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1. Introduction

The goal of this article is to give an account of some results and techniques in the
study of algebraic cycles, with special focus on the Mumford–Tate conjecture. This
conjecture was stated in Mumford’s paper [60] from 1966, in which he reported
on joint work with Tate, introducing, in particular, what we now call the (special)
Mumford–Tate group of an abelian variety. Not long before, Serre [75] had begun
the study of Galois representations on the Tate modules T� of abelian varieties over
a number fields, and had introduced the Lie algebra g� ⊂ gl(T� ⊗ Q�) of the image
of such a representation. Mumford’s paper ends with the conjecture that this Lie
algebra, or more precisely, its intersection with sl(T�⊗Q�), should be equal to the Lie
algebra of the special Mumford–Tate group tensored with Q�. In a more tentative
form (“on peut même espérer que...”) the same problem is stated in Serre’s Résumé
des cours de 1965–1966 [76].

The MTC (Mumford–Tate Conjecture) is nowadays formulated in much greater
generality and has no special relation to abelian varieties, other than that the
strongest known results are about abelian motives. The context for it is that we con-
sider a complete nonsingular variety X (or more generally a motive) over a finitely
generated field K of characteristic 0. If we choose a complex embedding σ : K → C,
we may consider the singular (“Betti’) cohomology Hσ = HB(Xσ,Q) of Xσ, which
carries a Hodge structure. On the other hand, for � a prime number, we have an
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action of Gal(K/K) on the �-adic cohomology H� = Hét(XK ,Q�). The MTC then
takes the form of a conjectural equality

MT(Xσ)⊗Q�
?
= G0

� (X)

of algebraic groups. Here MT(Xσ) ⊂ GL(Hσ) is the Mumford–Tate group, which is
a reductive group over Q that in a suitable sense controls the Hodge structure Hσ,
and G0

� (X) ⊂ GL(H�) is (the identity component of) the Zariski closure of the image

of the Galois representation ρ� : Gal(K/K) → GL(H�), which is an algebraic group
over Q�.

The MTC derives its plausibility less from overwhelming evidence than from
its natural place in a web of conjectures, and in particular from its role as a bridge
between the Hodge Conjecture (HC) and the Tate Conjecture (TC). If the HC
and TC are both true (for all complete nonsingular varieties), so is the MTC. The
main point here is that a reductive algebraic group is completely characterized by
its tensor invariants. For the Mumford–Tate group these tensor invariants are the
Hodge classes; for the �-adic algebraic Galois group G0

� these are the Tate classes.
(The groups G0

� are not known to be reductive in general; that they are is part of the
Tate conjecture. See however Remark 2.2.6(iv).) According to the HC and TC, the
Hodge (resp. Tate) classes should be precisely the cohomology classes of algebraic
cycles; assuming both conjectures, it follows that MT(Xσ)⊗Q� and G0

� (X) are equal
because they have the same tensor invariants.

This reasoning does not give a direct comparison between MT(Xσ) and G0
� (X).

Rather, it tells us that there should be a third group to which both are equal: on both
sides the invariants are conjecturally the cohomology classes of algebraic cycles. The
natural habitat for this third object is the theory of motives. It is not clear, however,
why there should be a reductive algebraic group whose tensor invariants are precisely
the cohomology classes of algebraic cycles. In the language of tensor categories this
means we should like to have a category of (pure) motives that is a semisimple
Tannakian category. If one tries to build such a category, one is confronted with a
lack of construction techniques for algebraic cycles, and in particular with the fact
that Grothendieck’s Standard Conjecture B (“of Lefschetz type”) is not known. In
the past decades, some very satisfactory workarounds have been introduced, such
as Deligne’s category of motives for absolute Hodge cycles [34], [37] (extended to
mixed motives by Jannsen [47]) and André’s category of motives for motivated
cycles [5] (which is known [8] to be equivalent to the “pure” part of Nori’s category
of motives; see [44]). In this article we will use André’s theory, though we would get
essentially the same results by working with motives for absolute Hodge classes. To
a motive M (e.g., a complete nonsingular variety) we can then associate a motivic
Galois group Gmot(M) whose tensor invariants are the motivated cycles. Even if we
do not know if all motivated cycles are algebraic cycle classes, they form a perfectly
good substitute in the context of the MTC. The natural, “motivic”, form of the
MTC is then that MT(Xσ) ⊗ Q� and G0

� (X) should both be equal to the motivic
Galois group.
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Sections 2 and 3 of this article are of an expository nature. In Section 2 we intro-
duce Mumford–Tate groups and explain their role from several perspectives. Further-
more, we introduce their �-adic counterparts G0

� , and we discuss the Mumford–Tate
conjecture. In Section 3 we introduce pure motives in the sense of André, as well as
their motivic Galois groups, and we discuss how this leads to a refined, “motivic”,
version of the Mumford–Tate conjecture.

At the end of each section we present an overview of some known results. The
author felt it was not an easy task to summarize decades of research in a couple of
pages, and can only hope he has managed to give a reasonably accurate picture of
the main results, without too many serious omissions. In any case we have included
many references to the literature, where the reader may find further details. What
remains somewhat underexposed in this article is the role of the theory of compatible
systems of �-adic representations. For this, and many other aspects that are excluded
here, Serre’s beautiful papers [79] and [84] form a good starting point.

Of course we want to get further than conjectures, and this is where one of the
main themes of this article comes in. Namely, in Section 4 we discuss how working
with families of varieties provides us with additional tools that in some cases lead
to very nontrivial results. It will come as no surprise that monodromy is among
these tools. What perhaps is surprising is that, even though this notion has been
omnipresent in geometry since the 19th century, in recent years people have found
still better ways to exploit monodromy; as we will see, it lies at the heart of some
recent developments. In the study of families of varieties, we will in particular discuss
how the Mumford–Tate groups, �-adic algebraic Galois groups and motivic Galois
groups of the fibres vary. Though the variation is of an erratic nature, there is
now a reasonably good understanding of the “jump loci”, and it is nice to see, in
Theorem 4.3.1 and Corollary 4.3.9 for instance, how monodromy plays a unifying
role.

Though much of what we discuss in this section is based on work of other
people, and in particular on the theory developed by André in [5], we hope that our
presentation will make these results more accessible, and will in particular clarify the
mutual relationship between motives and their Hodge and �-adic realizations. As an
illustration of the power of these techniques, we end this section with a quick proof
of the Tate conjecture for divisor classes on algebraic surfaces in some particular
families.

The geometer may complain about our strong focus on abstract notions such
as Tannakian categories and properties of algebraic groups. Indeed, many results on
which we report are based on a good understanding of formal structures as much
as on geometry. What geometric intuition is there behind the fact that the Hodge
conjecture and the Tate conjecture are “trivially” true1 for simple abelian varieties
of prime dimension, whereas already for simple abelian fourfolds it is a deep open

1in the sense that all Hodge classes, resp. Tate classes, are polynomials in divisor classes—what

goes into the proof is of course by no means trivial!
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problem? To the author’s mind, the fact that conjectures about algebraic cycles have
a direct relation to representation theory of reductive groups is one of the wonders
of the subject.

Notation and conventions. (a) Many of the categories we consider involve a base
field or base variety (often called K or S), and a coefficient ring or field Q. As a
general rule, the base field or variety is given in parenthesis and the coefficient field
as a subscript. Example: Mot(K)Q is the category of motives over K with coefficients
in Q.

(b) For us, an algebraic groupG over a fieldK is a special case of a group scheme
over K. It is therefore understood that by a homomorphism G1 → G2 between such
algebraic groups we mean a homomorphism over K, and by a representation of G
we mean a (finite dimensional) representation on a K-vector space. The category of
such representations is denoted by Rep(G).

2. The Mumford–Tate conjecture

2.1. Mumford–Tate groups

We start by reviewing some abstract aspects of Hodge theory. Later in this section
we will discuss how this is relevant to Algebraic Geometry.

Pure Hodge structures. Let HSQ be the category of pure Q-Hodge structures. (In
what follows we shall mostly work with Q-coefficients.) By definition, an object

of HSQ is a finite dimensional graded vector space H = ⊕n∈ZH
(n) such that

each H(n) is given a Hodge structure of weight n. This category HSQ is a neu-
tral Tannakian category; in particular we have direct sums, tensor products and
duals; on the underlying Q-vector spaces they are given by the usual constructions.
In addition we have Tate twists: Q(n) is the 1-dimensional Q-vector space (2πi)n ·Q
with Hodge structure purely of type (−n,−n), and if H is a Hodge structure then
we write H(n) for H ⊗Q(n). Note that H �→ H(n) decreases the weight by 2n.

If H is a pure Q-Hodge structure of weight n, a polarization of H is a morphism
of Hodge structures φ : H ⊗H → Q(−n) that satisfies a certain positivity property.
We refer to [31], Définition 2.1.15 or [66], Section 2.1.2 for the precise definition.

What matters for us is that the subcategory HSpolQ ⊂ HSQ of polarizable Q-Hodge

structures (those which admit a polarization) is semisimple, and that the Hodge

structures that are of interest for us all lie in this subcategory. The subcategory HSpolQ
is closed under direct sums, tensor products and duality, and every subquotient of
a polarizable Hodge structure is itself again polarizable.

If H is a pure polarizable Q-Hodge structure, its endomorphism algebra D =
EndHSQ(H) is a finite dimensional semisimple Q-algebra. The choice of a polariza-
tion φ gives rise to an involution d �→ d∗ on D, and it can be shown that this is a
positive involution. The pair (D, ∗) is therefore of the type classified by Albert; we
refer to [62], Chapter 21, for further details on this classification. Let us only record
here that the centre of D is either a totally real field or a CM field.
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The Deligne torus. Let S be the algebraic torus over R obtained as S = ResC/R(Gm),

where Res denotes restriction of scalars (“Weil restriction”). We have S(R) = C×

and S(C) = C× × C×. The character group of S is given by X∗(S) = Z · z ⊕ Z · z̄,
with complex conjugation acting by z ↔ z̄. Define Nm = zz̄ : S → Gm,R; on R-
valued points it is given by the usual norm map C× → R×. Let w : Gm,R → S be the
cocharacter given on R-valued points by the inclusion R× ↪→ C×; so z ◦w and z̄ ◦w
are both the identity on Gm,R.

To give a representation S → GL(V ), for V a real vector space, is the same

as giving a decomposition VC = ⊕p,q V p,q
C with the property that V p,q

C = V q,p
C .

In this correspondence, V p,q
C is the subspace of elements v ∈ VC on which (z1, z2) ∈

C××C× = S(C) acts as multiplication by z−p
1 z−q

2 . (The minus signs in the exponents
are just a convention, which we will not try to justify here.) Therefore, a Q-Hodge
structure H of weight n may be described as a finite dimensional Q-vector space,
together with a representation h : S → GL(H)R such that h ◦ w : Gm → GL(H)R is
given by z �→ z−n·idH . To describe an arbitrary Hodge structure (a sum of pieces that
are pure of some weight n), we consider a Q-vector space H with a representation h
as before, such that h◦w is defined over Q; in that case the cocharacter h◦w : Gm,Q →
GL(H) gives rise to a decomposition H = ⊕H(n) such that z ∈ Q× acts on H(n) as

multiplication by z−n, and on each H(n) we have a Hodge structure of weight n.

Example 2.1.1. The Hodge structure Q(n) is given by Nmn : S → Gm. If H and H ′

are Q-Hodge structures given by homomorphisms h : S → GL(H)R and h′ : S →
GL(H ′)R, the tensor product H ⊗ H ′ is given by the homomorphism h ⊗ h′. It
follows that H(n) is given by Nmn ·h.

Definition 2.1.2. Let H be a Q-Hodge structure, and let h : S → GL(H)R be the
homomorphism that gives the Hodge structure. Then theMumford–Tate group of H,
notation MT(H), is the smallest algebraic subgroup M ⊂ GL(H) over Q such that
h factors through the subgroup MR ⊂ GL(H)R.

The most important property of the Mumford–Tate group is the following.

Key Property 2.1.3. Let H be a Q-Hodge structure. For r, s ∈ N, define T r,s =
T r,s(H) = H⊗r ⊗ (H∨)⊗s. Let T be any space of the form T r1,s1 ⊕ · · · ⊕ T rk,sk , and
let V ⊂ T be a Q-subspace. Then V is stable under the action of MT(H) on T if
and only if V is a sub-Hodge structure of T .

We give some further basic properties. We focus on the polarizable case.

Properties 2.1.4. Let H be a polarizable Q-Hodge structure.

(i) The Mumford–Tate group MT(H) is a connected reductive subgroup of GL(H).
(If H is not polarizable then MT(H) is not reductive, in general.)

(ii) Suppose H is pure of weight n. If n = 0 then MT(H) is contained in SL(H). If
n �= 0, the homotheties Gm · idH are contained in MT(H).

(iii) If H1 and H2 are Q-Hodge structures then MT(H1 ⊕H2) is an algebraic sub-
group of MT(H1)×MT(H2) and the two projections MT(H1⊕H2) → MT(Hi)
are surjective.
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(iv) For H1, . . . , Hr in HSQ and positive integers m1, . . . ,mr we have

MT(Hm1
1 ⊕ · · · ⊕Hmr

r ) ∼= MT(H1 ⊕ · · · ⊕Hr) .

As a special case of this, for H in HSQ and r ≥ 1, the Mumford–Tate group
of H⊕r is isomorphic to MT(H), acting diagonally on H⊕r.

Remark 2.1.5. Let µS : Gm,C → SC be the cocharacter such that z ◦µS is the identity
on Gm,C and z̄ ◦ µS is the trivial endomorphism of Gm,C. On C-valued points µS is
the homomorphism C× → (C× × C×) given by a �→ (a, 1).

Let H be a Hodge structure given by a homomorphism h : S → GL(H)R. Write
µ = hC ◦ µS : Gm,C → GL(H)C. It is not hard to show that MT(H) is the smallest
algebraic subgroup of GL(H) such that the cocharacter µ factors through MT(H)C.
Note that z ∈ C× acts on Hp,q (via µ) as multiplication by z−p. In Section 2.4
we will further discuss how this leads to restrictions on the possibilities for the
Mumford–Tate group.

It is important to also understand the Mumford–Tate group from a Tannakian
perspective. If we denote by 〈H〉 ⊂ HSQ the Tannakian subcategory generated
by H, the forgetful functor ω : 〈H〉 → VecQ is a fibre functor that has MT(H)
as its automorphism group. This means that 〈H〉 is equivalent to the category
Rep

(
MT(H)

)
of (finite dimensional, algebraic) representations of MT(H). In view

of property 2.1.4(i), this connects Hodge theory to the representation theory of re-
ductive groups.

Definition 2.1.6. Let H be a Q-Hodge structure. An element ξ ∈ H is called a Hodge
class if ξ is purely of type (0, 0) in the Hodge decomposition HC = ⊕Hp,q

C .

Put differently, the Hodge classes are those rational classes (i.e., classes in the
underlying Q-vector space H) that are purely of type (0, 0) in the Hodge decompo-
sition of the complexification of H. Writing 1 = Q(0), which is the identity object
with respect to the tensor product in HSQ, the space of Hodge classes in H can be
identified with HomHSQ(1, H).

Lemma 2.1.7. Let H be a Q-Hodge structure that is pure of weight n, and let T =
T r1,s1 ⊕ · · · ⊕ T rk,sk be a tensor construction as in 2.1.3. Then an element ξ ∈ T is
a Hodge class in T if and only if ξ is invariant under the action of MT(H) on T .

Proof. Let L ⊂ T ⊕ Q(0) = T ⊕ T 0,0 be the line spanned by (ξ, 1). Then L is a
sub-Hodge structure of T ⊕ Q(0) if and only if ξ is a Hodge class. On the other
hand, since MT(H) acts as the identity on Q(0), we see that L ⊂ T ⊕ Q(0) is
a sub-representation of MT(H) if and only if ξ is invariant under MT(H). Now
use 2.1.3. �

Remark 2.1.8. If H is a vector space over a field k of characteristic 0 and G ⊂ GL(H)
is a reductive subgroup, then G is completely determined by its tensor invariants;
see [35], Proposition 3.1.(c). Hence the Mumford–Tate group of a polarizable Q-
Hodge structureH may also, somewhat indirectly, be defined as the unique reductive
subgroup of GL(H) whose tensor invariants are the Hodge classes.
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Example 2.1.9. Given Q-Hodge structures H1 and H2, say of weights n1 and n2,
consider the Hodge structure Hom(H1, H2) = H∨

1 ⊗H2, which has weight n2−n1. The
Hodge classes in Hom(H1, H2) are precisely the morphisms of Q-Hodge structures
H1 → H2; in other words

HomHSQ(H1, H2) = {Hodge classes in Hom(H1, H2)}

= Hom(H1, H2)
MT(H1⊕H2) .

(Note that these spaces can be non-zero only if n1 = n2.) As a special case of this,

for H in HSQ we have EndHSQ(H) = End(H)MT(H).

Hodge structures on the cohomology of varieties. If Y is a compact Kähler manifold,
its singular cohomology Hn(Y,Q) carries a natural Hodge structure of weight n. We
refer to [66] or [105] for a detailed discussion of how this is obtained. If f : Y1 → Y2
is a morphism of compact Kähler manifolds, the induced map f∗ : Hn(Y2,Q) →
Hn(Y1,Q) is a morphism of Hodge structures. The Künneth isomorphism H•(Y1 ×
Y2,Q) ∼−→ H•(Y1,Q)⊗ H•(Y2,Q) is an isomorphism of Hodge structures. Note that
the Hodge structure Hn(Y,Q) is not, in general, polarizable.

If X is a projective nonsingular variety over C, the associated complex analytic
variety Xan is compact Kähler and we have a natural Hodge structure of weight n
on the singular cohomology group Hn = Hn(Xan,Q). In this case we do get that Hn

is polarizable. We can extend this to complete nonsingular varieties X, even though
Xan need not be Kähler. Indeed, by Chow’s lemma and resolution of singularities
we can find a surjective morphism f : Y → X with Y projective nonsingular. The
induced map f∗ : Hn(X,Q) → Hn(Y,Q) is injective, realizing Hn(X,Q) as a sub-
Hodge structure (automatically polarizable) of Hn(Y,Q), and the Hodge structure
on Hn(X,Q) thus obtained is independent of choices.

Many examples that we are going to discuss use the fact that the functor that
sends a complex abelian variety X to the Q-Hodge structure H1(X,Q) (which is the
dual of H1(X,Q)) is an equivalence of categories

(
complex abelian varieties

up to isogeny

)
→

(
polarizable Q-Hodge structures

of type (−1, 0) + (0,−1)

)
.

(There is also a version with Z-coefficients which gives an equivalence of categories
between abelian varieties and integral polarizable Hodge structures of type (−1, 0)+
(0,−1).) We define the Mumford–Tate group of an abelian variety X by MT(X) =
MT(H), where H = H1(X,Q). Writing End0(X) = End(X)⊗Q, Example 2.1.9 gives

End0(X) ∼−→ EndHSQ(H) = End(H)MT(X) . (2.1)

Example 2.1.10. A polarizable Q-Hodge structure H is said to be of CM type if its
Mumford–Tate group MT(H) is a torus. It can be shown that this is equivalent to
the condition that the endomorphism algebra EndHSQ(H) contains a commutative
semisimple Q-algebra F such that H is free of rank 1 as an F -module.

If H is simple then it is of CM type if and only if its endomorphism algebra
E = EndHSQ(H) is a field of degree dim(H) over Q. It can be shown that either
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H ∼= Q(n) for some n, in which case E = Q, or else E is a CM field. In general, we
can decompose a polarizable Q-Hodge structure H as H = Hm1

1 ⊕ · · · ⊕Hmr
r with

H1, . . . , Hr simple and pairwise non-isomorphic. Then H is of CM type if and only
if each Hi is of CM type.

Suppose H is simple of CM type, of weight n. Let Σ be the set of complex
embeddings of its endomorphism algebra E. For σ ∈ Σ, let HC(σ) ⊂ HC be the
subspace on which E acts through the embedding σ. WritingHp,q

C (σ) = HC(σ)∩Hp,q
C

we then have a decomposition

HC = ⊕
σ∈Σ

⊕
p+q=n

Hp,q
C (σ) with Hp,q

C (σ) = Hq,p
C (σ) .

Each HC(σ) is 1-dimensional, so for σ ∈ Σ there is a unique integer p = p(σ) with
Hp,q

C (σ) �= 0. This gives us a function p : Σ → Z with p(σ) = n − p(σ). The Hodge
structure H is completely determined by the pair (E, p).

A classical example where this arises is when we have a g-dimensional complex
abelian variety X of CM type, which is equivalent to saying that the Hodge structure
H = H1(X,Q) is of CM type. For simplicity, assume X is simple, so that E =
End0(X) = EndHSQ(H) is a CM field of degree 2g. In this case the function p : Σ → Z
only takes the values −1 and 0. Instead of giving the function p we may give the
subset Φ ⊂ Σ of embeddings σ for which p(σ) = −1; this set has the property that
Σ = Φ�Φ. The pair (E,Φ) is classically called the CM type of X. For later use let
us make explicit how we can recover H, and therefore also X up to isogeny, from
(E,Φ): As underlying Q-vector space we take H = E; then HC = ⊕σ∈ΣC(σ) (in which
the superscript (σ) is included only for bookkeeping purposes), and we declare the

summand C(σ) to be of Hodge type (−1, 0) (resp. (0,−1)) if σ ∈ Φ (resp. σ /∈ Φ).

It is easy to see that the Tannakian subcategory of HSpolQ consisting of CM

Hodge structures is generated by the Hodge structures H1(X,Q) associated with
CM types (E,Φ). See for instance [2], Section 2.

Cycle classes. If X is a proper smooth algebraic variety over C then to an algebraic
cycle Z of codimension n we can attach a cohomology class cl(Z) ∈ H2n

(
X,Q(n)

)
,

which is a Hodge class. The cohomology class that we obtain only depends on the
class of Z modulo rational equivalence, so we obtain a map

cl : CHn(X)⊗Q →
{
Hodge classes in H2n

(
X,Q(n)

)}
. (2.2)

The Hodge conjecture expresses that all Hodge classes in the cohomology should
arise from algebraic cycles in this way:

Conjecture 2.1.11 (The Hodge Conjecture). Let X be a complete nonsingular com-
plex algebraic variety. Then for every n ≥ 0 the cycle class map (2.2) is surjective.

For n = 1 the Hodge conjecture is true; this is Lefschetz’s theorem on divisor
classes. For n = 0 and n = d = dim(X) the Hodge conjecture is “trivially” true,
as H0(X,Q) ∼= Q(0) and H2d

(
X,Q(d)

)
are both 1-dimensional, spanned by the

class of X (assumed to be irreducible), and the class of a point on X, respectively.
Apart from these cases, the Hodge conjecture is widely open. For further reading we
recommend [50], [87], [103] and [106].
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Remark 2.1.12 (The special Mumford–Tate group). In older literature, Hodge classes
in a Q-Hodge structure H of even weight 2p are often defined as the rational classes
ξ ∈ H that are purely of type (p, p) in the Hodge decomposition. From a theoretical
perspective it is more natural to replace H by H(p), in which case such “(p, p)-
classes” become Hodge classes in the sense of Definition 2.1.6. For practical purposes
it makes no big difference which version we use. Note, however, that (p, p)-classes
with p �= 0 are not detected as invariants under MT(H), as MT(H) contains the
homotheties z · idH , and these act on H as multiplication by z−2p.

To remedy this, one may consider the special Mumford–Tate group SMT(H) ⊂
SL(H) (also sometimes called the Hodge group). To define it, consider the circle
group S1 = Ker(Nm: S → Gm,R). Then SMT(H) is defined as the smallest algebraic
subgroup M ⊂ GL(H) such that h|S1 factors through MR. With notation as in 2.1.3,
an element t ∈ T r,s is a rational (q, q)-class, with q = p(r − s), if and only if t is
invariant under the action of SMT(H). This breaks down if we consider classes t
in an arbitrary tensor construction T = T r1,s1 ⊕ · · · ⊕ T rk,sk . The problem is that
the special Mumford–Tate group does not see the weight of a Hodge structure. For
instance, if ξ ∈ H is a (q, q)-class with q �= 0 then (ξ, 1) ∈ H ⊕ Q(0) is invariant
under the action of SMT(H) but is not a (p, p)-class.

If H has weight 0 we have SMT(H) = MT(H). If H is pure of weight n �= 0,
we have MT(H) = (Gm · idH) · SMT(H).

If X is complete nonsingular, the rational (p, p)-classes in H•(X,Q) form a
subring B(X), called the Hodge ring of X. If this Hodge ring is generated by divisor
classes, it follows from Lefschetz theorem on (1, 1)-classes that the Hodge conjecture
for X is true.

Example 2.1.13 (How to use the Mumford–Tate group). The Mumford–Tate group
is particularly effective as a tool to study Hodge classes on abelian varieties. For
instance, it leads to the striking fact that we know the Hodge conjecture to be true
for all simple abelian varieties of prime dimension; see [70]. (By contrast, already
for abelian fourfolds the Hodge conjecture is still open.)

For a given dimension g = dim(X) there is a finite list of possible types
for End0(X) (see [62], Section 21). This leads to the following strategy. As before,
X is an abelian variety and H = H1(X,Q).

(a) Given g = dim(X) and End0(X), try to decide what MT(X) ⊂ GL(H) is, based
on the properties listed in 2.1.4 together with (2.1).

(b) If successful, determine the Hodge ring B(Xk) (for any k ≥ 0) as the ring of
invariants in H•(Xk,Q) ∼= ∧•(H∨,⊕k

)
under the action of the special Mumford–

Tate group (see Remark 2.1.12). If this Hodge ring is generated by divisor
classes, the Hodge conjecture for Xk is true.

To illustrate this method, let us carry it out in the simplest case, namely when
X is an elliptic curve with End0(X) = Q. As before, let H = H1(X,Q). We know
that MT(X) is a connected reductive subgroup of GL(H) ∼= GL2,Q containing the

homotheties. The only such subgroup M for which End(H)M = Q · idH is GL(H)
itself; hence MT(X) = GL(H) and therefore SMT(X) = SL(H). Now we determine
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the Hodge ring of Xk as the ring of SL(H)-invariants in ∧•(H∨,⊕k
)
. It is a classical

result from invariant theory that if V is the standard representation of SL2, the ring
of SL2-invariants in ∧•(V ⊕k) is generated by its elements in degree 2. This means
precisely that the Hodge ringB(Xk) is generated by divisor classes, and we conclude
that the Hodge conjecture is true for all powers of X.

The example just given is only the tip of the iceberg. There is a rich literature
on the topic, and wonderful results have been obtained based on such methods. See
for instance [58], [59], [63], [64], [70], [88], [89], [90]. The method has its limitations,
though. Already for abelian fourfolds, there are cases where the Hodge ring is not
generated by divisor classes (see for instance [58], [107]), and apart from a couple
of exceptions (see [72], [74], [99]) the Hodge conjecture is not known to be true in
these cases. Also, in general it is not possible to determine MT(X) based only on
information about End0(X). We will further discuss what is known in Section 2.4.

2.2. Galois representations

We now turn to the arithmetic cousin of Hodge theory. In what follows, K is a field,
K ⊂ Ks is a separable closure, and we write ΓK = Gal(Ks/K). Further, � denotes
a prime number different from char(K).

Algebraic Galois groups. We write Rep(ΓK)Q�
for the category of continuous repre-

sentations of ΓK on finite dimensional Q�-vector spaces. An object in this category
is given by a homomorphism

ρ : ΓK → GL(H) (2.3)

(with H a Q�-vector space of finite dimension) which is continuous with respect
to the �-adic topology on the target and the Krull topology on ΓK . There is an
obvious tensor product, and this makes Rep(ΓK)Q�

a neutral Tannakian category.
The forgetful functor Rep(ΓK)Q�

→ VecQ�
is a fibre functor. With ρ as above, the

image Im(ρ) is an �-adic Lie subgroup of GL(H). We define

G�(H) ⊂ GL(H)

to be the Zariski closure of Im(ρ). By definition, this is a linear algebraic group
over Q�, and it is the smallest algebraic subgroup G ⊂ GL(H) such that the rep-
resentation ρ factors through G(Q�). This G�(H) is the algebraic group that in the
Tannakian formalism corresponds to the Tannakian subcategory 〈H〉 ⊂ Rep(ΓK)Q�

,
with the forgetful functor as fibre functor; hence we have an equivalence of ten-
sor categories between 〈H〉 and Rep

(
G�(H)

)
. In particular, we have the following

analogue of property 2.1.3:

Key Property 2.2.1. For r, s ∈ N, let T r,s = H⊗r ⊗ (H∨)⊗s. Let T be any space of
the form T r1,s1 ⊕ · · · ⊕ T rk,sk , and let V ⊂ T be a Q�-subspace. Then V is stable
under the action of G�(H) on T if and only if V is stable under the action of ΓK

(and is therefore a sub-object of T in Rep(ΓK)Q�
).

As in Hodge theory, there are Tate twists. For this, let χ� : ΓK → Z×
� be the

�-adic cyclotomic character. For H as above, its Tate twist H(n) is given by the
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representation χn
� ·ρ. Moreover, the Galois representations in which we are interested

are pure and have a weight. We will not give details on this; see Deligne’s seminal
paper [36] or [48], Section 2.

Remarks 2.2.2. (i) Let K ⊂ L be a finitely generated field extension and L ⊂ Ls a
separable closure that contains Ks. Then K ′ = L∩Ks is a finite extension of K and
we have ΓL � ΓK′ ⊂ ΓK . If we have a Galois representation ρ as in (2.3), we may
restrict it to ΓL. The associated group G�(H) will in general become smaller, but
the identity component G0

� (H) does not change.

(ii) If we denote by �0 = �0

(
G�(H)

)
the (finite étale) group scheme of con-

nected components of G�(H), the kernel of the composition

ΓK → G�(H)(Q�) → �0(Q�)

corresponds to a finite Galois extension K ⊂ Kconn. It has the property that, for
K ⊂ L as in (i), the algebraic group associated with ρ|ΓL

is connected if and only if
Kconn ⊂ L. In what follows we will sometimes assume that K = Kconn; this means
that the group G�(H) is connected, and does not change if we replace K by a finitely
generated field extension. If the context requires it, we use the notation Kconn(ρ).

Galois representations on �-adic cohomology. We are primarily interested in Galois
representations coming from �-adic cohomology of algebraic varieties. Keeping the
above notation, let X be a proper smooth scheme over K. The �-adic cohomology
Hm

(
XKs ,Q�(n)

)
is defined as the cohomology in degree m of a sheaf Q�(n) on

the pro-étale site (XKs)pro-ét of XKs . See [12]. (Before the pro-étale topology was
introduced, one would work on the étale site of XKs and define Hm

(
XKs ,Z�(n)

)
as

the limit over all Hm
(
XKs,ét, (Z/�iZ)(n)

)
; then set

Hm
(
XKs ,Q�(n)

)
= Hm

(
XKs ,Z�(n)

)
⊗Q� .

This gives the same cohomology groups.)

Fixing m and n, let us abbreviate H = Hm
(
XKs ,Q�(n)

)
. The Galois group

ΓK = Gal(Ks/K) acts on XKs , and by functoriality we obtain an action on the
�-adic cohomology, i.e., a representation

ρ� = ρ�,Hm(X)(n) : ΓK → GL(H) . (2.4)

This representation is continuous with respect to the �-adic topology on the tar-
get and the Krull topology on ΓK , making it an object of Rep(ΓK)Q�

. If X/K is
geometrically irreducible of dimension d then H•(XKs ,Q�) = ⊕2d

n=0 Hn(XKs ,Q�)
is a graded-commutative algebra in Rep(ΓK)Q�

. The Galois representations of the
form ρ�,Hm(X)(n) constitute only a small part of the category Rep(ΓK)Q�

; we refer to
[97] for an in-depth discussion of the properties they enjoy.

Let X be a complete nonsingular variety over a separably closed field Ω. Fix
integers m and n, and write H = Hm

(
X,Q�(n)

)
. We associate with H a connected

algebraic group G0
� (H) ⊂ GL(H), as follows. Choose any subfield K ⊂ Ω that is of

finite type over the prime field, and a model XK of X over K. (This means: a K-
scheme XK together with an isomorphism XK ⊗K Ω ∼= X.) Let Ks be the separable
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closure of K in Ω. Writing XKs = XK ⊗K Ks, we have a canonical isomorphism
Hm

(
XKs ,Q�(n)

)
∼−→ H = Hm

(
X,Q�(n)

)
. Taking this as an identification, we get a

representation ρ� as in (2.4), and, as before, we define G0
� (H) ⊂ GL(H) to be the

identity component of the Zariski closure of its image. By the Remark 2.2.2(i), the
group thus obtained is independent of how we choose the model XK/K.

Definition 2.2.3. With notation as above, an element ξ ∈ H is called a Tate class if
x is invariant under G0

� (H).

Remarks 2.2.4. (i) Taking a model XK/K as above, ξ is a Tate class if and only if
ξ is invariant under the action of ΓK′ for some finite extension K ⊂ K ′.

(ii) The Galois representation on Hm
(
XKs ,Q�(n)

)
is pure of weight m − 2n.

This implies that there can be non-zero Tate classes in H only if m = 2n.

Cycle classes. Still with X a complete nonsingular variety over Ω, to every al-
gebraic cycle Z of codimension n we can associate a cohomology class cl(Z) ∈
H2n

(
X,Q�(n)

)
. The cohomology class that we obtain is a Tate class that only de-

pends on Z modulo rational equivalence; so we obtain a map

cl � : CHn(X)⊗Q� →
{
Tate classes in H2n

(
X,Q�(n)

)}
. (2.5)

The Tate conjecture expresses that all Tate classes in the cohomology should arise
from algebraic cycles in this way.

Conjecture 2.2.5 (The Tate Conjecture). Let X be a complete nonsingular algebraic
variety over a separably closed field Ω. Then for every n ≥ 0 the group G0

� (H)

associated with H = H2n
(
X,Q�(n)

)
is reductive and the cycle class map (2.5) is

surjective.

If a specific value for n is chosen, we refer to this conjecture as the Tate con-
jecture for cycles in codimension n on X.

Remarks 2.2.6. (i) If Ω̃ is a separably closed field containing Ω, the Tate conjecture
for X is equivalent to the Tate conjecture for XΩ̃.

(ii) We have formulated the conjecture for (complete, nonsingular) varieties over
a separably closed field. This should not obscure the fact that the Tate conjecture
is really a statement about varieties over fields that are finitely generated over their
prime field. The TC in this form is equivalent to the assertion that for every smooth
projective X over a finitely generated field K, every class ξ ∈ H2n

(
XKs ,Q�(n)

)
that

is invariant under the action of ΓK is in the image of the �-adic cycle class map
CHn(X)⊗Q� → H2n

(
X,Q�(n)

)
.

(iii) The group G0
� (H) is reductive if and only if the representation ρ� is com-

pletely reducible (=semisimple).

(iv) It is proven in [57] that if for all complete nonsingular varieties over Q and
all n ≥ 0 the cycle class map (2.5) is surjective, then for every complete nonsingu-
lar X over a finitely generated field K of characteristic 0 the Galois representation ρ�
of (2.4) is completely reducible (for all m and n).
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For n = 0 and n = d = dim(X) the Tate conjecture is “trivially” true: choos-
ing a model X/K as before, H0(XKs ,Q) and H2d

(
XKs ,Q(d)

)
are both isomorphic

to Q�(0) as Galois representations (assuming X to be irreducible), and are spanned
by the class of X, and the class of a point on X, respectively. Already for n = 1 the
Tate conjecture is not known in general. We refer to [96] for a much more detailed
discussion of the Tate conjecture.

For abelian varieties, we have the following deep result, due to Tate [95] (over
finite fields), Zarhin [110], [111] (over finitely generated fields of characteristic p > 2),
Mori (the case p = 2), and Faltings [38] (finitely generated fields of characteristic 0).
In the statement of the theorem we consider, for X/K an abelian variety, the �-
adic Tate module T�(X), which is the first integral �-adic homology group. We have
H1(XKs ,Q�) ∼= Hom(T�(X),Q�) as Galois-modules, and since H•(XKs ,Q�) is the
exterior algebra on H1(XKs ,Q�) the entire cohomology ring of X is determined by
its Tate module.

Theorem 2.2.7. Let X and Y be abelian varieties over a finitely generated field K,
and let � be a prime number different from char(K). Then T�(X)⊗Q� and T�(Y )⊗Q�

are semisimple as representations of ΓK = Gal(Ks/K) and the natural homomor-
phism

Hom(X,Y )⊗ Z� −→ HomΓK

(
T�(X), T�(Y )

)

is an isomorphism.

Corollary 2.2.8. Let X be an abelian variety over a separately closed field Ω. Let � be
a prime number different from char(Ω). Then the �-adic Tate conjecture for divisor
classes on X is true.

To deduce this from Theorem 2.2.7 is a little exercise in the theory of abelian
varieties. Consider an abelian variety X over a finitely generated field K. If Xt is
the dual abelian variety, we have a perfect Galois-equivariant pairing E : T�(X) ×
T�(X

t) → Z�(1), which gives an identification T�(X
t) ∼−→ T�(X)∨(1) by y �→ E(−, y).

By doing the same with Xt instead of X we get T�(X) ∼−→ T�(X
t)∨(1) (which

is the negative of the identification given by x �→ E(x,−)). With these iden-
tifications one checks that H2

(
XKs ,Z�(1)

)
is naturally isomorphic to the space

Homsym
(
T�(X), T�(X

t)
)
of homomorphisms f : T�(X) → T�(X

t) with f∨(1) = f .
The isomorphism of Theorem 2.2.7 restricts to an isomorphism

Homsym(X,Xt)⊗ Z�
∼−→ Homsym

ΓK

(
T�(X), T�(X

t)
)

where on the left we consider the homomorphisms F with F t = F . On the other
hand, it is known that the map NS(X) → Homsym(X,Xt) that sends the class of
a line bundle L to the “Mumford homomorphism” ϕL : X → Xt given by x �→
[t∗x(L)⊗ L−1] is an isomorphism. As the composition

NS(X) → Homsym(X,Xt) → Homsym
ΓK

(
T�(X), T�(X

t)
)
→ H2

(
XKs ,Q�(1)

)ΓK

is the map that associates to L its first Chern class, this gives the corollary.
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Remark 2.2.9. Over fields of characteristic p > 0 there is also a p-adic version of
the Tate conjecture. Over finite fields this is due to Tate. See de Jong’s paper [29],
Section 2 for the general case.

Remark 2.2.10. As already remarked, the Galois representations that are of interest
have many good properties. One aspect of this is that, for X/K smooth proper, the
collection of Galois representations ρ�,Hm(X)(n) forms a strictly compatible system
of �-adic representations in the sense defined by Serre in [77], Chapter I. This has
given rise to numerous important results, especially about the independence of � of
properties of the associated �-adic algebraic Galois groups G�. For the key results,
most of which are due to Serre or to Larsen and Pink, we refer to [26], [81], [82],
[51], [52]. Let us already note that for motives in the sense of André (or for motives
for absolute Hodge classes) it is not known in general if the associated �-adic Galois
representations form a strictly compatible system; see Remark 3.2.1.

2.3. The Mumford–Tate conjecture for complex varieties

Let X be a complete nonsingular complex algebraic variety. Fixing integers m and n,
let H = Hm

(
X,Q(n)

)
, which is a polarizable pure Q-Hodge structure. Let MT(H) ⊂

GL(H) denote the Mumford–Tate group. On the other hand, for � a prime number,
let H� = Hm

(
X,Q�(n)

)
be the �-adic cohomology, to which we have associated a

group G0
� (H�) ⊂ GL(H�). There is a comparison theorem between singular and étale

cohomology that gives us a canonical isomorphism of Q�-vector spaces i : H⊗Q�
∼−→

H�. Let γ : GL(H) ⊗ Q�
∼−→ GL(H�) denote the induced isomorphism of algebraic

groups over Q�.

Conjecture 2.3.1 (The Mumford–Tate Conjecture). The isomorphism γ restricts to
an isomorphism

MT(H)⊗Q�

?
∼−→ G0

� (H�) .

We refer to the conjectural equality of MT(H)⊗Q� and G0
� (H�) as the Mumford–

Tate conjecture for Hm(X)(n). See Conjecture 3.2.4 below for a more general version.

In what follows we use the abbreviations HC, TC and MTC for the Hodge,
Tate and Mumford–Tate conjectures.

Proposition 2.3.2. Let X be a complete nonsingular complex algebraic variety, and
let n ≥ 0 be an integer. Assume the Mumford–Tate conjecture for H2n(X)(n) is true.
Then

HC in codimension n for X ⇐⇒ TC in codimension n for X.

Proof. Keep the notation introduced above, with m = 2n. If the MTC is true for
H2n(X)(n) then the isomorphism i : H⊗Q�

∼−→ H� restricts to an isomorphism

{Hodge classes in H} ⊗Q�
∼−→ {Tate classes in H�} .

The proposition follows because, via i, the �-adic cycle class map (2.5) is identified
with the Q�-linear extension of the cycle class map (2.2). �
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As an example of how this can be useful, recall that the Hodge conjecture is
known in codimension 1 (Lefschetz’s theorem on divisor classes), whereas the Tate
conjecture is not, in general, known for divisor classes. Hence the MTC for H2(X)(1)
implies the TC in codimension 1 for X.

Remark 2.3.3. There is a partial converse to the proposition. We keep the above
notation, with m = 2n. If the HC and TC on X are true in codimension n, it follows

that HMT(H) ⊗ Q�
∼−→ (H�)

G0
� (H�). In general this does not suffice to conclude that

the MTC is true for H2n(X)(n). The reason is that the groups MT(H) and G0
� (H�)

control all tensor spaces built from H and H� respectively. These tensor spaces occur
in the cohomology of powers of X. One can show that if for all k ≥ 1 the HC and
TC are true for Xk in codimension kn then the MTC is true for H2n(X)(n).

2.4. Some known results (1)

This is the first of three sections (see 3.3 and 4.4 for the other) in which we briefly
discuss what is known about the Mumford–Tate conjecture and give some pointers
to the literature. These sections have no pretense at completeness, and we apologize
in advance to authors whose contributions we fail to give the attention they deserve.

Representation-theoretic constraints. The method that was outlined in Example
2.1.13 lies at the basis of many interesting results about abelian varieties. Let (X,λ)
be a g-dimensional polarized complex abelian variety, and write H = H1(X,Q). One
should like to determine MT(X) based on information about the endomorphism
algebra End0(X). The polarization λ (in the sense of the theory of abelian varieties)
gives rise to a polarization φ : H×H → Q(1) (in the sense of Hodge theory), which,
viewed as an element of (H∨)⊗2(1), is a Hodge class. This gives that MT(X) is
a connected reductive subgroup of the group of symplectic similitudes CSp(H, φ),
and as discussed, End0(X) is the algebra of MT(X)-invariants in End(H), i.e., the
algebra of endomorphisms of H that commute with MT(X). This can be refined in
the following way.

In general, if H is a polarizable Q-Hodge structure, write M = MT(X) and
choose a maximal torus T ⊂ M . We have a root datum with underlying lattice
X∗(T ), and the tautological representation MC → GL(H⊗C) is given by a multiset
P of weights in X∗(T )⊗R. As in Remark 2.1.5, we have a cocharacter µ : Gm → MC.
Some conjugate ν of it factors through TC and hence gives rise to a linear map
ν∗ : X∗(T ) ⊗ R → R. We then know that the image of P under ν∗ is precisely the
set of integers −p counted with multiplicity the Hodge number hp,q. Moreover, ν is
defined over Q and MQ is generated by ν together with its Gal(Q/Q)-conjugates. In
this way, knowing the Hodge numbers gives restrictions on the representation.

For a g-dimensional abelian variety this means that we have a number of pro-
jections X∗(T )⊗ R → R, corresponding to ν and its Galois-conjugates, under each
of which P has as image the multiset {0g, 1g}. This leads to the following result.

Theorem 2.4.1. Let X be a complex abelian variety, H = H1(X,Q) and M = MT(X).
Write MC = Z ·M1 ·M2 · · ·Mr, where Z is the center and M1, . . . ,Mr are the simple
factors of MC. Let W be an irreducible representation of MC that occurs in HC.
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(i) All simple factors Mi are of Lie type A, B, C or D.
(ii) Write W = χ�W1 � · · ·�Wr, where χ is a character of Z and Wi is an irre-

ducible representation of Mi. If the representation Wi is non-trivial, its highest
weight (after choosing a basis for the root system) is a minuscule weight.

For the notion of a minuscule weight, see Bourbaki [16], Chap. VIII, § 7, no. 3.
The theorem can be found in [33], Section 1.2 or, with more details, in [80], Section 3.

For Hodge structures of arbitrary level, a detailed analysis of the representation-
theoretic constraints that are obtained from the Hodge numbers can be found in the
work of Zarhin [112].

When we try to obtain analogous results about the groups G� associated with
the Galois representation on H1(X,Q�) = T�(X)⊗Q�, it is not clear a priori how to
proceed. While the Mumford–Tate group can be described as the smallest algebraic
group receiving the cocharacter µ, this has no direct analogue in the �-adic setting.
However, Pink [67] has proven that such representation-theoretic constraints also
hold in the �-adic setting, by making very clever use of cocharacters associated to
local Galois representations via Hodge–Tate theory. Specifically, [67], Theorem 3.18,
is precisely what is needed to obtain analogues of the results of Deligne, Serre and
Zarhin in the �-adic setting. For abelian varieties, this is discussed in detail in [67],
Sections 4 and 5. In particular, for abelian varieties X with End(X) = Z satisfying
some numerical conditions on dim(X), Pink proves that the HC, TC and MTC
are true for all powers of X; this improves earlier results of Serre [82], [83] and
Tankeev [94]. For some other types of endomorphism algebras, analogous results
have been obtained for instance in [9] and [10]. See [55], Section 2, for an application
of Pink’s results in the context of motives of K3 type.

Some results. Let us now briefly mention some other results about the HC, TC and
MTC for abelian varieties. Throughout, X denotes a complex abelian variety and
H (resp. H�) denotes the first homology group (singular, resp. �-adic) of X. In some
cases we only state a precise result in the Hodge-theoretic setting, leaving it to the
reader to formulate the �-adic analogue.

2.4.2. Taking the isomorphism γ : GL(H) ⊗ Q�
∼−→ GL(H�) of Section 2.3 as an

identification, we have

G0
� (X) ⊂ MT(X)⊗Q� .

This is an immediate consequence of a much deeper result, Theorem 3.3.1; we will
return to this in Section 3.3.

2.4.3. With SMT the special Mumford–Tate group, as in Remark 2.1.12, we have
MT(X) = Gm · SMT(X) and SMT(X) ⊂ Sp(H, φ). It follows from relation (2.1)
that the center Z of SMT(X) is contained in End0(X) ∩ Sp(H, φ). Using this one
finds that SMT(X) is semisimple if End0(X) has no factors of Type IV. Similarly,
the identity component of G�(X) ∩ SL(H�) is semisimple if there are no factors of
Type IV.
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2.4.4. The abelian variety X is of CM type if and only if MT(X) is a torus, if and
only if G0

� (X) is a torus. The MTC is true for abelian varieties of CM type. This
result is proven by Pohlmann in [68]; as is nicely explained in [109], it is in fact a
consequence of the results about complex multiplication due to Shimura-Taniyama
and Weil. In 3.3.2 we will discuss a much more general result.

2.4.5. It was proven by Larsen and Pink that the Mumford–Tate conjecture for
abelian varieties is independent of �: if it is true for one �, it is true for all. See [52],
Theorem 4.3. We will return to this in Section 3.3.

2.4.6. Let L̃(X) denote the algebraic subgroup of Sp(H, φ) consisting of elements
that commute with the action of End0(X). Let L(X) be the identity component

of L̃(X). On the other hand, we can define an invariant rdim(X), called the reduced
dimension of X. If X is simple and k is the Schur index of the central simple algebra
End0(X), the reduced dimension is given by

rdim(X) =

{
dim(X) if End0(X) is of Albert Type I or III;

dim(X)/k if End0(X) is of Albert Type II or IV.

For a general X, let X ∼ Xn1
1 ×· · ·×Xnr

r be the decomposition (up to isogeny) of X
into simple factors with Xi �∼ Xj for i �= j; then one defines rdim(X) = rdim(X1) +
· · ·+ rdim(Xr). Combining results of Murty [64] and Hazama [41], we find that the
following properties are equivalent: (a) the Hodge ring of Xn is generated by divisor
classes for all n ≥ 1, (b) X has no simple factors of Type III and MT(X) = L(X),
and (c) the special Mumford–Tate group SMT(X) has rank equal to rdim(X). The
�-adic analogue of this is also true. If (a)–(c) are true for X1 and X2, they are also
true for the product X1 ×X2.

2.4.7. Let X be a simple abelian variety of dimension 1 or of prime dimension p.
Then the HC, TC and MTC are true for all powers of X. For elliptic curves this is
due to Serre; the essential ingredient is [76], Théorème 1. (Once one has this result,
one can argue as in Example 2.1.13.) The result about simple abelian varieties of
prime dimension is due to Tankeev; see [70], [90], [91]. Note that in this case there
are only four possibilities for the endomorphism algebra End0(X): it is Q, a totally
real field of degree p, an imaginary quadratic field, or a CM field of degree 2p. Espe-
cially in the first two cases we see Theorem 2.4.1 coming into action. For instance,
if End0(X) = Q, the first homology group H is an absolutely simple symplectic
representation of the special Mumford–Tate group, of dimension 2p. We find that
SMT(X) is absolutely simple of Lie type A, B, C or D, and that H is defined by a
minuscule highest weight. Inspecting the table of minuscule weights and their dimen-
sions (see [80], Annexe, for instance), one then concludes that SMT(X) is necessarily
the full symplectic group Sp(H, φ). In the �-adic setting, the same arguments apply.
One concludes by using the results of Hazama and Murty mentioned in 2.4.6.

For simple abelian varieties, the case of dimension 4 is the next one to consider.
(We will discuss the non-simple case in Section 3.3.) For X simple of dimension 4
the MTC is known, except when End(X) = Z. In that case, a construction of
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Mumford (see [61], § 4) implies that knowing the endomorphism algebra does not
suffice to determine the Mumford–Tate group MT(X) or the �-adic algebraic Galois
groups G0

� (X). This leaves open the possibility that G0
� (X) is strictly contained

in MT(X) ⊗ Q�, and it is not known how to exclude this. Still with X simple of
dimension 4, the HC and TC are known for X for some types of endomorphism
algebras, but not in general. See [58].

2.4.8. A complex abelian variety X gives rise to a Shimura datum (G,X ) with
G = MT(X). The associated adjoint Shimura datum is a product of simple adjoint
Shimura data (Hj ,Yj). Vasiu [102] has proven a very general result that if certain
Lie types do not occur among the (Hj ,Yj), the Mumford–Tate conjecture for X is
true.

3. Motives and the Motivic Mumford–Tate conjecture

3.1. Motives and motivic Galois groups

It is time to bring motives into the discussion. This will give us a better understand-
ing of why we expect the MTC to be true, and will also lead to a stronger variant
of the MTC.

Motivated cycles. In the past two decades the theory of motives has seen spectacular
developments. As an excellent starting point for further reading we recommend the
book [6]. In this article we shall only consider pure motives as defined by André
in [5]. His definition is modelled after the classical construction of Grothendieck. In
Grothendieck’s approach one is confronted with the problem that we do not know
how to construct enough algebraic cycles. André’s key insight is that one obtains
a theory with almost all expected properties by formally adjoining the Lefschetz
operator ∗L for every smooth projective variety X equipped with an ample class L.

We briefly review André’s construction, referring to the original paper [5] for
many more details and for generalizations. Let K be a field, and denote by SmPr(K)
the category of smooth projective K-schemes. We fix a Weil cohomology theory H
on smooth projective K-schemes, with coefficient field Q of characteristic 0. We
further assume that the hard Lefschetz theorem holds for this theory; by this we
mean that for every irreducible X in SmPr(K) of dimension d and every ample class
L ∈ H2(X) the maps Li : Hd−i(X) → Hd+i(X) are isomorphisms. This holds, for
instance, if for H we take �-adic cohomology for some prime number � �= char(K).

A motivated cycle on X is defined to be a class ξ ∈ H(X) that can be obtained
via the following procedure:

• Let Y be another variety in SmPr(K) and choose ample classes LX on X and
LY on Y .

• On X×Y , consider the ample class L = pr∗X(LX)+pr∗Y (LY ) and let ∗L denote
the associated Lefschetz involution on H(X × Y ). By definition, if we write a
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cohomology class x ∈ Hj(X × Y ) as x =
∑

Lk(xj−2k) with xj−2k ∈ Hj−2k
prim (X ×

Y ), then

∗L(x) =
∑

Ldim(X×Y )−j+k(xj−2k) ,

which may formally be written as Ldim(X×Y )−j(x).
• Let α and β be algebraic cycle classes on X × Y with Q-coefficients, and take

ξ = prX,∗
(
α ∪ ∗L(β)

)
.

The set Amot(X) of motivated cycles is a graded Q-subalgebra of Heven(X) that
contains all classes of algebraic cycles.

Remarks 3.1.1. (i) The algebra of motivated cycles is constructed as a Q-subalgebra
of H(X) for some “reference cohomology theory” H. However, the algebras Amot(X)
that are obtained do not depend on the chosen cohomology theory; see [5], Sec-
tion 2.3. (Note that the coefficient field Q of H may be bigger than Q.)

(ii) In the above definition we have ignored Tate twists. If we include them we
find that Ar

mot(X) is a subspace of H2r(X)(r).

In the rest of the discussion, we assume char(K) = 0.

André’s category of motives. With algebraic cycle classes replaced by motivated
cycles, the construction of the category Mot(K) is the classical one. For X =

∐
ν Xν

and Y in SmPr(K) withXν irreducible of dimension dν , one defines the graded vector
space Corr•mot(X,Y ) of motivated correspondences by the rule that Corrrmot(X,Y ) =

⊕ν A
dν+r
mot (Xν × Y ). One shows that the usual rule for the composition of correspon-

dences gives a graded map Corr•mot(X,Y )⊗ Corr•mot(Y, Z) → Corr•mot(X,Z).

A motive overK is defined to be a triple (X, e, n) withX a smooth projectiveK-
scheme, e an idempotent in Corr0mot(X,X) and n an integer. One thinks of (X, e, n)
as the motive that is cut out from X by the projector e, and then Tate twisted by n.
A morphism from (X, e, n) to (Y, e′, n′) is defined to be an element of the subspace

e′ ◦ Corrn′−n
mot (X,Y ) ◦ e ⊂ Corrn

′−n
mot (X,Y ) .

In this way we obtain the categoryMot(K) of motives (in the sense of André) overK.

In what follows we usually denote motives by a single bold letter, and if M =
(X, e, n) then we let M(m) = (X, e, n + m). If M = (X, e, n) and M′ = (Y, e′, n′)
are motives, we define their tensor product to be M⊗M′ = (X×K Y, e× e′, n+n′).
We call 1 = (Spec(K), [∆], 0) the unit motive.

We have a contravariant functor H : SmPr(K)op → Mot(K), sending X to the
motive H(X) = (X, [∆X ], 0) and sending a morphism f : X → Y to the class of the
transpose graph [tΓf ] ∈ Corr0mot(Y,X).

An important point is that Corr0mot(X,X) contains all Künneth components
of the diagonal; see [5], Prop. 2.2. As a result we have a decomposition H(X) =
⊕i≥0 Hi(X) that in cohomological realizations gives the usual grading. Also, the
Künneth projectors are used in giving the tensor product the correct commutativity
constraint; see [5], 4.3.
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Let us summarize some basic properties of the category of motives thus ob-
tained.

Properties 3.1.2. (i) The category Mot(K) is a Q-linear graded semisimple Tan-
nakian category.

(ii) If M is a motive over K, its endomorphism algebra End(M) is a finite-dimen-
sional semisimple Q-algebra that admits a positive involution f �→ f †. In partic-
ular, if M is a simple motive then End(M) is a division algebra with a positive
involution and is therefore of the type classified by Albert; see for instance [62],
Section 21.

(iii) Each classical cohomology theory H (de Rham, �-adic, Betti) gives rise to a
realization functor Hmot : Mot(K) → VecQ (with Q the coefficient field of H)
such that H = Hmot◦H. This functor Hmot is a Q-linear fibre functor ofMot(K).

To refer to the grading on Mot(K) one says weight rather than degree. For
instance, for X in SmPr(K) the motive Hi(X)(n) is pure of weight i− 2n.

Definition 3.1.3. The category of Artin motives is the full Tannakian subcategory
MotArt(K) ⊂ Mot(K) generated by all motives Spec(L), for K ⊂ L a finite (separa-
ble) field extension. The category of Abelian motives is the full Tannakian subcate-

gory MotAb(K) ⊂ Mot(K) generated by all Artin motives together with all motives
of abelian varieties over K.

Motivic Galois groups. As we will discuss now, point 3.1.2(iii) leads to the intro-
duction of motivic Galois groups. These will be important for us because of their
(conjectural) relation with Mumford–Tate groups and the �-adic algebraic Galois
groups G0

� that we have discussed in the previous sections. As before, let H be one of
the classical cohomology theories, and let Q be the coefficient field. (More generally
we could work with any Weil cohomology that gives the same notion of homological
equivalence and in which the hard Lefschetz theorem holds.) In what follows we will
simply write H for the realization functor Hmot on motives; this should not lead to
confusion.

Let Mot(K)Q = Mot(K)⊗Q be the Q-linear extension of Mot(K), i.e., the cat-
egory of Q-modules in Mot(K). The objects of Mot(K)Q can be described as triples

M = (X, e, n) where now e is a projector in Corr0mot(X,X) ⊗ Q = A
dim(X)
mot (X ×K

X)⊗Q. We have H(M) = e ·H(X)(n), the image of the endomorphism induced by e
on H(X)(n).

By 3.1.2(iii), we have a fibre functor H: Mot(K)Q → VecQ. We define the
associated motivic Galois group by

Gmot,K,H = Aut⊗(H) .

This is a pro-reductive group over Q. By Tannaka duality we have an equivalence
of tensor categories between Mot(K)Q and the category Rep(Gmot,K,H) of Q-linear
finite dimensional representations of Gmot,K,H.
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If M ∈ Mot(K)Q is a motive with coefficients in Q and 〈M〉 ⊂ Mot(K)Q is the
Tannakian subcategory generated by M, we denote by

Gmot,H(M) ⊂ GL
(
H(M)

)

the associated motivic Galois group. It can be defined as the automorphism group
of H restricted to 〈M〉. Alternatively, the motive M can be viewed as a representa-
tion Gmot,K,H → GL

(
H(M)

)
, and Gmot,H(M) is the algebraic group obtained as the

image of this homomorphism. The group Gmot,H(M) is a (possibly non-connected)
reductive group over Q, and 〈M〉 is equivalent to Rep

(
Gmot,H(M)

)
as a tensor cat-

egory.

The fact thatMot(K)Q is neutral Tannakian means that we can think of motives
in two very different ways: as triples (X, e, n), or as algebraic representations of the
motivic Galois group. The latter point of view, though much less geometric, turns
out to be very useful.

Definition 3.1.4. Let H be a cohomology theory as above, and let M = (X, e, n) be
an object of Mot(K)Q.

(i) An element ξ ∈ H(M) = e · H(X)(n) is a motivated cycle (with coefficients
in Q) if ξ = e · ψ for some ψ ∈ An

mot(X)⊗ Q ⊂ H2n(X)(n).
(ii) A Q-linear subspace H′ ⊂ H(M) is said to be motivated if H′ = H(N) for some

submotive N ⊂ M in Mot(K)Q.

The motivated cycles in H(M) are precisely the invariants in H(M) under the
action of Gmot,H(M). Note that for M = H2n(X)(n) we recover the space An

mot(X)⊗
Q ⊂ H2n(X)(n). To say that H′ ⊂ H(M) is motivated means precisely that H′ is
stable under the action of Gmot,H(M).

Just as the Mumford–Tate group of a polarizable Q-Hodge structure is charac-
terized by the fact that its tensor invariants are the Hodge classes (see Remark 2.1.8),
the motivic Galois group Gmot(M) is characterized by the fact that its tensor in-
variants are the motivated cycles.

Remark 3.1.5. One of Grothendieck’s standard conjectures, called Conjecture B,
states that, for L an ample class on a smooth variety X, the Lefschetz involution ∗L
is given by an algebraic cycle; if this is true for all (X,L), the motivated cycles
are precisely the cohomology classes of algebraic cycles. Let us note that in char-
acteristic 0, Conjecture B is known to imply all other standard conjectures; see [6],
Corollaire 5.4.2.2.

Remark 3.1.6. Suppose ω1 : 〈M〉 → VecQ1 and ω2 : 〈M〉 → VecQ2 are fibre functors,
with Q1 and Q2 fields of characteristic 0. The associated motivic Galois groups
Gmot,i(M) = Aut⊗(ωi) are then inner forms of each other. We shall mostly work
in a situation where ω1 and ω2 are given by cohomology theories Hi (i = 1, 2)
with values in Qi-vector spaces, and where, over some common field extension Q1 ⊂
Ω ⊃ Q2, we have a comparison isomorphism H1 ⊗ Ω ∼−→ H2 ⊗ Ω. The induced
isomorphism GL

(
H1(M)

)
⊗Ω ∼−→ GL

(
H2(M)

)
⊗Ω then restricts to an isomorphism

Gmot,H1(M)⊗ Ω ∼−→ Gmot,H2(M)⊗ Ω.
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Behaviour under field extension. Let H be a cohomology theory on SmPrK with
coefficient field Q. To simplify notation, write Gmot,K for Gmot,K,H. We then have a
short exact sequence

1 −→ Gmot,K
a−→ Gmot,K

b−→ ΓK −→ 1 ,

where, as before, ΓK = Gal(K/K). See for instance [37], Section 6. On the corre-
sponding tensor categories, the maps a and b correspond to the base extension func-
tor Mot(K)Q → Mot(K)Q, respectively to the inclusion MotArt(K)Q ↪→ Mot(K)Q of
the subcategory of Artin motives.

On the other hand, for M in Mot(K) we have a surjective homomorphism
Gmot,K � Gmot(M). The image of the kernel of this homomorphism in ΓK is an
open subgroup that corresponds to a finite Galois extension K ⊂ K�(M), and we
obtain a diagram with exact rows

1 Gmot,K Gmot,K ΓK 1

1 Gmot(MK) Gmot(M) Gal(K�(M)/K) 1

The homomorphism Gmot(MK) → Gmot(M) is an isomorphism on identity compo-
nents.

The extension K ⊂ K�(M) may be characterized by its property that, for K ⊂
L ⊂ K, the (injective) homomorphism Gmot(MK) → Gmot(ML) is an isomorphism
if and only if K�(M) ⊂ L.

The extension K ⊂ K�(M) is independent of the chosen cohomology theory.
In fact, to test whether Gmot(MK) → Gmot(ML) is an isomorphism we may extend
scalars (in the coefficient field, not the base field) to an overfield Q ⊂ Ω and the
claim follows using Remark 3.1.6. Conjecturally, Gmot(MK) is connected, and hence
is the identity component of Gmot(M). (Assuming K to be finitely generated over Q,
this follows from Conjecture 3.2.2 below.) This is not known to be true, however.
(Caution: the proof that is given in [37], Proposition 6.22 is incorrect.) See [49]
for some partial results in this direction. If indeed Gmot(MK) were connected, it
would be natural to write Kconn(M) instead of K�(M), in analogy with the notation
Kconn(ρ) that was introduced in Remark 2.2.2(ii).

Remark 3.1.7. Let K ⊂ L be an extension of algebraically closed fields of character-
istic 0, and for H let us take étale cohomology with Q�-coefficients. If M is a motive
over K, we have a canonical isomorphism Gmot(ML)

∼−→ Gmot(M). This follows

from the Scolie in [5], Section 2.5, together with the fact that for any X in SmPr(K)
we have Hét(X,Q�) ∼−→ Hét(XL,Q�).

3.2. The motivated Mumford–Tate conjecture

The title of this section is slightly misleading, in that we will not discuss one single
conjecture but rather a package of several conjectures that naturally fit together.
Throughout the discussion, K denotes a finitely generated field extension of Q. We
fix an algebraic closure K ⊂ K and write ΓK = Gal(K/K).
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Betti and �-adic realization functors. For every complex embedding σ : K → C
we have an exact faithful tensor functor Hσ : Mot(K) → HSpolQ , sending a motive

M = (X, e, n) to the polarizable Hodge structure e · H(Xσ,Q)(n). Composing this
with the forgetful functor we obtain a fibre functor Mot(K) → VecQ. We again
denote the latter by Hσ; the context will make it clear whether by Hσ(M) we mean
the Q-Hodge structure or the underlying Q-vector space.

Associated with Hσ we have a motivic Galois group Gmot,Hσ for which we use
the simpler notation Gmot,σ. For M in Mot(K) we denote by

Gmot,σ(M) ⊂ GL
(
Hσ(M)

)

the motivic Galois group of the Tannakian subcategory 〈M〉 ⊂ Mot(K).

LetMσ denote the motive over C obtained fromM by extension of scalars via σ.
On motives over C singular cohomology with Q-coefficients gives a fibre functor, and
we write Gmot,B(Mσ) (with B for “Betti”) for the associated motivic Galois group

of Mσ. If σ̃ : K → C is an embedding with σ̃|K = σ, we have Gmot,σ̃(MK) =

Gmot,B(Mσ) as subgroups of GL
(
Hσ(M)

)
; so Gmot,B(Mσ) is a union of connected

components of Gmot,σ(M) and conjecturally it is only the identity component.

We write MT(Mσ) for the Mumford–Tate group of Hσ(M). Using the fact that
for every N in Mot(C) the motivated cycles in the Betti cohomology HB(N) are
Hodge classes, it follows that we have inclusions

MT(Mσ) ⊂ Gmot,B(Mσ) ⊂ GL
(
Hσ(M)

)
. (3.1)

Similarly, for every prime number � we have an exact faithful tensor functor
H� : Mot(K) → Rep(ΓK)Q�

, sending a motive M = (X, e, n) to the Galois represen-
tation ρ�,M on e·H(XK ,Q�(n)

)
. Composing this with the forgetful functor we obtain

a fibre functor Mot(K) → VecQ that we again denote by H�.

We write Gmot,K,� for the associated motivic Galois group of Mot(K)Q�
, and for

M in Mot(K) we denote by

Gmot,�(M) ⊂ GL
(
H�(M)

)

the motivic Galois group of the Tannakian subcategory 〈M〉Q�
⊂ Mot(K)Q�

. Further,
G�(M) denotes the Zariski closure of the image of ρ�,M. From the fact that for every
N in Mot(K) the motivated cycles in H�(N) are Tate classes, it follows that we have
inclusions

G0
� (M) ⊂ Gmot,�(MK) ⊂ GL

(
H�(M)

)
. (3.2)

(Here we use that the inclusion Gmot,�(MK) ↪→ Gmot,�(M) is an isomorphism on
identity components, and that Gmot,�(MK) is reductive.)

Remark 3.2.1. As already mentioned in Remark 2.2.10, the collection of �-adic rep-
resentations {ρ�,M}� is not, in general, known to be a strictly compatible system
of Galois representations. (If M = Hn(X) for some smooth projective X, this is
known.) This means we cannot apply the general results mentioned in 2.2.10. For
instance, to the author’s knowledge it is not known whether the field extension
K ⊂ Kconn(ρ�,M) (see Remark 2.2.2(ii)) is independent of �. Note, however, that if
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M = (X, e, n) then each Kconn(ρ�,M) is a subfield of Kconn(ρ�,H(X)), and the lat-
ter is a finite Galois extension of K that by by a result of Serre (see [81] or [51],
Proposition 6.14) is independent of �.

On the other hand, if by GK,� we denote the projective limit of all G�(M) for
M in Mot(K) then we have a diagram with exact rows

1 G 0
K,� GK,� ΓK 1

1 Gmot,K,� Gmot,K,� ΓK 1

(The top row is in fact split.) This implies that the extensionK ⊂ K�(M) introduced
at the end of Section 3.1, which is independent of �, is contained in Kconn(ρ�,M) for
all �. Hence if K = Kconn(ρ�,M) for some � then Gmot(MK) = Gmot(M).

The Betti and �-adic realization functors are related via comparison isomor-
phisms. Let σ̃ : K → C be a complex embedding, σ its restriction to K, and let �
be a prime number. For X/K smooth projective we have comparison isomorphisms
HB(Xσ,Q)⊗Q�

∼−→ Hét(Xσ,Q�) ∼−→ Hét(XK ,Q�). This gives rise to an isomorphism
of fibre functors on Mot(K)Q�

,

Iσ̃,� : Hσ ⊗Q�
∼−→ H� .

For M a motive over K the induced isomorphism GL
(
Hσ(M)

)
⊗Q�

∼−→ GL
(
H�(M)

)
restricts to an isomorphism

γσ̃,� : Gmot,σ(M)⊗Q�
∼−→ Gmot,�(M) .

Conjecture 3.2.2 (Hodge classes are motivated). Let M be a motive over K. Let σ
be a complex embedding of K. Then the first inclusion in (3.1) is an equality, i.e.,

MT(Mσ)
?
= Gmot,B(Mσ) . (HMσ)

This conjecture may of course be stated directly for a motive over C, without
any choice of a model over a finitely generated field. Our choice to start with an M
over K is motivated (no pun intended) by the desire to show the similarities with
other conjectures, such as the next.

Conjecture 3.2.3 (Tate classes are motivated). Let M be a motive over K. Let � be
a prime number. Then the first inclusion in (3.2) is an equality, i.e.,

G0
� (M)

?
= Gmot,�(MK) . (TM�)

Conjecture HMσ is equivalent to the assertion that for every motive N in
〈Mσ〉 ⊂ Mot(C), all Hodge classes in its Betti realization HB(N) are motivated
cycles. Hence, if M = (X, e, n) and if the Hodge conjecture is true for all powers
of Xσ, Conjecture HMσ is true for M. Similarly, Conjecture TM� is equivalent to
the assertion that the Galois representation ρ�,M is semisimple and that every Tate

class in H�(N), for N in 〈ML〉 ⊂ Mot(L) with K ⊂ L ⊂ K, is a motivated cycle
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over K. Hence, if M = (X, e, n) and if the Tate conjecture is true for all powers
of X, Conjecture TM� is true for M.

Conjectures HMσ and TM� each imply that Gmot,�(MK) is connected. It can
be shown that TM� also implies that G�(M) is equal to Gmot,�(M). (Use the Scolie
in [5], Section 2.5.)

Conjecture 3.2.4 (Mumford–Tate conjecture). Let M be a motive over K. Let σ̃
be a complex embedding of K, and let � be a prime number. Then the isomor-
phism GL

(
Hσ(M)

)
⊗ Q�

∼−→ GL
(
H�(M)

)
that is induced by the comparison iso-

morphism Iσ̃,� restricts to an isomorphism

MT(Mσ)⊗Q�

?
∼−−→ G0

� (M) . (MTCσ̃,�)

Remarks 3.2.5. (i) If two of the above three conjectures are true then so is the third.
(Recall that Gmot,B(Mσ) = Gmot,σ̃(MK) and that under the comparison isomor-

phism Iσ̃,� we have Gmot,σ̃(MK)⊗Q� = Gmot,�(MK) as subgroups of GL
(
H�(M)

)
.)

By the motivic Mumford–Tate conjecture (for given σ̃ and �) we mean the conjunc-
tion of the three conjectures.

(ii) Of course, Conjectures 3.2.2 and 3.2.3 are implied by the Hodge Conjecture
and the Tate Conjecture, respectively. One may split up the HC or TC into two
parts: (a) Hodge classes (resp. Tate classes) are motivated, (b) Motivated cycles are
algebraic. One can say some interesting things about (b); notably there is a result
of Voisin [104] that if motivated cycles on (smooth projective) varieties over Q are
algebraic, the same is true on smooth projective varieties over C. Voisin in fact
works with absolute Hodge classes rather than motivated cycles, but the argument
works in either setting. She also proves that if the HC is true for varieties over Q,
the Hodge conjecture on complex varieties can be reduced to showing that certain
Hodge loci are defined over Q. See also [103], Section 3.

3.3. Some known results (2)

“Hodge classes are motivated” for abelian motives. One of the highlights in our
present knowledge about the motivated Mumford–Tate conjecture, is the following
result of Deligne and André.

Theorem 3.3.1. Let M be an abelian motive over C. Then Conjecture 3.2.2 is true
for M, i.e., MT(M) = Gmot,B(M).

This result was proven by Deligne [35], working in the category of motives for
absolute Hodge cycles. André, who already simplified part of Deligne’s proof in [2],
proved the result for his category of motives in [5], Section 6. Let us also note that
Deligne’s result was extended to 1-motives by Brylinski (see [17], Théorème 2.2.5),
and that it was strengthened to include a p-adic comparison property by Blasius,
Ogus and Wintenberger (see [13] or [108] and the references contained therein). The
latter strengthening also follows from André’s version of the result.

Let M be an abelian motive over a finitely generated field K of characteristic 0.
By Theorem 3.3.1, Conjecture HMσ is then true for M, for all σ; this implies that
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the Mumford–Tate Conjecture MTCσ̃,� is equivalent to Conjecture TM� and does
not depend on σ̃. By Theorem 2.2.7 (the characteristic 0 case, proven by Faltings)
we also know that G0

� (M) is reductive, as it is a quotient of the G0
� of an abelian

variety. Moreover, the Deligne–André theorem has as obvious consequence that we
get one of the inclusions predicted by the Mumford–Tate conjecture: with notation
as in Conjecture 3.2.4 we have

MT(Mσ)⊗Q� ⊃ G0
� (M) . (3.3)

This result was also obtained by Piatetksi-Shapiro and Borovoi; see [15].

Another consequence is that for abelian motives the Mumford–Tate conjecture
is true on connected centres. With notation as in Section 3.2, the precise statement
is the following.

Theorem 3.3.2. Let M be an abelian motive over the finitely generated field K of
characteristic 0. Choose a complex embedding σ̃ of K and a prime number �. Let Zσ

be the centre of the Mumford–Tate group MT(Mσ), and let Z� be the centre of the
�-adic algebraic Galois group G0

� (M). Then under the isomorphism GL(Hσ)⊗Q�
∼−→

GL(H�) induced by the comparison isomorphism Hσ⊗Q�
∼−→ H�, the image of Zσ⊗Q�

contains Z� and we have an isomorphism Z0
σ ⊗Q�

∼−→ Z0
� .

This result, which of course generalizes the result mentioned in 2.4.4, is due
to Vasiu; see Vasiu [102], Theorem 1.3.1. A different proof is given by Ullmo and
Yafaev in [98], Corollary 2.11. In these papers the result is stated only for abelian
varieties, but it is easy to deduce from this the same conclusion for abelian motives.

Which motives are abelian? Consider motives over an algebraically closed field K
of characteristic 0. It is clear from the definition of the category of abelian motives
that any submotive of a product of curves and abelian varieties lies in this category.
(Note that the H1 of a curve is isomorphic to the H1 of its Jacobian and hence lies in

MotAb(K).) We refer to [73] for a beautiful study of how big this class is. Let us note,
for instance, that ruled surfaces, unirational varieties and Fermat hypersurfaces are
all dominated by products of curves. On the other hand, “most” motives do not
lie in MotAb(K). As remarked by Deligne at the end of his paper [32], from the
structure of the Mumford–Tate group one can sometimes see that a Hodge structure
does not lie in the Tannakian subcategory of HSQ generated by all abelian varieties.
(This observation lies at the basis of the results in [73].) For instance, for n ≥ 2 the
motive of a very general hypersurface X ⊂ Pn+1

C of degree ≥ n+ 3 is known not to

lie in MotAb(C).
On the positive side, there are some non-trivial examples of abelian motives. For

instance, [4], Theorem 1.5.1, contains as particular instances the fact that the motive
of a complex K3 surface, and more generally the H2 of any complex hyperkähler
variety with second Betti number B2 > 3, lies in MotAb(C). We will say more about
the results obtained in [4] in Section 4.4.
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Dependence on σ and �. Let us now address the question how the conjectures stated
in Section 3.2 depend on σ (or σ̃) and �. The brief answer is that these conjectures
are known to be independent of σ and � for abelian motives, and that for general
motives not much seems known.

First let us consider the dependence on σ or σ̃. As we have already seen, for
abelian motives this is not an issue. For more general motives, the problem that
we run into is the following. Suppose we have a nonsingular projective variety Y
over C and an automorphism γ of C. We may then form γY , the pull-back of Y
via Spec(γ) : Spec(C) → Spec(C), and a morphism of schemes γY → Y , which
however is not a morphism of schemes over C, unless γ is the identity. As explained
for instance in [25], on de Rham cohomology the latter map induces a γ-linear
isomorphism dR(γ) : HdR(Y/C) ∼−→ HdR(

γY /C) that is compatible with the Hodge
filtrations.

If we start with a motivated cycle α in H(Y,Q), and if we write αdR for its image
in HdR(Y/C), then dR(γ)

(
αdR

)
is again a motivated cycle, i.e., dR(γ)

(
αdR

)
= βdR

for a motivated cycle β on γY . This property just means that motivated cycles are
absolute Hodge classes. (Cf. [5], Proposition 2.5.1.)

Now suppose Y = Xσ for X in SmPrK and σ : K → C, in which case γY = Xτ

with τ = γ ◦ σ. If we assume that conjecture HMσ is true for X then all Hodge
classes α on Xσ are motivated cycles; hence, by the recipe just explained, they can
be transported to motivated cycles on Xτ . This gives a collection of Hodge classes
on Xτ of which we know they are motivated. But a priori there could be more
Hodge classes on Xτ , which prevents us from concluding that HMσ implies HMτ .
For Conjecture MTCσ̃,� a similar problem occurs. (If K is a number field, it is easy
to see that MTCσ̃,� only depends on σ and not on the choice of an embedding σ̃
extending it.)

Next let us discuss the dependence of conjectures TM� and MTCσ̃,� on �. For
abelian motives, it is known that these conjectures (which, as discussed above, for
abelian motives are equivalent) are independent of �. This uses some facts that
are not known for arbitrary motives. To explain what is going on, let us sketch
the argument for a motive M = H1(X), where X is an abelian variety. There are
three key ingredients. (1) We know that the system of �-adic Galois representations
{ρ�,X} is a strictly compatible system. (Cf. Remark 2.2.10.) By a result of Serre
([81], Section 3, or [51], Proposition 6.12) this implies that the rank of G0

� (X) is
independent of �. (2) As discussed above, G0

� (X) ⊂ MT(Xσ) ⊗ Q�. (3) As we have
seen in Theorem 3.3.2, Z� ⊂ (Zσ ⊗ Q�). Now suppose the MTC is true for some �.
Then by (1) and (2), for every � the rank of G0

� (X) equals the rank of MT(Xσ),
and by an application of the Borel–de Siebenthal theorem it follows from (3) that
G0

� (X) = MT(Xσ) ⊗ Q�. (A modern reference for the Borel–de Siebenthal theorem
is [65].)

Even for motives of the form M = Hn(X) with X a nonsingular projective
variety (for which (1) is known), attempts to generalize this get stuck on the fact that
properties (2) and (3) are not known in general. If we restrict our attention to abelian
motives M then (2) and (3) are still valid but property (1) is not known in general.
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Fortunately, Commelin [27] has been able to prove, for an abelian motive, that
the system of Galois representations {ρ�,M} satisfies a slightly weaker compatibility
property, which suffices to conclude that the rank of G0

� (M) is independent of �.
(There are related results of Laskar [53].) This gives the desired conclusion for abelian
motives; see [28], Corollary 7.6.

Product situations. Suppose H1 and H2 are Hodge structures of which we know
the Mumford–Tate groups. In general there is no easy recipe for the Mumford–Tate
group ofH1⊕H2. As we have seen in 2.1.4(iii), MT(H1⊕H2) is an algebraic subgroup
of MT(H1)×MT(H2) that maps surjectively onto both factors, but only based on this
information we cannot determine MT(H1⊕H2). Of course, there can be reasons why
this group has to be “small”; e.g., if there exists an isomorphism of Hodge structures
f : H1

∼−→ H2 then MT(H1⊕H2) is the graph Γf ⊂ MT(H1)×MT(H2) of the induced
isomorphism MT(H1) ∼−→ MT(H2). (Cf. 2.1.4(iv).) At the other extreme, suppose X
and Y are abelian varieties such that all simple factors of the endomorphism algebra
End0(X) are of Albert Type I, II or III, and such that Y is of CM type. Then the
special Mumford–Tate group SMT(X) is semisimple (see 2.4.3), whereas SMT(Y )
is a torus; using this one finds that SMT(X × Y ) = SMT(X)× SMT(Y ). (We have
to use special Mumford–Tate groups here: as discussed in Remark 2.1.12 we have
MT = (Gm · id) · SMT but MT(X × Y ) does not contain (Gm · id)× (Gm · id).)

For �-adic algebraic Galois groups and motivic Galois groups, analogous remarks
can be made. This has as consequence that if we know one of the conjectures 3.2.2–
3.2.4 for motives M and N, in general there is no easy way to deduce that same
conjecture for M⊕N.

For abelian varieties, under additional hypotheses more can be said. We refer
the reader to [42], [69], [54], [59] and the references contained therein, and also to
[102], Theorem 1.3.7. As an example of what comes out, let us mention that the
HC, TC and MTC are true for any complex abelian variety whose simple factors all
have dimension ≤ 2. Commelin [27] recently proved the Mumford–Tate conjecture
for any product of abelian motives of K3 type. It is hoped that his methods can
be extended to handle many more product situations, assuming the MTC for the
factors.

4. Behaviour in families

4.1. Variation of Hodge structure

Algebraic monodromy groups. Let S be an irreducible nonsingular complex alge-
braic variety. We denote by San the associated complex manifold. If Q is a coef-
ficient field of characteristic 0, let LS(San)Q denote the category of local systems
of Q-vector spaces on San. There is an obvious tensor product on LS(San)Q, mak-
ing it a Q-linear neutral Tannakian category. If b ∈ S is a base point, the functor
Fibb : LS(S

an)Q → VecQ given by sending a local system V to its fibre V = Vb at b
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is a fibre functor. We have a monodromy representation

ρ = ρV : π1(S
an, b) → GL(V )

that completely determines V . The automorphism group of the fibre functor Fibb
on the Tannakian subcategory 〈V 〉 ⊂ LS(San)Q generated by V is the algebraic
monodromy group

Gmono(V /S) ⊂ GL(V )

obtained as the Zariski closure of the image of ρ. This is an algebraic group over Q.
By Tannakian theory we have an equivalence of tensor categories between 〈V 〉 and
the category Rep

(
Gmono(V /S)

)
of (finite dimensional, algebraic) representations

of Gmono(V /S) over Q.

Let us also recall that LS(San)C is equivalent to the category MIC(San) of flat
holomorphic vector bundles (V ,∇) on San. (MIC is for module with integrable
connection.) The latter, in turn, is equivalent to the category MICreg(S) of algebraic
flat vector bundles with regular singularities; see [30], Théorème II.5.9.

The algebraic monodromy group Gmono(V /S) is not connected, in general. If
f : S′ → S is a generically finite dominant morphism, the algebraic monodromy
group of f∗(V ) over S′ may be smaller than Gmono(V /S) but the two have the same
identity component. The inverse image of the identity component G0

mono(V /S) ⊂
Gmono(V /S) in π1(S, b) corresponds to a connected étale cover ν : Sconn(V ) → S
such that the algebraic monodromy group of ν∗(V ) is connected. This cover plays
a role analogous to the field extension K ⊂ Kconn(ρ) associated with a Galois
representation ρ.

Remark 4.1.1. In what follows we will sometimes consider local systems of algebraic
groups G ⊂ GL(V ). If b is a base point and V = Vb, the fibre Gb ⊂ GL(V ) is an
algebraic subgroup that is normalized by Gmono(V /S) (or, what is equivalent, by
the action of π1(S

an, b)). Conversely, if we have an algebraic subgroup Gb ⊂ GL(V )
that is normalized by Gmono(V /S), it is the fibre at b of a uniquely determined local
system of algebraic groups G ⊂ GL(V ). We may, for instance, view the algebraic
monodromy group itself as a local system Gmono(V /S) ⊂ GL(V ) whose fibre at any
point s is the image of π1(S

an, s) in its monodromy representation on Vs.

The generic Mumford–Tate group of a VHS. Let us recall that, with S as above, a
Q-variation of Hodge structure (abbreviated VHS) of weight n over S is given by a
Q-local system V on San together with a finite descending filtration Fil• of V ⊗QOS

by holomorphic subbundles such that:

• for every s ∈ S, the filtration Fil•s on the fibre Vs⊗C defines a Hodge structure
of weight n;

• for all indices i we have ∇(Fili) ⊂ Ω1
S ⊗ Fili−1 (Griffiths transversality).

We refer to [66], Chapter 10, for a much more detailed discussion. In what
follows we denote by V the local system underlying the VHS V . We denote the
category of Q-VHS over S by VHS(S)Q. As in the case of pointwise Hodge structures,
we have Tate twists and the notion of a polarization. All variations that are of interest
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to us are polarizable, and the subcategory VHSpol(S)Q of polarizable variations is

semisimple. There is an obvious tensor product on VHSpol(S)Q, making it a neutral
Q-linear Tannakian category. The functor Fibb given by V �→ Vb is again a fibre
functor. We shall describe the algebraic group corresponding with 〈V 〉 ⊂ VHSpol(S)Q
after Theorem 4.1.3 below.

For the purpose of this paper we mostly care about variations of Hodge struc-
ture V with Q-coefficients. There are some results, however, in which it is important
that V comes from a variation with Z-coefficients. For b ∈ S a base point and V = Vb,
this is equivalent to the condition that there is a lattice VZ ⊂ V that is stable under
the action of π1(S

an, b).
If V is a Q-VHS over S then for every s ∈ S we have a Hodge structure on the

fibre Vs and an associated Mumford–Tate group MT(Vs) ⊂ GL(Vs). The following
result gives important information on how this Mumford–Tate group varies with s.

Theorem 4.1.2. Let S be an irreducible nonsingular complex algebraic variety. Let
V be a polarizable Q-VHS on S that admits a Z-structure, and denote by V the
underlying Q-local system. Then there exist a local system of algebraic subgroups
M = MT(V /S) ⊂ GL(V ) and a subset Exc(V ) ⊂ S that is a countable union of
algebraic subvarieties S′ � S, such that:

(a) for every s ∈ S we have MT(Vs) ⊂ Ms;
(b) the inclusion MT(Vs) ⊂ Ms is strict if and only if s ∈ Exc(V ).

The points in Hgen(V ) = S \ Exc(V ) are called the Hodge-generic points for
the variation V . If the context requires it, we write Hgen(V /S). By definition,
MT(V /S)s = MT(Vs) for all Hodge-generic points. We call MT(V /S) the generic
Mumford–Tate group of V . In practice, we often choose a base point b ∈ S and
work with the fibre MT(V /S)b ⊂ GL(V ), where V = Vb. By Remark 4.1.1, this
fibre completely determines MT(V /S). We again use the notation MT(V /S) for
this fibre.

It is easiest to describe the exceptional locus by working in a situation where
the underlying local system V is trivialized. As Mumford–Tate groups control tensor
invariants, we need to consider not only V but also all tensor spaces W = T (V )

built from it. If u : S̃ → S is the universal cover and b̃ ∈ S̃ lies above b ∈ S,
we have a trivialization u∗V ∼= V × S̃, with V = Vb. Likewise, for any tensor
construction W we have u∗W ∼= W × S̃, with W = Wb = T (V ). For every s̃ ∈ S̃
we have a Hodge structure on W × {s̃}. Any ξ(s̃) ∈ W × {s̃} uniquely extends to a

section ξ over S̃. Given such ξ ∈ Γ(S̃, u∗W ), one may consider the subset Σ(ξ) ⊂ S̃

of those points t̃ ∈ S̃ for which ξ(t̃) is a Hodge class. By construction, ξ(t̃) is an
element of the rational vector space W ×{t̃}, so it is a Hodge class if and only if its
image in the vector bundle u∗W ⊗Q OS̃ lies in the holomorphic subbundle Fil0. In
this way we see that Σ(ξ) is a countable union of irreducible analytic subvarieties

of S̃. If we start with a Hodge class ξ(s̃), it may happen that Σ(ξ) = S; this is

equivalent to saying that at every point t̃ ∈ S̃, the class ξ(t̃) ∈ W × {t̃} that is
obtained from ξ(s̃) by horizontal transport is again a Hodge class. One obtains the
exceptional locus Exc(V ) ⊂ S as the image in S of the union of all loci Σ(ξ) (for all
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tensor contructions W and all ξ ∈ Γ(S̃, u∗W )) for which Σ(ξ) is strictly contained

in S̃. The fact that the components of the exceptional locus are in fact algebraic
subvarieties of S is a deep result of Cattani, Deligne and Kaplan [24].

We now turn to the relation with the algebraic monodromy group, which, as
we will see, is one of the main reasons why working with families of varieties (or
motives) is so effective.

Theorem 4.1.3. Let S be an irreducible nonsingular complex algebraic variety with
a base point b ∈ S. Let V be a polarizable Q-VHS on S that admits a Z-structure.
Let V = Vb, let Gmono(V /S) ⊂ GL(V ) be the algebraic monodromy group, and let
MT(V /S) ⊂ GL(V ) be the generic Mumford–Tate group of V .

(i) The connected algebraic monodromy group G0
mono(V /S) is a semisimple normal

subgroup of MT(V /S).
(ii) If there is an s ∈ S for which the Hodge structure Vs is of CM type then

G0
mono(V /S) = MTder(V /S).

Part (i), except for the normality statement, is due to Deligne; see [31], Théorè-
me 4.2.6 and [32], Proposition 7.5. The remaining assertions are due to André and
can be found, in a more general form, in Sections 5–6 of [3]. In deriving this theorem,
the Theorem of the Fixed Part plays an essential role. (See [71], Section 7 or, in a
geometric setting, [31], Section 4.) We will come back to the latter in Theorem 4.3.1
below.

The automorphism group of the fibre functor Fibb on the Tannakian subcate-
gory 〈V 〉 ⊂ VHSpol(S)Q is the algebraic subgroup of GL(V ) generated by the (fibre
at b of) the generic Mumford–Tate group MT(V /S) ⊂ GL(V ) of V together with the
algebraic monodromy group Gmono(V /S) ⊂ GL(V ) (which normalizes MT(V /S)).
In particular, if Gmono(V /S) is connected then this group is just MT(V /S) and we
obtain an equivalence of tensor categories between 〈V 〉 and Rep

(
MT(V /S)

)
.

The proof of part (ii) of the theorem is not hard to understand and closer
inspection of the argument in fact gives something a little stronger. Namely, if Z is
the centre of MT(V /S) and M1, . . . ,Mr are its Q-simple factors, ordered in such
a way that we have Gmono(V /S) = Mt+1 · Mt+2 · · ·Mr for some t ≥ 0, then for
every s ∈ S the Mumford–Tate group of Vs contains a normal subgroup isogenous
to Z ·M1 · · ·Mt. See also the first assertion in Theorem 4.3.8 below.

4.2. Families of Galois representations

We now discuss some �-adic analogues of the above results about variations of Hodge
structure. Consider a nonsingular and geometrically connected variety S over a
field K of characteristic 0. Fix an algebraic closure K ⊂ K and a geometric base
point b of SK . We use the same notation b for the induced base points of S and
of Spec(K). In what follows, π1(S, b) denotes the Grothendieck fundamental group.

In their barest form, the families of Galois representations that we will consider
are just the lisse Q�-sheaves on S that admit an integral structure. Such a sheaf V�

is given by a continuous representation

ρ� : π1(S, b) → GL(V�)
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where V� = V�,b = b∗(V�) is the fibre of V� at b. Note that by compactness of
the fundamental group, V� contains a Z�-lattice that is stable under the action of
π1(S, b). We define G�(V�/S) ⊂ GL(V�) to be the Zariski closure of the image of ρ�.
For S = Spec(K) we recover the groups G�(H) that we have studied in Section 2.2.

We denote by V� the restriction of V� to SK . It is sometimes useful to view

G�(V�/S) as an �-adic local system of algebraic subgroups of GL(V�), whose fibre
at any geometric point s̄ is the image of π1(S, s̄) in its monodromy representation
on V�,s̄. (Remark 4.1.1 has an obvious �-adic analogue.) For reasons to become clear
(see Remark 4.2.3), we refer to G�(V�/S) as the generic �-adic algebraic Galois group
of V� over S.

Galois-generic points. Recall that we have a short exact sequence

1 −→ π1(SK , b) −→ π1(S, b) −→ ΓK −→ 1 (4.1)

with ΓK = Gal(K/K) = π1(Spec(K), b). We define Gmono(V�/SK) ⊂ GL(V�) to

be the Zariski closure of ρ�
(
π1(SK , b)

)
. By construction it is a normal algebraic

subgroup of G�(V�/S). Note that this monodromy group only depends on V�/SK ,
so the notation is justified. It is sometimes more convenient for us to work with the
corresponding local systems on SK of algebraic groups

Gmono(V�/SK) � G�(V�/S) ⊂ GL(V�) .

For a point s ∈ S with residue field κ(s) we can complete (4.1) to a commutative
diagram

Γκ(s)

1 π1(SK , b) π1(S, b) ΓK 1

σs

in which σs is independent of choices only up to conjugacy by an element of π1(SK , b).
For the discussion that follows, it is important to note that Γκ(s) → ΓK has open
image.

Definition 4.2.1. A point s ∈ S is said to be Galois-generic (with respect to the lisse
Q�-sheaf V�) if the image of ρ� ◦ σs is open in the image of ρ�. A point s ∈ S(K) is
said to be Galois-generic (with respect to V�) if its image point in S is Galois-generic
in the previous sense.

Note that we here consider the actual images of ρ� and ρ� ◦ σs, and not their
Zariski closures. See however Remark 4.2.3. We write Ggen(V�) or Ggen(V�/S) for
the set of Galois-generic points and Exc(V�) ⊂ S for its complement.

Some useful basic properties concerning this notion can be found in Section 3.2
of [20]. Apart from the fact that the generic point η of S is Galois-generic, it is not
clear a priori if there are any other Galois-generic points. One can say more if the
field K is hilbertian, which is the case, for instance, if K is finitely generated over Q.
(See [85], Section 9.5.) In that case, it follows from the results in [85], Section 10.6,
that for d large enough there are infinitely many Galois-generic points s ∈ S with
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[κ(s) : K] ≤ d. If additionally S is a curve, we have the following much more precise
result of Cadoret and Tamagawa. As explained in [22], Section 5.2, the technical
condition that gab = 0 that appears in the statement is always satisfied in the
examples that are of interest to us.

Theorem 4.2.2 (Cadoret–Tamagawa). Let S be a geometrically connected nonsingular
curve over a field K that is finitely generated over Q. As above, let V� be a lisse Q�-
sheaf on S that admits a Z�-structure. Let g be the Lie algebra of ρ�

(
π1(SK , b)

)
, and

assume that gab = 0. Then for every d ≥ 1 the set

Exc(V�)
≤d =

{
s ∈ Exc(V�)

∣∣ [κ(s) : K] ≤ d
}

is finite, and there is an integer Bd(V�) such that for all s ∈ Ggen(V�/S) with
[κ(s) : K] ≤ d we have

[
Im(ρ�) : Im(ρ� ◦ σs)] ≤ Bd(V�) .

This result is Theorem 1.1 in [23]. It is an open problem how to extend such
a result to lisse Q�-sheaves over a base variety of higher dimension. (It is not even
clear what is the expected statement.)

Remark 4.2.3. The lisse �-adic sheaves in which we are interested are those coming
from families of motives; see the next section. These have the property that for
every point s ∈ S the image of ρ� ◦ σs is open in the group of Q�-points of its
Zariski closure. To see this one needs the following. If K is a number field then the
�-adic Galois representation associated with a motive over K has the property that
it is a Hodge–Tate representation at all places above �; this follows from a result of
Faltings (see [46], Corollaire 2.1.3) together with the fact that any subquotient of
a Hodge–Tate representation is again Hodge–Tate. By a result of Bogomolov [14],
this property implies that the image of such a representation is open in the Q�-
points of its Zariski closure. This extends to fields K that are finitely generated
over Q by using Hilbert’s irreducibility theorem, as discussed above; see again [85],
Section 10.6, or [81].

For such �-adic sheaves it follows that s ∈ S is Galois-generic if and only if
the inclusion G0

� (V�,s) ⊂ G0
� (V�/S) is an equality. This property, together with the

abundance of Galois-generic points (assuming the base variety S to be defined over a
finitely generated field K) justifies calling G0

� (V�/S) the generic �-adic Galois group
of V�/S.

4.3. Families of motives

Again let S be a nonsingular geometrically connected variety over a field K of
characteristic 0. Let f : X → S be a projective smooth morphism. Fixing i ≥ 0
and n ∈ Z, consider the lisse Q�-sheaf H� = Rif∗

(
Q�(n)

)
. If K = C we may also

consider H = Rif∗
(
Q(n)

)
, which is a variation of Hodge structure on San. Let

ξ ∈ H0(SK ,H�) (respectively ξ ∈ H0(S,H )) be a global section. If b ∈ S(K) is
a geometric base point, ξ may also be given as a π1(SK , b)-invariant class in the

fibre H� = H�,b = Hi(Xb,Q�) (resp. H = Hb = Hi(Xb,Q)). If P is a property of
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such cohomology classes, one may wonder if this property is stable under parallel
transport. In other words: if ξ(s) has property P for some point s, does it follow that
all ξ(t) have this property P ?

Theorem 4.3.1. Notation and assumptions as above.

(i) With K = C, if ξ(s) ∈ Hi
(
Xs,Q(n)

)
is a Hodge class for some s ∈ S(C) then

ξ(t) is a Hodge class for every t ∈ S(C).
(ii) If ξ(s) ∈ Hi

(
Xs,Q�(n)

)
is a Tate class for some closed point s ∈ S then ξ(t) is

a Tate class for every closed point t.
(iii) If ξ(s) ∈ Hi

(
Xs,Q�(n)

)
is a motivated cycle for some point s ∈ S then ξ(t) is

a motivated cycle for every point t.

Part (i) follows from, and is essentially equivalent to, the Theorem of the Fixed
Part; see [71], Corollary 7.23. (Of course, the existence of nonzero Hodge classes
implies that i = 2n.) Part (ii) is essentially trivial: since by assumption ξ(s) ∈
Hi

(
Xs,Q�(n)

)
is invariant under the action of π1(SK , b), if ξ(s) is a Tate class then

it is invariant under an open subgroup of π1(S, b). This implies that the same is true
at every closed point t, hence ξ(t) is again a Tate class. Part (iii), which is much
deeper, is one of the main results (Théorème 0.5) of André’s article [5].

Remark 4.3.2. Take K = C. If for “P” we take the stronger property of being the
cohomology class of an algebraic cycle, we arrive at the Variational Hodge Conjecture
(VHC) as formulated by Grothendieck in [40], footnote 13 on page 103. With ξ ∈
H0

(
S,Rif∗Q(n)

)
as above, this is the assertion that if ξ(s) ∈ Hi

(
Xs,Q(n)

)
is an

algebraic cycle class for some s ∈ S(C), the same is true for all ξ(t). It follows
from Theorem 4.3.1(i) that the Hodge conjecture implies the Variational Hodge
Conjecture, and the latter should in fact be viewed as a key (conjectural) step
towards the Hodge conjecture. It is known that the VHC for abelian schemes implies
the Hodge conjecture for abelian varieties; see [1], Section 6 or [5], Section 6.

Combining Theorem 4.3.1(iii) with Remark 3.1.5, we see that the Standard
Conjecture B implies the VHC. See [7] for a partial extension of this to families in
positive characteristic.

Definition 4.3.3. Let S be a nonsingular geometrically connected variety over a
field K of characteristic 0. By a family of motives over S we mean a triple M =
(X, e, n) with

• f : X → S a projective smooth morphism with connected fibres,
• e a global section of R2d(f × f)∗Q�,X×SX(d), where d is the relative dimension
of X/S,

• n an integer,

such that for every s ∈ S (or, equivalently, some s ∈ S) the value e(s) ∈ H2d
(
Xs×κ(s)

Xs,Q�(d)
)
is a projector in Corr0mot(Xs, Xs) = Ad

mot(Xs×κ(s)Xs), as in Section 3.1.

Let us note that, a priori, such families are more general than those considered
in [5], Section 5.2. With M as in the definition, the fibre Ms = (Xs, es, n) at a point
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s ∈ S is a motive over κ(s). If the base field is C we may also realize the projector e
as a global section of R2d(f × f)∗QX×SX(d).

Realizations. Assume the base fieldK is finitely generated over Q. LetM = (X, e, n)
be a family of motives over S. As in Section 3.2 we can consider the Hodge realiza-
tions and �-adic realizations of this family. Given a complex embedding σ : K → C,
we define Hσ(M) to be the variation of Hodge structure on San

σ = (S⊗K,σC)an that
is obtained as

Hσ(M) = e ·
(⊕
i≥0

Rifan
σ,∗Q

)
(n)

where fσ : Xσ → Sσ is the morphism obtained from f by base change. We denote
the underlying local system by Hσ(M). Similarly, for � a prime number, let

H�(M) = e ·
(⊕
i≥0

Rif∗Q�

)
(n) ,

which is a lisse Q�-sheaf on S. We denote by H�(M) its restriction to SK . To under-
stand the role of this local system, note that in working with a single motive over a
field K, we have used the symbol H�(M) for both the associated Galois representa-
tion and its underlying vector space. One should think of the Galois representation
as an �-adic sheaf on Spec(K); the underlying vector space is then the pull-back
of this sheaf to Spec(K). In that situation, using the same notation H�(M) is not
likely to cause any confusion. When working over a base variety S, however, the
underlying vector space gets replaced by a local system on SK , and it seems a good

idea to use a special notation for this object, namely H�(M).

The local systems Hσ(M) on San
σ and H�(M) on SK may be compared once

we choose an embedding σ̃ : K → C with σ̃|K = σ. To express this, take a base point
b ∈ S(K). We again write b for the induced C-valued point of Sσ. The morphism
Sσ → SK induces an isomorphism π1(SK , b) ∼= π1(Sσ, b), and the latter group is

the pro-finite completion of π1(S
an
σ , b). Writing Hσ = Hσ(M)b and H� = H�(M)b,

we have a comparison isomorphism Iσ̃,� : Hσ ⊗ Q�
∼−→ H�. The comparison of local

systems then takes the form of a commutative diagram

π1(S
an
σ , b) Aut(Hσ) = GL(Hσ)

(
Q
)

π1(SK , b) Aut(H�) = GL(H�)
(
Q�

)
,

c

ρHσ(M)

ρH�(M)

in which c is the natural map from π1(S
an
σ , b) to its pro-finite completion, which is

π1(Sσ, b), followed by the isomorphism π1(Sσ, b) ∼−→ π1(SK , b). The following result
is well-known but as it is important for the discussion, let us make it explicit.

Lemma 4.3.4. The isomorphism GL(Hσ) ⊗ Q�
∼−→ GL(H�) that is induced by Iσ̃,�

restricts to an isomorphism

Gmono

(
Hσ(M)/Sσ

)
⊗Q�

∼−→ Gmono

(
H�(M)/SK

)
.
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Proof. The image of c is dense in π1(SK , b), so Gmono

(
H�(M)/SK

)
is the Zariski clo-

sure of the image of π1(S
an
σ , b) in GL(H�). As this image is contained in GL(Hσ)

(
Q
)
,

the assertion follows. �

Remark 4.3.5. The above gives a “pointwise” comparison of local systems: we com-
pare fibres of the local systems Hσ(M) and H�(M) as representations of the funda-
mental group. For what follows it is more natural to directly compare Hσ(M)⊗Q�

and H�(M). This of course requires some care, as the first is a local system on San
σ

whereas the second is an �-adic local system on SK . To compare the two, one uses
that there is a morphism of topoi (ε∗, ε∗) : S

an
σ → Sσ,ét (compare [11], Section 6.1);

the assertion is then that Hσ(M) ⊗ Q�
∼= ε∗

(
σ∗(H�(M))

)
, where σ∗(H�(M)) =

σ̃∗(H�(M)
)
is the pull-back of H�(M) to an �-adic local system on Sσ = (SK)σ̃.

The generic motivic Galois group. The following result of André (see [5], Théorème
5.2) gives an analogue of Theorem 4.1.2 for motivic Galois groups. We again consider
a family of motives M/S with S a geometrically connected nonsingular variety over
a field K that is finitely generated over Q. If σ is a complex embedding of K we
write MT(Mσ/Sσ) for the generic Mumford–Tate group of the VHS Hσ(M) on San

σ ,
and we view it as a locally constant subgroup

MT(Mσ/Sσ) ⊂ GL
(
Hσ(M)

)
.

If � is a prime number, we write G�(M/S) for the generic �-adic algebraic Galois
group G�(H�(M)/S) of the lisse �-adic sheaf H�(M) on S, and we view it as a locally
constant subgroup

G�(M/S) ⊂ GL
(
H�(M)

)
.

Theorem 4.3.6 (André). Notation and assumptions as above. There exists a count-
able collection of reduced closed subschemes Ei � S such that the following are true.

(i) For σ : K → C a complex embedding, there is a locally constant subgroup scheme
Gσ = Gmot,σ(M/S) ⊂ GL

(
Hσ(M)

)
on San

σ such that
(a) for every s ∈ Sσ(C) we have Gmot,B(Ms) ⊂ Gσ,s;
(b) the inclusion Gmot,B(Ms) ⊂ Gσ,s is strict if and only if s ∈ Ei(C) for

some i.
(ii) For � a prime number, there is a locally constant subgroup scheme G� =

Gmot,�(M/S) ⊂ GL
(
H�(M)

)
on SK such that

(a) for every s ∈ S(K) we have Gmot,�(Ms) ⊂ G�,s;

(b) the inclusion Gmot,�(Ms) ⊂ G�,s is strict if and only if s ∈ Ei(K) for some i.

See Remark 4.3.12 for some comments about the proof. In (i)(a), recall from
Section 3.2 that Gmot,B denotes the motivic Galois group of a motive over C with
respect to the Betti fibre functor.

Remarks 4.3.7. (i) We denote the union of the subschemes Ei by Exc(M/S) and
we define the motivic generic locus Mgen(M/S) to be the complement. Taking the
union of the Ei has to be interpreted on the level of C-valued or K-valued points;
e.g., s ∈ S(C) is said to be a motivic generic point for M/S if s /∈ ∪iEi(C).
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(ii) We call Gmot,σ(M/S) (Betti incarnation) or Gmot,�(M/S) (�-adic incarna-
tion) the generic motivic Galois group of M/S. These two are “the same”: with no-
tation as in the discussion preceding Lemma 4.3.4, the isomorphism GL(Hσ)⊗Q�

∼−→
GL(H�) on fibres at a point b restricts to an isomorphism Gmot,σ(M/S)b ⊗ Q�

∼−→
Gmot,�(M/S)b. We can also formulate the comparison in a more global way: with
notation as in Remark 4.3.5, the local system of algebraic groups Gmot,σ(M/S)⊗Q�

is isomorphic to ε∗
(
Gmot,�(M/S)

)
.

(iii) In our formulation of the theorem we take M/S as the primary object,
whereas most assertions are about either the family of motives Mσ over Sσ or the
family MK over SK . It should be understood that the conclusions of the theorem ap-
ply to any family of motives N/T with T a nonsingular variety over an algebraically
closed field of characteristic 0, as one can always find a model M/S of N/T over
a finitely generated field K. Whether to view N/T as the principal object or M/S
is a matter of choice. This may be compared to the two ways in which we have
presented the Mumford–Tate conjecture, in 2.3.1 and 3.2.4: apart from the fact that
in Section 2.3 we had not yet generalized the conjecture to motives, the two versions
are different formulations of the same mathematical problem.

With M/S a family of motives as in the above discussion, the following result
gives a nice connection between the various “generic loci” (Hodge, Galois, motivic)
and the monodromy action. If we choose a complex embedding σ : K → C we obtain
a VHS Hσ(M) on San

σ and, abbreviating Hσ(M) to Hσ, we have local systems of
algebraic groups

G0
mono(Hσ/Sσ) ⊂ MT(Mσ/Sσ) ⊂ Gmot,σ(M/S) ⊂ GL

(
Hσ

)
. (4.2)

For s ∈ S(C) we have the Mumford–Tate group MT(Ms) ⊂ MT(Mσ/Sσ)s and the
motivic Galois group Gmot,B(Ms) ⊂ Gmot,σ(M/S)s of the fibre Ms. Similarly, we

may choose a prime number � and, abbreviating H�(M) to H�, consider the local
systems of algebraic groups on SK :

G0
mono(H�/SK) ⊂ G0

� (M/S) ⊂ Gmot,�(M/S) ⊂ GL
(
H�

)
. (4.3)

For s ∈ S(K) we have the �-adic algebraic Galois group G0
� (Ms) ⊂ G0

� (M/S)s and
the motivic Galois group Gmot,�(Ms) ⊂ Gmot,�(M/S)s of Ms.

Theorem 4.3.8. Notation and assumptions as above.

(i) For σ a complex embedding of K, the connected algebraic monodromy group
G0

mono,σ = G0
mono(Hσ/Sσ) is a normal subgroup of the generic motivic Galois

group Gmot,σ(M/S). For every s ∈ S(C) we have

G0
mono,σ ·MT(Ms) = MT(M/S)s

and

G0
mono,σ ·Gmot,σ(Ms) = Gmot,σ(M/S)s .

(ii) Let � be a prime number. Then the connected algebraic monodromy group
G0

mono,� = G0
mono(H�/S) is a normal subgroup of the generic motivic Galois
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group Gmot,�(M/S). For every s ∈ S(K) we have

G0
mono,� ·Gmot,�(Ms) = Gmot,�(M/S)s .

If moreover G�(Ms) is reductive then

G0
mono,� ·G�(Ms) = G�(M/S)s .

Proof. The normality of G0
mono in the generic motivic Galois group is part of [5],

Théorème 0.6.4 (where it is stated at the level of Lie algebras). For s ∈ S(C), let
Q = G0

mono · MT(Ms) ⊂ MT(M/S)s, and write Hs = HB(Ms) for the fibre of Hσ

at s. If Ts = T (Hs) is any tensor space built from Hs, every Q-invariant tensor
ξ(s) ∈ Ts extends to a flat section ξ of T (Hσ). Moreover, since MT(Ms) ⊂ Q, the
value of ξ at s is a Hodge class. Theorem 4.3.1(i) implies that ξ(t) is a Hodge class
for every t ∈ S(C); hence ξ(s) is invariant under MT(M/S)s. As Q ⊂ MT(M/S)s is
an inclusion of reductive groups and both have the same tensor invariants, it follows
that Q = MT(M/S)s. (Use [35], Proposition 3.1.(c) and cf. Remark 2.1.8.)

For the remaining assertions, the argument is the same, using parts (ii) and (iii)
of Theorem 4.3.1. Note however, that for the version about G�(Ms) we need to
assume reductiveness for the argument to work. �

Corollary 4.3.9. Notation and assumptions as above.

(i) For s ∈ S(C) we have

s is Hodge-generic ⇐⇒ G0
mono(Hσ/Sσ)s ⊂ MT(Ms) ;

s is motivically generic ⇐⇒ G0
mono(Hσ/Sσ)s ⊂ Gmot,B(Ms) .

(ii) For s ∈ S(K) we have

s is Galois-generic =⇒ G0
mono(H�/SK)s ⊂ G0

� (Ms) ,

and if G0
� (Ms) is reductive, the reverse implication is also true. Furthermore,

s is motivically generic ⇐⇒ G0
mono(H�/SK)s ⊂ Gmot,�(Ms) .

Proof. The direct implications follow from (4.2) and (4.3). For the reverse implica-
tions we may, passing to a finite cover of S, assume the algebraic monodromy group
is connected; the assertions are then immediate from the previous theorem. �

Corollary 4.3.10. We have

Hgen(Hσ(M)/S) ⊂ Mgen
(
S(C)

)
and Ggen(H�(M)/S) ⊂ Mgen

(
S(K)

)
.

Remark 4.3.11. We leave it to the reader to draw conclusions from Theorem 4.3.8
that are similar in spirit to Theorem 4.1.3(i). For instance, in 4.3.8(i), if there exists
a point s for which Gmot,σ(Ms) is connected then the fibres of Gmot,σ(M/S) are

connected, and if Gmot,σ(Ms) is a torus then G0
mono,σ = Gder

mot,σ(M/S).

Remark 4.3.12. Theorem 4.3.6 together with the last assertion of Corollary 4.3.9 is
essentially the result proven by André in [5], Théorème 5.2. There are some minor
differences, though. One of these is that André uses a more restricted notion of a
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family of motives. Let us sketch how one argues to deduce from André’s theorem
the results as we have stated them.

Over a dense open part U ⊂ S we have a family of motives in the sense consid-
ered by André. We have the local systems of algebraic groups Gmono

(
Hσ(M)/Sσ

)
on San

σ . Its restriction to Uσ is the algebraic monodromy group associated with the
family of motives over U , and André’s theorem gives us a local system of algebraic
groups GU,σ = Gmot,σ(MU/U). Because the monodromy groups on U and S are
the same, this extends to a local system of algebraic groups Gσ = Gmot,σ(M/S) ⊂
GL

(
Hσ(M)

)
on Sσ. By using that the motivic Galois group can only go down

under specialization (cf. [18], Sections 4–5), we have Gmot,B(Ms) ⊂ Gσ,s for every
s ∈ Sσ(C).

To define the motivic exceptional locus and show that it has the expected
properties, let us fix an embedding σ̃ : K → C, as André does. We proceed by adding
to U a component Z of the non-singular part of S \U ; this step will be iterated until
we have reached S. We start by including in the exceptional locus on U ∪ Z the
closure of the exceptional locus of U . Arguing by induction on the dimension, we
may assume the theorem is true on Z. Now compare the local system of generic
motivic Galois groups of MZ/Z with the local system Gσ|Z . If Gmot,σ(MZ/Z) is
strictly contained in Gσ|Z , we add the entire Z to the exceptional locus; else we only
add Exc(MZ/Z). This construction gives that, for s ∈ (U ∪ Z)

(
C
)
, the inclusion

Gmot,B(Ms) ⊂ Gσ,s is strict if and only if s lies in the exceptional locus.

The next point is that we can also realize the generic motivic Galois group as
a locally constant system G� = Gmot,�(M/S) ⊂ GL

(
H�(M)

)
on SK . This we do

in two steps: (a) first go from Sσ for the analytic topology to Sσ with the étale
topology; (b) next pass to SK with the étale topology. Step (a) is essentially the
same argument as in Lemma 4.3.4. For step (b) we use that the étale fundamental
group does not change if we pass from SK to Sσ. (As we are in characteristic 0, this
follows from the Künneth formula for fundamental groups given in [39], Exposé XIII,
Proposition 4.6.) Since we know that the “pointwise” motivic Galois groups are the
same (see the isomorphism γσ̃,� just before Conjecture 3.2.2), the properties stated
in part (ii) of the Theorem 4.3.6 follow.

Finally, let us justify our claim that the exceptional locus is defined over K.
For this, let α be an automorphism of K/K, let s ∈ S(K) and t = αs. We have
to show that if s is motivically generic, so is t. The group Gmot,�(Mt) is an inner

form of Gmot,�(Ms): the latter is associated with the fibre functor on Mot(K) given
by N �→ H�(N), whereas Gmot,�(Mt) is isomorphic to the motivic Galois group
of Ms (sic!) associated with the fibre functor N �→ H�(α

∗N). On the other hand,
we have the inclusions Gmot,�(Mt) ⊂ G�,t and Gmot,�(Ms) ⊂ G�,s, and the alge-
braic groups G�,t and G�,s are (non-canonically) isomorphic. Because s is motivically
generic, Gmot,�(Mt) has the same dimension and the same number of geometric com-
ponents as G�,s; the same is then true for its inner twist Gmot,�(Mt), and it follows
that t is motivically generic, too.
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Open problem 4.3.13. Prove that there are many Hodge-generic points over finite
extensions of K. “Many” should mean here that over a 1-dimensional basis we have
an analogue of the Cadoret–Tamagawa result, Theorem 4.2.2.

Applications to very general members in a family. One may try to deduce from the
results that we have discussed conclusions about the motivic MTC for a very general
member in a family, assuming we know it for some fibre.

Corollary 4.3.14. Let M/S be a family of motives, as before.

(i) Choose an embedding σ : K → C. Assume there is a point t ∈ S(C) such that
Conjecture HMσ (see 3.2.2) for Mt is true. Then Conjecture HMσ is true
for Ms for all Hodge-generic points s.

(ii) Choose a prime number �. Assume there is a closed point t ∈ S such that
Conjecture TM� (see 3.2.3) for Mt is true. Then Conjecture TM� is true for Ms

for all Galois-generic closed points s.

Proof. (i) Theorem 4.3.8, applied to the fibre Mt, gives that MT(M/S) =
Gmot,σ(M/S). As Hgen(Hσ(M)/S) ⊂ Mgen

(
S(C)

)
, the assertion follows. For (ii)

the argument is the same, where we note that if G0
� (Mt) is reductive then so is

G0
mono,� ·G0

� (Mt) = G0
� (M/S)t. �

We obtain a stronger conclusion if the fibres of M/S are abelian motives. Note
that in this case the MTC is the same as the motivic MTC and is independent of σ
and �. (See Section 3.3.)

Corollary 4.3.15. In the situation of Corollary 4.3.14, assume the fibres Ms are
abelian motives. If there is a closed point t ∈ S such that the MTC is true for Mt

then the MTC for Ms is true for all Galois-generic points s.

By Theorems 3.3.1 (in particular, its consequence (3.3)) and 3.3.2, the condition
that the MTC is true for some fibreMt is satisfied if there is a fibre with commutative
Mumford–Tate group. (Such a fibre is usually called a CM fibre.)

4.4. Some known results (3)

Surfaces with pg = 1. It was proven by Tankeev [92], [93] and, independently,
André [4] that the MTC is true for complex K3 surfaces. André’s result works under
some general assumptions; beyond K3 surfaces this gives the MTC for the H2 of a
hyperkähler variety with second Betti number > 3 and the H4 of a cubic fourfold. As
already mentioned in Section 3.3, it is also proven that the corresponding motives
lie in the category MotAb(C). The proofs use in an essential way the Kuga–Satake
construction as formulated by Deligne in [32].

By a more elaborate argument that builds upon the ideas of Deligne and André,
the author [55] was able to prove the MTC for arbitrary complex surfaces with
pg = 1 under a mild condition on their moduli. (Recall that the geometric genus of
a surface X is pg(X) = dimH0(X,ωX) = h2,0(X).) The general form of the result is
the following.
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Theorem 4.4.1. Let Y be a non-singular complex projective variety of dimension d.
Let N ⊂ H2(Y ) be a submotive whose Hodge realization HB(N) has Hodge number
h2,0 = 1. Suppose there exists a connected nonsingular variety S, a smooth projective
morphism f : X → S and a global section e ∈ Γ

(
S,R2d(f × f)∗QX×X(d)

)
such that

(a) Y ∼= Xs for some s ∈ S(C);
(b) e(s) is a projector that is of the form e(s) = π2 ◦ cl(γ) ◦ π2 for some γ ∈

CHd(X ×X)⊗Q, where π2 is the second Künneth projector on Y ;
(c) via the isomorphism in (a), N is the submotive of H2(Y ) that is cut out by e(s);
(d) if M = (X, e, 0) is the associated family of motives over S, the Variation of

Hodge Structure HB(M) is not isotrivial.

Then the Tate conjecture and the Mumford-Tate conjecture for N are true.

The basic case of this result is of course when N = H2(Y ) for a surface Y with
pg(Y ) = 1; in that case the assumptions simply mean that Y is a fibre in a family of
surfaces for which the second cohomology groups give a non­isotrivial VHS. Another
case to which the theorem applies is when we have a surface Y with pg(Y ) = 2 and
surjective albanese morphism Y → A; in that case, H2(Y ) decomposes as the direct
sum of H2(A) and a submotive N ⊂ H2(Y ) with Hodge number h2,0(N) = 1. In
all such examples, in order to conclude that the TC and the MTC are true, one
must find a family that satisfies the conditions of the theorem. A list of examples
for which this has been carried out can be found in [55], Section 9.

Integral and adelic forms of the MTC. To simplify the exposition, let us here work
over a subfield K ⊂ C that is of finite type, and define K to be the algebraic
closure of K in C. (Phrased differently, the notation is the same as before but we
fix an embedding σ̃ : K → C.) Also, let us restrict the discussion to motives of the
form M = Hm(Y )

(
n
)
for some nonsingular complete variety Y over K, and let us

assume throughout that K = Kconn. (See 2.2.2(ii); as already remarked in 3.2.1, in
the situation we consider Kconn does not depend on �.) The integral cohomology
modulo torsion gives us a lattice HZ inside HB = Hm

(
YC,Q(n)

)
. We may then view

the Mumford–Tate group as a group scheme over Z by taking its integral closure
inside GL(HZ).

Let us assume that the MTC is true for the motive Hm(Y )
(
n
)
. For every prime

number � we have a comparison isomorphism HZ ⊗Z�
∼−→ Hm

ét

(
YK ,Z�(n)

)
which we

shall take as an identification. The associated �­adic Galois representation may then
be viewed as a homomorphism

ρ� : Gal(K/K) → MT(Z�)

and the image Im(ρ�) is an open subgroup of MT(Z�) for the �­adic topology. (See
Remark 4.2.3.) As the target group is compact, it follows that the index of Im(ρ�)
in MT(Z�) is finite.

We may also consider all prime numbers � at the same time: writing Ĥ =
HZ ⊗ Ẑ ∼=

∏
�H

m
ét

(
YK ,Z�(n)

)
, the product of the representations ρ� gives us a rep­

resentation
ρ̂ : Gal(K/K) → MT(Ẑ) .
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With this notation, the following two refinements of the MTC were proposed by
Serre; see [79], Conjectures C.3.7 and C.3.8.

Conjecture 4.4.2. Notation and assumptions as above; in particular we assume the
MTC is true for Hm(Y )

(
n
)
.

(i) The index of Im(ρ�) in MT(Z�) is bounded as � varies. Moreover, for almost
all � the image Im(ρ�) contains the commutator subgroup of MT(Z�), as well as
all homotheties of the form cm−2n · id, for c ∈ Z×

� .
(ii) If the Hodge realization HB is Hodge-maximal (see the next remark), the image

of ρ̂ is an open subgroup of MT(Ẑ).

By Hodge-maximality of HB we mean that there is no non-trivial isogeny of
connected Q-groups M ′ → MTQ such that the homomorphism h : S → MTR that
defines the Hodge structure on HB lifts to a homomorphism h′ : S → M ′

R. It is known
(see [21], Remark 2.6) that Hodge-maximality is a necessary condition in order for

Im(ρ̂) to be open in MT(Ẑ).
For elliptic curves, Serre himself proved in [78] that both parts of the conjecture

are true. (In this case we know the MTC and HB is Hodge-maximal.) Much more
recently, part (i) was proven for arbitrary abelian varieties (for which the usual MTC
is true) by Hindry and Ratazzi [43] and, independently, Cadoret and the author [21].
In [21], also (ii) is proven for abelian varieties. For (the H2 of) K3 surfaces (for which,
as discussed above, the MTC is true), it is shown in [21] that H2

B is Hodge-maximal

and that the image of ρ̂ is an open subgroup of MT(Ẑ).

Dependence of Ggen on �. If M/S is a family of motives then for every prime
number � we have, abbreviating H� = H�(M), a (Galois-)exceptional locus Exc(H�)
in S. Conjecture 3.2.3 predicts that these loci do not depend on �. If M is given by
(the H1 of) an abelian scheme over S, Hui [45] proved that this is indeed true. It
seems difficult to extend Hui’s proof to more general cases, as it makes essential use
of Faltings’s theorem 2.2.7. To the author’s knowledge, even for abelian motives the
�-independence of Exc(H�) is not known in general. Cadoret [19] has shown that
the Exc(H�) are independent of � if the algebraic monodromy group of the family
only has factors of Lie type A.

4.5. An example

We conclude with an application that illustrates how some of the techniques we have
discussed can be used to prove results about algebraic cycles.

Theorem 4.5.1. For d = 5 or d = 6, let X ⊂ P3
C be a nonsingular surface given by

an equation s(T0, T1, T2) + T d
3 = 0, with s ∈ C[T0, T1, T2]d. Then the motive H(X)

is an abelian motive and the Tate conjecture for X is true.

We first prove this for d = 5. Throughout the argument, let E be the cyclotomic
field Q[x]/(x4 + x3 + x2 + x + 1) and write ζ5 = exp(2πi/5). Let Σ be the set of
complex embeddings of E. In our calculations we identify it with F×

5 , letting j ∈ F×
5

correspond to the embedding given by x �→ ζj5 .



Vol.85 (2017)	 Families of Motives and The Mumford{Tate Conjecture	 299Families of Motives and The Mumford–Tate Conjecture 43

Let S ⊂ C[T0, T1, T2]5 be the affine subvariety of nonsingular homogeneous
polynomials s of degree 5, and let π : Y → S be the smooth projective family of
surfaces whose fibre at s ∈ S is given by the equation s(T0, T1, T2) + T 5

3 = 0. Let α
be the automorphism of Y/S given by (y0 : y1 : y2 : y3) �→ (y0 : y1 : y2 : ζ5 · y3). We
use the same notation α for the induced automorphisms of the fibres.

Via α, the singular cohomology of each Ys gets the structure of an E-module
in the category HSQ. For s ∈ S and σ ∈ Σ, write Hp,q(Ys)(σ) for the space of
ξ ∈ Hp,q(Ys) such that e(ξ) = σ(e) · ξ for all e ∈ E. The dimensions hp,q(σ) of these
spaces are independent of s and may therefore be calculated on the Fermat surface
of degree 5. Using [86], Theorem 1, we readily find:

h2,0(1̄) = 3 , h2,0(2̄) = 1 , h2,0(3̄) = 0 , h2,0(4̄) = 0 .

The subset Φ = {1̄, 2̄} ⊂ Σ is a CM type. Consider the 2-dimensional abelian
variety B of CM type (E,Φ); see Example 2.1.10. It is uniquely determined up to
isogeny. Explicitly, B can be realized as the Jacobian of the genus 2 curve given
by y2 = x5 − 1, with E-action induced by the automorphism β given by (x, y) �→
(ζ5 · x, y). By construction,

h1,0(B)(1̄) = 1 , h1,0(B)(2̄) = 1 , h1,0(B)(3̄) = 0 , h1,0(B)(4̄) = 0 .

We use B to construct “half twists” of the Hodge structures H2(Ys,Q), as introduced
by van Geemen in [100]. See also [101], Section 5. Our formulation of this construction
is the one we introduced in [55], Section 7; see also [56], Section 3.2 Namely, we
consider the Q-Hodge structures

HomE

(
H1(B,Q),H2(Ys,Q)

)
= H1(B,Q)∨ ⊗E H2(Ys,Q) ,

which are sub-Hodge structures of Hom
(
H1(B,Q),H2(Ys,Q)

)
. By our choice of B,

these are polarizable Q-Hodge structures of type (1, 0) + (0, 1); hence they come
from an abelian variety.

In fact, the construction can be done for the entire family over S. Denote by
H 2(Y/S) the Variation of Hodge Structure over S given by R2π∗(QY ), and write
H1(B)S for the constant VHS over S with fibres H1(B) = H1(B,Q). Both VHS have
the structure of an E-module in the category VHS(S)Q. Then

HomE

(
H1(B)S ,H

2(Y/S)
)
= H1(B)∨S ⊗E H 2(Y/S)

is a polarizable VHS over S of type (1, 0)+(0, 1). It admits an integral structure and
also the structure of an E-module. Hence there exists an abelian scheme a : A →
S with endomorphisms by E such that, writing H 1(A/S) for the VHS given by
R1a∗(QA),

H 1(A/S) ∼= HomE

(
H1(B)S ,H

2(Y/S)
)
.

It is important to note here that the abelian variety B stays constant, and that
H1(B) is 1-dimensional as an E-vector space. By a Hom-tensor adjunction we find

2There is a misprint in the formula for d(σ;−1, 0) that is given in [56], section 3.4. The third line

in the displayed equation should say that d(σ;−1, 0) = n if σ ∈ Φ \ {τ}.
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that there is an isomorphism

u : H 1(A/S)⊗E H1(B)S ∼−→ H 2(Y/S) .

We view the functor − ⊗E H1(B) as a “twisting” operation; note that it increases
the weight by 1 and preserves the rank of the underlying local system.

Lemma 4.5.2. For every s ∈ S(C) the fibre of the isomorphism u at s is the Betti
realization of an isomorphism of motives

us : : H
1(As)⊗E H1(B) ∼−→ H2(Ys) .

Proof. Let s0 ∈ S(C) be a point such that Ys0 is the Fermat surface. As the Fermat
surface is an abelian motive (see the discussion in Section 3.3), the assertion is true
for s = s0. By Theorem 4.3.1(iii), it follows that us is motivated for every s. �

This proves that H2(Ys), and therefore also H(Ys) = H0(Ys)⊕H2(Ys)⊕H4(Ys),
is an abelian motive. To deduce the Tate conjecture, we use the theorem of Faltings
(Theorem 2.2.7, the case char(K) = 0). As H1(B)

(
1
) ∼= H1(B)∨ (via the choice

of a polarization on B), we find that H2(Y2)
(
1
)
is isomorphic to a submotive of

Hom
(
H1(B),H1(As)

)
, and as explained after Corollary 2.2.8, Faltings’s result im-

plies that every Tate class in the �-adic realization of the latter motive is algebraic.
This concludes the proof of Theorem 4.5.1 for d = 5.

For d = 6 essentially the same argument works. We let S ⊂ C[T0, T1, T2]6 be
the affine subvariety of nonsingular homogeneous polynomials s of degree 6, and let
π : Y → S be the smooth projective family of surfaces whose fibre at s ∈ S is given
by the equation s(T0, T1, T2) + T 6

3 = 0. Let α be the automorphism of Y/S given by
(y0 : y1 : y2 : y3) �→ (y0 : y1 : y2 : ζ6 · y3). The induced automorphism α∗ makes the
motive H2(Ys,Q) a module over the group ring Q[Z/6Z] ∼= Q×Q×Q(ζ3)×Q(ζ6).
Accordingly we have a decomposition

H2(Ys,Q) = M1 ⊕M2 ⊕M3 ⊕M6 ,

where Mm is the summand on which α∗ has order m. The assertion can be proven
for each Mm separately. The summand M1 is the motive i∗H2(P3) ∼= 1(−1) where
i is the embedding Ys ↪→ P3. The summand M2 is the H2 of the K3 surface of
degree 2 that is obtained as the double cover of P2 branched over the sextic curve
given by s = 0. As discussed in Section 4.4, the assertion is true for this summand.
For the remaining two summands M3 and M6, we argue as in the case d = 5. In
both cases we find an abelian variety B and an abelian scheme a : A → S, both with
an action of the cyclotomic field E = Q(ζm), for m = 3, respectively m = 6, such
that Mm

∼= H1(As) ⊗E H1(B), and one gets the Tate conjecture as an application
of Faltings’s theorem. In both cases B is the elliptic curve given by y2 = x3−1. The
reader will have no trouble filling in the details.

Remark 4.5.3. For d ≥ 7 the above method breaks down. The reason is that it is no
longer possible to describe H2(Ys) as a “twist” of the H1 of an abelian variety. For
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instance, if we take d = 7 and consider surfaces given by s(T0, T1, T2) + T 7
3 = 0 then

for multiplicities of the action of α∗ on the holomorphic differentials we find

j 1̄ 2̄ 3̄ 4̄ 5̄ 6̄

h2,0(j) 10 6 3 1 0 0

The obstruction to using the same method as above lies in the fact that there is a
pair of complex conjugate embeddings (namely {3̄, 4̄}) that both occur in the H2,0.
(In [101], the authors erroneously claim that for d = 7 one can still find a “half
twist”.)
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[5] Y. André, Pour une théorie inconditionnelle des motifs. Inst. Hautes Études Sci. Publ.

Math. No. 83 (1996), 5–49.
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mathématique, Masson, Paris, 1990.

[17] J-L. Brylinski, “1-motifs” et formes automorphes (théorie arithmétique des domaines
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[40] A. Grothendieck, On the de Rham cohomology of algebraic varieties. Inst. Hautes
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