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Abstract. We study smoothness and strict convexity of (the bidual) of Banach

spaces in the presence of diameter 2 properties. We prove that the strong diameter

2 property prevents the bidual from being strictly convex and being smooth, and

we initiate the investigation whether the same is true for the (local) diameter 2

property. We also give characterizations of the following property for a Banach

space X: “For every slice S of BX and every norm-one element x in S, there is a

point y ∈ S in distance as close to 2 as we want.” Spaces with this property are

shown to have non-smooth bidual.
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1. Introduction

Let X be a (real) Banach space and denote, as usual, by BX and SX its unit ball
and unit sphere, respectively, and denote the topological dual of X by X∗.

Recall that (the norm of) a Banach space X is strictly convex if ‖x+y
2 ‖ < 1

when x and y are different points of SX , and that (the norm of) X is smooth if for
every x ∈ SX there is exactly one x∗ ∈ SX∗ such that x∗(x) = 1. It is well-known
that X is smooth if X∗ is strictly convex, and that X is strictly convex if X∗ is
smooth.

It is a classical result from 1948 of J. Dixmier [10, Théorème 20’] that X∗∗∗∗

is never strictly convex unless X is reflexive. Several authors have independently
strengthened Dixmier’s result by showing that X∗∗∗ is not smooth for X non-
reflexive. (A partial list of authors can be found in [21]. Milman credits the result

The main results of this paper were presented in a talk by the fourth named author at the Seminario

Matematico e Fisico di Milano in March 2016. The fourth named author was partially supported

by MTM2014-54182-P and the Bulgarian National Scientific Fund under Grant DFNI-I02/10.

Milan J. Math. Vol. 84 (2016) 231–242
DOI 10.1007/s00032-016-0258-1
Published online October 17, 2016
© 2016 Springer International Publishing Milan Journal of Mathematics

http://crossmark.crossref.org/dialog/?doi=10.1007/s00032-016-0258-1&domain=pdf


232	 T.A.	Abrahamsen,	V.	Lima,	O.	Nygaard	and	S.	Troyanski	 Vol.84	(2016)2 T.A. Abrahamsen, V. Lima, O. Nygaard and S. Troyanski

to M. I. Kadets [18, Theorem 2.3].) Note that this result is sharp in the sense that
James’ space J has a renorming such that the third dual is strictly convex [21].

The purpose of this paper is to study the implications of the big-slice phenomena
on smoothness and convexity. By a slice of BX of X we mean a set of the form

S(x∗, ε) := {x ∈ BX : x∗(x) > 1− ε, x∗ ∈ SX∗ , ε > 0}.
Recall the following successively stronger “big-slice concepts”, defined in [4]:

Definition 1.1. A Banach space X has the

(i) local diameter 2 property (LD2P) if every slice of BX has diameter 2.
(ii) diameter 2 property (D2P) if every non-empty relatively weakly open subset of

BX has diameter 2.
(iii) strong diameter 2 property (SD2P) if every finite convex combination of slices

of BX has diameter 2.

In Section 2 we prove that X∗∗ can be neither strictly convex nor smooth if
X has the SD2P. In fact, we prove that when X has the SD2P, then X∗∗ contains
an isometric copy of L1[0, 1]. We next ask whether it is possible that X can have
(L)D2P while X∗∗ is still strictly convex, and we give a partial answer; namely we
prove that if X has a bimonotone basis and the D2P, then the unit sphere of X∗∗

contains a line segment of length as close to 1 as we want.
Recall the following successively stronger “rotundity concepts”:

Definition 1.2. A Banach space X is

(i) strictly convex (or rotund) if every x ∈ SX is an extreme point in BX , i.e., for
every y ∈ X we have that y = 0 whenever ‖x± y‖ = 1.

(ii) weakly midpoint locally uniformly rotund (weakly MLUR) if every x ∈ SX is
a weakly strongly extreme point of BX , i.e., for every sequence (xn) in X, we
have that xn → 0 weakly whenever ‖x± xn‖ → 1.

(iii) midpoint locally uniformly rotund (MLUR) if every x ∈ SX is a strongly extreme
point of BX , i.e., for every sequence (xn) in X, we have that xn → 0 in norm
whenever ‖x± xn‖ → 1.

It is clear that if X is weakly MLUR then X is strictly convex. Smith [22]
observed using the Principle of Local Reflexivity that X is weakly MLUR if and
only if every x ∈ SX is an extreme point of BX∗∗ . In particular, if X∗∗ is strictly
convex, then X is weakly MLUR. The converse is not true.

It was observed in [2, Proposition 1.3] that if X is weakly MLUR, then the
LD2P implies the D2P by Choquet’s lemma [11, Lemma 3.69]. In particular, the
LD2P implies the D2P when X∗∗ is strictly convex.

The main result of [2] is that there exists an equivalent norm | · | on C[0, 1] such
that X = (C[0, 1], | · |) is MLUR and has the (L)D2P. In fact X has the LD2P in
the following stronger sense:

Definition 1.3. A Banach space X has the local diameter 2 property+ (LD2P+) if
for every ε > 0, every slice S of BX , and every x ∈ S ∩ SX there exists y ∈ S such
that ‖x− y‖ > 2− ε.
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Let X be a Banach space and I the identity operator on X. Recall that X has
the Daugavet property if the equation

‖I + T‖ = 1 + ‖T‖

holds for every rank 1 operator T on X. The Daugavet property can be characterized
as follows (see [24] or [20]):

Theorem 1.4. Let X be a Banach space. Then the following statements are equivalent.

(i) X has the Daugavet property.
(ii) The equation ‖I + T‖ = 1+ ‖T‖ holds for every weakly compact operator T on

X.
(iii) For every ε > 0, every x ∈ SX , and every x∗ ∈ SX∗, there exists y ∈ S(x∗, ε)

such that ‖x+ y‖ ≥ 2− ε.
(iv) For every ε > 0, every x∗ ∈ SX∗ , and every x ∈ SX , there exists y∗ ∈ S(x, ε)

such that ‖x∗ + y∗‖ ≥ 2− ε.
(v) For every ε > 0 and every x ∈ SX we have BX = conv(∆ε(x)), where ∆ε(x) =

{y ∈ BX : ‖y − x‖ ≥ 2− ε}.

In Section 3 we prove a similar characterization of the LD2P+, see Theorems 3.2
and 3.5. It is known that the dual of a Banach space with the Daugavet property
is neither strictly convex nor smooth [17, Corollary 2.13]. In Corollary 3.7 we show
that if X has the LD2P+, then X∗∗ is not smooth. We also prove that just like the
diameter two properties above the LD2P+ is inherited by ai-ideals (we postpone the
definition of this concept till we need it).

The notation and conventions we use are standard and follow [16]. When con-
sidered necessary, notation and concepts are explained as the text proceeds.

2. Strict convexity and smoothness of X∗∗

A result of Day [8, Theorem 9] says that neither �1(Γ), Γ uncountable, nor �∞ have
equivalent smooth renormings. So for example no equivalent norm on C[0, 1] has a
bidual that is smooth or strictly convex.

Our first aim in this section is to prove that if a Banach space X has the
SD2P, then the bidual is neither smooth nor strictly convex. Banach spaces which
are M-ideals in their biduals are called M-embedded. It is known that non-reflexive
M-embedded spaces have the SD2P [4, Theorem 4.10]. From [7, p. 109] (see also [14,
Proposition I.1.7]) it is clear that the bidual of a non-reflexive M-embedded space is
neither smooth nor strictly convex.

Let us note that in general we cannot say anything about the absence of smooth-
ness or convexity in X and X∗ in the presence of the SD2P. Indeed, there exists
a smooth M-embedded renorming X of c0 with strictly convex dual [14, Corol-
lary III.2.12]. There also exists a strictly convex M-embedded space X with smooth
dual [14, Remark IV.1.17].

We will need the following concept:
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Definition 2.1. A sequence (xn) in X is said to be asymptotically isometric �1, if
there exists a sequence (δn) in (0, 1) decreasing to 0 and such that

m∑
n=1

(1− δn)|an| ≤ ‖
m∑

n=1

anxn‖ ≤
m∑

n=1

|an|

for each finite sequence (an)
m
n=1 in R.

From [12, Remark II.5.2] we have the following:

Definition 2.2. A Banach space X is said to be octahedral if for every finite dimen-
sional subspace E of X and every ε > 0, there exists y ∈ SX such that for every
x ∈ E and every λ ∈ R, we have

‖x+ λy‖ ≥ (1− ε)(‖x‖+ |λ|).

Lemma 2.3. If X is octahedral, then X contains an asymptotically isometric �1
sequence.

The proof uses an idea of H. Pfitzner (see [19, Theorem 2]).

Proof. Let (δn) ⊂ (0, 1) such that δn → 0. Let η1 = δ1
2 and ηn+1 = 1

2 min{ηn, δn+1}.
We will find a sequence (xn) ⊂ SX such that

m∑
n=1

(1− δn)|an|+ ηm

m∑
n=1

|an| ≤ ‖
m∑

n=1

anxn‖ (1)

by induction. The m = 1 step is trivial.

Assume (1) holds for a fixed m ≥ 1. Choose ε > 0 such that

ε ≤ ηm − ηm+1

1− δn + ηm

for n = 1, 2, . . . ,m and

ε ≤ δm+1 − ηm+1.

Find, using the assumption and octahedrality, xm+1 ∈ SX such

(1− ε)

( m∑
n=1

(1− δn)|an|+ ηm

m∑
n=1

|an|+ |am+1|
)

≤ ‖
m+1∑
n=1

anxn‖. (2)

Then

m+1∑
n=1

(1− δn)|an|+ ηm+1

m+1∑
n=1

|an| ≤ ‖
m+1∑
n=1

anxn‖ (3)

because the left-hand side of (2) in this case will be greater than the left-hand side
of (3). �



Vol.84	(2016)	 Diameter	Two	Properties,	Convexity	and	Smoothness	 235Diameter Two Properties, Convexity and Smoothness 5

Remark 2.4. As noted above there is a smooth M-embedded Banach space X with
strictly convex dual and a strictly convex M-embedded Banach space X with smooth
dual. By [19, Theorem 2] X∗ contains an asymptotically isometric �1 sequence when-
ever X is M-embedded. Hence the presence of an asymptotically isometric �1 se-
quence in a Banach space X does not prevent X from being strictly convex or
smooth – even when X is a dual space.

Theorem 2.5. If X has the SD2P, then X∗∗ contains an isometric copy of L1[0, 1].

Proof. We know from [13, Theorem 2.4] that X has the SD2P if and only if X∗ is
octahedral. From Lemma 2.3 we know that an octahedral space contains an asymp-
totically isometric �1 sequence. From [9, Theorem 2] we then have that X∗∗ contains
an isometric copy of L1[0, 1]. �

Since L1[0, 1] is neither smooth nor strictly convex the following corollary is
immediate.

Corollary 2.6. If X has the SD2P, then X∗∗ is neither strictly convex nor smooth.

From Corollary 2.6 a natural question arises: If X has the D2P, can X∗∗ be
strictly convex? (Recall from the Introduction that when X∗∗ is strictly convex,
LD2P and D2P for X must be the same thing.) We will give a negative answer to
this question in the case X has a bimonotone basis in Proposition 2.10 below.

We start with an alternative description of the D2P.

Proposition 2.7. The following statements are equivalent:

(i) X has the D2P.
(ii) Whenever ε > 0, x ∈ X with ‖x‖ < 1, and F is a finite dimensional subspace of

X∗, there exist y1, y2 ∈ F⊥ with ‖x+yi‖ < 1, i = 1, 2, such that ‖y1−y2‖ > 2−ε.
(iii) Whenever ε > 0, x ∈ X with ‖x‖ < 1, and E is a finite co-dimensional subspace

of X, there exists y1, y2 ∈ E with ‖x+ yi‖ < 1, i = 1, 2, such that ‖y1 − y2‖ >
2− ε.

Proof. (i) ⇒ (iii). Let ε > 0, x ∈ X with ‖x‖ < 1, and E a finite co-dimensional
subspace of X. Assume without loss of generality that E does not contain x. Choose
a finite dimensional subspace F of X which contains x and with the property that
X = E ⊕ F . Let P be a bounded linear projection onto F . For ε/5 > δ > 0 put

W = {w ∈ BX : ‖P (x− w)|| < δ}.

Note that W is a neighbourhood of x in the relative weak topology on BX . Now,
using (i), and that non-empty relatively weakly open subsets of BX has diameter 2,
we may pick w1, w2 in W , both of norm < 1− δ and with ‖w2 − w1‖ > 2− 3δ.

Put yi = wi − Pwi. Then y1 and y2 are both in E. Moreover, for i = 1, 2, we
have

‖x+ yi‖ = ‖Px+ wi − Pwi‖ ≤ ‖P (x− wi)‖+ ‖wi‖ < 1.
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We also have

‖y1 − y2‖ = ‖w1 − w2 − P (w1 − w2)‖
≥ ‖w1 − w2‖ − 2δ > 2− 5δ > 2− ε

since ‖P (w1 − w2)‖ < 2δ.
(iii) ⇒ (ii). This is obvious as any finite dimensional subspace of a dual space

has a finite co-dimensional pre-annihilator.
(ii) ⇒ (i). Let ε > 0 and U a non-empty relatively weakly open subset of BX .

Let x ∈ U with ‖x‖ < 1 and find a set of the form

V =

(
x+

n⋂
k=1

(fk)
−1(−δ, δ)

)⋂
BX ⊂ U,

where (fk)
n
k=1 ⊂ SX∗ and δ > 0. Let

F = span{(fk)nk=1}.
As F is of finite dimension in X∗, there exist y1, y2 ∈ F⊥ with ‖x + yi‖ < 1,
i = 1, 2, such that ‖y2 − y1‖ > 2 − ε. For i = 1, 2 we have x + yi ∈ V with
‖(x+ y1)− (x+ y2)‖ > 2− ε. �

As a first application of Proposition 2.7 let us give a very simple proof of the
following fact, known from [6].

Proposition 2.8. If X has the D2P and Y is a subspace of X with finite co-dimension,
then Y has the D2P.

Proof. If y ∈ Y with ‖y‖ < 1, ε > 0, and E is of finite co-dimension in Y , then E is
also of finite co-dimension in X and the result follows from Proposition 2.7 (iii). �

Now we return to the problem whether X∗∗ can be strictly convex if X has the
D2P.

Definition 2.9. A Schauder basis (ek)
∞
k=1 for a Banach space X is bimonotone if the

projections

P[n,m](

∞∑
k=1

akek) =

m∑
k=n

akek.

satisfy ‖P[n,m]‖ = 1 if n ≤ m.

Proposition 2.10. Suppose X has a bimonotone basis. Then, if X has the D2P and
ε > 0, SX∗∗ contains a line segment of length > 1− ε.

Proof. Let Pn be the natural projections associated to the basis (ei) and put Qn =
I − Pn. Let ε > 0 and define εn = ε/2n+1.

Define s1 = x1 = (1−ε1)e1
‖e1‖ . Assume that we have found a sequence (xi)

k
i=1 each

with finite support supp(xi) = [li, ri] such that if sk =
∑k

i=1 xi, then

• ‖sk‖ < 1 and ‖sk‖ ≥ ‖sk−1‖
• ‖xi‖ > 1− εi for i = 1, 2, . . . , k.
• ri < li+1 for i = 1, 2, . . . , k − 1.
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Let us show how to find xk+1. Let E = Qrk(X) and use Proposition 2.7 to find
y1, y2 ∈ E with ‖sk + yi‖ < 1 and ‖y1 − y2‖ > 2− 2εk+1. Without loss of generality
‖y1‖ ≥ ‖y2‖ and y1 has finite support. Let xk+1 = y1. Then ‖sk+1‖ = ‖sk+xk+1‖ < 1
and ‖sk‖ ≤ ‖sk+1‖ since the basis is monotone. We also have

2‖xk+1‖ = 2‖y1‖ ≥ ‖y1 − y2‖ > 2− 2εk+1

so ‖xk+1‖ > 1− εk+1.
Let U be a non-trivial ultrafilter on N. Then z = w∗ − limU sm ∈ X∗∗ exists

with ‖z‖ ≤ 1. For λ ∈ [0, 1], let

zλ = w∗ − lim
U
(sm − λs1) = z − λs1.

We have zλ = λz1 + (1 − λ)z0. Note that ‖sm − s1‖ ≤ ‖sm‖ < 1 since the basis is
bimonotone. Hence ‖z1‖ ≤ 1 and ‖z0‖ ≤ 1, so the line segment [z0, z1] is contained in
BX∗∗ . Let Rn = P[ln,rn] be the projection onto the support of xn. We have ‖Rn‖ = 1
and

R∗∗
n zλ = w∗ − lim

U
Rn(sm − λs1) = xn

and hence ‖zλ‖ ≥ ‖R∗∗
n zλ‖ = ‖xn‖ > 1 − εn for all n which means that ‖zλ‖ = 1.

Thus zλ = λz1 + (1− λ)z0, λ ∈ [0, 1], is a line segment on the sphere. The segment
has length ‖z0 − z1‖ = ‖s1‖ > 1− ε. �

3. The local diameter 2 property+

Let us recall from the Introduction the definition of the LD2P+.

Definition 3.1. We say that a Banach space X has the local diameter 2 property+
(LD2P+) if for every x∗ ∈ SX∗ , every ε > 0, every δ > 0, and every x ∈ S(x∗, ε)∩SX

there exists y ∈ S(x∗, ε) with ‖x− y‖ > 2− δ.

From [15, Theorem 1.4] and [24, Open problem (7) p. 95] the following is known.

Theorem 3.2. Let X be a Banach space. Then the following statements are equivalent.

(i) The equation ‖I − P‖ = 2 holds for every norm 1 rank 1 projection P on X.
(ii) For every ε > 0, every x∗ ∈ SX∗ and every x ∈ S(x∗, ε) ∩ SX there exists

y ∈ S(x∗, ε) with ‖x− y‖ > 2− ε.
(iii) For every x ∈ SX and every ε > 0 we have x ∈ conv(∆ε(x)), where ∆ε(x) =

{y ∈ BX : ‖x− y‖ > 2− ε}.

From Lemma 3.3 below, which is due to Ivakhno and Kadets [15, Lemma 2.1],
it is clear that the LD2P+ is equivalent to the statements in Theorem 3.2. Therefore
every Daugavet space has the LD2P+. Note, however, that the converse is not true
as the LD2P+ is stable by taking unconditional sums of Banach spaces which fails
for spaces with the Daugavet property (see e.g. [15, Corollary 3.1]).

Lemma 3.3 (Ivakhno and Kadets). Let ε > 0 and x∗ ∈ SX∗ . Then for every x ∈
S(x∗, ε) ∩ SX and every positive δ < ε there exist y∗ ∈ SX∗ such that x ∈ S(y∗, δ)
and S(y∗, δ) ⊂ S(x∗, ε).
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In the proof of Theorem 3.5 below we will need the following weak∗-version
of Lemma 3.3. Its proof is more or less verbatim to that of Lemma 3.3 and will
therefore be omitted.

Lemma 3.4. Let ε > 0 and x ∈ SX . Then for every x∗ ∈ S(x, ε)∩SX∗ which attains
its norm and every positive δ < ε there exist y ∈ SX such that x∗ ∈ S(y, δ) and
S(y, δ) ⊂ S(x, ε).

We will now add to the list of statements in Theorem 3.2 statements similar to
(ii) and (iv) in Theorem 1.4. As pointed out in [2, p. 232] the equivalence of (i) and
(ii) in Theorem 3.5 below can be proved by a similar argument to the proof of [17,
Lemma 1.5].

Theorem 3.5. Let X be a Banach space. Then the following statements are equivalent:

(i) X has the LD2P+.
(ii) For every x ∈ SX , every ε > 0, every δ > 0, and every x∗ ∈ S(x, ε)∩SX∗ there

exists y∗ ∈ S(x, ε) with ‖x∗ − y∗‖ > 2− δ.
(iii) The equation ‖I − P‖ = 1 + ‖P‖ holds for every weakly compact projection P

on X.

Proof. (i) ⇒ (ii). By the Bishop-Phelps theorem we can assume without loss of
generality that x∗ ∈ S(x, ε) ∩ SX∗ attains its norm. Let 0 < η < min{ε, δ/2} and
find by Lemma 3.4 y ∈ SX such that x∗ ∈ S(y, η) and S(y, η) ⊂ S(x, ε). Note that
y ∈ S(x∗, η) and thus, since X has the LD2P+, we can find z ∈ S(x∗, η) such that
‖y − z‖ > 2− η. Hence there is y∗ ∈ SX∗ such that

y(y∗)− z(y∗) = (y − z)(y∗) > 2− η.

From this we have y(y∗) > 1− η and −z(y∗) > 1− η. It follows that y∗ ∈ S(x, ε) as
S(y, η) ⊂ S(x, ε). Moreover, using that z ∈ S(x∗, η), we have

‖x∗ − y∗‖ ≥ (x∗ − y∗)(z)

= x∗(z)− y∗(z)

> 1− η + 1− η > 2− δ.

(ii) ⇒ (i). The proof is identical to the proof of the converse except that one
does not use the Bishop-Phelps theorem and that one uses Lemma 3.3 in place of
Lemma 3.4.

(i) ⇒ (iii). The proof is similar to that of [17, Theorem 2.3].
(iii) ⇒ (i). This is clear as (iii) trivially implies (i) in Theorem 3.2. �

Note that from Theorem 3.5 we get

Corollary 3.6. If BX∗ contains a weak∗-denting point, in particular if X∗ has the
RNP, then X does not have the LD2P+.

It is known that if X∗∗ is smooth, then X∗ has the RNP (see e.g. [23]), hence
we have the following corollary.

Corollary 3.7. If X has the LD2P+, then X∗∗ is not smooth.
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It is known that all the diameter 2 properties in Definition 1.1 as well as the
Daugavet property are inherited by certain subspaces called ai-ideals (see [5] and
[1]). We will end this section by showing that this is true for the LD2P+ as well.

A subspace X of a Banach space Y is called an ideal in Y if there exists a
norm 1 projection P on Y ∗ with kerP = X⊥. X being an ideal in Y is in turn
equivalent to X being locally 1-complemented in Y , i.e., for every ε > 0 and every
finite dimensional subspace E ⊂ Y there exists a linear T : E → X such that

(i) Te = e for all e ∈ X ∩ E.
(ii) ‖Te‖ ≤ (1 + ε)‖e‖ for all e ∈ E.

Following [5] a subspace X of a Banach space Y is called an almost isometric
ideal (ai-ideal) in Y if X is locally 1-complemented with almost isometric local
projections, i.e., for every ε > 0 and every finite-dimensional subspace E ⊂ Y there
exists T : E → X which satisfies (i) and

(ii′) (1− ε)‖e‖ ≤ ‖Te‖ ≤ (1 + ε)‖e‖ for all e ∈ E.

Note that an ideal X in Y is an ai-ideal if P (Y ∗) is a 1-norming subspace of
Y ∗ [5, Proposition 2.1]. Ideals X in Y for which P (Y ∗) is a 1-norming subspace
for Y are called strict ideals. An ai-ideal is, however, not necessarily strict (see [5,
Example 1] and [3, Remark 3.2]).

Proposition 3.8. Let Y have the LD2P+ and assume X is an ai-ideal in Y . Then
X has the LD2P+.

Proof. For δ > 0, Z a subspace of Y , and x ∈ SZ put

∆Z
δ (x) = {y ∈ BZ : ‖x− y‖ > 2− δ}.

Let x ∈ SX , ε > 0, and α > 0. We will show that there exists z ∈ conv∆X
ε (x)

with ‖x − z‖ < α. The result will then follow from Theorem 3.2 (iii). First, since
Y enjoys the LD2P+, we know that for any positive β < ε and any positive γ < α
we can find y =

∑N
n=1 λnyn with (yn)

N
n=1 ⊂ ∆Y

β (x) such that ‖x− y‖ < γ. Now let

E = span{y1, . . . , yN , x} and pick a local projection T : E → X such that T is a
(1+η)-isometry with η > 0 so small that (1+η)γ+η < α, and (1−η)(2−β)−η > 2−ε.

Put zn = Tyn
‖Tyn‖ and z =

∑N
n=1 λnzn. As Tx = x we get

‖x− z‖ ≤ ‖x− Ty‖+ ‖Ty − z‖

≤ ‖T (x− y)‖+
N∑

n=1

λn

∣∣1− ‖Tyn‖
∣∣

< (1 + η)γ + max
1≤n≤N

∣∣1− ‖Tyn‖
∣∣

≤ (1 + η)γ + η < α.
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Moreover, for every 1 ≤ n ≤ N we have,

‖x− zn‖ = ‖T (x− yn
‖Tyn‖

)‖

≥ (1− η)‖x− yn
‖Tyn‖

‖

≥ (1− η)(‖x− yn‖ − ‖yn − yn
‖Tyn‖

‖)

≥ (1− η)(2− β −
∣∣1− ‖Tyn‖

∣∣
‖Tyn‖

‖yn‖)

≥ (1− η)(2− β − η

1− η
) > 2− ε,

Thus (zn)
N
n=1 ⊂ ∆ε(x) and as α > 0 is arbitrarily chosen, we are done. �
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