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Abstract. The aim of this article is to study the uniqueness of a complete space-

like hypersurface Σn immersed with constant mean curvature H in a spatially

closed generalized Robertson–Walker spacetime M
n+1

= −I ×f Mn, whose Rie-

mannian fiber Mn has positive curvature. Supposing that the warping function f

is such that − log f is convex and Hf ′ ≤ 0 along Σn, we show that Σn must be

isometric to a totally geodesic slice of M
n+1

. When M
n+1

is a Lorentzian prod-

uct space, we obtain a new Calabi–Bernstein type result concerning the CMC

spacelike hypersurface equation.
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1. Introduction and statements of the results

In the last years, the study of spacelike hypersurfaces in Lorentzian spacetimes has
been of substantial interest from both physical and mathematical points of view.
For instance, it was pointed out by Marsdan and Tipler in [18] and Stumbles in [24]
that spacelike hypersurfaces with constant mean curvature in a spacetime play an
important role in General Relativity, since they can be used as initial hypersurfaces
where the constraint equations can be split into a linear system and a nonlinear
elliptic equation.

From the mathematical point of view, this interest is mostly due to the fact
that such hypersurfaces exhibit nice Bernstein-type properties, and one can truly
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say that the first remarkable result in this direction were obtained in 1970, when
Calabi [14] established the well-known Calabi–Bernstein theorem:

The only complete maximal surfaces in the 3-dimensional Lorentz–Min-
kowski spacetime L3, that is, spacelike surfaces with zero mean curvature,
are the spacelike planes.

The non-parametric version of this theorem asserts that the only entire maximal
graphs in L3 are the affine functions. Cheng and Yau [15] extended this result to
complete maximal hypersurfaces in Ln+1. It is worth to recall that a spacelike hy-
persurface is called maximal when its mean curvature is identically zero.

A natural generalization of the thematic discussed above is to study the prob-
lem of uniqueness for complete constant mean curvature spacelike hypersurfaces
immersed in a generalized Robertson–Walker (GRW) spacetime. This matter has
attracted many authors and induced a vast and interesting literature (see, for in-
stance, [3, 4, 5, 7, 8, 11, 12, 17, 21, 22, 23]). At this point, we recall that a GRW
spacetime is a Lorentzian warped product −I ×f Mn, with 1-dimensional negative
base I, fiber a general Riemannian manifold and arbitrary warping function f . In
particular case, when the fiber is assumed to be of constant sectional curvature and
the dimension of the spacetime is 3, the GRW spacetime is a (classical) Robertson–
Walker spacetime. Thus, GRW spacetimes widely extend Robertson–Walker space-
times, and they include, for instance, the Einstein-de Sitter spacetime, Friedmann
cosmological models, the static Einstein spacetime and the de Sitter spacetime.

If the fiber of a GRW spacetime is compact, then it is called spatially closed.
As it was observed by Aledo et al. [5], the subfamily of spatially closed GRW space-
times has been very useful to get closed cosmological models. On the other hand,
a number of observational and theoretical arguments on the total mass balance of
the universe suggests the convenience of adopting open cosmological models. Even
more, a spatially closed GRW spacetime violates the holographic principle whereas
a GRW spacetime with non-compact fiber could be a suitable model compatible
with that principle (cf. [9, 13, 16]). There again, nowadays is commonly accepted
the theory of inflation. In this setting, it is natural to think that expansion must
occur in the physical space at the same time and in the same manner. A notable fact
in this theory is that distant regions in our universe cannot have any interaction.
Notice that although the physical space in instants after the inflation may not be
exactly a model manifold, in large scale the GRW spacetimes may be a good model
to get an approach to this reality.

Our purpose in this paper is to study the uniqueness of a complete spacelike
hypersurface immersed with constant mean curvature in a spatially closed general-

ized Robertson–Walker spacetime M
n+1

= −I ×f M
n, whose fiber Mn has positive

curvature. In what follows, we will assume that the orientation N of the spacelike hy-
persurface is future-pointing, which means that its angle function 〈N, ∂t〉 < 0 where

∂t stands for the coordinate vector field induced by the universal time on M
n+1

.
The mean curvature H taken with respect to such choice of orientation N is called
the future mean curvature of Σn. Now, we are in position to state our main result.
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Theorem 1.1. Let M
n+1

= −I ×f Mn be a spatially closed GRW spacetime, whose
sectional curvature of the Riemannian fiber Mn is positive. Let Σn be a complete

spacelike hypersurface immersed in M
n+1

such that − log f is convex on Σn. If the
future mean curvature H of Σn is constant and satisfies Hf ′ ≤ 0, then Σn must be

a totally geodesic slice of M
n+1

.

The proof of Theorem 1.1 is given in Section 3. Now, let us consider that the

ambient spacetime M
n+1

= −I × Mn is static and let Ω ⊆ Mn be a connected
domain and let u ∈ C∞(Ω) be a smooth function such that u(Ω) ⊆ I, then Σ(u)
will denote the graph over Ω determined by u, that is,

Σ(u) = {(u(x), x) : x ∈ Ω} ⊂ −I ×M.

The graph is said to be entire if Ω = Mn. The metric induced on Ω from the
Lorentzian metric of the ambient space via Σ(u) is

gΣ(u) = −du2 + gM . (1.1)

It can be easily seen that a graph Σ(u) is a spacelike hypersurface if and only if

|Du|M < 1, Du being the gradient of u in M and |Du|M = 〈Du,Du〉1/2M .

Furthermore, with a straightforward computation we verify that the vector field

N =
1√

1− |Du|2M
(∂t +Du) (1.2)

defines the future-pointing Gauss map of Σ(u). Hence, from (1.2) we can verify that
the shape operator A of Σ(u) with respect to N is given by

AX = − 1√
1− |Du|2M

DXDu− 〈DXDu,Du〉M
(1− |Du|2M )3/2

Du, (1.3)

for every tangent vector fields X ∈ X(Σ(u)). Consequently, denoting by div the
divergence operator on Σ(u), from (1.3) we obtain that the future mean curvature
function H(u) associated to A is given by

H(u) = div


 Du

n
√

1− |Du|2M


 .

The differential equation H(u) = H, with H constant, jointly with the constraint
|Du|M < 1 is called the CMC spacelike hypersurface equation in M , and its solutions

provide constant mean curvature spacelike graphs in M
n+1

.

Motivated by this previous digression, we will consider the following CMC
spacelike hypersurface equation

(E)




div


 Du√

1− |Du|2M


 = H

|Du|M ≤ c,
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where H and 0 < c < 1 are constant. We observe that (E) is uniformly elliptic. It is
also interesting to observe that, in contrast to the case of graphs into a Riemannian
product space, an entire spacelike graph Σ(u) in a Lorentzian product space −I×M
is not necessarily complete, in the sense that the induced Riemannian metric is not
necessarily complete on M . For instance, Albujer [2, Section 3] obtained explicit
examples of non-complete entire maximal graphs in −R × H2. However, it follows
from [4, Lemma 17] that when the fiber M is complete and |Du|M ≤ c, for a certain
constant 0 < c < 1, then Σ(u) must be also complete. On an entire graph Σ(u), the
existence of such a constant c prevents that the tangent vector field to a divergent
curve in Σ(u) asymptotically approaches to a lightlike direction in the ambient space.

Taking into account this setting, it is not difficult to see that from Theorem 1.1
we get the following Calabi–Bernstein type result:

Theorem 1.2. Let M
n+1

= −I×Mn be a Lorentzian product space, whose Riemann-
ian fiber Mn is compact with positive sectional curvature. The only entire solutions
of (E) are the constant functions u = t0, with t0 ∈ I.

2. Preliminaries

Throughout this section we provide some basic notations and a couple of lemmas
that will be useful in the proof of our main results. First of all, letMn be a connected,
n-dimensional, oriented Riemannian manifold, I ⊂ R an open interval and f : I → R
a positive smooth function. Also, in the product manifold M

n+1
= I × Mn let πI

and πM denote the projection onto the factors I and Mn, respectively.

The class of Lorentzian manifold which will be of our concern here is the one
obtained by furnishing M

n+1
with Lorentzian metric

〈v, w〉p = 〈(πI)∗v, (πI)∗w〉πI(p) + (f ◦ πI)(p)2〈(πM )∗v, (πM )∗w〉πM (p),

for all p ∈ M
n+1

and v, w ∈ TpM . In such case, we write

M
n+1

= −I ×f Mn, (2.1)

and say that M
n+1

is the Lorentzian warped product with warping function f .

When Mn has constant sectional curvature, the warped product (2.1) is clas-
sically called a Robertson–Walker (RW) spacetime, an allusion to the fact that, for
n = 3, it is an exact solution of Einstein’s field equation (cf. Chapter 12 of [20]).
After [7], the warped product (2.1) has usually been referred to as a Generalized
Robertson–Walker (GRW) spacetime, and we shall stick to this usage along this
paper. Furthermore, if warped function f is constant then it is called static GRW
spacetime.

From now on, we deal with spacelike hypersurfaces immersed in a GRW space-

time. A smooth immersion ψ : Σn → M
n+1

of an n-dimensional connected manifold
Σn is said to be a spacelike hypersurface if the induced metric via ψ, is a Riemannian
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metric on Σn, which, as usual, is also denoted for 〈., .〉. In that case, since

∂t = (∂/∂t)(t,x), (t, x) ∈ −I ×f Mn,

is a unitary timelike vector field globally defined on the ambient spacetime, then
there exists a unique timelike unitary normal vector field N globally defined on the
spacelike hypersurface Σn which is in the same time-orientation as ∂t, moreover is
easy to see that from Cauchy–Schwarz inequality, we get

〈N, ∂t〉 ≤ −1 < 0 on Σn. (2.2)

The mean curvature H taken with respect to such choice of orientation N is called
the future mean curvature of Σn.

In this setting, let∇ and∇ denote the Levi-Civita connections inM
n+1

and Σn,
respectively. Then, the Gauss and Weingarten formulas of Σn are given, respectively,
by

∇XY = ∇XY − 〈AX, Y 〉N (2.3)

and

AX = −∇XN, (2.4)

for every tangent vector fields X,Y ∈ X(Σ). Here, A : X(Σ) → X(Σ) stands for the
Weingarten operator of Σn, with respect to its orientation N .

A well-known fact is that the curvature tensor R of the spacelike hypersurface
Σn can be described in terms of the shape operator A and the curvature tensor R

of the ambient spacetime M
n+1

by the so-called Gauss equation given by

R(X,Y )Z = (R(X,Y )Z)� − 〈AX,Z〉AY + 〈AY,Z〉AX, (2.5)

for every tangent vector fields X,Y, Z ∈ X(Σ), where ( )� denote the tangencial
component of a vector field in X(M) along Σn.

Now, let h denote the (vertical) height function naturally attached to Σn,
namely, h = (πI)|Σ. Let ∇ and ∇ denote gradients with respect to the metrics
of −I ×f Mn and Σn, respectively. A simple computation shows that the gradient
of πI on −I ×f Mn is given by

∇πI = −〈∇πI , ∂t〉 = −∂t,

so that the gradient of h on Σn is

∇h = (∇πI)
� = −∂�

t = −∂t − 〈N, ∂t〉N. (2.6)

In particular, we get

|∇h|2 = 〈N, ∂t〉2 − 1, (2.7)

where | | denotes the norm of a vector field on Σn. From Proposition 7.35 of [20]
we have that

∇X∂t =
f ′

f
(X + 〈X, ∂t〉∂t), (2.8)
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for every X ∈ X(Σ). In particular, for t0 ∈ R fixed, it is not difficult to see that each
slice {t0} ×Mn has constant mean curvature

H =
f ′(t0)

f(t0)

with respect to the unit normal vector field ∂t (see, for instance, [7]). Moreover, for
our purpose, the Lemma 4.1 of [6] gives the following formula

∆h = (log f)′(−n− |∇h|2)− nH〈N, ∂t〉, (2.9)

where H = − 1

n
tr(A) is the mean curvature of Σn with respect to N .

3. Proof of Theorem 1.1

In order to prove Theorem 1.1 we will need to establish some key lemmas. The first
one gives a suitable lower bound for the Ricci curvature of spacelike hypersurfaces
immersed in a spatially closed GRW spacetime.

Lemma 3.1. Let Σn be a spacelike hypersurface immersed in a spatially closed GRW
spacetime −R ×f Mn. Then, for all X ∈ X(Σ), the Ricci curvature of Σn satisfies
the inequality

RicΣ(X,X) ≥ α(n− 1)|X|2 + (α− (log f)′′)(|X|2|∇h|2 + (n− 2)〈X,∇h〉2)

+

(
f ′

f

)2

(n− 1)|X|2 + nH〈AX,X〉+ |AX|2,

where h and H denote, respectively, the height function and the future mean cur-
vature of Σn and α = minM KM , with KM being the sectional curvature of the
Riemannian fiber Mn.

Proof. Let us consider X ∈ X(Σ) and a local orthonormal frame {E1, . . . , En} of
X(Σ). Then, it follows from Gauss equation (2.5) that

RicΣ(X,X) =
∑
i

〈R(X,Ei)X,Ei〉+ nH〈AX,X〉+ |AX|2. (3.1)

On the other hand, with a straightforward computation, we deduce

R(X,Ei)X = R(X∗, E∗
i )X

∗ − 〈X, ∂t〉R(X∗, E∗
i )∂t − 〈Ei, ∂t〉R(X∗, ∂t)X

∗

+〈Ei, ∂t〉〈X, ∂t〉R(X∗, ∂t)∂t − 〈X, ∂t〉R(∂t, E
∗
i )X

∗

+〈X, ∂t〉2R(∂t, E
∗
i )∂t,

where X∗ = X + 〈X, ∂t〉∂t and E∗
i = Ei + 〈Ei, ∂t〉∂t are the projections on the

tangent vector fields X and Ei onto the fibre Mn, respectively. Now, by repeated
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use of the formulas of Proposition 7.42 of [20] and using Eq. (2.6), we obtain

〈R(X,Ei)X,Ei〉 = 〈R(X∗, E∗
i )X

∗, E∗
i 〉 −

f ′′

f
(|X|2 + 〈X,∇h〉2)〈Ei,∇h〉2

+2
f ′′

f
(〈X,Ei〉+ 〈X,∇h〉〈Ei,∇h〉)〈Ei,∇h〉〈X,∇h〉

−f ′′

f
〈X,∇h〉2(1 + 〈Ei,∇h〉2).

This data substituted in (3.3) yields

RicΣ(X,X) =
∑
i

〈R(X∗, E∗
i )X

∗, E∗
i 〉 −

f ′′

f
(|X|2 + 〈X,∇h〉2)|∇h|2

+2
f ′′

f
(1 + |∇h|2)〈X,∇h〉2 − f ′′

f
(n+ |∇h|2)〈X,∇h〉2

+nH〈AX,X〉+ |AX|2.

Hence, after some simple computations we obtain

RicΣ(X,X) =
∑
i

〈R(X∗, E∗
i )X

∗, E∗
i 〉 −

f ′′

f
(|X|2|∇h|2

+(n− 2)〈X,∇h〉2) + nH〈AX,X〉+ |AX|2. (3.2)

By using once more the Gauss equation we immediately have
∑
i

〈R(X∗, E∗
i )X

∗, E∗
i =

∑
i

KM (X∗, E∗
i )|X∗ ∧ E∗

i |2

+

(
f ′

f

)2∑
i

|X∗ ∧ E∗
i |2. (3.3)

On the other hand, it is not difficult to check that

〈X∗, X∗〉M 〈E∗
i , E

∗
i 〉M = (1 + 〈Ei,∇h〉2)(|X|2 + 〈X,∇h〉2)

and

〈X∗, E∗
i 〉2M = 〈X,Ei〉2 + 2〈X,∇h〉〈Ei,∇h〉〈X,Ei〉+ 〈X,∇h〉2〈Ei,∇h〉2.

Hence, combining the above expressions we deduce
∑
i

|X∗ ∧ E∗
i |2 = (n− 1)|X|2 + |X|2|∇h|2 + (n− 2)〈X,∇h〉2. (3.4)

Now, substituting (3.3) in (3.2) and using Eq. (3.4) we infer

RicΣ(X,X) =
∑
i

KM (X∗, E∗
i )|X∗ ∧ E∗

i |2 − (log f)′′(|X|2|∇h|2

+(n− 2)〈X,∇h〉2) + nH〈AX,X〉+ |AX|2

+(n− 1)

(
f ′

f

)2

|X|2. (3.5)
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Therefore, the hypothesis on the sectional curvature KM of Riemannian fiber
jointly with (3.5) and (3.4) allow us to conclude that the Ricci curvature of Σn

satisfies

RicΣ(X,X) ≥ α(n− 1)|X|2 + (α− (log f)′′)(|X|2|∇h|2 + (n− 2)〈X,∇h〉2)

+

(
f ′

f

)2

(n− 1)|X|2 + nH〈AX,X〉+ |AX|2.

This gives the requested result. �

The next key lemma is derived from Bochner’s formula [10] and it follows the
ideas of Proposition 3.1 in [17].

Lemma 3.2. Let Σn be a spacelike hypersurface immersed with constant future mean
curvature H in a spatially closed GRW spacetime −R×f Mn. Then

1

2
∆|∇h|2 ≥

(
α(n− 1)− (log f)′′n

)
|∇h|2(1 + |∇h|2)

+

∣∣∣∣A(∇h)− f ′

f
〈N, ∂t〉∇h

∣∣∣∣
2

+ nH
f ′

f
〈N, ∂t〉|∇h|2

+

(
f ′

f

)2

(n+ |∇h|2)|∇h|2 + |Hessh|2,

where h denotes the height function on Σn and α = minM KM , with KM being the
sectional curvature of Mn.

Proof. Firstly, from Eq. (2.9) we obtain that

∇∆h = ∇
(
f ′

f

)
(−n− |∇h|2)− f ′

f
∇|∇h|2 − nH∇〈N, ∂t〉,

which can rewritten, using (2.7), as

∇∆h =

(
f ′′f − (f ′)2

f2

)
(−n− |∇h|2)∇h− 2

f ′

f
〈N, ∂t〉∇〈N, ∂t〉

−nH∇〈N, ∂t〉. (3.6)

Next, from (2.6) and (2.8) we have that

X〈N, ∂t〉 = 〈AX,∇h〉+ f ′

f
〈N, 〈X, ∂t〉∂t〉

=

〈
X,A(∇h)− f ′

f
〈N, ∂t〉∇h

〉
,

for all X ∈ X(Σ). Thus,

∇〈N, ∂t〉 = A(∇h)− f ′

f
〈N, ∂t〉∇h. (3.7)
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Hence we use this data in (3.6) to deduce

∇∆h = (log f)′′(−n− |∇h|2)∇h− 2
f ′

f
〈N, ∂t〉A∇h

+2

(
f ′

f

)2

〈N, ∂t〉2∇h− nHA(∇h)

+nH
f ′

f
〈N, ∂t〉∇h. (3.8)

From Bochner’s formula [10] jointly with (3.8) we have that

1

2
∆|∇h|2 = 〈∇∆h,∇h〉+RicΣ(∇h,∇h) + |Hessh|2

= (log f)′′(−n− |∇h|2)|∇h|2 − 2
f ′

f
〈N, ∂t〉〈A∇h,∇h〉

+2

(
f ′

f

)2

〈N, ∂t〉2|∇h|2 − nH〈A(∇h),∇h〉

+nH
f ′

f
〈N, ∂t〉|∇h|2 +RicΣ(∇h,∇h) + |Hessh|2. (3.9)

On the other hand, we apply the lemma 3.1 for the vector field ∇h to arrive at

RicΣ(∇h,∇h) ≥ α(n− 1)|∇h|2 + (α− (log f)′′)(n− 1)|∇h|2

+

(
f ′

f

)2

(n− 1)|∇h|2 + nH〈A(∇h),∇h〉+ |A(∇h)|2.

Therefore, this last inequality combined with (3.9) yields

1

2
∆|∇h|2 =

(
−(log f)′′(n+ |∇h|2) + (α− (log f)′′(n− 1)|∇h|2 + α(n− 1)

)
|∇h|2

+

∣∣∣∣A(∇h)− f ′

f
〈N, ∂t〉∇h

∣∣∣∣
2

+

(
f ′

f

)2

〈N, ∂t〉|∇h|2

+nH
f ′

f
〈N, ∂t〉|∇h|2 +

(
f ′

f

)2

(n− 1)|∇h|2 + |Hessh|2.

Upon rearranging the terms above we get

1

2
∆|∇h|2 ≥

(
α(n− 1)− (log f)′′n

)
|∇h|2(1 + |∇h|2)

+

∣∣∣∣A(∇h)− f ′

f
〈N, ∂t〉∇h

∣∣∣∣
2

+ nH
f ′

f
〈N, ∂t〉|∇h|2

+

(
f ′

f

)2

(n+ |∇h|2)|∇h|2 + |Hessh|2.

This that we wanted to prove. �

The following consequence of the generalized maximum principle of Omori-
Yau [19, 25] is due to Akutagawa [1].
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Lemma 3.3. Let Σn denote an n-dimensional complete Riemannian manifold having
Ricci curvature bounded from below. If g ∈ C2(Σ) is nonnegative and satisfies ∆g ≥
Cgβ, for some real numbers C > 0 and β > 1, then g vanishes identically on Σn.

Now, we are in position to prove our main uniqueness result.

Proof of Theorem 1.1. From Lemma 3.2 we have that

∆|∇h|2 ≥ 2α(n− 1)|∇h|4,

where α = minM KM > 0. Thus, taking into account Lemma 3.1, we can apply
Lemma 3.3 to obtain that |∇h|2 vanishes identically on Σn and, consequently, Σn

is a slice of M
n+1

. Moreover, taking into account that Hf ′ ≤ 0, we see that the
mean curvature H of Σn is, in fact, zero and Σn must be a totally geodesic slice of

M
n+1

. �
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Brazil

e-mail: cicero.aquino@ufpi.edu.br

halyson@ufpi.edu.br

H.F. de Lima
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