with constraints at the endpoints
As we have mentioned before, if the network is composed of one curve, but

this curve is not closed, then we fix its endpoint, namely γ(0) = P ∈ R
2 and

γ(1) = Q ∈ R
2. As already shown in in Section 2.1, to maintain the position of the

endpoints, we require ψ(0) = ψ(1) = 0, that automatically implies

〈−2∂⊥
s κi − |κi|2τ i + μiτ i, ψi〉∣∣1

0
= 0,

in the computation of the first variation. On the other hand we are free to chose
∂sψ as test fields in the first variation. Suppose for example that ∂sψ(0) = ν (where
ν is the unit normal vector to the curve γ) and ∂sψ(1) = 0, then from (2.5) we
obtain k(0) = 0 and so k(0) = 0. Interchanging the role of ∂sψ(0) and ∂sψ(1) we
have k(1) = k(1) = 0.

Hence we end up with the following set of conditions⎧⎪⎨
⎪⎩

γ(0) = P

γ(1) = Q

κ(0) = κ(1) = 0,

known in the literature as natural or Navier boundary conditions.
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However, since the elastic energy functional is a functional of the second or-
der, it is legitimate to impose also that the unit tangent vectors at the endpoint
of the curve are fixed, namely that the curve is clamped. Hence we now have
γ(0) = P, γ(1) = Q, τ(0) = τ0, τ(1) = τ1 as constraints. This time these bound-
ary conditions affects the class of test function requiring ∂sψ(0) = ∂sψ(1) = 0, that,
together with ψ(0) = ψ(1) = 0, automatically set (2.5) to zero.

Networks
We can consider without loss of generality that the structure of a network is as

described in Section 2.1. Indeed boundary conditions for a other possible topologies
can be easily deduces from this case.

The possible boundary condition at x = 1 are nothing but what we just de-
scribed for a single curve with constraints at the endpoints. Thus we focus on the
junction O = γ1(0) = · · · = γN (0). We can distinguish two sub cases

Neumann (so-called natural or Navier) boundary conditions
In this case we only require the network not to change its topology in a first

variation. Letting first ψi(0) = 0 for any i, it remains the boundary term
N∑

i=1

〈κi(0), ∂sψ
i(0)〉 = 0,

where the test functions ψi appear differentiated. We can choose ∂sψ
1(0) = ν1(0)

and ∂sψ
i(0) = 0 for every i ∈ {2, . . . , N}. This implies κ1(0) = 0. Then, because of

the arbitrariness of the choice of i we obtain:

κi(0) = 0, (2.8)

for any i ∈ {1, . . . , N}.
It remains to consider the last term of (2.5). Taking into account the just

obtained condition (2.8), by arbitrariness of ψ1(0) = · · · = ψN (0) it reads
N∑

i=1

(−2∂⊥
s κi(0) + μτ i(0)

)
= 0,

Dirichlet (so-called clamped) boundary conditions
As discussed above, also in the case of a network we can impose a condition on

the tangent of the curves at their endpoints. As we saw in the clamped curve case,
from the variational point of this extra condition involves the unit tangent vectors.
Then an extra property on ∂sψ

i is expected.
At the junction we require the following (N − 1) conditions:〈

τ i1(0), τ i2(0)
〉

= c1,2, . . . ,
〈
τ iN−1(0), τ iN (0)

〉
= cN−1,N ,

that is, the angles between tangent vectors are fixed. We need that also the variation
Nε satisfies the same〈

τ i1
ε (0), τ i2

ε (0)
〉

= c1,2, . . . ,
〈
τ iN−1
ε (0), τ iN

ε (yN )
〉

= cN−1,N ,

for any |ε| small enough. This means that for every i, j ∈ {1, . . . , N} we need that

d

dε

〈
τ i
ε(0), τ j

ε (0)
〉

= 0,
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that implies

0 =
d

dε

〈
τ i
ε(0), τ j

ε (0)
〉 ∣∣∣

ε=0
=
〈
∂⊥

s ψi(0), τ j(0)
〉

+
〈
τ i(0), ∂⊥

s ψj(0)
〉

= (ψi
s)

⊥(0)
〈
νi(0), τ j(0)

〉
+ (ψj

s)
⊥(0)

〈
τ i(0), νj(0)

〉
= (ψi

s)
⊥(0)

〈
νi(0), τ j(0)

〉− (ψj
s)

⊥(0)
〈
νi(0), τ j(0)

〉
.

where we used the notation
(
ψi

s

)⊥ :=
〈
∂sψ

i, νi
〉
. So we impose

(ψ1
s)⊥(0) = · · · = (ψN

s )⊥(0). (2.9)

Then the first boundary term of (2.5) reduces to

2〈(ψ1
s)⊥(0),

N∑
i=1

ki(0)〉.

Hence we find the following boundary conditions:
N∑

i=1

ki(0) = 0,
N∑

i=1

−2∂⊥
s κi(0) − |κi(0)|2τ i(0) + μiτ i(0) = 0.

In the end, whenever the network is composed of N curves we have a sys-
tem of N equations (not coupled) that are quasilinear and of fourth order in the
parametrizations of the curves with coupled boundary conditions.

We now need to briefly introduce the Hölder spaces that will appear in the
definition of the flow.

Let N ∈ N, consider a network N composed of N curves with endpoints of
order one fixed in the plane and the curves that meet at junctions of different order
m ∈ N≥2. As we have already said each curve of N is parametrized by γi : [0, 1] →
R

2. Let α ∈ (0, 1). We denote γ := (γ1, . . . , γN ) ∈ (R2)N and

IN := C4+α
(
[0, 1]; (R2)N

)
.

We will make and extensive use of parabolic Hölder spaces (see also [51, §11,
§13]). For k ∈ {0, 1, 2, 3, 4}, α ∈ (0, 1) the parabolic Hölder space

C
k+α

4 ,k+α([0, T ] × [0, 1])

is the space of all functions u : [0, T ] × [0, 1] → R that have continuous derivatives
∂i

t∂
j
xu where i, j ∈ N are such that 4i + j ≤ k for which the norm

‖u‖
C

k+α
4 ,k+α :=

k∑
4i+j=0

∥∥∂i
t∂

j
xu
∥∥

∞ +
∑

4i+j=k

[
∂i

t∂
j
xu
]
0,α

+
∑

0<k+α−4i−j<4

[
∂i

t∂
j
xu
]

k+α−4i−j
4 ,0

is finite. We recall that for a function u : [0, T ] × [0, 1] → R, for ρ ∈ (0, 1) the
semi-norms [u]ρ,0 and [u]0,ρ are defined as

[u]ρ,0 := sup
(t,x),(τ,x)

|u(t, x) − u(τ, x)|
|t − τ |ρ ,
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and

[u]0,ρ := sup
(t,x),(t,y)

|u(t, x) − u(t, y)|
|x − y|ρ .

Moreover the space C
α
4 ,α ([0, T ] × [0, 1]) is equal to the space

C
α
4
(
[0, T ];C0([0, 1])

) ∩ C0 ([0, T ];Cα([0, 1])) ,

with equivalent norms.
We also define the spaces C

k+α
4 ,k+α([0, T ]×{0, 1},Rm) to be C

k+α
4 ([0, T ],R2m)

via the isomorphism f �→ (f(t, 0), f(t, 1))t.

Definition 2.3. (Elastic flow) Let N ∈ N and let N0 be an initial network composed
of N curves parametrized by γ0 = (γ1

0 , . . . , γ
N
0 ) ∈ IN , (possibly) with endpoints

of order one and (possibly) with curves that meet at junctions of different order
m ∈ N≥2. Then a time dependent family of networks N (t)t∈[0,T ] is a solution to the
elastic flow in the time interval [0, T ] with T > 0 if there exists a parametrization

γ(t, x) =
(
γ1(t, x), . . . , γN (t, x)

) ∈ C
4+α
4 ,4+α

(
[0, T ] × [0, 1]; (R2)N

)
,

with γi regular, and such that for every t ∈ [0, T ], x ∈ [0, 1] and i ∈ {1, . . . , N} the
system {

(∂tγ
i)⊥ =

(−2∂2
ski − (ki)3 + ki

)
νi

γi(0, x) = γi
0(x)

(2.10)

is satisfied. Moreover the system is coupled with suitable boundary conditions as
follows, corresponding to the possible cases of boundary conditions discussed in the
formulation of the first variation.

• If N = 1 and the curve γ0 is closed we require γ(t, x) to be closed and we
impose periodic boundary conditions.

• If N = 1 and the curve γ0 is not closed with γ0(0) = P ∈ R
2, γ0(1) = Q ∈ R

2

and we want to impose natural boundary conditions we require⎧⎪⎨
⎪⎩

γ(t, 0) = P

γ(t, 1) = Q

κ(t, 0) = κ(t, 1) = 0.

(2.11)

• If N = 1 and the curve γ0 is not closed with γ0(0) = P ∈ R
2, γ0(1) = Q ∈ R

2

and we want to impose clamped boundary conditions, we require⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ(t, 0) = P

γ(t, 1) = Q

τ(t, 0) = τ0

τ(t, 1) = τ1.

(2.12)

• If N is arbitrary and N0 has one multipoint

γi1
0 (y1) = · · · = γim

0 (ym),
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with (i1, y1), . . . , (im, ym) ∈ {1, . . . , N}×{0, 1} and we want to impose natural
boundary conditions, for every j ∈ {1, . . . ,m} we require{

κij (t, y) = 0∑m
j=1

(−2∂⊥
s κij + μijτ ij

)
(t, yj) = 0.

(2.13)

• If N is arbitrary and N0 has one multipoint

γi1
0 (y1) = · · · = γim

0 (ym),

with (i1, y1), . . . , (im, ym) ∈ {1, . . . , N} × {0, 1} where we want to impose
clamped boundary conditions, we require⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈
τ i1(y1), τ i2(y2)

〉
= c1,2

. . .〈
τ im−1(ym−1), τ im(ym)

〉
= cm−1,m∑m

j=1 kij = 0∑m
j=1

(−2∂⊥
s κij − |κij (yi)|2τ ij (yi) + μijτ ij (yi)

)
= 0.

(2.14)

Clearly in the case of network with several junctions and endpoints of order
one fixed in the plane, one has to impose different boundary conditions (chosen
among (2.11), (2.12), (2.13) and (2.14)) at each junctions and endpoint.

We give a name to the boundary conditions appearing in the definition of the
flow. When there is a multipoint

γi1
0 (y1) = · · · = γim

0 (ym),

with (i1, y1), . . . , (im, ym) ∈ {1, . . . , N} × {0, 1} we shortly refer to:
• γi1

0 (t, y1) = · · · = γim
0 (t, ym) as concurrency condition;

• 〈τ i1(y1), τ i2(y2)
〉

= c1,2, . . . ,
〈
τ im−1(ym−1), τ im(ym)

〉
= cm−1,m as angle condi-

tions;
• either kij (t, y) = 0 for every j ∈ {1, . . . ,m} or

∑m
j=1 kij = 0 as curvature

conditions;
• ∑m

j=1

(−2∂⊥
s κij − |κij (yi)|2τ ij (yi) + μijτ ij (yi)

)
= 0 as third order condition.

When we have an endpoint of order one we refer to the condition involving the
tangent vector as angle condition and the curvature as curvature condition.

Remark 2.4. In system (2.10) only the normal component of the velocity is pre-
scribed. This does not mean that the tangential velocity is necessary zero. We can
equivalently write the motion equations as

∂tγ
i = V iνi + T iτ i,

where V i = −2∂2
ski − (ki)3 + ki and T i are some at least continuous functions. In

the case of a single closed curve or a single curve with fixed endpoint we can impose
T ≡ 0 (see Section 2.4).

Definition 2.5. (Admissible initial network) A network N0 of N regular curves par-
ametrized by γ = (γ1, . . . , γN ), γi : [0, 1] → R

2 with i ∈ {1, . . . , N} possibly with �
endpoints of order one {γj(yj)} for some (j, yj) ∈ {1, . . . , N} × {0, 1}, and possibly
with curves that meet at k different junctions {Op} of order m ∈ N≥2 at Op =
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γp1(y1) = · · · = γpm(pm) for some (pi, yi) ∈ {1, . . . , N} × {0, 1}, p ∈ {1, . . . , k}
forming angles αpi,pi+1 between νpi and νpi+1 is an admissible initial network if
(i) the parametrization γ belongs to IN ;
(ii) N0 satisfies all the boundary condition imposed in the system: concurrency,

angle, curvature and third order conditions;
(iii) at each endpoint γj(yj) of order one it holds

2∂2
skj(yj) + (kj)3(yj) − μikj(yj) = 0;

(iv) the initial datum fulfills the non–degeneracy condition: at each junction

span{νp1 , . . . , νpm

0 } = R
2;

(v) at each junction γp1(y1) = . . . = γpm(ym) where at least three curves concur,
consider two consecutive unit normal vectors νpi(yi) and νpk(yk) such that
span{νpi(yi), νpk(yk)} = R

2. Then for every j ∈ {1, . . . ,m}, j �= i, j �= k we
require

sin θiV i(yi) + sin θkV k(yk) + sin θjV j(yj) = 0,

where θi is the angle between νpk(yk) and νpj (yj), θk between νpj (yj) and
νpi(yi) and θj between νpi(yi) and νpk(yk).

Remark 2.6. The conditions (ii)–(iii)–(v) on the initial network are the so-called
compatibility conditions. Together with the non-degeneracy condition, these condi-
tions concern the boundary of the network, and so they are not required in the case
of one single closed curve.

Remark 2.7. We refer to the conditions (iii) and (v) as fourth order compatibility
conditions. We explain here how one derives condition (v) in the case of a junc-
tion γ1(0) = . . . = γm(0). Differentiating in time the concurrency condition we
get ∂tγ

1(0) = · · · = ∂tγ
m(0), or, in terms of the normal and tangential velocities

V 1(0)ν1(0) + T 1(0)τ1(0) = · · · = V m(0)νm(0) + Tm(0)τm(0).
Without loss of generality we suppose that the concurring curves are labeled

in a counterclockwise sense and that span{ν1(0), ν2(0)} = R
2. Then for every j ∈

{3, . . . , m} we have

sin θ1ν1(0) + sin θ2ν2(0) + sin θjνj(0) = 0,

where θ1 is the angle between ν2(0) and νj(0), θ2 between νj(0) and ν1(0) and θj

between ν1(0) and ν2(0). Then

sin θ1V 1(0) =
〈
V 1(0)ν1(0) + T 1(0)τ1(0), sin θ1ν1(0)

〉
=
〈
V 2(0)ν2(0) + T 2(0)τ2(0),− sin θ2ν2(0) − sin θjνj(0)

〉
= − sin θ2V 2(0) +

〈
V 2(0)ν2(0) + T 2(0)τ2(0),− sin θjνj(0)

〉
= − sin θ2V 2(0) +

〈
V j(0)νj(0) + T j(0)τ j(0),− sin θjνj(0)

〉
= − sin θ2V 2(0) − sin θjV j(0).

Hence for every j ∈ {3, . . . ,m} we obtained sin θ1V 1(0)+sin θ2V 2(0)+sin θjV j(0) =
0.
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Remark 2.8. To prove existence of solutions of class C
4+α
4 ,4+α to the elastic flow of

networks it is necessary to require the fourth order compatibility conditions for the
initial datum. This conditions may sound not very natural because it does not appear
among the boundary conditions imposed in the system. It is actually possible not
to ask for it by defining the elastic flow of networks in a Sobolev setting. The price
that we have to pay is that in such a case a solution will be slightly less regular (see
[22,38] for details). On the opposite side, if we want a smooth solution till t = 0 one
has to impose many more conditions. These properties, the compatibility conditions
of any order, are derived repeatedly differentiating in time the boundary conditions
and using the motion equation to substitute time derivatives with space derivatives
(see [14,15]).

2.4. Invariance Under Reparametrization

It is very important to remark the consequences of the invariance under reparametriza-
tion of the energy functional on the resulting gradient flow. These effects actually
occur whenever the starting energy is geometric, i.e., invariant under reparamen-
trization. To be more precise, let us say that the time dependent family of closed
curves parametrized by γ : [0, T ]×S1 → R

2 is a smooth solution to the elastic flow
{

∂tγ(t, x) = Vγ(t, x)νγ(t, x),
γ(0, ·) = γ0(·),

(2.15)

and the driving velocity ∂tγ is normal along γ. If χ : [0, T ] × S1 → S1 with
χ(t, 0) = 0 and χ(t, 1) = 1 is a smooth one-parameter family of diffeomorphism
and σ(t, x):=γ(t, χ(t, x)), then it is immediate to check that σ solves

{
∂tσ(t, x) = Vσ(t, x)νσ(t, x) + W (t, x)τσ(t, x),
σ(0, ·) = γ0(χ(0, ·)),

and W can be computed explicitly in terms of χ and γ. More importantly, one has
that Vσ(t, x)νσ(t, x) = Vγ(t, χ(t, x))νγ(t, χ(t, x)). Since W (t, x)τσ(t, x) is a tangen-
tial term, σ itself is a solution to the elastic flow. Indeed its normal driving velocity
∂⊥

t σ is the one defining the elastic flow on σ. This is the reason why the definition
of the elastic flow is given in terms of the normal velocity of the evolution only.

In complete analogy, if β : [0, T ) × S1 → R
2 is given, it is smooth and solves

{
∂tβ(t, x) = Vβ(t, x)νβ(t, x) + w(t, x)τβ(t, x),
β(0, ·) = γ0(χ0(·)),

where χ0 : S1 → S1 is a diffeomorphism, then letting ψ : [0, T ] × S1 → S1 be the
smooth solution of{

∂tψ(t, x) = −|(∂xβ)(t, ψ(t, x))|−1w(t, ψ(t, x)),
ψ(0, ·) = χ−1

0 (·),

it immediately follows that γ(t, x):=β(t, ψ(t, x)) solves (2.15).
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Something similar holds true also in the general case of networks. First of all it is
easy to check the all possible boundary conditions are invariant under reparametriza-
tions (both at the multiple junctions and at the endpoints of order one). Concern-
ing the velocity, we cannot impose the tangential velocity to be zero as in (2.15),
but it remains true that if a time dependent family of networks parametrized by
γ = (γ1, . . . , γN ) with γi : [0, T ] × [0, 1] → R

2 is a solution to the elastic flow, then
σ = (σ1, . . . , σN ) defined by σi(t, x) = γi(t, χi(t, x)) with χi : [0, T ] × [0, 1] → [0, 1]
a time dependent family of diffeomorphisms such that σ(t, 0) = 0 and σ(t, 1) = 1
(together with suitable conditions on ∂xσ(t, 0), ∂2

xσ(t, 0) and so on) is still a solution
to the elastic flow of networks. Indeed the velocity of γi and σi differs only by a
tangential component.

Remark 2.9. We want to stress that at the junctions the tangential is velocity de-
termined by the normal velocity.

Consider a junction of order m

γ1(t, 0) = · · · = γm(t, 0).

Differentiating in time yields ∂tγ
1(t, 0) = . . . = ∂tγ

m(t, 0) that, in terms of the
normal and tangential motion V and T reads as

V jνj + T jτ j = V j+1νj+1 + T j+1τ j+1,

where j ∈ {1, . . . ,m} with m + 1 := 1 and the argument (t, 0) is omitted from now
on. Testing these identities with the unit tangent vectors τ j leads to the system:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − cosα1,2 0 0 . . . 0
0 1 − cosα2,3 0 . . . 0
0 0 1 − cosα3,4 . . . 0
...

...
...

...
...

...
0 0 0 . . . 1 − cosαm−1,m

− cosαm,1 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

T 1

T 2

T 3

...
T m−1

T m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− sinα1,2V 2

− sinα2,3V 3

− sinα3,4V 4

...
− sinαm−1,mV m

− sinαm,1V 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We call M the m × m-matrix of the coefficients and R1, . . . , Rm its rows.
It is easy to see that

det(M) = 1 − cos αm,1 cos α1,2 . . . cos αm−2,m−1 cos αm−1,m,

that is different from zero till the non-degeneracy condition is satisfied. Then the
system has a unique solution and so each T i(t) can be expressed as a linear combi-
nation of V 1(t), . . . , V m(t).

Remark 2.10. The previous observations clarify the fact that the only meaningful
notion of uniqueness for a geometric flow like the elastic one is thus uniqueness up
to reparametrization.

We can actually take advantage of the invariance by reparametrization of the
problem to reduce system (2.10) to a non-degenerate system of quasilinear PDEs.
Consider the flow of one curve γ. As we said before, the normal velocity is a geometric
quantity, namely ∂tγ

⊥ = V ν = −2∂2
skν − k3ν + μkν. Computing this quantity in

terms of the parametrization γ we get

− V ν = 2∂2
skν + k3ν − μkν
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= 2
∂4

xγ

|∂xγ|4 − 12
∂3

xγ
〈
∂2

xγ, ∂xγ
〉

|∂xγ|6 − 5
∂2

xγ
∣∣∂2

xγ
∣∣2

|∂xγ|6 − 8
∂2

xγ
〈
∂3

xγ, ∂xγ
〉

|∂xγ|6

+ 35
∂2

xγ
〈
∂2

xγ, ∂xγ
〉2

|∂xγ|8

+

〈
−2

∂4
xγ

|∂xγ|4 + 12
∂3

xγ
〈
∂2

xγ, ∂xγ
〉

|∂xγ|6 + 5
∂2

xγ
∣∣∂2

xγ
∣∣2

|∂xγ|6

+8
∂2

xγ
〈
∂3

xγ, ∂xγ
〉

|∂xγ|6 − 35
∂2

xγ
〈
∂2

xγ, ∂xγ
〉2

|∂xγ|8 , τ

〉
τ

− μ
∂2

xγ

|∂xγ|2 +

〈
μ

∂2
xγ

|∂xγ|2 , τ

〉
τ. (2.16)

We define

T :=

〈
−2

∂4
xγ

|∂xγ|4 + 12
∂3

xγ
〈
∂2

xγ, ∂xγ
〉

|∂xγ|6 + 5
∂2

xγ
∣∣∂2

xγ
∣∣2

|∂xγ|6

+8
∂2

xγ
〈
∂3

xγ, ∂xγ
〉

|∂xγ|6 − 35
∂2

xγ
〈
∂2

xγ, ∂xγ
〉2

|∂xγ|8 + μ
∂2

xγ

|∂xγ|2 , τ

〉
. (2.17)

We can insert this choice of the tangential component of the velocity in the
motion equation, which becomes

∂tγ = V ν + Tτ = − 2
|∂xγ|4∂4

xγ + f(∂xγ, ∂2
xγ, ∂3

xγ)

= −2
∂4

xγ

|∂xγ|4 + 12
∂3

xγ
〈
∂2

xγ, ∂xγ
〉

|∂xγ|6 + 5
∂2

xγ
∣∣∂2

xγ
∣∣2

|∂xγ|6 + 8
∂2

xγ
〈
∂3

xγ, ∂xγ
〉

|∂xγ|6

− 35
∂2

xγ
〈
∂2

xγ, ∂xγ
〉2

|∂xγ|8 + μ
∂2

xγ

|∂xγ|2 .

Considering now the boundary conditions: up to reparametrization the clamped
condition τ(t, 0) = τ0 can be reformulated as ∂xγ(t, 0) = τ0 and the curvature
condition k = κ = 0 as ∂2

xγ(t, 0) = 0. We can then extend this discussion to the
flow of general networks, in order to define the so-called special flow.

Definition 2.11. (Admissible initial parametrization) We say that ϕ0 = (ϕ1
0, . . . , ϕ

N
0 )

is an admissible parametrization for the special flow if
• the functions ϕi

0 are of class C4+α([0, 1];R2);
• ϕ0 = (ϕ1

0, . . . , ϕ
N
0 ) satisfies all the boundary conditions imposed in the system;

• at each endpoint of order one it holds V i = 0 and T
i
= 0 for any i;

• at each junction it holds

V iνi + T
i
τ i = V jνj + T

j
τ j

for any i, j;
• at each junction the non-degeneracy condition is satisfied;
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where T
i
is defined as in (2.17) for any i and j.

Definition 2.12. (Special flow) Let N ∈ N and let ϕ0 = (ϕ1
0, . . . , ϕ

N
0 ) be an admissi-

ble initial parametrization in the sense of Definition 2.11 (possibly) with endpoints
of order one and (possibly) with junctions of different orders m ∈ N≥2. Then a time
dependent family of parametrizations ϕt∈[0,T ], ϕ = (ϕ1, . . . , ϕN ) is a solution to
the special flow if and only if for every i ∈ {1, . . . , N} the functions ϕi are of class
C

4+α
4 ,4+α([0, T ] × [0, 1];R2), for every (t, x) ∈ [0, T ] × [0, 1] it holds ∂xϕ(x) �= 0 and

the system {
∂tϕ

i = V iνi + T
i
τ i

ϕi(0, x) = ϕ0(x)
(2.18)

is satisfied, where T
i
is defined as in (2.17) for any i. Moreover the following bound-

ary conditions are imposed:
• if N = 1 and ϕ0 is a closed curve, then we impose periodic boundary conditions;
• if N = 1 and ϕ0(0) = P,ϕ0(1) = Q, we can require either⎧⎪⎨

⎪⎩
ϕ1(t, 0) = P

ϕ1(t, 1) = Q

∂2
xϕ(t, 0) = ∂2

xϕ1(t, 1) = 0,

or ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ1(t, 0) = P

ϕ1(t, 1) = Q

∂xϕ1(t, 0) = τ0

∂xϕ1(t, 1) = τ1.

• if N is arbitrary and N0 has one multipoint

γi1
0 (y1) = · · · = γim

0 (ym),

with (i1, y1), . . . , (im, ym) ∈ {1, . . . , N} × {0, 1} we can impose either{
∂2

xϕij (t, y) = 0 for every j ∈ {1, . . . ,m}∑m
j=1

(−2∂⊥
s κij + μijτ ij

)
(t, yj) = 0,

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
τ i1(y1), τ i2(y2)

〉
= c1,2

. . .〈
τ im−1(ym−1), τ im(ym)

〉
= cm−1,m∑m

j=1 kij = 0〈
∂2

xϕij (t, y), ∂xϕij (t, y)
〉

= 0 for every j ∈ {1, . . . ,m}∑m
j=1

(−2∂⊥
s κij − |κij (yj)|2τ ij (yj) + μijτ ij (yij

)
)

= 0.

Lemma 2.13. Let ϕ0 = (ϕ1
0, . . . , ϕ

N
0 ) be an admissible initial parametrization and

ϕt∈[0,T ], ϕ = (ϕ1, . . . , ϕN ) be a solution to the special flow. Then Nt = ∪N
i=1ϕ

i(t, [0, 1])
is a solution of the elastic flow of networks with initial datum N0 := ∪N

i=1ϕ
i
0([0, 1]).
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Proof. We show that N0 is an admissible initial networks. Conditions (i) and (iv)
are clearly satisfied, together with condition (ii) because at the endpoints of order
one 0 = V i = 2∂2

ski + (ki)3 − μiki. Also condition (iii) it is easy to get: ∂2
xϕ(y) = 0

implies k(y) = 0, ∂xϕ(y) = τ∗ implies τ = τ∗ and all the other conditions are already
satisfied by the special flow. At each junction γ1(y1) = · · · = γm(ym) of order at
least three we consider two consecutive unit normal vectors νi(yi) and νk(yk) such
that span{νi(yi), νk(yk)} = R

2. For every j ∈ {1, . . . ,m}, j �= i, j �= k we call θi the
angle between νk(0) and νj(0), θk between νj(0) and νi(0) and θj between νi(0)
and νk(0) and we recall that it holds

V iνi + T
i
τ i = V jνj + T

j
τ j , (2.19)

V iνi + T
i
τ i = V kνk + T

k
τk. (2.20)

By testing (2.19) by sin θjτk and by cos θjνk and summing, we get

V i = cos θkV j − sin θkT
j
. (2.21)

If instead we test (2.19) by cos θjτk and by sin θjνk and we subtract the second
equality to the first one, it holds

T
i
= cos θkT

j
+ sin θkV j . (2.22)

Similarly, by testing (2.20) by cos θkνj and by sin θkτ j and subtracting the second
identity to the first we have

V i = cos θjV k + sin θjT
k
. (2.23)

Finally we test (2.20) by cos θkτ j and by sin θkνj and sum, obtaining

T
i
= cos θjT

k − sin θjV k. (2.24)

With the help of the identities (2.21), (2.22), (2.23) and (2.24) and interchanging
the roles of i, j, k we can write

sin θiV i = cos θjT
j − cos θkT

k
,

sin θkV k = cos θiT
i − cos θjT

j
,

sin θjV j = cos θkT
k − cos θiT

i
.

and so for every j ∈ {1, . . . ,m}, j �= i, j �= k we have sin θiV i+sin θkV k+sin θjV j =
0, as desired.

The solution N admits a parametrization ϕ with the required regularity. As we
have seen for the initial datum, the boundary conditions in Definition 2.18 implies
the boundary conditions asked in Definition 2.3. By definition of solution of the
special flow the parametrizations ϕ = (ϕ1, . . . , ϕN ) solves ∂tϕ

i = V iνi + T
i
τ i.

Then 〈
∂tϕ

i, νi
〉
νi =

〈
V iνi + T

i
τ i, νi

〉
νi = V iνi = −2∂2

ski − (ki)3 + μiki,

and thus all the properties of solution to the elastic flow are satisfied. �
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Lemma 2.14. Suppose that a closed curve parametrized by

γ ∈ C
(
[0, T ];C5([0, 1];R2)

) ∩ C1
(
[0, T ];C4([0, 1];R2)

)
is a solution to the elastic flow with admissible initial datum γ0 ∈ C5([0, 1]). Then
a reparametrization of γ is a solution to the special flow.

Proof. The proof easily follows arguing similarly as in the discussion at the beginning
of the section and, in particular, by recalling that reparametrizations only affect the
tangential velocity. �

The above result can be generalized to flow of networks as stated below.

Lemma 2.15. Suppose that a network N0 of N regular curves parametrized by γ =
(γ1, . . . γN ) with γi : [0, 1] → R

2, i ∈ {1, . . . , N} is an admissible initial network.
Then there exist N smooth functions θi : [0, 1] → [0, 1] such that the reparametrisz-
tion

(
γi ◦ θi

)
is an admissible initial parametrization for the special flow.

For the proof see [23, Lemma 3.31]. Moreover by inspecting the proof of The-
orem 3.32 in [23] we see that the following holds.

Proposition 2.16. Let T > 0. Let N0 be an admissible initial network of N curves
parametrized by γ0 = (γ1

0 , . . . γ
N
0 ) with γi : [0, 1] → R

2, i ∈ {1, . . . , N}. Suppose that
N (t)t∈[0,T ] is a solution to the elastic flow in the time interval [0, T ] with initial
datum N0 and suppose that it is parametrized by regular curves γ = (γ1, . . . γN )
with γi : [0, T ] × [0, 1] → R

2. Then there exists T̃ ∈ (0, T ] and a time depen-
dent family of reparametrizations ψ : [0, T̃ ] × [0, 1] → [0, 1] such that ϕ(t, x) :=
(ϕ1(t, x), . . . , ϕN (t, x)) with ϕ(t, x) := γi(t, ψ(t, x)) is a solution to the special flow
in [0, T̃ ].

Remark 2.17. In the case of a single open curve, reducing to the special flow is is
particularly advantageous. Indeed one passes from a the degenerate problem (2.10)
couple either with quasilinear or fully nonlinear boundary conditions to a non-
degenerate system of quasilinaer PDEs with linear and affine boundary conditions.

2.5. Energy Monotonicity

Let us name V i := −2∂2
ski−(ki)2ki+μiki the normal velocity of a curve γi evolving

by elastic flow and denote the tangential motion by T i:

∂tγ
i = V iνi + T iτ i. (2.25)

Definition 2.18. We denote by ph
σ(k) a polynomial in k, . . . , ∂h

s k with constant coef-
ficients in R such that every monomial it contains is of the form

C
h∏

l=0

(∂l
sk)βl with

h∑
l=0

(l + 1)βl = σ,

where βl ∈ N for l ∈ {0, . . . , h} and βl0 ≥ 1 for at least one index l0.

We notice that

∂s

(
ph

σ(k)
)

= ph+1
σ+1(k),
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ph1
σ1

(k)ph2
σ2

(k) = p
max{h1,h2}
σ1+σ2

(k), (2.26)

ph1
σ (k) + ph2

σ (k) = pmax{h1,h2}
σ (k). (2.27)

By (2.2) the following result holds.

Lemma 2.19. If γ satisfies (2.25), the commutation rule

∂t∂s = ∂s∂t + (kV − ∂sT ) ∂s

holds. The measure ds evolves as

∂t(ds) = (∂sT − kV ) ds.

Moreover the unit tangent vector, unit normal vector and the j–th derivatives of
scalar curvature of a curve satisfy

∂tτ = (∂sV + Tk) ν,

∂tν = − (∂sV + Tk) τ,

∂tk = 〈∂tκ, ν〉 = ∂2
sV + T∂sk + k2V

= −2∂4
sk − 5k2∂2

sk − 6k (∂sk)2 + T∂sk − k5 + μ
(
∂2

sk + k3
)
, (2.28)

∂t∂
j
sk = −2∂j+4

s k − 5k2∂j+2
s k + μ ∂j+2

s k + T∂j+1
s k + pj+1

j+5 (k) + μ pj
j+3(k) (2.29)

= −2∂j+4
s k + T∂j+1

s k + pj+2
j+5 (k) + μ pj+2

j+3(k). (2.30)

With the help of the previous lemma it is now possible to compute the derivative
in time of a general polynomial ph

σ(k). By definition every monomial composing
ph

σ(k) is of the form m(k) = C
∏h

l=0(∂
l
sk)βl with

∑h
l=0(l + 1)βl = σ. Then for every

fixed j ∈ {1, . . . , h} the monomial n(k) = Cβj(∂j
sk)βj−1

∏h
l �=j,l=0(∂

l
sk)βl can be

written as n(k) = C̃
∏h

l=0(∂
l
sk)αl with

∑h
l=0(l + 1)αl = σ − j − 1. Differentiating in

time m(k) we have

∂t (m(k)) =
h∑

j=0

⎛
⎝(Cβj∂

j
skβj−1∂t∂

j
sk
) ·

h∏
l�=j,l=0

(∂l
sk)

βl

⎞
⎠

=
h∑

j=0

⎛
⎝(−2∂j+4

s k + T∂j+1
s k + pj+2

j+5 (k) + μpj+2
j+3(k)

) (
Cβj∂

j
skβj−1

) ·
h∏

l�=j,l=0

(∂l
sk)

βl

⎞
⎠

= ph+4
σ+4(k) + Tph+1

σ+1(k) + ph+2
σ+4(k) + μph+2

σ+2(k),

where we used the product rule (2.26) and the structure of the monomial n(k).
Summing up the contribution of each monomial composing ph

σ(k) we have

∂t

(
ph

σ(k)
)

= ph+4
σ+4(k) + Tph+1

σ+1(k) + μph+2
σ+2(k). (2.31)

Proposition 2.20. Let Nt be a time dependent family of smooth networks composed
of N curves, possibly with junctions and fixed endpoint in the plane. Suppose that
Nt is a solution of the elastic flow. Then

∂tEμ(Nt) = −
∫

N
V 2 ds.
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Proof. Using the evolution laws collected in Lemma 2.19, we get

∂t

∫
N

k2 + μ ds =
∫

N
2k∂tk +

(
k2 + μ

)
(∂sT − kV ) ds

=
∫

N
2k
(
∂2

sV + Tks + k2V
)

+
(
k2 + μ

)
(∂sT − kV ) ds

=
∫

N
2k∂2

sV + k3V − μkV + ∂s

(
T
(
k2 + μ

))
ds.

Integrating twice by parts the term
∫

2kVss we obtain

∂t

∫
N

Eμ ds = −
∫

N
V 2 ds +

N∑
i=1

2ki∂sV
i − 2∂sk

iV i + T i{(ki
)2

+ μi}
∣∣∣
bdry

.

(2.32)

It remains to show that the contribution of the boundary term in (2.32) equals zero,
whatever boundary condition we decide to impose at the endpoint among the ones
listed in Definition 2.3. The case of the closed curve is trivial.

Let us start with the case of an endpoint γj(y) (with y ∈ {0, 1}, j ∈ {1, . . . , N})
subjected to Navier boundary condition, namely kj(y) = 0. The point remains
fixed, that implies V j(y) = T j(y) = 0. The term 2kj(y)∂sV

j(y) vanishes because
kj(y) = 0.

Suppose instead that the curve is clamped at γj(y) with τ j(y) = τ∗. Then
using Lemma 2.19, 0 = ∂tτ

j(y) = (∂sV
j(y) − T j(y)kj(y))νj(y). Hence

2kj(y)
(
∂sV

j(y) − T j(y)kj(y)
)

= 0,

that combined with V j(y) = T j(y) = 0 implies that the boundary terms vanish
in (2.32).

Consider now a junction of order m where natural boundary conditions have
been imposed. Up to inverting the orientation of the parametrizations of the curves,
we suppose that all the curves concur at the junctions at x = 0. The curvature
condition ki(0) = 0 with i ∈ {1, . . . ,m} gives

m∑
i=1

2ki(0)∂sV
i(0) + T i(0)

(
ki(0)

)2
= 0.

Differentiating in time the concurrency condition γ1(0) = · · · γm(0) we obtain

V 1(0)ν1(0) + T 1(0)τ1(0) = · · · = V m(0)νm(0) + Tm(0)τm(0),

that combined with the third order condition 0 =
∑m

i=1 2∂sk
i(0)νi(0)−μiτ i(0) gives

0 =

〈
−∂tγ

1(0),
m∑

i=1

2∂sk
i(0)νi(0) − μiτ i(0)

〉

=
m∑

i=1

〈−V i(0)νi(0) − T i(0)τ i(0), 2∂sk
i(0)νi(0) − μiτ i(0)

〉

=
m∑

i=1

−2∂sk
i(0)V i(0) + μiT i(0),
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hence the boundary terms vanish and we get the desired result.
To conclude, consider a junction of order m, where the curves concur at x = 0

and suppose that we have imposed there clamped boundary conditions. In this case
using the concurrency condition differentiated in time and the third order condition
we find

0 =
m∑

i=1

〈−∂tγ
1(0), 2∂sk

i(0)νi(0) +
(
(ki(0))2 − μi

)
τ i(0)

〉

=
m∑

i=i

−2∂sk
i(0)V i(0) − ((ki(0))2 − μi

)
T i(0). (2.33)

Differentiating in time the angle condition
〈
τ i(0), τ i+1(0)

〉
= ci,i+1 = cos(θi,i+1)

we have

0 =
〈
∂tτ

i(0), τ i+1(0)
〉
+
〈
τ i(0), ∂tτ

i+1(0)
〉

=
〈
(∂sV

i(0) + T i(0)ki(0))νi(0), τ i+1(0)
〉
+
〈
τ i(0), (∂sV

i+1(0) + T i+1(0)ki+1(0))νi+1(0)
〉

= (∂sV
i(0) + T i(0)ki(0)) sin(θi,i+1) − (∂sV

i+1(0) + T i+1(0)ki+1(0)) sin(θi,i+1),

and hence ∂sV
i(0) + T i(0)ki(0) = ∂sV

i+1(0) + T i+1(0)ki+1(0). Repeating the pre-
vious computation for every i ∈ {2, . . . , m − 1} we get

V 1
s (0) + T 1(0)k1(0) = · · · = V m

s (0) + Tm(0)km(0),

that together with the curvature condition
∑

ki = 0 at the junction gives

0 = 2
(
∂sV

1(0) + T 1(0)k1(0)
) m∑

i=1

ki(0) =
m∑

i=1

2∂sV
i(0)ki(0) + 2T i(0)(ki)2(0).

Summing this last equality with (2.33) we have that the boundary terms vanishes
also in this case. �

3. Short Time Existence

We prove a short time existence result for the elastic flow of closed curves. We
then explain how it can be generalized to other situations and which are the main
difficulties that arises when we pass from one curve to networks.

3.1. Short Time Existence of the Special Flow

First of all we aim to prove the existence of a solution to the special flow. Omitting
the dependence on (t, x) we can write the motion equation of a curve subjected
to (2.18) as

∂tϕ = −2
∂4

xϕ

|∂xϕ|4 + f̃(∂3
xϕ, ∂2

xϕ, ∂xϕ).
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We linearize the highest order terms of the previous equation around the initial
parametrization ϕ0 obtaining

∂tϕ +
2

|∂xϕ0|4∂4
xϕ =

(
2

|∂xϕ0|4 − 2
|∂xϕ|4

)
∂4

xϕ + f̃(∂3
xϕ, ∂2

xϕ, ∂xϕ)

=: f(∂4
xϕ, ∂3

xϕ, ∂2
xϕ, ∂xϕ). (3.1)

Definition 3.1. Given ϕ0 : S1 → R
2 an admissible initial parametrization for (2.18),

the linearized system about ϕ0 associated to the special flow of a closed curve is
given by {

∂tϕ(t, x) + 2 ∂4
xϕ(t,x)

|∂xϕ0(x)|4 = f(t, x) on [0, T ] × S
1

ϕ(0, x) = ψ(x) on S
1.

(3.2)

Here (f, ψ) is a generic couple to be specified later on.

Let α ∈ (0, 1) be fixed. Whenever a curve γ is regular, there exists a con-
stant c > 0 such that infx∈S1 |∂xγ| ≥ c. From now on we fix an admissible initial
parametrization ϕ0 with

‖ϕ0‖C4+α(S1;R2) = R, and inf
x∈S1

|∂xϕ0(x)| ≥ c.

Then for every j ∈ N there holds∥∥∥∥ 1
|∂xϕ0|j

∥∥∥∥
Cα(S1;R2)

≤ C(R, c).

Definition 3.2. For T > 0 we consider the linear spaces

ET := C
4+α
4 ,4+α (

[0, T ] × S
1;R2

)
,

FT := C
α
4 ,α
(
[0, T ] × S

1;R2
)× C4+α

(
S
1;R2

)
,

endowed with the norms

‖γ‖ET
:= ‖γ‖

C
4+α
4 ,4+α , ‖(f, ψ)‖FT

:= ‖f‖
C

α
4 ,α + ‖ψ‖C4+α .

and we define the operator LT : ET → FT by

LT (ϕ) :=
(L1

T (ϕ),L2
T (ϕ)

)
:=
(

∂tϕ +
2

|∂xϕ0|4∂4
xϕ, ϕ|t=0

)
.

Remark 3.3. For every T > 0 the operator LT : ET → FT is well-defined, linear and
continuous.

Theorem 3.4. Let α ∈ (0, 1), (f, ψ) ∈ FT . Then for every T > 0 the system (3.2)
has a unique solution ϕ ∈ ET . Moreover, for all T > 0 there exists C(T ) > 0 such
that if ϕ ∈ ET is a solution, then

‖ϕ‖ET
≤ C(T )‖(f, ψ)‖FT

. (3.3)

Proof. See for instance [33, Theorem 4.3.1] and [51, Theorem 4.9]. �

From the above theorem we get the following consequence.

Corollary 3.5. The linear operator LT : ET → FT is a continuous isomorphism.
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By the above corollary, we can denote by L−1
T the inverse of LT .

Notice that till now we have considered fixed T > 0 and derived (3.3), where
the constant C depends on T . Now, once a certain interval of time (0, T̃ ] with T̃ > 0
is chosen, we show that for every T ∈ (0, T̃ ] it possible to estimate the norm of L−1

T

with a constant independent of T .

Lemma 3.6. For all T̃ > 0 there exists a constant c(T̃ ) such that

sup
T∈(0, 12 T̃ ]

‖L−1
T ‖L(FT ,ET ) ≤ c(T̃ ).

Proof. Fix T̃ > 0, for all T ∈ (0, T̃ ], for every (f, ψ) ∈ FT we define the extension
operator E(f, ψ) := (Ẽf, ψ) by

Ẽ : C
α
4 ,α
(
[0, T ] × S

1;R2
)→ C

α
4 ,α
(
[0, T̃ ] × S

1;R2
)

Ẽf(t, x) :=

{
f(t, x) for t ∈ [0, T ],

f
(
T T̃−t

T̃−T
, x
)

for t ∈ (T, T̃ ],

It is clear that E(f, ψ) ∈ FT̃ and that ‖E‖L(FT ,F
T̃
) ≤ 1.

Moreover L−1

T̃
(E(f, ψ))|[0,T ] = L−1

T (f, ψ) by uniqueness and then

‖L−1
T (f, ψ)‖ET

≤ ‖L−1

T̃
(E(f, ψ))‖E

T̃

≤ ‖L−1

T̃
‖L(F

T̃
,E

T̃
)‖E(f, ψ)‖F

T̃
≤ c(T̃ )‖(f, ψ)‖FT

.

�

Definition 3.7. We define the affine spaces

E
0
T = {γ ∈ ET such that γ|t=0 = ϕ0},

F
0
T = C

α
4 ,α
(
[0, T ] × S

1;R2
)× {ϕ0}.

In the following we denote by BM the closed ball of radius M and center 0 in
ET .

Lemma 3.8. Let T̃ > 0, M > 0, c > 0 and ϕ0 an admissible initial parametrization
with infx∈S1 |∂xϕ0| ≥ c. Then there exists T̂ = T̂ (c,M) ∈ (0, T̃ ] such that for all
T ∈ (0, T̂ ] every curve ϕ ∈ E

0
T ∩ BM is regular with

inf
x∈S1

|∂xϕ(t, x)| ≥ c

2
. (3.4)

Moreover for every j ∈ N∥∥∥∥ 1
|∂xϕ(t, x)|j

∥∥∥∥
C

α
4 ,α([0,T ]×[0,1])

≤ C(c,M, j).

Proof. We have

|∂xϕ(t, x)| ≥ |∂xϕ0(x)| − |∂xϕ(t, x) − ∂xϕ0(x)|,
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with |∂xϕ(t, x) − ∂xϕ0(x)| ≤ [ϕ]β,0 tβ ≤ Mtβ with β = 3
4 + α

4 . Taking T̂ sufficiently
small, passing to the infimum we get the first claim. As a consequence

sup
x∈[0,1]

1
|∂xϕ(t, x)| ≤ 2

c
. (3.5)

Then for j = 1 the second estimate follows directly combining the estimate (3.5)
with the definition of the norm ‖ · ‖

C
α
4 ,α([0,T ]×S1)

. The case j ≥ 2 follows from
multiplicativity of the norm. �

Form now on we fix T̃ = 1 and we denote by T̂ = T̂ (c,M) the time given by
Lemma 3.8 for given c and M .

Definition 3.9. For every T ∈ (0, T̂ ] we define the map

NT :

{
E
0
T → C

α
4 ,α([0, T ] × S

1;R2)
ϕ �→ f(ϕ),

where the functions f(ϕ) := f(∂4
xϕ, ∂3

xϕ, ∂2
xϕ, ∂xϕ) is defined in (3.1). Moreover we

introduce the map NT given by E
0
T � γ �→ (NT (γ), γ|t=0).

Remark 3.10. We remind that f is given by

f(ϕ) =
(

2
|∂xϕ0|4 − 2

|∂xϕ|4
)

∂4
xϕ + 12

∂3
xϕ
〈
∂2

xϕ, ∂xϕ
〉

|∂xϕ|6 + 5
∂2

xϕ
∣∣∂2

xϕ
∣∣2

|∂xϕ|6

+ 8
∂2

xϕ
〈
∂3

xϕ, ∂xϕ
〉

|∂xϕ|6 − 35
∂2

xϕ
〈
∂2

xϕ, ∂xϕ
〉2

|∂xϕ|8 + μ
∂2

xϕ

|∂xϕ|2 .

By Lemma 3.8, for ϕ ∈ E
0
T , we have that for all t ∈ [0, T ] the map ϕ(t) is a

regular curve. Hence NT is well–defined. Furthermore we notice that the map Nt is
a mapping from E

0
T to F

0
T .

The following lemma is a classical result on parabolic Hölder spaces. For a proof
see for instance [33].

Lemma 3.11. Let k ∈ {1, 2, 3}, T ∈ [0, 1] and ϕ, ϕ̃ ∈ E
0
T . We denote by ϕ(4−k), ϕ̃(4−k)

the (4 − k)–th space derivative of ϕ and ϕ̃, respectively. Then there exist ε > 0 and
a constant C̃ independent of T such that∥∥∥ϕ(4−k) − ϕ̃(4−k)

∥∥∥
C

α
4 ,α

≤ C̃T ε
∥∥∥ϕ(4−k) − ϕ̃(4−k)

∥∥∥
C

k+α
4 ,k+α

≤ C̃T ε ‖ϕ − ϕ̃‖
ET

.

Definition 3.12. Let ϕ0 be an admissible initial parametrization, c := infx∈S1 |∂xϕ0|.
For a positive M and a time T ∈ (0, T̂ (c,M)] we define KT : E0

T ∩ BM → E
0
T by

KT := L−1
T ◦ NT .

Proposition 3.13. Let ϕ0 be an admissible initial parametrization, c := infx∈S1 |∂xϕ0|.
Then there exists a positive radius M(ϕ0) > ‖ϕ0‖C4+α and a time T (c,M) such that
for all T ∈ (0, T ] the map KT : E0

T ∩ BM → E
0
T takes values in E

0
T ∩ BM and it is

a contraction.

In the following proof constants may vary from line to line and depend on c,
M and ‖ϕ0‖C4+α .
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Proof. Let M > 0 and T̃ > 0 be arbitrary positive numbers. Let T̂ (c,M) be given
by Lemma 3.8 and assume without loss of generality that T̂ (c,M) < 1

2 T̃ . Let T ∈
(0, T̂ (c,M)] be a generic time.

Clearly L−1
T (F0

T ) ⊆ E
0
T and the KT is well defined on E

0
T ∩ BM .

First we show that there exists a time T ′ ∈ (0, T̂ (c,M)) such that for all
T ∈ (0, T ′], for every ϕ, ϕ̃ ∈ E

0
T ∩ BM , it holds

‖KT (ϕ) − KT (ϕ̃)‖ET
≤ 1

2
‖ϕ − ϕ̃‖ET

. (3.6)

We begin by estimating

‖NT (ϕ) − NT (ϕ̃)‖
C

α
4 ,α = ‖f(ϕ) − f(ϕ̃)‖

C
α
4 ,α .

The highest order term in the above norm is(
2

|∂xϕ0|4 − 2
|∂xϕ|4

)
∂4

xϕ +
(

2
|∂xϕ̃|4 − 2

|∂xϕ0|4
)

∂4
xϕ̃

=
(

2
|∂xϕ0|4 − 2

|∂xϕ|4
)(

∂4
xϕ − ∂4

xϕ̃
)

+
(

2
|∂xϕ̃|4 − 2

|∂xϕ|4
)

∂4
xϕ̃

(3.7)

We can rewrite the above expression using the identity

1
|a|4 − 1

|b|4 = (|b| − |a|)
(

1
|a|2|b| +

1
|a||b|2

)(
1

|a|2 +
1

|b|2
)

. (3.8)

We get(
2

|∂xϕ0|4 − 2
|∂xϕ|4

)

=
(|∂xϕ| − |∂xϕ0|)

(
1

|∂xϕ0|2|∂xϕ| +
1

|∂xϕ0||∂xϕ|2
)(

1
|∂xϕ0|2 +

1
|∂xϕ|2

)
.

In order to control
(

1
|∂xϕ0|2|∂xϕ| + 1

|∂xϕ0||∂xϕ|2
)(

1
|∂xϕ0|2 + 1

|∂xϕ|2
)

we use Lemma 3.8.

Now we identify ϕ0 with its constant in time extension ψ0(t, x) := ϕ0(x), which
belongs to E

0
T for arbitrary T . Observe that ‖ψ0‖ET

= ‖ψ0‖
C

4+α
4 ,4+α = ‖ϕ0‖C4+α is

independent of T . Then making use of Lemma 3.11 we obtain∥∥|∂xϕ| − |∂xψ0|∥∥
Cα, α

4
≤ ∥∥∂xϕ − ∂xψ0

∥∥
Cα, α

4
≤ CT ε‖ϕ − ψ0‖ET

≤ CMT ε.

Then ∥∥∥∥
(

2
|∂xϕ0|4 − 2

|∂xϕ|4
)(

∂4
xϕ − ∂4

xϕ̃
)∥∥∥∥

Cα, α
4

≤ CMT ε‖ϕ − ϕ̃‖ET
.

Similarly we obtain allows us to write∥∥∥∥
(

2
|∂xϕ̃|4 − 2

|∂xϕ|4
)

∂4
xϕ̃

∥∥∥∥
Cα, α

4

≤ CMT ε‖ϕ − ϕ̃‖ET
. (3.9)

The lower order terms of f(ϕ) − f(ϕ̃) are of the form

a 〈b, c〉
|d|j − ã〈b̃, c̃〉

|d̃|j , (3.10)
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with j ∈ {2, 6, 8} and with a, b, c, d, ã, b̃, c̃, d̃ space derivatives up to order three of ϕ
and ϕ̃, respectively. Adding and subtracting the expression

ã 〈b, c〉
|d|j +

ã〈b̃, c〉
|d|j +

ã〈b̃, c̃〉
|d|j

to (3.10), we get

(a−ã) 〈b, c〉
|d|j +

ã
〈
(b−b̃), c

〉

|d|j +
ã
〈
b̃, (c−c̃)

〉

|d|j +
(

1
|d|j − 1

|d̃|j
)

ã
〈
b̃, c̃
〉

. (3.11)

With the help of Lemma 3.11 we can estimate the first term of (3.11) in the following
way: ∥∥∥∥(a − ã) 〈b, c〉

|d|j
∥∥∥∥

C
α
4 ,α

≤ C‖a − ã‖
C

α
4 ,α ≤ CT ε‖ϕ − ϕ̃‖ET

.

The second and the third term of (3.11) can be estimated similarly by Cauchy–
Schwarz inequality. To obtain the desired estimate for the last term of (3.11) we
proceed in a similar way as for the second term of (3.7). We use the identities

1
|d|2 − 1

|d̃|2 =
(
|d̃| − |d|

)( 1
|d|2|d̃| +

1
|d||d̃|2

)
,

1
|d|j − 1

|d̃|j =
(
|d̃| − |d|

)( 1
|d|2|d̃| +

1
|d||d̃|2

)(
1

|d|2 +
1

|d̃|2
)(

1
|d|j−4

+
1

|d̃|j−4

)
,

for j ∈ {6, 8} and Lemmas 3.8 and 3.11 and we finally get∥∥∥∥
(

1
|d|j − 1

|d̃|j
)

ã
〈
b̃, c̃
〉∥∥∥∥

C
α
4 ,α

≤ CT ε‖d − d̃‖
C

α
4 ,α ≤ CT ε‖ϕ − ϕ̃‖ET

.

Putting the above inequalities together we have

‖f(ϕ) − f(ϕ̃)‖
C

α
4 ,α

≤ CT ε‖ϕ − ϕ̃‖ET
.

By Lemma 3.6, this implies that for all T ∈ (0, T̂ (M, c)]

‖KT (ϕ) − KT (ϕ̃)‖ET
= ‖L−1

T (NT (ϕ)) − L−1(NT (ϕ̃))‖ET

≤ sup
T∈[0,T̂ ]

‖L−1
T ‖L(FT ,ET )‖NT (ϕ) − NT (ϕ̃)‖FT

≤ C(M, c, T̃ )T ε‖ϕ − ϕ̃‖ET
, (3.12)

with 0 < ε < 1. Choosing T ′ small enough we can conclude that for every T ∈ (0, T ′]
the inequality (3.6) holds.

In order to conclude the proof it remains to show that we can choose M suffi-
ciently big so that KT maps E

0
T ∩ BM into itself.

As before we identify ϕ0(x) with its constant in time extension ψ0(t, x). Notice
that the expressions KT (ψ0) and NT (ψ0) are then well defined.

As M is an arbitrary positive constant, let us choose M at the beginning,
depending on ϕ0 and T̃ only, so that

‖ψ0‖ET
= ‖ϕ0‖C4+α <

M

2
∀T > 0,
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and
‖KT (ψ0)‖ET

≤ sup
T∈[0,T̃ /2−δ]

‖L−1
T ‖L(FT ,ET )‖NT (ψ0)‖FT

= sup
T∈[0,T̃ /2−δ]

‖L−1
T ‖L(FT ,ET )‖(f(ϕ0), ϕ0))‖FT

≤ c(T̃ )C(ϕ0)

<
M

2
∀ δ > 0,

where we used that ‖(f(ϕ0), ϕ0))‖FT
is time independent and then estimated by a

constant C(ϕ0) depending only on ϕ0 and we also used Lemma 3.6. For T ∈ (0, T ′],
as T ′ ≤ T̂ (c,M) ≤ 1

2 T̃ − δ for some positive δ, we also have

‖KT (ϕ)‖ET
≤ ‖KT (ψ0)‖ET

+ ‖KT (ϕ) − KT (ψ0)‖ET

<
M

2
+ C(M, c, T̃ )T ε2M,

for any ϕ ∈ E
0
T ∩ BM , where we used (3.12). It follows that by taking T ≤ T ′

sufficiently small, we have that KT : E0
T ∩ BM → E

0
T ∩ BM and it is a contraction.

�
Theorem 3.14. Let ϕ0 be an admissible initial parametrization. There exists a posi-
tive radius M and a positive time T such that the special flow (2.18) of closed curves
has a unique solution in C

4+α
4 ,4+α

(
[0, T ] × S

1
) ∩ BM .

Proof. Choosing M and T as in Proposition 3.13, for every T ∈ (0, T ] the map
KT : E0

T ∩ BM → E
0
T ∩ BM is a contraction of the complete metric space E

0
T ∩ BM .

Thanks to Banach–Cacciopoli contraction theorem KT has a unique fixed point
in E

0
T ∩ BM . By definition of KT , an element of E

0
T ∩ BM is a fixed point for

KT if and only if it is a solution to the special flow (2.18) of closed curves in
C

4+α
4 ,4+α

(
[0, T ] × S

1
) ∩ BM . �

Remark 3.15. In order to prove an existence and uniqueness theorem for the special
flow of curves with fixed endpoints subjected to natural or clamped boundary con-
ditions, it is enough to repeat the previous arguments with some small adjustments.

In the case of Navier boundary condition we replace ET , E0
T , FT and F

0
T by

E
1
T :=

{
ϕ ∈ C

4+α
4 ,4+α (

[0, T ] × [0, 1];R2
)

: ∂2
xϕ(0) = ∂2

xϕ(1) = 0, ϕ|t=0 = ϕ0
}

,

E
0,1
T :=

{
ϕ ∈ E

1
T : ϕ(t, 0) = P,ϕ(t, 1) = Q,

}
,

F
1
T := C

α
4 ,α
(
[0, T ] × [0, 1];R2

)× (C
4+α
4
(
[0, T ];R2

)
)2 × C4+α([0, 1];R2),

F
0,1
T := C

α
4 ,α
(
[0, T ] × [0, 1];R2

)× {P} × {Q} × {ϕ0},

where by P,Q ∈ R
2. In this case we introduce the linear operator

LT (ϕ) :=
(

∂tϕ +
2

|∂xϕ0|4∂4
xϕ, ϕ|x=0, ϕ|x=1, ϕ|t=0

)
.

This modification allows us to treat the linear boundary conditions ∂2
xϕ(0) =

∂xϕ(1) = 0 and the affine ones ϕ(t, 0) = P , ϕ(t, 1) = Q.
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In the case of clamped boundary conditions instead we have to take into account
four vectorial affine boundary conditions. We modify the affine space E

0
T into

E
0,2
T :=

{
ϕ ∈ ET : ϕ(t, 0) = P, ϕ(t, 1) = Q, ∂xϕ(t, 0) = τ0, ∂xϕ(t, 1) = τ1, ϕ|t=0 = ϕ0

}
,

and

F
2
T := C

α
4 ,α
(
[0, T ] × [0, 1];R2

)×
(
C

4+α
4
(
[0, T ];R2

))2

×
(
C

3+α
4
(
[0, T ];R2

))2 × C4+α([0, 1];R2),

F
0,2
T := C

α
4 ,α
(
[0, T ] × [0, 1];R2

)× {P} × {Q} × {τ0} × {τ1} × {ϕ0}.

Finally the operator LT in this case is

LT (ϕ) :=
(

∂tϕ +
2

|∂xϕ0|4∂4
xϕ,ϕ|x=0, ϕ|x=1, ∂xϕ|x=0, ∂xϕ|x=1, ϕ|t=0

)
.

Remark 3.16. Differently from the case of endpoints of order one, at the multipoints
of higher order we impose also non linear boundary conditions (quasilinear or even
fully non linear). Treating these terms is then harder: it is necessary to linearize
both the main equation and the boundary operator.

Consider for instance the case of the elastic flow of a network composed of
N curves that meet at two junction, both of order N and subjected to natural
boundary conditions. The concurrency condition and the second order condition
are already linear. Instead the third order condition is of the form

N∑
i=1

1
|∂xϕi|3

〈
∂3

xϕ, νi
〉
νi + hi(∂xϕi) = 0,

where we omit the dependence on (t, y) with y ∈ {0, 1}. The linearized version of
the highest order term in the third order condition is:

−
N∑

i=1

1
|∂xϕ0,i|3

〈
∂3

xϕ, νi
0

〉
νi
0

= −
N∑

i=1

1
|∂xϕ0,i|3

〈
∂3

xϕ, νi
0

〉
νi
0 +

N∑
i=1

1
|∂xϕi|3

〈
∂3

xϕ, νi
〉
νi + hi(∂xϕi) =: b(ϕ),

(3.13)

where we denoted by ν0 the unit normal vector of the initial datum ϕ0. Then,
instead of (3.2), the linearized system associated to the special flow is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tϕ
i(t, x) + 2

|∂xϕ0,i(x)|4 ∂4
xϕi(t, x) = f i(t, x)

ϕi(t, y) − ϕj(t, y) = 0
∂2

xϕi(t, y) = 0
−∑N

i=1
1

|∂xϕ0,i(y)|3
〈
∂3

xϕ(t, y), νi
0

〉
νi
0(y) = b(t, y)

ϕi(0, x) = ψi(x)

, (3.14)

for i, j ∈ {1, . . . , N}, j �= i, t ∈ [0, T ], x ∈ [0, 1], y{0, 1}.
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The spaces introduced in Definitions 3.2 and 3.7 are replaced by

ET =
{
ϕ ∈ C

4+α
4 ,4+α

(
[0, T ] × [0, 1]; (R2)N

)
such that for i, j ∈ {1, . . . , N}, t ∈ [0, T ],

y ∈ {0, 1} it holds ϕi(t, y) = ϕj(t, y), ∂2
xϕi(t, y) = 0

}
,

FT = C
α
4 ,α
(
[0, T ] × [0, 1]; (R2)N

)× (C1+α
(
[0, T ];R2

))2 × C4+α
(
[0, 1]; (R2)N

)
,

E
0
T = {ϕ ∈ ET such thatϕ|t=0 = ϕ0},

F
0
T = C

α
4 ,α
(
[0, T ] × [0, 1]; (R2)N

)× (C1+α
(
[0, T ];R2

))2 × {ϕ0}.

The operator LT : ET → FT becomes

LT (ϕ) :=

(
∂tϕ +

2
|∂xϕ0|4∂4

xϕ,−
N∑

i=1

1
|∂xϕ0,i(y)|3

〈
∂3

xϕ(t, y), νi
0

〉
νi
0(y), ϕ|t=0

)
,

and the operator that encodes the non–linearities of the problem is NT : E0
T → F

0
T

that maps ϕ into the triple (N1
T (γ), N2

T (γ), γ|t=0) with

N1
T :

{
E
0
T → C

α
4 ,α([0, T ] × [0, 1];R2)

ϕ �→ f(ϕ),

N2
T :

{
E
0
T → C1+α([0, T ] × [0, 1];R2)

ϕ �→ b(ϕ),

where the functions f(ϕ) := f(∂4
xϕ, ∂3

xϕ, ∂2
xϕ, ∂xϕ) and b(ϕ) := b(∂3

xϕ, ∂2
xϕ, ∂xϕ) are

defined in (3.1) and in (3.13). The map K will be defined accordingly. We do not
here describe the details concerning the solvability of the linear system, as well as
the proof of the contraction property of K and we refer to [23, Section 3.4.1].

3.2. Parabolic Smoothing

When dealing with parabolic problems, it is natural to investigate the regularization
of the solutions of the flow. More precisely, we claim that the following holds.

Proposition 3.17. Let T > 0 and ϕ0 = (ϕ1
0, . . . , ϕ

N
0 ) be an admissible initial para-

metrization (possibly) with endpoints of order one and (possibly) with junctions of
different orders m ∈ N≥2. Suppose that ϕt∈[0,T ], ϕ = (ϕ1, . . . , ϕN ) is a solution in
ET to the special flow in the time interval [0, T ] with initial datum ϕ0. Then the
solution ϕ is smooth for positive times in the sense that

ϕ ∈ C∞ ([ε, T ] × [0, 1]; (R2)N
)

for every ε ∈ (0, T ).

We give now a sketch of proof of this fact in the case of closed curves. Basically,
it is possible to prove the result in two different ways: with the so-called Angenent’s
parameter trick [4,5,11] or making use of the classical theory of linear parabolic
equations [51].

Sketch of the proof.. For the sake of notation let

A(γ) = −2
∂4

xγ

|∂xγ|4 + 12
∂3

xγ
〈
∂2

xγ, ∂xγ
〉

|∂xγ|6 + 5
∂2

xγ
∣∣∂2

xγ
∣∣2

|∂xγ|6 + 8
∂2

xγ
〈
∂3

xγ, ∂xγ
〉

|∂xγ|6
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− 35
∂2

xγ
〈
∂2

xγ, ∂xγ
〉2

|∂xγ|8 + μ
∂2

xγ

|∂xγ|2 .

Then the motion equation reads ∂tγ = A(γ). We consider the map

G :

{
(0,∞) × ET → C4+α(S1;R2) × C

α
4 ,α([0, T ] × S

1;R2)
(λ, γ) → (

γ|t=0 − γ0, ∂tγ − λA(γ)
)

We notice that if we take λ = 1 and γ = ϕ the solution of the special flow we
get G(1, ϕ) = 0. The Fréchet derivative δG(1, ϕ)(0, ·) : ET → C4+α(S1;R2) ×
C

α
4 ,α([0, T ] × S

1;R2) is given by

δG(1, ϕ)(0, γ) =
(

γ|t=0, ∂tγ +
2

|∂x∂ϕ|4∂4
xγ + Fϕ(γ)

)

where Fϕ is linear in γ, where ∂3
xγ, ∂2

xγ and ∂xγ appears and the coefficients are
depending of ∂xϕ, ∂2

xϕ, ∂3
xϕ and ∂4

xϕ. The computation to write in details the Fréchet
derivative is rather long and we do not write it here. Since the time derivative
appears only as ∂tγ and it is not present in A(γ), formally one can follow the
computations of Section 2.2.

It is possible to prove that δG(1, ϕ)(0, ·) is an isomorphism. This is equivalent
to show that given any ψ ∈ C4+α

S
1;R2) and f ∈ C

α
4 ,α([0, T ] × S

1;R2) the system{
∂tγ(t, x) + 2

|∂xϕ(t,x)|4 ∂4
xγ(t, x) + F (γ) = f(t, x)

γ(0, x) = ψ(x)

has a unique solution.
Then the implicit function theorem implies the existence of a neighbourhood

(1+ε, 1−ε) ⊆ (0,∞), a neighbourhood U of ϕ in ET and a function Φ : (1+ε, 1−ε) →
U with Φ(1) = 0 and

{(λ, γ) ∈ (1 + ε, 1 − ε) × U : G(λ, γ) = 0} = {(λ, Φ(λ)) : λ ∈ (1 + ε, 1 − ε)}.

Given λ close to 1 consider

ϕλ(t, x) := ϕ(λt, x),

where ϕ, as before, is a solution to the special flow. This satisfies G(λ, ϕλ) = 0.
Moreover by uniqueness ϕλ = Φ(λ). Since Φ is smooth, this shows that ϕλ is a
smooth function of λ with values in ET . This implies

t∂tϕ = ∂λ(ϕλ)|λ=1 ∈ ET

from which we gain regularity in time of the solution ϕ.
Then using the fact that ϕ is a solution to the special flow and the structure

of the motion equation of the special flow it is possible to increase regularity also
in space.

We can then start a bootstrap to obtain that the solution is smooth for every
positive time.

Alternatively we can show inductively that there exists α ∈ (0, 1) such that for
all k ∈ N and ε ∈ (0, T ),

ϕ ∈ C
2k+2+α

4 ,2k+2+α
(
[ε, T ] × S

1;R2
)
.
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The case k = 1 is true because ϕ ∈ C
4+α
4 ,4+α

(
[0, T ] × S

1;R2
)

by Theorem 3.14.
Now assume that the assertion holds true for some k ∈ N and consider any

ε ∈ (0, T ). Let η ∈ C∞
0

(
( ε
2 ,∞);R

)
be a cut–off function with η ≡ 1 on [ε, T ]. By

assumption,

ϕ ∈ C
2k+2+α

4 ,2k+2+α
(
[ε, T ] × S

1;R2
)
,

and thus it is straightforward to check that the function g defined by

(t, x) �→ g(t, x) := η(t)ϕ(t, x)

lies in C
2k+2+α

4 ,2k+2+α
(
[0, T ] × S

1;R2
)
. Moreover g satisfies a parabolic problem of

the following form: for all t ∈ (0, T ), x ∈ S
1:

{
∂tg(t, x) +

2
|∂xϕ(t,x)|4 ∂4

xg(t, x) + f (∂xϕ, ∂2
xϕ, ∂xg, ∂2

xg, ∂3
xg) (t, x) = η′(t)ϕ(t, x),

g(0, x) = 0.
(3.15)

The lower order terms in the motion equation are given by

f
(
∂xϕ, ∂2

xϕ, ∂xg, ∂2
xg, ∂3

xg
)
(t, x) = −12

〈
∂2

xϕ, ∂xϕ
〉

|∂xϕ|6 ∂3
xg − 8

∂2
xϕ

|∂xϕ|6
〈
∂3

xg, ∂xϕ
〉

−
(

5
|∂2

xϕ|2
|∂xϕ|6 − 35

〈
∂2

xϕ, ∂xϕ
〉2

|∂xϕ|8 + μ
1

|∂xϕ|2
)

∂2
xg.

The problem is linear in the components of g and in the highest order term of exactly
the same structure as the linear system (3.2) with time dependent coefficients in
the motion equation. The coefficients and the right hand side fulfil the regularity
requirements of [51, Theorem 4.9] in the case l = 2(k +1)+2+α. As η(j)(0) = 0 for
all j ∈ N, the initial value 0 satisfies the compatibility conditions of order 2(k+1)+2
with respect to the given right hand side. Thus [51, Theorem 4.9] yields that there
exists a unique solution to (3.15) g with the regularity

g ∈ C
2(k+1)+2+α

4 ,2(k+1)+2+α
(
[0, T ] × S

1;R2
)
.

This completes the induction as g = ϕ on [ε, T ]. �

3.3. Short Time Existence and Uniqueness

We conclude this section by proving the local (in time) existence and uniqueness
result for the elastic flow.

As before, we give the proof of this theorem in the case of closed curves and
then we explain how to adapt it in all the other situations.

We remind that a solution of the elastic flow is unique if it is unique up to
reparametrizations.

Theorem 3.18. (Existence and uniqueness) Let N0 be an admissible initial network.
Then there exists a positive time T such that within the time interval [0, T ] the
elastic flow of networks admits a unique solution N (t).

Proof. We write a proof for the case of the elastic flow of closed curves.
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Existence. Let γ0 be an admissible initial closed curve of class C4+α([0, 1];R2).
Then γ0 is also an admissible initial parametrization for the special flow. By The-
orem 3.14 there exists a solution of the special flow, that is also a solution of the
elastic flow.

Uniqueness. Consider a solution γt of the elastic flow. Then we can reparametrize
the γt into a solution to the special flow using Proposition 2.16. Hence uniqueness
follows from Theorem 3.14. �

We now explain how to prove existence of solution to the elastic flow of net-
works. Differently from the situation of closed curves, an admissible initial network
N0 admits a parametrization γ = (γ1, . . . , γN ) of class C4+α([0, 1];R2) that, in gen-
eral, is not an admissible initial parametrization in the sense of Definition 2.11.
However it is always possible to reparametrize each curve γi by ψi : [0, 1] → [0, 1]
in such a way that ϕ = (ϕ1, . . . , ϕN ) with ϕi := γi ◦ ψi is an admissible initial
parametrization for the special flow. Then by the suitable modification of Theo-
rem 3.14 there exists a solution to the special flow, that is also a solution of the
elastic flow.

Thus all the difficulties lie is proving the existence of the reparametrizations
ψi.

In all cases we look for ψi : [0, 1] → [0, 1] with ψi(0) = 0, ψi(1) = 1 and
∂xψi(x) �= 0 for every x ∈ [0, 1]. We now list all possible further conditions a certain
ψi has to fulfill at y = 0 or y = 1 in the different possible situations. It will then be
clear that such reparametrizations ψi exist.

• If γ(y) is an endpoint of order one with Navier boundary conditions (namely
γ(y) = P , κ(y) = 0), then ψ(y) needs to satisfy the following conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂xψ(y) = 1

∂2
xψ(y) = −

〈
∂xγ(y)

|∂xγ(y)| ,
∂2

xγ(y)

|∂xγ(y)|
〉
=: a(y)

∂3
xψ(y) = 0

∂4
xψ(y) = − 1

|∂xγ(y)|5
〈

∂xγ(y)

|∂xγ(y)| ,
∂4

xγ(y)

|∂xγ(y)| + 6a(y)
∂3

xγ(y)

|∂xγ(y)| + 3a2(y)
∂2

xγ(y)

|∂xγ(y)|
〉
=: − 1

|∂xγ(y)|5 b(y).

Indeed, with such a request, we have ϕ(y) = γ(ψ(y)) = γ(y) = P and

∂2
xϕ(y) = ∂2

xγ(ψ(y))(∂xψ(y))2 + ∂xγ(ψ(y))∂2
xψ(y)

= ∂2
xγ(y) + ∂xγ(y)

(
−
〈

∂xγ(y)
|∂xγ(y)| ,

∂2
xγ(y)

|∂xγ(y)|
〉)

= |∂xγ|2κ(y) = 0.

Moreover T (y) = 0. Indeed

T = −2
〈

∂4
xϕ(y)

|∂xϕ(y)|4 ,
∂xϕ(y)
|∂xϕ(y)|

〉

= −2
〈

∂4
xγ(y) + 6∂3

xγ(y)a(y) + 3∂2
xγ(y)a2(y) + ∂xγ(y)∂4

xψ(y)
|∂xγ(y)|4 ,

∂xγ(y)
|∂xγ(y)|

〉

= −2
1

|∂xγ(y)|4 b(y) + 2
1

|∂xγ(y)|5
〈

b(y)∂xγ(y),
∂xγ(y)
|∂xγ(y)|

〉

= −2
1

|∂xγ(y)|4 b(y) + 2
1

|∂xγ(y)|5 b(y)
〈

∂xγ(y)
|∂xγ(y)

,
∂xγ(y)
|∂xγ(y)|

〉
|∂xγ(y)| = 0.
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• If γ(y) is an endpoint order one where clamped boundary conditions are im-
posed (γ(y) = P , ∂xγ(y)

|∂xγ(y)| = τ∗ with τ∗ a unit vector) we require ψ(y) to fulfill⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂xψ(y) = 1
|∂xγ(y)|

∂2
xψ(y) = 0

∂3
xψ(y) = 0

∂4
xψ(y) = b(y).

with b(y) =
〈

∂4
xγ(y)

|∂xγ(y)|4 − 6 ∂3
xγ(y)

|∂xγ(y)|3
〈

∂2
xγ(y)

|∂xγ(y)|2 , τ∗
〉

− 5
2

∂2
xγ(y)|∂2

xγ(y)|2
|∂xγ(y)|6 − 4 ∂2

xγ(y)
|∂xγ(y)|2〈

∂3
xγ(y)

|∂xγ(y)|3 , τ∗
〉

+35
2

∂2
xγ(y)

|∂xγ(y)|2
〈

∂2
xγ(y)

|∂xγ(y)|2 , τ∗
〉2

− μ
2

∂2
xγ(y)

|∂xγ(y)|2 , ∂xγ(y)
|∂xγ(y)|

〉
. So that

ϕ(y) = γ(ψ(y)) = γ(y) = P , ∂xϕ(y) = ∂xγ(ψ(y))∂xψ(y) = (∂xγ(y))( 1
|∂xγ|) =

τ∗, and T (y) = 0.
• Suppose instead that γp1(y1) = · · · = γpm(ym) is a multipoint of order m

with natural boundary conditions. Then each curve is paramatrized by γpi ∈
C4+α([0, 1];R2) and the network N0 satisfies the conditions (ii), (iv) and (v) of
Definition 2.5.
The non-degeneracy condition is satisfied because of (iv).
By requiring ⎧⎪⎨

⎪⎩
∂xψpi(yi) = 1
∂2

xψpi(yi) = api(yi)
∂3

xψpi(yi) = 0,

where api(yi) := −
〈

∂xγpi(yi)
|∂xγpi(yi)| ,

∂2
xγpi(yi)

|∂xγpi(yi)|
〉

all the conditions imposed by the

system are satisfied. We have to choose ∂4
xψpi(yi) in a manner that implies the

fourth order compatibility condition
V p1

ϕ (y1)νp1
ϕ (y1) + T

p1

ϕ (y1)τp1
ϕ (y1) = · · ·

= V pm
ϕ (ym)νpm

ϕ (ym) + T
pm

ϕ (ym)τpm
ϕ (ym), (3.16)

where the subscript ϕ we mean that all the quantities in (3.16) are computed
with respect on the parametrization ϕpi := γpi ◦ψpi . Notice that the geometric
quantities V , ν and τ are invariant under reparametrization, they coincide for
ϕpi and γpi and so from now on we omit the subscript. Condition iv) allows us
to consider two consecutive unit normal vectors νpi(yi) and νpk(yk) such that
span{νpi(yi), νpk(yk)} = R

2. Then, by condition (v), for every j ∈ {1, . . . ,m},
j �= i, j �= k we have

sin θiV pi(yi) + sin θkV pk(yk) + sin θjV pj (yj) = 0, (3.17)

where θi is the angle between νpk(yk) and νpj (yj), θk between νpj (yj) and
νpi(yi) and θj between νpi(yi), and νpk(yk) and at most one between sin θi

and sin θk is equal to zero. Consider first every curve γpj with j ∈ {1, . . . ,m},
j �= i, j �= k for which both sin θi and sin θk are different from zero, then the
conditions
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sin θiT
pi

ϕ (yi) = cos θkV pk(yk) − cos θjV pj (yj)

sin θkT
pk

ϕ (yk) = cos θjV pj (yj) − cos θiV pi(yi)

sin θjT
pj

ϕ (yj) = cos θiV pi(yi) − cos θkV pk(yk) (3.18)

combined together with (3.17) imply (3.16) (see [38] for details). Instead for
all the curves γpj with j ∈ {1, . . . , m}, j �= i, j �= k for which, for example,
sin θi = 0 it is possible to prove (see again [38]) that

sin θkV pk(yk) + sin θjV pj (yj) = 0

sin θkT
pi

ϕ (yi) = V pj (yj) − cos θkV pi(yi)

sin θjT
pk

ϕ (yk) = V pi(yi) − cos θjV pk(yk)

sin θkT
pj

ϕ (yj) = cos θkV pj (yj) − V pi(yi) (3.19)

yielding (3.16). One can show that for every i ∈ {1, . . . ,m}, imposing such
requirements (i.e., either (3.17), (3.18) or (3.19)) implies that ∂4

xψpi(yi) is
uniquely determined.

• Also the case of a multipoint with clamped boundary conditions can be treated
following the arguments of the just considered cases of natural boundary con-
ditions.
To summarise, for every i ∈ {1, . . . , N} we must prove the existence of ψi :

[0, 1] → [0, 1] with ∂xψi(x) �= 0 for every x ∈ [0, 1] satisfying⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψi(0) = 0
∂xψi(0) = c1

∂2
xψi(0) = c2

∂3
xψi(0) = 0

∂4
xψi(0) = c3

and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψi(1) = 1
∂xψi(1) = c4

∂2
xψi(1) = c5

∂3
xψi(1) = 0

∂4
xψi(1) = c6

(3.20)

with c1, c2, c3 and c4, c5, c6 depending on the type of the endpoint γi(0) and γi(1).
The ψi can be (roughly) constructed by choosing ψi to be, near the points 0 and
1, the respective fourth Taylor polynomial that is determined by the values of the
derivatives appearing in (3.20). Then one connects the two polynomial graphs by a
suitable increasing smooth function.

To get uniqueness when we let evolve an open curve or a network, one has to
use Proposition 2.16. We refer to [15,23,38,52] for a complete proof.

Remark 3.19. The previous theorem gives a solution of class C
4+α
4 ,4+α([0, T ] ×

[0, 1];R2) whenever the initial datum is of class C4+α([0, 1];R2) and satisfies all
the conditions listed in Definition 2.5. We can remove the fourth order condi-
tions (iii)–(iv) setting the problem in Sobolev spaces, with the initial datum in
W 4−4/p,p([0, 1];R2) with p ∈ (5,∞). Even in this lower regularity class it is possible
to prove uniqueness of solutions (see [22]), but we pay in regularity of the solution,
that is merely in W 1,p

(
(0, T );Lp

(
(0, 1);R2

)) ∩ Lp
(
(0, T );W 4,p

(
(0, 1);R2

))
.
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With the strategy we presented in this paper it is possible to get a smooth
solution in [0, T ] if in addition the initial datum admits a smooth parametrization
and satisfies the compatibility conditions of any order (for a complete proof of this
result we refer to [15]). Since the solution of class C

4+α
4 ,4+α is unique, a fortiori the

smooth solution is unique. Although a smooth solution is desiderable, asking for
compatibility conditions of any order is a very strong request.

4. Long Time Existence

Definition 4.1. A time-dependent family of networks Nt parametrized by γt =
(γ1, . . . , γN ) is a maximal solution to the elastic flow with initial datum N0 in
[0, T ) if it is a solution in the sense of Definition 2.3 in (0, T̂ ] for all T̂ < T ,
γ ∈ C∞ ([ε, T ) × [0, 1]; (R2)N

)
for all ε > 0 and if there does not exist a smooth

solution Ñt in (0, T̃ ] with T̃ ≥ T and such that N = Ñ in (0, T ).

If T = ∞ in the above definition, T̃ ≥ T is supposed to mean T̃ = ∞. The
maximal time interval of existence of a solution to the elastic flow will be denoted
by [0, Tmax), for Tmax ∈ (0, +∞].

Notice that the existence of a maximal solution is granted by Theorem 3.14,
Theorem 3.18 and Proposition 3.17.

4.1. Evolution of Geometric Quantities

In this section we use the following version of the Gagliardo–Nirenberg Inequality
which follows from [39, Theorem 1] and a scaling argument.

Let η be a smooth regular curve in R
2 with finite length � and let u be a smooth

function defined on η. Then for every j ≥ 1, p ∈ [2,∞] and n ∈ {0, . . . , j − 1} we
have the estimates

‖∂n
s u‖Lp ≤ C̃n,j,p‖∂j

su‖σ
L2‖u‖1−σ

L2 +
Bn,j,p

�jσ
‖u‖L2

where

σ =
n + 1/2 − 1/p

j

and the constants C̃n,j,p and Bn,j,p are independent of η. In particular, if p = +∞,

‖∂n
s u‖L∞ ≤ C̃n,j‖∂j

su‖σ

L2‖u‖1−σ
L2 +

Bn,j

�jσ
‖u‖L2 with σ =

n + 1/2
j

. (4.1)

We notice that in the case of a time-dependent family of curves with length
equibounded from below by some positive value, the Gagliardo–Nirenberg inequality
holds with uniform constants.

By the monotonicity of the elastic energy along the flow (Section 2.5), the
following result holds.

Corollary 4.2. Let Nt =
⋃N

i=1 γi
t be a maximal solution to the elastic flow with initial

datum N0 in the maximal time interval [0, Tmax) and let Eμ(N0) be the elastic energy
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of the initial datum. Then for all t ∈ (0, Tmax) it holds∫
γi

t

|ki|2 ds ≤
∫

Nt

|k|2 ds ≤ Eμ(N0). (4.2)

Now we consider the evolution in time of the length of the curves of the network.

Lemma 4.3. Let Nt =
⋃N

i=1 γi
t be a maximal solution to the elastic flow in the max-

imal time interval [0, Tmax) with initial datum N0 and let Eμ(N0) be the elastic
energy of the initial datum. Let μ1, . . . , μN > 0 and μ∗ := mini=1,...,N μi. Then for
all t ∈ (0, Tmax) it holds

�(γi
t) ≤ L(Nt) ≤ 1

μ∗ Eμ(N0). (4.3)

Furthermore if Nt is composed of a time dependent family of closed curves γt, then
for all t ∈ (0, Tmax)

�(γt) ≥ 4π2

Eμ(γ0)
. (4.4)

Suppose instead that γt is a time dependent family of curves subjected either to
Navier boundary conditions or to clamped boundary conditions with γ(t, 0) = P and
γ(t, 1) = Q for every t ∈ [0, Tmax). Then for all t ∈ (0, Tmax)

�(γt) ≥ |P − Q| > 0 if P �= Q and �(γt) ≥ π2

Eμ(γ0)
> 0 if P = Q. (4.5)

Proof. Formula (4.3) is a direct consequence of Proposition 2.20. Suppose γt is a
one-parameter family of single closed curves. Then by Gauss–Bonnet theorem we
have

2π ≤
∫

γt

|k| ds ≤
(∫

γt

|k|2 ds

)1/2(∫
γt

1 ds

)1/2

= �(γt)1/2

(∫
γt

|k|2 ds

)1/2

,(4.6)

that combined with (4.2) gives (4.4). Clearly if γt is composed of a curve with fixed
endpoints γ(t, 0) = P and γ(t, 1) = Q with P �= Q, then �(γt) ≥ |P − Q| > 0. Sup-
pose now that P = Q. Then by a generalization of the Gauss–Bonnet Theorem (see
[16, Corollary A.2]) to not necessarily embedded curves with coinciding endpoints
it holds

∫
γt

|k| ds ≥ π and so repeating the chain of inequalities (4.6) one gets (4.5).
�

Remark 4.4. In many situations it seems not possible to generalize the above com-
putations in the case of networks to control the lengths of the curves neither individ-
ually nor globally. At the moment there are no explicit examples of networks whose
curves disappear during the evolution, but we believe in this possible scenario.

Consider for example a sequence of networks composed of three curves that
meet only at their endpoints in two triple junctions. In particular, suppose that the
networks is composed of two arcs of circle of radius 1 and length ε that meet with a
segment (of length 2 sin ε

2 ∼ ε) with angles of amplitude ε
2 . The energy (with μi = 1

for any i) of this network is Eμ(Nε) = 4ε + 2 sin ε
2 and it converges to zero when

ε → 0.
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Figure 1 A numerical example of a shrinking network. The weighs
μi are all equal to 0.2.

Figure 2 A numerical example of a disappearance of one curve. The
weighs μi are all equal to 2.

A similar behavior has been shown by Nürnberg in the following numerical
examples based on the methods developed in [8] (see [38, Section 5.5] for more
details). The initial datum is the standard double bubble (Fig. 1).

First the symmetric double bubble expand and then it starts flattening. The
length of all the curves becomes smaller and smaller and the same happen to the
amplitude of the angles. The simulation suggest that the networks shrink to a point
in finite time.

There is another example in which only the length of one curve goes to zero
and the network composed of three curve becomes a “figure eight” (Fig. 2).

Remark 4.5. If some of the weights μi of the definition of the elastic flow are equal
to zero, then the L2-norm of the curvature remains bounded, but the lengths of the
network can go to infinity. However, during the flow of either a single closed curve or
a curve with Navier boundary conditions, the length of the curve can go to infinity,
but not in finite time. Suppose μ = 0, in this case we call the functional E0. It holds

d

dt
�(γt) =

d

dt

∫
γt

1 ds =
∫

γt

∂sT − kV ds = T (1) − T (0) +
∫

γt

2k∂2
sk + k4 ds

=
∫

γt

−2|∂sk|2 + k4 ds + k(1)∂sk(1) − k(0)∂sk(0)

=
∫

γt

−2|∂sk|2 + k4 ds,

indeed, in the case of a closed curve T (1) = T (0) and k(1)∂sk(1) = k(0)∂sk(0),
while natural boundary conditions implies T (1) = T (0) = k(1) = k(0) = 0. The
Gagliardo–Nirenberg inequality gives

‖k‖4 ≤ C̃‖∂sk‖ 1
4
2 ‖k‖ 3

4
2 +

B

�
1
4
‖k‖2 ≤ c‖k‖ 3

4
2

(
‖∂sk‖ 1

4
2 + ‖k‖ 1

4
2

)

≤ 2
3
4 c‖k‖ 3

4
2 (‖∂sk‖2 + ‖k‖2)

1
4 ,
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where c = max
{

C̃, B/�
1
4

}
. Thanks to (4.4) and (4.5), we know that � is uniformly

bounded from below away from zero and thus that constants are independent of the
length. Also, as ‖k‖2 ≤ C(E0(γ0)), using Young inequality we obtain

‖k‖44 ≤ C‖k‖32 (‖∂sk‖2 + ‖k‖2) ≤ εC‖∂sk‖22 + C(E0(γ0), ε).

By taking ε small enough we then conclude
d

dt
�(γt) ≤

∫
γt

−2|∂sk|2 + k4 ds ≤
∫

γt

−|∂sk|2 ds + C(E0(γ0)),

thus in both cases d
dt�(γt) ≤ C(E0(γ0)) and hence the length grows at most linearly.

Unfortunately in the case of clamped curves we are not able to reproduce the
same computation because we cannot get rid of the boundary terms k(1)∂sk(1) and
k(0)∂sk(0). However we are not aware of examples in which the length of a clamped
curve subjected to the L2-gradient flow of E0 blows up in finite time.

Lemma 4.6. Let γ : [0, 1] → R
2 be a smooth regular curve. Then the following

estimates hold:∫
γ

|pj+1
2j+6 (k) | ds ≤ ε‖∂j+2

s k‖2L2 + C(ε, �(γ))
(
‖k‖2L2 + ‖k‖2(2j+5)

L2

)
,

∫
γ

|pj
2j+4 (k) | ds ≤ ε‖∂j+1

s k‖2L2 + C(ε, �(γ))
(
‖k‖2L2 + C‖k‖2(2j+3)

L2

)
, (4.7)

for any ε > 0.

Proof. Every monomial of pj+1
2j+6 (k) is of the form C

∏j+1
l=0

(
∂l

sk
)αl with αl ∈ N and∑j+1

l=0 αl(l + 1) = 2j + 6. We define J := {l ∈ {0, . . . , j + 1} : αl �= 0} and for every
l ∈ J we set

βl :=
2j + 6

(l + 1)αl
.

We observe that
∑

l∈J
1
βl

= 1 and αlβl > 2 for every l ∈ J . Thus the Hölder
inequality implies

C

∫
γ

∏
l∈J

(∂l
sk)αl ds ≤ C

∏
l∈J

(∫
γ

|∂l
sk|αlβl ds

) 1
βl

= C
∏
l∈J

‖∂l
sk‖αl

Lαlβl
.

Applying the Gagliardo–Nirenberg inequality for every l ∈ J yields for every i ∈
{1, . . . , j + 1}

‖∂l
sk

i‖Lαlβl ≤ Cl,j,αl,βl
‖∂j+2

s ki‖σl

L2‖ki‖1−σl

L2 +
Bl,j,αl,βl

�(γ)(j+2)σl
‖ki‖L2

where for all l ∈ J the coefficient σl is given by

σl =
l + 1/2 − 1/(αlβl)

j + 2
.

We may choose

C = max
{

Cl,j,αl,βl
,

Bl,j,αl,βl

�(γ)(j+2)σl
: l ∈ J

}
.
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Since the polynomial pj+1
2j+6 (k) consists of finitely many monomials of the above

type, we can write

C

∫
γ

∏
l∈J

|∂l
sk|αl ds ≤ C

∏
l∈J

‖∂l
sk‖αl

Lαlβl

≤ C
∏
l∈J

‖k‖(1−σl)αl

L2

(‖∂j+2
s k‖L2 + ‖k‖L2

)σlαl

L2

= C‖k‖
∑

l∈J(1−σl)αl

L2

(‖∂j+2
s k‖L2 + ‖k‖L2

)∑
l∈J σlαl

L2 .

Moreover we have ∑
l∈J

σlαl ≤ 2 − 1
(j + 2)2

< 2.

Applying Young’s inequality with p := 2∑
l∈J σlαl

and q := 2
2−∑l∈J σlαl

we obtain

C

∫
γ

∏
l∈J

|∂l
sk|αl ds ≤ C

ε
‖k‖

2
∑

l∈J (1−σl)αl
2−∑

l∈J
σlαl

L2 + εC
(‖∂j+2

s k‖L2 + ‖k‖L2

)2
L2

where

2
∑

l∈J(1 − σl)αl

2 −∑l∈J σlαl
= 2(2j + 5).

As C depends only on j and the length of the curve, we get choosing ε small enough∫
γ

|pj+1
2j+6| (k) ds ≤ ε

(‖∂j+2
s k‖L2 + ‖k‖L2

)2
L2 +

C

ε
‖k‖2(2j+5)

L2 .

To conclude it is enough to take choose a suitable ε > 0. The second inequality
in (4.7) can be proved in the very same way. �

Lemma 4.7. Let γ : [0, 1] → R
2 be a smooth regular curve. Suppose that γ has a

fixed endpoint of order one γ(y) with y ∈ {0, 1}. Then the following estimates hold:

|pj+1
2j+5(k)(y)| ≤ ε‖∂j+2

s k‖2L2 + C(ε, �(γ))
(
‖k‖2L2 + ‖k‖2(2j+5)

L2

)
,

|pj+1
2j+3(k)(y)| ≤ ε‖∂j+2

s k‖2L2 + C(ε, �(γ))
(
‖k‖2L2 + C‖k‖(2j+3)2

L2

)
, (4.8)

for any ε > 0.

Proof. The term |pj+1
2j+5(k)(y)| can be controlled by a sum of terms like C

∏j+1
l=0 ‖∂l

sk‖αl

L∞

with
∑j+1

l=0 (l +1)αl = 2j +5. Then, for every l ∈ {0, . . . , j +1} we use interpolation
inequalities with p = +∞ to obtain

‖∂l
sk‖L∞ ≤ Cl

(
‖∂j+2

s k‖σl

L2‖k‖1−σl

L2 + ‖k‖L2

)
,

with σl = l+1/2
j+2 . Thus

j+1∏
l=0

‖∂l
sk‖αl

L∞ ≤ C

j+1∏
l=0

(‖∂j+2
s k‖L2 + ‖k‖L2

)σlαl ‖k‖(1−σl)αl

L2

≤ C
(‖∂j+2

s k‖L2 + ‖k‖L2

)∑j+1
l=0 σlαl ‖k‖

∑j
l=0(1−σl)αl

L2
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with
j+1∑
l=0

σlαl =
j+1∑
l=0

αl
l + 1/2
j + 2

=
2j + 5 − 1/2

∑j
l=0 αl

j + 2

≤ 2j + 5 − 1/2
∑j+1

l=0 αl(l + 1)/(j + 2)
j + 2

=
2j + 5 − 1 − 1/2(j + 2)

j + 2
= 2 − 1

2(j + 2)2
< 2.

Then by Young inequality,
(‖∂j+2

s k‖L2 + ‖k‖L2

)∑j+1
l=0 σlαl ‖k‖

∑j+1
l=0 (1−σl)αl

L2 ≤ ε
(‖∂j+2

s k‖L2 + ‖k‖L2

)2
+ C‖k‖a∗

L2

and the last exponent a∗ = 2
∑j

l=0(1−σl)αl

2−∑j
l=0 σlαl

is equal to 2(2j + 5). Choosing a value
ε > 0 small enough, we get the desired estimate.

Similarly pj+1
2j+3(k)(y) can be controlled by a sum of terms like C

∏j+1
l=0 ‖∂l

sk‖αl

L∞

with
∑j+1

l=0 (l + 1)αl = 2j + 3. We can repeat the same proof. Also in this case∑j+1
l=0 σlαl < 2: indeed

j+1∑
l=0

σlαl =
2j + 3 − 1/2

∑j+1
l=0 αl

j + 2

≤ 2j + 3 − 1/2
∑j+1

l=0 αl(l + 1)/(j + 2)
j + 2

=
2j + 3 + 1 − 1 − 2j+3

2j+4

j + 2
= 2 − 1

j + 2
− 2j + 3

2(j + 2)2
< 2.

This time we get that the exponent a∗ ∈ ( 2
j+5 , (2j+3)2

2 ). We have a∗ =
(j+ 5

2 )(
∑j+1

l=0 αl)−2j−3

1+ 1
2

∑j+1
l=0 αl

. Because of the properties of the polynomial pj+1
2j+3(k) we have

that 2 ≤ ∑j+1
l=0 αl < 2j + 3. Then a∗ <

(j+ 5
2 )(2j+3)−(2j+3)

1+ 1
2

∑j+1
l=0 αl

< (2j+3)2

2 . Moreover

a∗ ≥ 2(j+ 5
2 )−2j−3

1+ 1
2 (2j+3)

= 2
j+5 . Now that we have ensured that a∗ is bounded from below

away from zero we can conclude that the desired estimate hold true. �

Lemma 4.8. Let γt be a maximal solution in [0, Tmax) to the elastic flow of a curve
with Navier boundary conditions. The for all t ∈ [0, Tmax) and for all n ∈ N

∂2n
s k(t, 0) = ∂2n

s k(t, 1) = 0.

Proof. We prove the result by induction. Since we required Navier boundary con-
ditions, apart from the fixed endpoints γ(t, 0) = P and γ(t, 1) = Q, we also have
k(0) = k(1) = 0. Differentiating in time the first condition we get for y ∈ {0, 1}

0 = ∂tγ(t, y) = V (t, y)ν(t, y) + T (t, y)τ(t, y)

= (−2∂2
sk(t, y) − k3(t, y) + μk(t, y))ν(t, y) + T (t, y)τ(t, y),
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that implies T (t, y) = 0 and ∂2
sk(t, y) = 0, and this gives the first step of the

induction. Let n ∈ N and suppose that ∂2n
s k(0) = ∂2n

s k(1) = 0 holds for any natural
number m ≤ n. Then making use of (2.30) we have

0 = ∂t∂
2(n−1)
s k(t, y) = −2∂2(n+1)

s k(t, y) − 5k2∂2n
s k(t, y) + μ∂2n

s k(t, y) − T∂2n−1
s k(t, y)

+ p2n−1
2n+3(k)(t, y) + μp2n−2

2n+1(k)(t, y) = −2∂2(n+1)
s k(t, y),

where we use the induction hypothesis, T (t, y) = 0 and the fact that each monomial
of p2n−1

2n+3(k), μp2n−2
2n+1(k) contains at least one term of the form ∂2m

s k. �

Lemma 4.9. Let γt be a maximal solution in [0, Tmax) to the elastic flow of a curve
with clamped boundary conditions. The for all t ∈ [0, Tmax), y ∈ {0, 1} and n ∈ N

∂4n+2
s k(t, y) = p4n

4n+3(k)(t, y) + μp4n
4n+1(k)(t, y), (4.9)

∂4n+3
s k(t, y) = p4n+1

4n+4(k)(t, y) + μp4n+1
4n+2(k)(t, y). (4.10)

Proof. Consider first the fixed endpoints condition γ(t, 0) = P and γ(t, 1) = Q.
Differentiating in time we have, for y ∈ {0, 1}

0 = ∂tγ(t, y) = V (t, y)ν(t, y) + T (t, y)τ(t, y)

= (−2∂2
sk(t, y) − k3(t, y) + μk(t, y))ν(t, y) + T (t, y)τ(t, y).

Since both normal and tangential velocity have to be zero, we get T (t, y) = 0 and
∂2

sk(t, y) = μ
2k(t, y) − 1

2k3(t, y): the case n = 0 of (4.9) holds true. Fix a certain
n ∈ N, suppose that (4.9) is true for any natural number m ≤ n. Then

0 = ∂t

(
∂4n+2

s k(t, y) + p4n
4n+3(k(t, y)) + μp4n

4n+1(k(t, y))
)

= −2∂4n+6
s k(t, y) − T (t, y)∂4n+3

s k(t, y) + p4n+4
4n+7 (k(t, y)) + μp4n+4

4n+5(k(t, y))

+ p4n+4
4n+7(k(t, y)) + T (t, y)p4n+1

4n+4(k(t, y)) + μp4n+4
4n+5(k(t, y)) + μT (t, y)p4n+1

4n+2(k(t, y))

= −2∂4n+6
s k(t, y) + p4n+4

4n+7 (k(t, y)) + μp4n+4
4n+5(k(t, y)).

We prove also (4.10) by induction. We consider the clamped boundary condition
τ(t, 0) = τ0 and τ(t, 1) = τ1. In this case differentiating in time we obtain

0 = ∂tτ(t, y) = (∂sV (t, y) + T (t, y)k(t, y))ν(t, y),

that implies 0 = ∂sV (t, y) = 2∂3
sk(t, y)+3k2(t, y)∂sk(t, y)+μ∂sk(t, y). The induction

step follows as in the previous situation. �

Remark 4.10. It is not possible to generalize (4.9) and (4.10) to ∂n
s k = pn−2

n+1(k) +
μpn−2

n−1(k), where n ∈ N is arbitrary. Indeed we do not have any particular request
on k and ∂sk at the boundary, we cannot produce the step n = 0 of the induction.

Lemma 4.11. Let γt be a maximal solution to the elastic flow either of closed curves
or of an open curve subjected to Navier boundary conditions with initial datum γ0
in the maximal time interval [0, Tmax). Let Eμ(γ0) be the elastic energy of the initial
curve γ0. Then for all t ∈ (0, Tmax) and j ∈ N, j ≥ 1 it holds

d

dt

∫
1
2
|∂j

sk|2 ds ≤ C(j, Eμ(γ0)). (4.11)
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Proof. Using (2.30) we obtain

d

dt

∫
γt

1
2
|∂j

sk|2 ds =
∫

γt

∂j
sk∂t∂

j
sk +

1
2
|∂j

sk|2(∂sT − kV ) ds

=
∫

γt

∂j
sk
{

−2∂j+4
s k − 5k2∂j+2

s k + μ ∂j+2
s k + pj+1

j+5 (k) + μ pj
j+3(k) + T∂j+1

s k
}

ds

+
∫

γt

1
2
|∂j

sk|2(∂sT − kV ) ds. (4.12)

We begin by considering the terms involving the tangential velocity: we have∫
γt

T∂j
sk∂j+1

s k +
1
2
∂sT (∂j

sk)2 ds =
1
2
(
T (t, 1)(∂j

sk(t, 1))2 − T (t, 0)(∂j
sk(t, 0))2

)
= 0,

(4.13)

since for a closed curve T (t, 1)(∂j
sk(t, 1))2 = T (t, 0)(∂j

sk(t, 0))2 and in the case of
Navier boundary conditions T (t, 1) = T (t, 0) = 0.

Integrating twice by parts the term
∫ −2∂j

sk∂j+4
s k ds and once

∫
μ∂j

sk∂j+2
s k −

5k2∂j
sk∂j+2

s k ds we have

d

dt

∫
1
2
|∂j

sk|2 ds =
∫

−2|∂j+2
s k|2 − μ|∂j+1

s k|2 + pj+1
2j+6 (k) + μpj

2j+4 (k) ds. (4.14)

Also in the case of open curves with Navier boundary conditions there is no boundary
contribution thanks to Lemma 4.8. Combing (4.14) together with (4.7) one has

d

dt

∫
1
2
|∂j

sk|2 ds ≤
∫

−|∂j+2
s k|2 − μ

2
|∂j+1

s k|2 ds

+C‖k‖2(2j+5)
2 + C‖k‖2L2 ≤ C(j, Eμ(γ0)), (4.15)

where in the last inequality we used (4.2). �

The case of clamped boundary conditions is more tricky.

Lemma 4.12. Let γt be a maximal solution to the elastic flow subjected to clamped
boundary conditions with initial datum γ0 in the maximal time interval [0, Tmax).
Let Eμ(γ0) be the elastic energy of the initial curve γ0. Then for all t ∈ (0, Tmax)
and n ∈ N, n ≥ 0 it holds

d

dt

∫
1
2
|∂4n

s k|2 ds ≤ C(n, Eμ(γ0)).

Proof. Consider the equality (4.12). As in the case of Navier boundary condi-
tions, also in the case of clamped boundary conditions T (t, 1) = T (t, 0) = 0 and
thus we have (4.13). Then integrating by parts the terms

∫ −2∂j
sk∂j+4

s k ds and∫
μ∂j

sk∂j+2
s k − 5k2∂j

sk∂j+2
s k ds appearing in (4.12) we obtain

d

dt

∫
1
2
|∂j

sk|2 ds =
∫

−2|∂j+2
s k|2 − μ|∂j+1

s k|2 + pj+1
2j+6 (k) + μpj

2j+4 (k) ds

− 2∂j
sk∂j+3

s k + 2∂j+1
s k∂j+2

s k + μ∂j
sk∂j+1

s k − 5k2∂j
sk∂j+1

s k
∣∣∣1
0
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=
∫

−2|∂j+2
s k|2 − μ|∂j+1

s k|2 + pj+1
2j+6 (k) + μpj

2j+4 (k) ds

− 2∂j
sk∂j+3

s k + 2∂j+1
s k∂j+2

s k + pj+1
2j+5(k) + μpj+1

2j+3(k)
∣∣∣1
0
.

Suppose j = 4n with n ∈ N. Then, using (4.9) and (4.10)

∂j
sk∂j+3

s k = ∂4n
s k∂4n+3

s k = ∂4n
s kp4n+1

4n+4(k) + μ∂4n
s kp4n+1

4n+2(k)

= pj+1
2j+5(k) + μpj+1

2j+3(k),

∂j+1
s k∂j+2

s k = ∂4n+1
s k∂4n+2

s k = ∂4n+1
s kp4n

4n+3(k) + μ∂4n+1
s kp4n

4n+1(k)

= pj+1
2j+5(k) + μpj+1

2j+3(k).

So, for j = 4n with n ∈ N, combing (4.14) together with (4.7) and (4.8) one has
d

dt

∫
1
2
|∂j

sk|2 ds ≤
∫

−1
2
|∂j+2

s k|2 − μ

4
|∂j+1

s k|2 ds + C‖k‖2(2j+5)
2

+ C‖k‖(2j+3)2

L2
+ C‖k‖2L2

≤ C(j, Eμ(γ0)).

�

We pass now to networks. In the case of clamped boundary conditions, apart
from the monotonicity of the energy, geometric estimates on the derivative of the
curvature are not know (see also Section 6).

To describe the results contained in [14,22] for networks with junctions sub-
jected to natural boundary conditions we need a preliminary definition.

Definition 4.13. We say that at a junction of order m ∈ N≥2 the uniform non-
degeneracy condition is satisfied if there exists ρ > 0 such that

inf
t∈[0,Tmax)

max
i=1,...,m

{∣∣sin αi(t)
∣∣} ≥ ρ, (4.16)

where with αi we denote the angles between two consecutive tangent vectors of the
curves concurring at the junction.

Then [22, Proposition 6.15] reads as follow:

Lemma 4.14. Let N (t) be a maximal solution to the elastic flow with initial datum
N0 in the maximal time interval [0, Tmax) and let Eμ(N0) be the elastic energy of
the initial network. Suppose that at all the junctions (of any order m ∈ N≥2) we
impose natural boundary conditions, for t ∈ (0, Tmax) the lengths of all the curves
of the network N (t) are uniformly bounded away from zero and that the uniform
non–degeneracy condition is satisfied. Then for all t ∈ (0, Tmax) it holds

d

dt

∫
Nt

∣∣∂2
sk
∣∣2 ds ≤ C(Eμ(N0)). (4.17)

This lemma is proved in the case of network with triple junctions, but with an
accurate inspection of the proof one notices that it can be adapted to junctions of
any order m ∈ N≥2. The structure of the proof of [22, Proposition 6.15] is the same of
Lemma 4.11 and Lemma 4.12. The main difference is the treatment of the boundary
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terms, which is more intricate. The uniform bound from below on the length of each
curve is needed in Lemma 4.6 and Lemma 4.7, that are both used in the proof. The
uniform non-degeneracy conditions allows us to express the tangential velocity at
the boundary in function of the normal velocity (see Remark 2.9). As in Lemma 4.11
and Lemma 4.12, in [22, Proposition 6.15] the tangential velocity is arbitrary.

To generalize [22, Proposition 6.15] from ∂2
sk to ∂2+4j

s k with j ∈ N we must
also require that the tangential velocity in the interior of the curves is a linear
interpolation between the tangential velocity at the junction (given in terms of the
normal velocity) and zero (for further details we refer the reader to [14]).

4.2. Long Time Existence

Theorem 4.15. (Global Existence) Let μ > 0 and let

γ ∈ C
4+α
4 ,4+α([0, Tmax) × [0, 1])) ∩ C∞([ε, Tmax) × [0, 1])

be a maximal solution to the elastic flow of a single curve (either closed, or with
fixed endpoints in R

2) in the maximal time interval [0, Tmax) with admissible initial
datum γ0 ∈ C4+α([0, 1]). Then Tmax = +∞. In other words, the solution exists
globally in time.

Proof. Suppose by contradiction that Tmax is finite. In the whole time interval
[0, Tmax) the length of the curves γt is uniformly bounded from above and from
below away from zero and the L2-norm of the curvature is uniformly bounded.

If the curve is closed or subjected to Navier boundary conditions, then (4.11)
tells us that for every t1, t2 ∈ (ε, Tmax), t1 < t2∫

γt2

|∂j
sk|2 ds −

∫
γt1

|∂j
sk|2 ds ≤ CEμ(γ0) (t2 − t1) ≤ CEμ(γ0) (Tmax − ε) .

The estimate implies ∂j
sk ∈ L∞ ((ε, Tmax);L2

)
. Instead in the case of clamped

boundary condition we get∫
γt2

|∂4
sk|2 ds −

∫
γt1

|∂4
sk|2 ds ≤ CEμ(γ0) (t2 − t1) ≤ CEμ(γ0) (Tmax − ε) ,

because Lemma 4.12 holds true only when j is a multiple of 4. Again this estimate
gives ∂4

sk ∈ L∞ ((ε, Tmax);L2
)
. Using Gagliardo–Nirenberg inequality for all t ∈

[0, Tmax) we get

‖∂sk(t)‖L2 ≤ C1‖∂4
sk(t)‖σ

L2‖k(t)‖1−σ
L2 + C2‖k(t)‖L2 ≤ C(Eμ(γ0)),

‖∂2
sk(t)‖L2 ≤ C1‖∂4

sk(t)‖σ
L2‖k(t)‖1−σ

L2 + C2‖k(t)‖L2 ≤ C(Eμ(γ0)),

‖∂3
sk(t)‖L2 ≤ C1‖∂4

sk(t)‖σ
L2‖k(t)‖1−σ

L2 + C2‖k(t)‖L2 ≤ C(Eμ(γ0)),

with constants independent on t.
Hence in all cases (closed curves, either Navier of clamped boundary condi-

tions), since τ ∈ L∞ ((ε, Tmax);L∞), by interpolation we obtain

k, ∂sk, ∂2
sk ∈ L∞ ((ε, Tmax);L∞) .
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Putting this observation together with the formulas

κ = kν,

∂sκ = ∂skν − k2τ,

∂2
sκ = (∂2

sk − k3)ν − 3k∂skτ,

∂3
sκ = (∂3

sk − 6k2∂sk)ν − (4k∂2
sk + 3∂sk

2)τ,

we get κ, ∂sκ, ∂2
sκ ∈ L∞ ((ε, Tmax);L∞) and ∂3

sκ ∈ L∞ ((ε, Tmax);L2
)
. We also get

(∂tγ)⊥ ∈ L∞ ((ε, Tmax);L∞).
We reparametrize γ(t) into γ̃(t) with the property |∂xγ̃(t, x)| = �(γ̃(t)) for every

x ∈ [0, 1] and for all t ∈ [0, Tmax). This choice in particular implies

0 < c ≤ sup
t∈[0,Tmax),x∈[0,1]

|∂xγ̃(t, x)| ≤ C < ∞.

We make use of the relations

κ(t, x) =
∂2

xγ̃(t, x)
�(γ̃(t))2

, ∂sκ(t, x) =
∂3

xγ̃(t, x)
�(γ̃(t))3

,

∂2
sκ(t, x) =

∂4
xγ̃(t, x)
�(γ̃(t))4

, ∂3
sκ(t, x) =

∂5
xγ̃(t, x)
�(γ̃(t))5

to get ∫ 1

0

|∂2
xγ̃(t, x)|2
�(γ̃(t))3

dx =
∫

γ̃t

|k|2 ds =
∫

γ̃t

|k|2 ds ≤ Eμ(γ0),

and ∫ 1

0

|∂5
xγ̃(t, x)|2
�(γ̃(t))9

dx =
∫

γ̃t

|∂3
sk|2 ds ≤ C(Eμ(γ0)).

These estimates allows us to conclude that ∂2
xγ̃, ∂3

xγ̃, ∂4
xγ̃ ∈ L∞

((ε, Tmax);L∞((0, 1))) and ∂5
xγ̃ ∈ L∞ ((ε, Tmax);L2((0, 1))

)
. Moreover (∂tγ̃)⊥ =

(∂tγ)⊥ ∈ L∞ ((ε, Tmax);L∞((0, 1))) implies γ̃ ∈ L∞ ((ε, Tmax);L∞((0, 1))). Then
there exists γ∞(·) limit as t → Tmax of γ̃(t, ·) together with the limit of its deriva-
tives till 5-th order.

The curve γ∞ is an admissible initial curve, indeed it belongs to C4+α([0, 1])
and in the case fixed endpoint are present, by continuity of k and ∂2

sk it holds

2∂2
sk∞(0) + k3

∞(0) − μk∞(0) = 2∂2
sk∞(1) + k3

∞(1) − μk∞(1) = 0.

Then there exists an elastic flow γ ∈ C
4+α
4 ,4+α([Tmax, Tmax + δ]× [0, 1])) with initial

datum γ∞ in the time interval [Tmax, Tmax + δ] with δ > 0. We reparametrize γ in γ̂
with the property |∂xγ̂(t, x)| = �(γ̂(t)) for every x ∈ [0, 1] and t ∈ [Tmax, Tmax + δ].
Then for every x ∈ [0, 1]

lim
t↗Tmax

γ̃(t, x) = γ∞(x) = lim
t↘Tmax

γ̂(t, x)

and also for j ∈ {1, 2, 3, 4, 5}
lim

t↗Tmax
∂j

xγ̃(t, x) = ∂j
xγ∞(x) = lim

t↘Tmax
∂j

xγ̂(t, x).
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Then

lim
t↗Tmax

∂tγ̃(t, x) = lim
t↘Tmax

∂tγ̂(t, x).

Thus we can define

g : [0, Tmax + δ] → R
2, g(t, [0, 1]) :=

{
γ̃ for t ∈ [0, Tmax)
γ̂ for t ∈ [Tmax, Tmax + δ].

solution of the elastic flow in [0, Tmax + δ]. This contradicts the maximality of γ.
�

Remark 4.16. In the case of the elastic flow either of closed curve or of curves with
Navier boundary conditions with the help of Remark 4.5 it is possible to generalize
the above result to the case μ ≥ 0 (see [21,46]).

Remark 4.17. In Lemma 4.11 and Lemma 4.12 we derive estimates for every deriva-
tive of k. The above proof shows that it is enough to get the estimate of Lemma 4.11
for j = 1, 2, 3 and of Lemma 4.12 for n = 1.

At the moment for general networks we are able to get the following partial
result:

Theorem 4.18. (Long time behavior, [14,22]) Let N0 be a geometrically admissible
initial network. Suppose that (N (t)) is a maximal solution to the elastic flow with
initial datum N0 in the maximal time interval [0, Tmax) with Tmax ∈ (0,∞) ∪ {∞}.
Suppose that at each junction we impose Navier boundary conditions. Then

Tmax = +∞,

or at least one of the following happens:
(i) the inferior limit as t ↗ Tmax of the length of at least one curve of N (t) is

zero;
(ii) at one of the junctions it occurs that lim inft↗Tmax maxi

{∣∣sin αi(t)
∣∣} = 0, where

αi(t) are the angles formed by the unit tangent vectors of the curves concurring
at a junction.

5. Asymptotic Behavior

In this section we collect results on the asymptotic convergence of the elastic flow,
that is, we analyze the possibility that the solutions have a limit as times goes to
+∞ and such limit is an elastica, i.e., a critical point of the energy. The first step
in this direction is the proof of the subconvergence of the flow, that consists in the
fact that the solution converges to an elastica along an increasing sequence of times,
up to reparametrization and translation in the ambient space. We present such a
result for the flow of closed curves and for a single curve with Navier or clamped
boundary conditions.

Proposition 5.1. (Subconvergence) Let μ > 0 and let γt be a solution of the elastic
flow of closed curves in [0, +∞) with initial datum γ0. Then, up to subsequences,
reparametrization, and translations, the curve γt converges to an elastica as t → ∞.
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Proof. We remind that thanks to (4.2) and (4.4) for every t ∈ [0, +∞) the length
�(γt) is uniformly bounded from above and from below away from zero by constants
that depends only on the energy of the initial datum Eμ(γ0) and on μ. We can
rewrite inequality (4.15) as

d

dt

∫
γ(t)

1
2
|∂j

sk|2 ds +
∫

γ(t)

|∂j+2
s k|2 ds ≤ C(Eμ(γ0)).

Using interpolation inequalities (with constants c1, c2 independent of time) for every
j ∈ N we get

d

dt

∫
γ(t)

|∂j
sk|2 ds +

∫
γ(t)

|∂j
sk|2 ds ≤ d

dt

∫
γ(t)

|∂j
sk|2 ds

+ c1

∫
γ(t)

|∂j+2
s k|2 ds + c2

∫
γ(t)

|k|2 ds

≤ C(Eμ(γ0)).

By comparison we obtain∫
γ(t)

|∂j
sk|2 ds ≤

∫
γ0

|∂j
sk|2 ds + C(Eμ(γ0)). (5.1)

Hence by Sobolev embedding we get that ‖∂j
sk‖L∞ is uniformly bounded in time, for

any j ∈ N. By Ascoli–Arzelá Theorem, up to subsequences and reparametrizations,
there exists the limit limi→∞ ∂j

skti
=: ∂j

sk∞ uniformly on [0, 1], for some sequence
of times ti → +∞. Thus, for a suitable choice of a sequence of points pi ∈ R

2

such that γ(ti, 0) − pti
is the origin O of R

2, the sequence of curves γ(ti, ·) − pi

converges (up to reparametrizations) smoothly to a limit curve γ∞ with γ(0) = O
and 0 < c ≤ �(γ∞) ≤ C < ∞.

It remains to show that the limit curve is a stationary point for the energy Eμ.
Let V :=∂tγ

⊥ = −2(∂⊥
s )2κ−|κ|2κ+μκ and v(t) :=

∫
γ(t)

|V |2 ds. By Proposition 2.20
we know that ∂tE(γ(t, ·)) = −v(t), thus∫ ∞

0

v(t) dt = Eμ(γ(0, ·)) − lim
t→∞ Eμ(γ(t, ·)) ≤ Eμ(γ0), (5.2)

and then v ∈ L1(0,∞). By (5.1) we can estimate

|∂tv(t)| ≤ C(μ, γ0).

Therefore v(t) → 0 as t → +∞ and then the limit curve is a critical point. �

Notice that in the previous proof we cannot hope for a (uniform in time) bound
on the supremum norm of γ itself. In fact all the parabolic estimates are obtained
on the curvature vector of the evolving curve. This means that we are not yet able
to exclude that the flow leaves any compact set as t → ∞.

Proposition 5.2. (Subconvergence) Let μ > 0 and let (γt be a solution in [0, +∞)
of the elastic flow of open curves subjected either to Navier or clamped boundary
conditions. Then, up to subsequences and reparametrization, the curve γt converges
to an elastica as t → ∞.
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Proof. Whatever boundary condition we consider the length of γt is bounded from
above by (4.3) and from below away from zero by (4.5). Furthermore, since the
endpoints are fixed, the evolving curve will remain in a ball of center γ(t, 0) = P
and radius 2Eμ(γ0) and so for every t ∈ [0, Tmax) it holds supx∈[0,1] |γ(t, x)| < C
with C independent of time.

Consider the case of Navier boundary conditions: as in the proof of Proposi-
tion 5.1 we obtain that ‖∂j

sk‖L∞ is uniformly bounded in time, for every j ∈ N.
In the clamped case instead we have that ∂j

sk ∈ L2(0,∞);L∞) only when j is a
multiple of 4. However, by interpolation, we get that ‖∂j

sk‖L∞ is uniformly bounded
in time, for every j ∈ N. Therefore, up to subsequences and reparametrization, the
curves γ(ti, ·) converges smoothly to a limit curve γ∞ for some sequence of times
ti → +∞. One can show that γ∞ is a critical point exactly as in Proposition 5.1.

�
By the same methods, it is also possible to prove the following subconvergence

result.

Proposition 5.3. ([14]) Let N0 be a geometrically admissible initial network com-
posed of three curves that meet at a triple junction. Suppose that Nt is a maximal so-
lution to the elastic flow with initial datum N0 in the maximal time interval [0, +∞).
Suppose that along the flow the length of the three curves is uniformly bounded from
below, at the junction Navier boundary condition is imposed and the uniform non–
degeneracy conditions is fulfilled. Then it is possible to find a sequence of time
ti → ∞, such that the networks Nti

converge, after an appropriate reparametriza-
tion, to a critical point for the energy Eμ with Navier boundary conditions.

From now on we restrict ourselves to the case of closed curves and we want to
improve the subconvergence result of Proposition 5.1 into full convergence of the
flow. More precisely, we want to prove that the solution of the elastic flow of closed
curves admits a full limit as time increases and such a limit is a critical point.

Recall that when we say that γ : [0, 1] → R
2 is a smooth closed curve, periodic

conditions at the endpoints are understood. More precisely, it holds that ∂k
xγ(0) =

∂k
xγ(1) for any k ∈ N. Therefore we can write that a closed smooth curve is just

a smooth immersion γ : S1 → R
2 of the unit circle S

1 � [0, 2π]/∼. In this section
we shall adopt this notation as a shortcut for recalling that periodic boundary
conditions are assumed. Moreover, for sake of simplicity, we assume that the constant
weight on the length in the functional Eμ is μ = 1 and we write E .

Now we can state the result about the full convergence of the flow.

Theorem 5.4. (Full convergence [35,47]) Let γ : [0, +∞) × S
1 → R

2 be the smooth
solution of the elastic flow with initial datum γ(0, ·) = γ0(·), that is a smooth closed
curve.

Then there exists a smooth critical point γ∞ of E such that γ(t, ·) → γ∞(·) in
Cm(S1) for any m ∈ N, up to reparametrization. In particular, the support γ(t,S1)
stays in a compact set of R2 for any time.

Let us remark again that sub-convergence of a flow is a consequence of the
parabolic estimates that one can prove. However this fact is not sufficient for prov-
ing the existence of a full limit as t → +∞ of γ(t, ·) in any reasonable notion of
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convergence. We observe that sub-convergence does not even prevent from the pos-
sibility that for different sequences of times tj , τj ↗ +∞ and points pj , qj ∈ R

2,
the curves γ(tj , ·) − pj and γ(τj , ·) − qj converge to different critical points. The
sub-convergence clearly does not imply that the flow remains in a compact set for
all times either. This last fact, that is, uniform boundedness of the flow in R

2, is
not a trivial property for fourth order equation like the elastic flow. Indeed, such
evolution equation lacks of maximum principle and therefore uniform boundedness
of the flow in R

2 cannot be deduced by comparison with other solutions.
However, all these properties will follow at once as the proof of Theorem 5.4

will be completed, that is, as we prove the full convergence of the flow.
The proof of Theorem 5.4 is based on several intermediate results. The strategy

is rather general and the main steps can be sum up as follows. First we need to set
up a suitable functional analytic framework in which the energy functional and its
first and second variations are considered in a neighborhood of an arbitrary critical
point. In this setting we prove some variational properties that are needed in order
to produce a �Lojasiewicz–Simon gradient inequality. Such an inequality estimates
the difference in energy between the critical point and points in a neighborhood of it
in terms of the operator norm of the first variation. As the first variation functional
coincide with the driving velocity of the flow, this furnishes an additional estimate.
Such an estimate will be finally applied to the flow as follows. Since we know that
the flow subconverges, it passes arbitrarily close to critical points of the energy at
large times. The application of the �Lojasiewicz–Simon inequality will then imply
that, once the flow passes sufficiently close to a critical point, it will be no longer
able to “escape” from a neighborhood of such critical point. This will eventually
imply the convergence of the flow.

The use of this kind of inequality for proving convergence of solutions to para-
bolic equations goes back to the semimal work of Simon [50]. The �Lojasiewicz–Simon
inequality we shall employ follows from the abstract results of [9] and the method
is inspired by the strategy used in [10], where the authors study the Willmore flow
of closed surfaces. We mention that another successful application of this strategy
is contained in [18], where the authors study open curves with clamped boundary
conditions. Finally, a recent application of this strategy to the flow of generalized
elastic energies on Riemannian manifolds is contained in [47]. We remark that this
strategy is rather general and it can be applied to many different geometric flows.
We refer to [35] for a more detailed exposition of the method, in which the authors
stress on the crucial general ingredients needed to run the argument.

Now we introduce the above mentioned framework. Observe that for any fixed
smooth curve γ : S1 → R

2 there exists ρ(γ) > 0 such that if ψ : S1 → R
2 is a field

of class H4 with ‖ψ‖H4 ≤ ρ, then γ + ψ is a regular curve of class H4. Whenever γ
is fixed, we will always assume that ρ = ρ(γ) > 0 is sufficiently small so that γ + ψ
is a regular curve for any field ψ with ‖ψ‖H4 ≤ ρ. Hence the following definition is
well posed.



110 C. Mantegazza et al. Vol. 89 (2021)

Definition 5.5. Let γ : S1 → R
2 be a regular smooth closed curve and ρ = ρ(γ) > 0

sufficiently small. We define

Hm,⊥
γ :=

{
ψ ∈ Hm(S1,R2) | 〈ψ(x), τ(x)〉 = 0 a.e. on S

1
}

,

for any m ∈ N and we denote L2,⊥
γ ≡ H0,⊥

γ . Moreover we define

E : Bρ(0) ⊆ H4,⊥
γ → R E(ψ):=E(γ + ψ).

For a fixed smooth curve γ : S1 → R
2, the functional E is defined on an open

subset of an Hilbert spaces. Therefore, we can treat the first and second variations of
E as functionals over such Hilbert spaces. More precisely, we know that in classical
functional analysis if F : Bρ ⊆ V → R is a twice Gateaux differentiable functional
defined on a ball Bρ in a Banach space V , then δF : Bρ → V � and δ2F : Bρ →
L(V, V �), where

δF (v)[w]:=
d

dε
F (v + εw)

∣∣∣
ε=0

,

δ2F (v)[w][z]:=δ2F (v)[w, z]:=
d

dη

d

dε
F (v + εw + ηz)

∣∣∣
ε=0

∣∣∣
η=0

,

where (·)� denotes the dual space of (·) and L(V, V �) is the space of bounded linear
functionals from V to V �. We adopted the notation δ2F (v)[w, z] by the fact that
the second variation can be also seen as a bilinear symmetric form on V , indeed
δ2F (v)[w][z] = δ2F (v)[z][w]. In such a setting we have

δE : Bρ(0) ⊆ H4,⊥
γ → (H4,⊥

γ )� δE(ψ)[ϕ]:=
d

dε
E(ψ + εϕ)

∣∣∣
ε=0

,

and the second variation functional

δ2E : Bρ(0) ⊆ H4,⊥
γ → L(H4,⊥

γ , (H4,⊥
γ )�)

δ2E(ψ)[ϕ, ζ]:=
d

dη

d

dε
E(ψ + εϕ + ηζ)

∣∣∣
ε=0

∣∣∣
η=0

.

We will actually only need to consider δ2E evaluated at ψ = 0, that is, the second
variation of E at the given curve γ.

The study carried out in Section 2.1 shows that the functional E is Fréchet
differentiable with

δE(ψ)[ϕ] =
∫
S1

〈2(∂⊥
s )2κγ+ψ + |κγ+ψ|2κγ+ψ − κγ+ψ, ϕ〉 ds,

where κγ+ψ is the curvature vector of the curve γ +ψ and both arclength derivative
∂s and measure ds are understood with respect to the curve γ + ψ. The explicit
formula for such first variation functionals shows that actually δE(ψ) belongs to the
smaller dual space (L2,⊥

γ )�. Indeed δE(ψ) is represented in L2-duality as

δE(ψ)[ϕ] =
〈|γ′ + ψ′| (2(∂⊥

s )2κγ+ψ + |κγ+ψ|2κγ+ψ − κγ+ψ

)
, ϕ
〉

L2(dx)
, (5.3)

for any ϕ ∈ L2,⊥
γ , where the derivative ∂⊥

s is understood with respect to the curve
γ + ψ.
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Moreover, the results in Section 2.2 similarly imply that the second variation
δ2E(0)[ϕ, ·] evaluated at some ϕ ∈ H4,⊥

γ belongs to the smaller dual space (L2,⊥
γ )�

via the pairing

δ2E(0)[ϕ, ζ] =
〈|γ′| ((∂⊥

s )4ϕ + Ω(ϕ)
)
, ζ
〉

L2(dx)
, (5.4)

for any ζ ∈ L2,⊥
γ , where Ω : H4,⊥

γ → L2,⊥
γ is a compact operator and the derivative

∂⊥
s is understood with respect to the curve γ.

In this setting, we can prove the following properties on the first and second
variations.

Proposition 5.6. Let γ : S1 → R
2 be a regular smooth closed curve and ρ = ρ(γ) > 0

sufficiently small. Then the following holds true.

1. The functions E : Bρ ⊆ H4,⊥
γ → R and δE : Bρ ⊆ H4,⊥

γ → (L2,⊥
γ )� are

analytic.
2. The second variation operator δ2E(0) : H4,⊥

γ → (L2,⊥
γ )�, which is defined by

δ2E(0)[ϕ][ζ]:=δ2E(0)[ϕ, ζ] ∀ϕ ∈ H4,⊥
γ , ∀ ζ ∈ L2,⊥(γ),

is a Fredholm operator of index zero, i.e., dim ker δ2E(0) = codim (Imm δ2E(0))
is finite.

Proof. The fact that both E and δE are analytic maps follows from the fact that
such operators are compositions and sums of analytic functions. For a detailed proof
of this fact we refer to [18, Lemma 3.4].

Now we prove the second statement. Consider the operator L : H4,⊥
γ → L2,⊥

γ

defined by

L(ϕ) = |γ′|(∂⊥
s )4ϕ + |γ′|Ω(ϕ),

where Ω is as in (5.4). We clearly have that δ2E(0) : H4,⊥
γ → (L2,⊥

γ )� is Fredholm of
index zero if and only if L is. Since |γ′|Ω(·) is compact, the thesis is then equivalent
to say that H4,⊥

γ � ϕ �→ |γ′|(∂⊥
s )4ϕ ∈ L2,⊥

γ is Fredholm of index zero (see [24,
Section 19.1, Corollary 19.1.8]). Since |γ′| is uniformly bounded away from zero, the
thesis is equivalent to prove that the operator

(∂⊥
s )4 : H4,⊥

γ → L2,⊥
γ

is Fredholm of index zero. By [24, Corollary 19.1.8], as id : H4,⊥
γ → L2,⊥

γ is compact,
this is equivalent to show that the operator

id + (∂⊥
s )4 : H4,⊥

γ → L2,⊥
γ

is Fredholm of index zero. We can prove, in fact, that id + (∂⊥
s )4 is even invertible.

Injectivity follows as if ϕ+(∂⊥
s )4ϕ = 0, then multiplication by ϕ and integration

by parts give ∫
|(∂⊥

s )2ϕ|2 + |ϕ|2 ds = 0,

and then ϕ = 0.
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Let now X ∈ L2,⊥
γ be any field and consider the continuous functional F :

H2,⊥
γ → R defined by

F (ϕ):=
∫
S1

1
2
|(∂⊥

s )2ϕ|2 +
1
2
|ϕ|2 − 〈ϕ, X〉 ds.

The explicit computation shows that

(∂⊥
s )2ϕ = ∂2

sϕ + (2〈∂sϕ,κ〉 + 〈ϕ, ∂sκ〉) τ − 〈∂sϕ, τ〉κ. (5.5)

Since
∫ |∂sϕ|2 ds = − ∫ 〈ϕ, ∂sϕ〉 ds ≤ ε

∫ |∂sϕ|2 + C(ε)
∫ |ϕ|2, computing |∂sϕ|2 us-

ing (5.5), Young’s inequality yields that∫
S1

|ϕ|2 + |∂sϕ|2 + |∂2
sϕ|2 ds ≤ C(γ)

∫
S1

1
2
|(∂⊥

s )2ϕ|2 +
1
2
|ϕ|2 ds.

Therefore, by direct methods in Calculus of Variations, it follows that there exists
a minimizer φ of F in H2,⊥

γ . In particular φ solves∫
S1

〈(∂⊥
s )2φ, (∂⊥

s )2ϕ〉 + 〈φ, ϕ〉 ds =
∫
S1

〈X,ϕ〉 ds, (5.6)

for any ϕ ∈ H2,⊥
γ . If we show that φ ∈ H4,⊥

γ , then φ + (∂⊥
s )4φ = X and surjectivity

will be proved. However, this follows by very standard arguments, simply noticing
that once writing the integrand of the functional F in terms of ∂2

sϕ, ∂sϕ and ϕ, by
means of Equation (5.5), its dependence on the highest order term ∂2

sϕ is quadratic
and the “coefficients” are given by the geometric quantities of γ, which is smooth.

�

We remark that it is essential to employ normal fields in the proof of the Fred-
holmness properties of δ2E(0) in Proposition 5.6 in order to rule out the tangential
degeneracy related to the geometric nature of the energy functional.

The above analysis of the second variation is exactly what is needed in order
to derive a �Lojasiewicz–Simon gradient inequality. More precisely, we can rely on
the following functional analytic result, which is a corollary of the results in [9]. We
recall the result here without proof.

Proposition 5.7 ([47, Corollary 2.6]). Let E : Bρ0(0) ⊆ V → R be an analytic
map, where V is a Banach space and 0 is a critical point of E. Suppose that we
have a Banach space W = Z� ↪→ V �, where V ↪→ Z, for some Banach space
Z, that Imm δE ⊆ W and the map δE : U → W is analytic. Assume also that
δ2E(0) ∈ L(V,W ) and it is Fredholm of index zero.
Then there exist constants C, ρ > 0 and θ ∈ (0, 1/2] such that

|E(ψ) − E(0)|1−θ ≤ C‖δE(ψ)‖W ,

for any ψ ∈ Bρ(0) ⊆ U .

We can use Proposition 5.7 in order to derive a �Lojasiewic–Simon inequality
on our elastic functional E .

Corollary 5.8 (�Lojasiewicz–Simon gradient inequality). Let γ : S1 → R
2 be a smooth

critical point of E. Then there exists C, σ > 0 and θ ∈ (0, 1
2 ] such that
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|E(γ + ψ) − E(γ)|1−θ ≤ C‖δE(ψ)‖(L2,⊥
γ )� ,

for any ψ ∈ Bσ(0) ⊆ H4,⊥
γ (S1,R2).

Proof. By Proposition 5.6 we can apply Proposition 5.7 on the functional E :
Bρ0(0) ⊆ H4,⊥

γ → R with the spaces V = H4,⊥
γ and W = (L2,⊥

γ )�. This imme-
diately implies the thesis. �

Let γ : S1 → R
2 be an embedded smooth curve. Choosing such ρ small enough,

the open set U = {p ∈ R
2 : dγ(p) := d(p, γ) < ρ} is a tubular neighborhood of γ

with the property of unique orthogonal projection. The “projection” map π : U →
γ(S1) turns out to be C2 in U and given by p �→ p − ∇d2

γ(p)/2, moreover the vector
∇d2γ(p) is orthogonal to γ at the point π(p), see [34, Section 4] for instance. Then,
given ϕ ∈ Bρ(0) ⊆ H4(S1,R2), we can define a map χ : S1 → S

1 by

χ(x) = γ−1
[
π
(
γ(x) + ϕ(x)

)]
,

that is C2 and invertible if γ′(x)+ϕ′(x) is never parallel to the unit vector ∇dγ(γ(x)+
ϕ(x)), which is true if we have (possibly) chosen a smaller ρ (so that |ϕ| and |∂xϕ|
are small and the claim follows as 〈γ′(x),∇dγ(p)〉 → 0 as p → γ(x)).

We consider the vector field along γ defined by

ψ(χ(x)) :=
1
2
∇d2γ(γ(x) + ϕ(x))

which is orthogonal to γ at the point π(γ(x) + ϕ(x)) = γ(χ(x)), for every x ∈ S
1,

by construction. Hence ψ is a normal vector field along the reparametrized curve
x �→ γ(χ(x)). Thus, we have

γ(χ(x)) + ψ(χ(x)) =π
(
γ(x) + ϕ(x)

)
+ ∇d2γ(γ(x) + ϕ(x))/2

= γ(x) + ϕ(x) − ∇d2γ(γ(x) + ϕ(x))/2 + ∇d2γ(γ(x) + ϕ(x))/2

= γ(x) + ϕ(x).

and we conclude that the curve γ + ϕ can be described by the (reparametrized)
regular curve (γ + ψ) ◦ χ, with ψ ◦ χ normal vector field along γ ◦ χ. Moreover, by
construction it follows that ψ ◦ χ ∈ H4,⊥

γ◦χ. Moreover, it is clear that if ϕ → 0 in H4

then also ψ → 0 in H4.
All this can be done also for a regular curve γ : S1 → R

2 which is only immersed
(that is, it can have self-intersections), recalling that locally every immersion is an
embedding and repeating the above argument a piece at a time along γ, getting also
in this case a normal field ψ describing a curve γ + ϕ for ϕ ∈ Bρ(0) ⊆ H4(S1,R2).

Now, if γ = γ(t, x) is the smooth solution of the elastic flow with datum γ0,
by Proposition 5.1 there exist a smooth critical point γ∞, a sequence tj → +∞, a
sequence of points pj ∈ R

2 and γtj
= γ(tj , ·) reparametrization of γ(tj , ·) such that

γtj
− pj −−−−→

j→+∞
γ∞ (5.7)

in Cm(S1,Rn) for any m ∈ N. Moreover, we know there are positive constants
CL = CL(γ0) and C(m, γ0), for any m ∈ N, such that

1
CL

≤ �(γt) ≤ CL
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and

‖(∂⊥
s )mκ(t, ·)‖L2(ds) ≤ C(m, γ0) (5.8)

for every t ≥ 0.
If for suitable times t ∈ J we can write γ = γ∞ + ϕt with ‖ϕt‖H4 < ρ = ργ∞

small enough, then it is an immediate computation to see that, if we describe γ as a
“normal graph” reparametrization along γ∞ by γ∞ + ψt as in the above discussion,
then

‖ψt‖Hm ≤ C(m, γ0, γ∞), (5.9)

for every m ∈ N for any t ∈ J .
We are finally ready for proving the desired smooth convergence of the flow.

Proof of Theorem 5.4. Let us set γt := γ(t, ·) and we let γ∞, tj , pj and γtj
= γ(tj , ·)

be as in (5.7). Since the energy is non-increasing along the flow, we can assume that
E(γt) ↘ E(γ∞), as t → +∞ and E(γt) > E(γ∞) for any t. Thus, it is well defined
the positive function

H(t) = [E(γt) − E(γ∞)]θ ,

where θ ∈ (0, 1/2] is given by Corollary 5.8 applied on the curve γ∞. The function
H is monotone decreasing and converging to zero as t → +∞ (hence it is bounded
above by H(0) = [E(γ0) − E(γ∞)]θ).

Now let m ≥ 6 be a fixed integer. By Proposition 5.1, for any ε > 0 there exists
jε ∈ N such that

‖γtjε
− pjε

− γ∞‖Cm(S1,Rn) ≤ ε and H(tjε
) ≤ ε.

Choosing ε > 0 small enough, in order that

(γtjε
− pjε

− γ∞) ∈ Bργ∞ (0) ⊆ H4(S1,Rn),

for every t in some interval [tjε
, tjε

+ δ) there exists ψt ∈ H4,⊥
γ∞ such that the curve

γ̃t = γ∞ + ψt is the “normal graph” reparametrization of γt − pjε
. Hence

(∂tγ̃)⊥ = −(2(∂⊥
s )2κγ̃t

− |κγ̃t
|2κγ̃t

+ κγ̃t
),

as the flow is invariant by translation and changing the parametrization of the
evolving curves only affects the tangential part of the velocity. Since γ̃tε

is such
reparametrization of γtjε

−pjε
and this latter is close in Cm(S1,Rn) to γ∞, possibly

choosing smaller ε, δ > 0 above, it easily follows that for every t ∈ [tjε
, tjε

+ δ) there
holds

‖ψt‖H4 < σ,

where σ > 0 is as in Corollary 5.8 applied on γ∞ and we possibly choose it smaller
than the constant ρ∞.

We want now to prove that if ε > 0 is sufficiently small, then actually we can
choose δ = +∞ and ‖ψt‖H4 < σ for every time.

For E as in Corollary 5.8, we have
[E(γt) − E(γ∞)]1−θ = [E(γ̃t) − E(γ∞)]1−θ

= [E(ψt) − E(0)]1−θ
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≤ C1(γ∞, σ)‖δE(ψt)‖(L2,⊥
γ∞ )�

= C1(γ∞, σ) sup
‖S‖

L
2,⊥
γ∞ =1

∫
S1

〈|γ̃′
t|
(
2(∂⊥

s )2κ γ̃t
+ |κ γ̃t

|2κ γ̃t
− κ γ̃t

)
, S
〉
dx

≤ C1(γ∞, σ) sup
‖S‖L2(S1,Rn)=1

∫
S1

〈|γ̃′
t|
(
2(∂⊥

s )2κ γ̃t
+ |κ γ̃t

|2κ γ̃t
− κ γ̃t

)
, S
〉
dx

= C1(γ∞, σ)

(∫
S1

|γ̃′
t|2
∣∣2(∂⊥

s )2κ γ̃t
+ |κ γ̃t

|2κ γ̃t
− κ γ̃t

∣∣2 dx

)1/2

(5.10)

where we can assume that C1(γ∞, σ) ≥ 1.
Now, 〈γ̃t, τγ∞〉 = 〈γ∞, τγ∞〉 is time independent, then 〈∂tγ̃, τγ∞〉 = 0 and possibly
taking a smaller σ > 0, we can suppose that |τγ∞ − τγ̃ | ≤ 1

2 for any t ≥ tjε
such

that ‖ψt‖H4 < σ. Hence,

|(∂tγ̃)⊥| = |∂tγ̃ − 〈∂tγ̃, τγ̃〉τγ̃ | = |∂tγ̃ + 〈∂tγ̃, τγ∞ − τγ̃〉τγ̃ |
≥ |∂tγ̃| − |∂tγ̃||τγ∞ − τγ̃ | ≥ 1

2
|∂tγ̃|.

Differentiating H, we then get
d

dt
H(t) =

d

dt
[E(γ̃t) − E(γ∞)]θ

= −θH
θ−1

θ

∫
S1

|γ̃′
t|
∣∣2(∂⊥

s )2κγ̃t
+ |κγ̃t

|2κγ̃t
− κγ̃t

∣∣2 dx

≤ −θH
θ−1

θ C2(γ∞, σ)
(∫

S1

∣∣(∂tγ̃)⊥∣∣2 dx

)1/2(∫
S1

|γ̃′
t|2
∣∣2(∂⊥

s )2κγ̃t
+ |κγ̃t

|2κγ̃t
− κγ̃t

∣∣2 dx

)1/2

≤ −H
θ−1

θ C(γ∞, σ)‖∂tγ̃‖L2(dx)[E(γ̃t) − E(γ̃∞)]1−θ

= −C(γ∞, σ)‖∂tγ̃‖L2(dx),

where C(γ∞, σ) = θC2(γ∞, σ)/2C1(γ∞, σ). This inequality clearly implies the esti-
mate

C(γ∞, σ)
∫ ξ2

ξ1

‖∂tγ̃‖L2(dx) dt ≤ H(ξ1) − H(ξ2) ≤ H(ξ1) (5.11)

for every tjε
≤ ξ1 < ξ2 < tjε

+ δ such that ‖ψt‖H4 < σ. Hence, for such ξ1, ξ2 we
have

‖γ̃ξ2 − γ̃ξ1‖L2(dx) =
(∫

S1
|γ̃ξ2(x) − γ̃ξ1(x)|2 dx

)1/2

≤
(∫

S1

(∫ ξ2

ξ1

∂tγ̃(t, x) dt

)2

dx

)1/2

=

∥∥∥∥∥
∫ ξ2

ξ1

∂tγ̃ dt

∥∥∥∥∥
L2(dx)

≤
∫ ξ2

ξ1

‖∂tγ̃‖L2(dx) dt
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≤ H(ξ1)
C(γ∞, σ)

≤ ε

C(γ∞, σ)
, (5.12)

where we used that H(ξ1) ≤ H(tjε
) ≤ ε and the fact that

∥∥∫ ξ2
ξ1

v dt
∥∥

L2(dx)
≤∫ ξ2

ξ1
‖v‖L2(dx) dt, which easily follows from Holder inequality.
Therefore, for t ≥ tjε

such that ‖ψt‖H4 < σ, we have

‖ψt‖L2(dx) = ‖γ̃t − γ∞‖L2(dx) ≤ ‖γ̃t − γ̃tjε
‖L2(dx) + ‖γ̃tjε

− γ∞‖L2(dx)

≤ ε

C(γ∞, σ)
+ ε

√
2π.

Then, by means of Gagliardo–Nirenberg interpolation inequalities (see [3] or [6], for
instance) and estimates (5.9), for every l ≥ 4, we have

‖ψt‖Hl ≤ C‖ψt‖a
Hl+1‖ψt‖1−a

L2(dx) ≤ C(l, γ0, γ∞, σ)ε1−a,

for some a ∈ (0, 1) and any t ≥ tjε
such that ‖ψt‖H4 < σ.

In particular setting l +1 = m ≥ 6, if ε > 0 was chosen sufficiently small depending
only on γ0, γ∞ and σ, then ‖ψt‖H4 < σ/2 for any time t ≥ tjε

, which means that
we could have chosen δ = +∞ in the previous discussion.

Then, from estimate (5.12) it follows that γ̃t is a Cauchy sequence in L2(dx)
as t → +∞, therefore γ̃t converges in L2(dx) as t → +∞ to some limit curve γ̃∞
(not necessarily coincident with γ∞). Moreover, by means of the above interpolation
inequalities, repeating the argument for higher m we see that such convergence is
actually in Hm for every m ∈ N, hence in Cm(S1,Rn) for every m ∈ N, by Sobolev
embedding theorem. This implies that γ̃∞ is a smooth critical point of E . As the
original flow γt is a fixed translation of γ̃t, up to reparametrization, this completes
the proof. �

Collecting the results we proved about the elastic flow of closed curves, we can
state the following comprehensive theorem.

Theorem 5.9. Let γ0 : S1 → R
2 be a smooth closed curve. Then there exists a unique

solution γ : [0, +∞) × S
1 → R

2 to the elastic flow{
∂tγ = − (2(∂⊥

s )2κ + |κ|2κ − κ
)

on [0, +∞) × S
1,

γ(0, x) = γ0(x) on S
1.

Moreover there exists a smooth critical point γ∞ of E such that γ(t, ·) → γ∞(·) in
Cm(S1) for any m ∈ N, up to reparametrization.

Remark 5.10. We remark that Theorem 5.9 is true exactly as stated for the anal-
ogously defined flow in the Euclidean spaces R

n for any n ≥ 2 (see [35]). Indeed,
it is immediate to see that the proof above generalizes to higher codimension. We
observe that the very same statement holds for the suitably defined elastic flow de-
fined in the hyperbolic plane and in the two-sphere by [47, Corollary 1.2]. It is likely
that smooth convergence of the elastic flow still holds true in hyperbolic spaces
and spheres of any dimension ≥ 2 and, more generally, in homogeneous Riemannian



Vol. 89 (2021) A Survey of the Elastic Flow of Curves and Networks 117

manifolds, that is, complete Riemannian manifolds such that the group of isometries
acts transitively on them. For further results and comments about the convergence
of the elastic flow in Riemannian manifolds we refer to [47].

Let us conclude by stating the analogous full convergence result proved for the
elastic flow of open curves with clamped boundary conditions.

Theorem 5.11. ([18,29]) Let γ0 : [0, 1] → R
n be a smooth curve. Then there exists a

unique solution γ : [0, +∞) × [0, 1] → R
n to the elastic flow satisfying the clamped

boundary conditions

γ(t, 0) = γ0(0), γ(t, 1) = γ0(1), ∂sγ(t, 0) = τγ0(0), ∂sγ(t, 1) = τγ0(1),

with initial datum γ0. Moreover there exists a smooth critical point γ∞ of E subjected
to the above clamped boundary conditions such that γ(t, ·) → γ∞(·) in Cm([0, 1]) for
any m ∈ N, up to reparametrization.

6. Open Questions

We conclude the paper by mentioning some related open problems.
• In Theorem 4.18 a description of the possible behaviors as t → Tmax is given

for evolving networks subjected to Navier boundary conditions. When instead
clamped boundary conditions are imposed, only short time existence is known
[23]. One would like to investigate further this flow of networks as time ap-
proaches the maximal time of existence. Recent results [19] on the minimiza-
tion of Eμ among networks whose curves meet with fixed angles suggest that
an analogous of Theorem 4.18 is expected: either Tmax = ∞ or as t → Tmax

the length of at least one curve of the network could go to zero.
• In Section 4 we described a couple of numerical examples by Robert Nürnberg

in which some curves vanish or the amplitude of the angles at the junctions
goes to zero. It is an open problem to explicitly find an example of an evolving
network developing such phenomena. More generally, one wants to give a more
accurate description of the onset of singularities during the flow.

• In the case of the flow of networks with Navier boundary conditions estimates
of the type

d

dt

∫
Nt

|∂n
s k|2 ds ≤ C(Eμ(N0)),

are shown for n = 2 + 4j with j ∈ N only for a special choice of the tangential
velocity (see [14]). One could ask whether the same holds true for a general
tangential velocity.

• In the last section we show that if γt is a solution of the elastic flow of closed
curves in [0,∞), then its support stays in a compact sets of R2 for any time.
The same is true for open curves and networks with some endpoint fixed in
the plane. What about compact networks? At the moment we are not able to
exclude that if the initial network N0 has no fixed endpoints (as in the case of
a Theta) as t → Tmax the entire configuration Nt “escapes” to infinity.
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• Another related question asked by G. Huisken is the following: suppose that
the support of an initial closed curve γ0 lies in the upper halfplane, is it possible
to prove that there is no time τ such that the support of the solution at time
τ lies completely in the lower halfplane?

• Are there self-similar (for instance translating or rotating) solutions of the
elastic flow?

• Several variants of the elastic flow have been investigated, but an analysis of
the elastic flow of closed curves that encloses a fixed (signed) area is missing.

• At the moment no stability results are shown for the elastic flow of networks.
More generally, one would understand whether an elastic flow of a general
network defined for all times converges smoothly to a critical point, just as
in the case of closed curves. Similarly, proving the stability of the flow would
mean to understand whether an elastic flow of networks starting “close to” a
critical point exists for all times and smoothly converges.

• Is it possible to introduce a definition of weak solution (for instance by varia-
tional schemes such as minimizing movements) that is also capable to provide
global existence in the case of networks? We remark that all notions based on
the maximum principle, such as viscosity solutions, cannot work in this context,
due to the high order of the evolution equation in the spatial variable.
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Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (1995) (2013 reprint of the
1995 original)

[34] Mantegazza, C., Mennucci, A.: Hamilton-Jacobi equations and distance functions on
Riemannian manifolds. Appl. Math. Opt. 47(1), 1–25 (2003)

[35] Mantegazza, C., Pozzetta, M.: The Lojasiewicz–Simon inequality for the elastic flow.
Calc. Var. 60, 56 (2021)

[36] McCoy, J., Wheeler, G., Wu, Y.: Evolution of closed curves by length-constrained curve
diffusion. Proc. Am. Math. Soc. 147(8), 3493–3506 (2019)

[37] McCoy, J., Wheeler, G., Wu, Y.: A sixth order curvature flow of plane curves with
boundary conditions. In: 2017 MATRIX Annals, MATRIX Book Ser., vol. 2, pp. 213–
221. Springer, Cham (2019)

[38] Menzel, J.: Boundary Value Problems for Evolutions of Willmore Type. PhD thesis,
Universität Regensburg (2020)

[39] Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Sup. Pisa Cl. Sci.
(3) 20, 733–737 (1966)

[40] Novaga, M., Okabe, S.: Curve shortening-straightening flow for non-closed planar curves
with infinite length. J. Differ. Equ. 256(3), 1093–1132 (2014)

[41] Novaga, M., Okabe, S.: Convergence to equilibrium of gradient flows defined on planar
curves. J. Reine Angew. Math. 733, 87–119 (2017)

[42] Novaga, M., Pozzi, P.: A second order gradient flow of p-elastic planar networks. SIAM
J. Math. Anal. 52(1), 682–708 (2020)

[43] Okabe, S.: The motion of elastic planar closed curves under the area-preserving condi-
tion. Indiana Univ. Math. J. 56(4), 1871–1912 (2007)

[44] Okabe, S.: The dynamics of elastic closed curves under uniform high pressure. Calc.
Var. Partial Differ. Equ. 33(4), 493–521 (2008)

[45] Okabe, S., Pozzi, P., Wheeler, G.: A gradient flow for the p-elastic energy defined on
closed planar curves. Math. Ann. (2019)



Vol. 89 (2021) A Survey of the Elastic Flow of Curves and Networks 121

[46] Polden, A.: Curves and Surfaces of Least Total Curvature and Fourth-Order Flows.
PhD thesis, Universität Tübingen (1996)
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