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Abstract. The quaternionic spectral theorem has already been considered in the

literature, see e.g. [22], [32], [33], however, except for the finite dimensional case

in which the notion of spectrum is associated to an eigenvalue problem, see [21],

it is not specified which notion of spectrum underlies the theorem.

In this paper we prove the quaternionic spectral theorem for unitary opera-

tors using the S-spectrum. In the case of quaternionic matrices, the S-spectrum

coincides with the right-spectrum and so our result recovers the well known the-

orem for matrices. The notion of S-spectrum is relatively new, see [17], and has

been used for quaternionic linear operators, as well as for n-tuples of not neces-

sarily commuting operators, to define and study a noncommutative versions of

the Riesz-Dunford functional calculus.

The main tools to prove the spectral theorem for unitary operators are the

quaternionic version of Herglotz’s theorem, which relies on the new notion of a

q-positive measure, and quaternionic spectral measures, which are related to the

quaternionic Riesz projectors defined by means of the S-resolvent operator and

the S-spectrum.

The results in this paper restore the analogy with the complex case in which

the classical notion of spectrum appears in the Riesz-Dunford functional calculus

as well as in the spectral theorem.
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1. Introduction

One of the main motivations to study spectral theory of linear operators in the
quaternionic setting is due to the fact that Birkhoff and von Neumann, see [12],
showed that there are essentially two possible settings in which to write the Schrö-
dinger equation, namely with complex-valued functions or with quaternion-valued
functions. Since then, many efforts have been made by several authors, see [1, 20, 22,
27], to develop a quaternionic version of quantum mechanics. Fundamental tools in
this framework are the theory of quaternionic groups and semigroups on quaternionic
Banach spaces which have been studied only recently in the papers [3, 14, 26] using
the notion of S-spectrum and of S-resolvent operator as well as the spectral theorem,
which is the main result of this paper.

To fully understand the aim of this work, we start by recalling some basic
facts in complex spectral theory. Let A be a linear operator acting on a complex
Banach space X, and let σ(A) and ρ(A) be the spectrum and the resolvent set of A,
respectively. One of the most natural ways to associate to a linear operator A the
linear operator f(A) is to use the Cauchy formula for holomorphic functions

f(A) =
1

2πi

∫

∂Ω
(λI −A)−1f(λ)dλ,

where ∂Ω is a smooth closed curve that belongs to the resolvent set of A and f is
a holomorphic function on an open set Ω which contains the spectrum of A. This
holomorphic functional calculus is known as Riesz-Dunford functional calculus, see
[18].

To any linear operator A, it is possible to associate the notion of spectral
measures, which can be written explicitly using the Riesz-projectors, as described
below. A subset of σ(A) that is open and closed in the relative topology of σ(A) is
called a spectral set. The spectral sets form a Boolean algebra and with each spectral
set σ one can associate the projection operator

P (σ) =
1

2πi

∫

Cσ

(λI −A)−1dλ,

where Cσ is a smooth closed curve belonging to the resolvent set ρ(A) such that Cσ

surrounds σ but no other points of the spectrum. A spectral measure in the complex
Banach space X is then a homomorphism of the Boolean algebra of the sets into
the Boolean algebra of projection operators in X, which has the additional property
that it maps the unit in its domain into the identity operator in its range.

As is well known, the spectrum σ(A) appearing in the definition of the Riesz-
projectors P (σ) is precisely the support of the spectral measure E(λ) appearing in
the spectral theorem for normal linear operators in a complex Hilbert space. More
precisely, for a normal linear operator B on a complex Hilbert space and a continuous
function g on the spectrum σ(B), we have

g(B) =

∫

σ(B)
g(λ)dE(λ).
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Prior to the introduction of the S-spectrum in the quaternionic setting, two spectral
problems were considered in [17]. We discuss the case of right linear quaternionic
operators (the case of a left linear operators being similar), i.e., operators T : V → V
acting on a quaternionic two sided Banach space V, such that T (w1α + w2β) =
T (w1)α + T (w2)β, for α, β ∈ H, w1, w2 ∈ V. The symbol BR(V) denotes the left
Banach space of bounded right linear operators acting on V.

The left spectrum σL(T ) of T is related to the resolvent operator (sI − T )−1,
that is,

σL(T ) = {s ∈ H : sI − T is not invertible in BR(V)},
where the notation sI in BR(V) means that (sI)(v) = sv.

The right spectrum σR(T ) of T is associated with the right eigenvalue problem,
i.e., the search for nonzero vectors satisfying T (v) = vs. It is important to note that
if s is an eigenvalue, then all quaternions belonging to the sphere r−1sr, r ∈ H\{0},
are also eigenvalues. But observe that the operator Is − T associated to the right
eigenvalue problem is not linear, so it is not clear what is the resolvent operator to
be considered.

A natural notion of spectrum that arises in the definition of the quaternionic
functional calculus is the one of S-spectrum. In the case of matrices, the S-spectrum
coincides with the set of right eigenvalues; in the general case of a linear operator,
the point S-spectrum coincides with the set of right eigenvalues.

In the literature there are several papers on the quaternionic spectral theorem,
see, e.g., [22, 33], however the notion of spectrum in use is not made clear. Recently,
there has been a resurgence of interest in this topic, see [25], where the authors prove
the spectral theorem, based on the S-spectrum, for compact normal operators on a
quaternionic Hilbert space. In this paper we prove the quaternionic spectral theorem
for unitary operators using the S-spectrum, which is then realized to be the correct
notion of spectrum for the quaternionic spectral theory of unitary operators.

The S-spectrum, see [17], is defined as

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not invertible},
while the S-resolvent set is

ρS(T ) := H \ σS(T )
where s = s0 + s1i + s2j + s3k is a quaternion, i, j and k are the imaginary units
of the quaternion s, Re(s) = s0 is the real part and the norm |s| is such that
|s|2 = s20 + s21 + s22 + s23. Due to the noncommutativity of the quaternions, there are
two resolvent operators associated with a quaternionic linear operator: the left and
the right S-resolvent operators which are defined as

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), s ∈ ρS(T ) (1.1)

and

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1, s ∈ ρS(T ), (1.2)

respectively. Using the notion of S-spectrum and the notion of slice hyperholomor-
phic functions, see Section 4, we can define the quaternionic functional calculus,
see [15, 16, 17]. We point out that the S-resolvent operators are also used in Schur
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analysis in the realization of Schur functions in the slice hyperholomorphic setting
see [6, 7, 8] and [2, 10] for the classical case.

To set the framework in which we will work, we give some preliminaries. Con-
sider the complex plane CI := R + IR, for I ∈ S, where S is the unit sphere of
purely imaginary quaternions. Observe that CI can be identified with a complex
plane since I2 = −1 for every I ∈ S. Let Ω ⊂ H be a suitable domain that contains
the S-spectrum of T . We define the quaternionic functional calculus for left slice
hyperholomorphic functions f : Ω → H as

f(T ) =
1

2π

∫

∂(Ω∩CI)
S−1
L (s, T ) dsI f(s), (1.3)

where dsI = −dsI; for right slice hyperholomorphic functions, we define

f(T ) =
1

2π

∫

∂(Ω∩CI)
f(s) dsI S−1

R (s, T ). (1.4)

These definitions are well posed since the integrals depend neither on the open set Ω
nor on the complex plane CI . Using a similar idea, we define the projection operators
which will provide the link between the spectral theorem and the S-spectrum.

Our proofs make use of a quaternionic version of Herglotz’s theorem proved in
the recent paper [5]. This theorem is the starting point to prove the quaternionic
spectral theorem for unitary operators, in analogy with the classical case.

The main result is that if U is a unitary operator acting on a quaternionic
Hilbert space H, then, there exists a spectral measure E, defined on the Borel sets
of [0, 2π], such that for every slice continuous function f ∈ S(σS(U)), we have

〈f(U)x, y〉 =
∫ 2π

0
f(eIt)d〈E(t)x, y〉, x, y,∈ H.

Moreover, for t belonging to the Borel sets of [0, 2π], the measures

νx,y(t) = 〈E(t)x, y〉, x, y ∈ H,

are related to the S-spectrum of U by the quaternionic Riesz projectors by the
relation

P(σ0
S(U)) = E(t1)− E(t0),

where σ0
S(U) is the spectral set in the unit circle in CI delimited by the angles t0,

t1.

The plan of the paper is the following. In Section 2, we introduce some prelim-
inaries on quaternionic Hilbert spaces and quaternionic Riesz projectors and their
properties. In Section 3, we recall the Herglotz’s theorem over the quaternions and
the notion of a q-positive measure and prove the main result of the paper, namely the
spectral theorem for the unitary operators based on the S-spectrum. Finally, in Sec-
tion 4, we discuss the relation the S-spectrum and the spectral measures constructed
in Section 3.
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2. Quaternionic Riesz projectors

The quaternionic functional calculus is defined on the class of slice hyperholomorphic
functions f : Ω → H for some set Ω ⊆ H. Such functions have a Cauchy formula
that works on specific domains which are called axially symmetric slice domains. The
quaternionic functional calculus is based on this Cauchy formula and to illustrate
it, we begin by providing some preliminaries.

If we consider an element I in the unit sphere of purely imaginary quaternions

S = {q = ix1 + jx2 + kx3 :x
2
1 + x22 + x23 = 1}

then I2 = −1, and for this reason the elements of S are also called imaginary
units. Note that S is a 2-dimensional sphere in R4. Given a nonreal quaternion
p = x0 + Im(p) = x0 + I|Im(p)|, I = Im(p)/|Im(p)| ∈ S, we can associate to it the
2-dimensional sphere defined by

[p] = {x0 + I|Im(p)| : I ∈ S}.

For any fixed I ∈ S, the set CI = {u + Iv : u, v ∈ R} can be identified with the
complex plane C in a natural way.

Definition 2.1 (Axially symmetric slice domain). Let Ω be a domain in H. We say
that Ω is a slice domain (s-domain for short) if Ω∩R is non empty and if Ω ∩CI is
a domain in CI for all I ∈ S. We say that Ω is axially symmetric if, for all q ∈ Ω,
the 2-sphere [q] is contained in Ω.

Definition 2.2. An axially symmetric set σ ⊆ σS(T ) which is both open and closed
in σS(T ) in its relative topology, is called a S-spectral set (or, sometimes, spectral
set for the sake of simplicity).

The definition of a S-spectral set is suggested by the symmetry properties of
the S-spectrum. In fact, if p ∈ σS(T ), then all of the elements of the 2-sphere [p] are
contained in σS(T ).

Definition 2.3. Let T be a quaternionic linear operator acting on a quaternionic two
sided Banach space V. Denote by Ωσ an axially symmetric s-domain that contains
the spectral set σ but not any other points of the S-spectrum. Suppose that the
Jordan curves ∂(Ωσ ∩ CI) belong to the S-resolvent set ρS(T ), for every I ∈ S. We
define the family P(σ) of quaternionic operators, depending on the spectral sets σ,
as

P(σ) =
1

2π

∫

∂(Ωσ∩CI)
S−1
L (s, T )dsI .

The operators P(σ) are called (quaternionic) Riesz projectors.

Remark 2.4. The definition of P(σ) can be given using the right S-resolvent operator
S−1
R (s, T ), that is

P(σ) =
1

2π

∫

∂(Ωσ∩CI)
dsIS

−1
R (s, T ).
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Using the left S-resolvent operator we define the Riesz projectors associated
with the S-spectrum. In [4, Theorem 3.19] we proved that P(σ) is a projector and
that it commutes with T .

Definition 2.5. Let V be a two-sided quaternionic Banach space. We denote by B(V)
the space of bounded quaternionic left (or right) linear operators; the results of this
section hold in both cases.

The classical Riesz projectors are a powerful tool in spectral analysis and the
study of such projectors is based on the resolvent equation. Recently, in the paper
[4], it has been shown that there exists a S-resolvent equation in the quaternionic
setting. An interesting fact is that it involves both the S-resolvent operators. More
precisely, we have the following result.

Theorem 2.6 (The S-resolvent equation). Let T ∈ B(V) and let s and p ∈ ρS(T ).
Then we have

S−1
R (s, T )S−1

L (p, T ) = ((S−1
R (s, T )− S−1

L (p, T ))p− s(S−1
R (s, T )

− S−1
L (p, T )))(p2 − 2s0p+ |s|2)−1,

(2.1)

and

S−1
R (s, T )S−1

L (p, T ) = (s2 − 2p0s+ |p|2)−1(s(S−1
R (s, T )

− S−1
L (p, T ))− (S−1

R (s, T )− S−1
L (p, T ))p).

(2.2)

The following lemma will be useful in the sequel.

Lemma 2.7. Let B ∈ B(V) and let Ω be an axially symmetric s-domain.

If p ∈ Ω, then

1

2π

∫

∂(Ω∩CI)
dsI(sB −Bp)(p2 − 2s0p+ |s|2)−1 = B. (2.3)

Moreover, if s ∈ Ω, then

1

2π

∫

∂(Ω∩CI)
(sB −Bp)(p2 − 2s0p+ |s|2)−1dpI = −B. (2.4)

Proof. It follows the same lines of the proof of Lemma 3.18 in [4]. �

Theorem 2.8. Let T be a quaternionic linear operator. Then the family of operators
P(σ) has the following properties:

(i) (P(σ))2 = P(σ);
(ii) TP(σ) = P(σ)T ;
(iii) P(σS(T )) = I;
(iv) P(∅) = 0;
(v) P(σ ∪ δ) = P(σ) + P(δ) for σ ∩ δ = ∅;
(vi) P(σ ∩ δ) = P(σ)P(δ).
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Proof. Properties (i) and (ii) are proved in Theorem 3.19 in [4]. Property (iii) follows
from the quaternionic functional calculus since

Tm =
1

2π

∫

∂(Ω∩CI)
S−1
L (s, T )dsI sm, m ∈ N0

for σS(T ) ⊂ Ω, which for m = 0 gives

I =
1

2π

∫

∂(Ω∩CI)
S−1
L (s, T )dsI .

Property (iv) is a consequence of the functional calculus as well.

Property (v) follows from

P(σ ∪ δ) =
1

2π

∫

∂(Ωσ∪δ∩CI)
S−1
L (s, T )dsI

=
1

2π

∫

∂(Ωσ∩CI)
S−1
L (s, T )dsI +

1

2π

∫

∂(Ωδ∩CI)
S−1
L (s, T )dsI

= P(σ) + P(δ).

To prove (vi), assume that σ ∩ δ �= ∅ and consider

P(σ)P(δ) =
1

(2π)2

∫

∂(Ωσ∩CI)
dsIS

−1
R (s, T )

∫

∂(Ωδ∩CI)
S−1
L (p, T )dpI

=
1

(2π)2

∫

∂(Ωσ∩CI)
dsI

∫

∂(Ωδ∩CI)
[S−1

R (s, T )− S−1
L (p, T )]

× p(p2 − 2s0p+ |s|2)−1dpI

− 1

(2π)2

∫

∂(Ωσ∩CI)
dsI

∫

∂(Ωδ∩CI)
s[S−1

R (s, T )− S−1
L (p, T )]

× (p2 − 2s0p+ |s|2)−1dpI ,

where we have used the S-resolvent equation (see Theorem 2.6). We rewrite the
above relation as

P(σ)P(δ) = − 1

(2π)2

∫

∂(Ωσ∩CI)
dsI

∫

∂(Ωδ∩CI)
[sS−1

R (s, T )− S−1
R (s, T )p]

× (p2 − 2s0p+ |s|2)−1dpI

+
1

(2π)2

∫

∂(Ωσ∩CI)
dsI

∫

∂(Ωδ∩CI)
[sS−1

L (p, T )− S−1
L (p, T )p]

× (p2 − 2s0p+ |s|2)−1dpI

=: J1 + J2.
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Now thanks to Lemma 2.7 and Remark 2.4 we have

J1 = − 1

(2π)2

∫

∂(Ωσ∩CI)
dsI

∫

∂(Ωδ∩CI)
[sS−1

R (s, T )− S−1
R (s, T )p]

× (p2 − 2s0p+ |s|2)−1dpI

=
1

2π

∫

∂(Ωσ∩CI)
dsIS

−1
R (s, T ), for s ∈ Ωδ ∩ CI

=
1

2π

∫

∂(Ωσ∩CI)
S−1
L (s, T )dsI , for s ∈ Ωδ ∩ CI

while J1 = 0 when s �∈ Ωδ ∩ CI since∫

∂(Ωδ∩CI)
[sS−1

R (s, T )− S−1
R (s, T )p](p2 − 2s0p+ |s|2)−1dpI = 0.

Similarly, one can show that

J2 =
1

2π

∫

∂(Ωδ∩CI)
S−1
L (p, T )dpI , for p ∈ Ωσ ∩ CI

while J2 = 0 when p �∈ Ωσ ∩ CI . The integrals J1, J2 are either both zero or both
nonzero, so with a change of variable we get

J1 + J2 =
1

2π

∫

∂(Ωσ∩δ∩CI)
S−1
L (r, T )drI = P(σ ∩ δ). �

From now on we will always work in quaternionic Hilbert spaces, so we will
recall some definitions.

Let H be a right linear quaternionic Hilbert space endowed with an H-valued
inner product 〈·, ·〉 which satisfies

〈x, y〉 = 〈y, x〉;

〈x, x〉 ≥ 0 and ‖x‖2 := 〈x, x〉 = 0 ⇐⇒ x = 0;

〈xα+ yβ, z〉 = 〈x, z〉α+ 〈y, z〉β;
〈x, yα+ zβ〉 = α〈x, z〉+ β〈x, z〉,

for all x, y, z ∈ H and α, β ∈ H. Any right linear quaternionic Hilbert space can be
made also a left linear space, by fixing an Hilbert basis, see [24], Section 3.1. We
call an operator A from the right quaternionic Hilbert space H1, with inner product
〈·, ·〉1, to another right quaternionic Hilbert space H2, with inner product 〈·, ·〉2, right
linear if

A(xα+ yβ) = (Ax)α+ (Ay)β,

for all x, y in the domain of A and α, β ∈ H. We call an operator A bounded if

‖A‖ := sup
‖x‖≤1

‖Ax‖ < ∞.

Corresponding to any bounded right linear operator A : H1 → H2 there exists a
unique bounded right linear operator A∗ : H2 → H1 such that

〈Ax, y〉2 = 〈x,A∗y〉1,
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and ‖A‖ = ‖A∗‖ (see Proposition 6.2 in [11]).

Let H be a right quaternionic Hilbert space with inner product 〈·, ·〉. We call a
right linear operator U : H → H unitary if

〈U∗Ux, y〉 = 〈x, y〉, for all x, y ∈ H,

or, equivalently, U−1 = U∗.

Theorem 2.9. Let H be a right linear quaternionic Hilbert space and let U be a
unitary operator on H. Then the S-spectrum of U belongs to the unit sphere of the
quaternions.

Proof. See Theorem 4.8 in [24]. �

We denote the Borel sets in [0, 2π] by B([0, 2π]).

Lemma 2.10. Let x, y ∈ H and let P(σ) be the projector associated with the unitary
operator U given in Definition 2.3. We define

mx,y(σ) := 〈P(σ)x, y〉, x, y ∈ H, σ ∈ B([0, 2π]).

Then the H-valued measures mx,y defined on B([0, 2π]) enjoy the following properties

(i) mxα+yβ,z = mx,zα+my,zβ;

(ii) mx,yα+zβ = αmx,y + βmx,z;
(iii) mx,y([0, 2π]) ≤ ‖x‖‖y‖,
where x, y, z ∈ H and α, β ∈ H.

Proof. Properties (i) and (ii) follow from the properties of the quaternionic scalar
product, while (iii) follows from Property (iii) in Theorem 2.8 and the Cauchy-
Schwarz inequality (see Lemma 5.6 in [11]). �

3. The spectral theorem for quaternionic unitary operators

We recall some classical results and also their quaternionic analogs which will be
useful to prove a spectral theorem for quaternionic unitary operators.

Theorem 3.1 (Herglotz’s theorem). The function n �→ r(n) from Z into Cs×s is
positive definite if and only if there exists a positive Cs×s-valued measure µ on [0, 2π]
such that

r(n) =

∫ 2π

0
eintdµ(t), n ∈ Z. (3.1)

In this case µ is unique.

Given P ∈ Hs×s, there exist unique P1, P2 ∈ Cs×s such that P = P1 + P2j.
Recall the bijective homomorphism χ : Hs×s → C2s×2s given by

χP =

(
P1 P2

−P 2 P 1

)
where P = P1 + P2j. (3.2)
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Definition 3.2. Given a H-valued measure ν, we may always write ν = ν1 + ν2j,
where ν1 and ν2 are uniquely determined C-valued measures. We call a measure ν
on [0, 2π] q-positive if the C2×2-valued measure

µ =

(
ν1 ν2
ν∗2 ν3

)
, where ν3(t) = ν1(2π − t), t ∈ [0, 2π] (3.3)

is positive and, in addition,

ν2(t) = −ν2(2π − t), t ∈ [0, 2π].

Remark 3.3. If ν is q-positive, then ν = ν1+ ν2j, where ν1 is a uniquely determined
positive measure and ν2 is a uniquely determined C-valued measure.

Remark 3.4. If r = (r(n))n∈Z is a H-valued sequence on Z such that

r(n) =

∫ 2π

0
eintdν(t),

where ν is a q-positive measure, then r is Hermitian, i.e., r(−n) = r(n).

The following result is a particular case of [5, Theorem 5.5] (Hs×s-valued posi-
tive sequences for s > 1 were also considered in [5]).

Theorem 3.5 (Herglotz’s theorem for the quaternions). The function n �→ r(n) from
Z into H is positive definite if and only if there exists a q-positive measure ν on [0, 2π]
such that

r(n) =

∫ 2π

0
eintdν(t), n ∈ Z. (3.4)

In this case ν is unique.

Remark 3.6. For every I ∈ S, there exists J ∈ S so that IJ = −JI. Thus, H =
CI ⊕ CIJ and we may rewrite (3.4) as

r(n) =

∫ 2π

0
eIntdν(t), n ∈ Z, (3.5)

where ν = ν1 + ν2J is a q-positive measure (in the sense that

µ =

(
ν1 ν2
ν∗2 ν3

)

is positive), where ν2(t) = −ν2(2π − t) and ν3(t) = ν1(2π − t).

Lemma 3.7. Let U be a unitary operator on H and let rx(n) = 〈Unx, x〉 for x ∈ H.
Then rx = (rx(n))n∈Z is an H-valued positive definite sequence.
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Proof. If {p0, . . . , pN} ⊂ H, then

N∑
m,n=0

p̄mrx(n−m)pn =

N∑
m,n=0

p̄m〈Un−mx, x〉pn

=

N∑
m,n=0

〈Un−mxpn, xpm〉

=

N∑
m,n=0

〈Unxpn, U
mxpm〉

= 〈
N∑

n=0

Unxpn,
N∑

m=0

Umxpm〉

=

∥∥∥∥∥
N∑

n=0

Unxpn

∥∥∥∥∥
2

≥ 0.

Thus, rx is a positive definite H-valued sequence. �

Let rx be as in Lemma 3.7. It follows from Theorem 3.5 that there exists a
unique q-positive measure dνx such that

rx(n) = 〈Unx, x〉 =
∫ 2π

0
eintdνx(t), n ∈ Z. (3.6)

One can check that

4〈Unx, y〉 = 〈Un(x+ y), x+ y〉 − 〈Un(x− y), x− y〉+ i〈Un(x+ yi), x+ yi〉
− i〈Un(x− yi), x− yi〉+ i〈Un(x− yj), x− yj〉k − i〈Un(x+ yj), x+ yj〉k
+ 〈Un(x+ yk), x+ yk〉k − 〈Un(x− yk), x− yk〉k. (3.7)

Thus, if we let

νx,y := (νx+y − νx−y + iνx+yi − iνx−yi + iνx−yjk − iνx+yjk

+ νx+ykk − νx−ykk)/4, (3.8)

then

〈Unx, y〉 =
∫ 2π

0
eintdνx,y(t), x, y ∈ H and n ∈ Z. (3.9)

Theorem 3.8. The H-valued measures νx,y defined on B([0, 2π]) enjoy the following
properties:

(i) νxα+yβ,z = νx,zα+ νy,zβ, α, β ∈ H;
(ii) νx,yα+zβ = ᾱνx,y + β̄νx,z, α, β ∈ Ci;
(iii) νx,y([0, 2π]) ≤ ‖x‖‖y‖,
where x, y, z ∈ H and α, β ∈ H.
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Proof. Formula (3.9) yields
∫ 2π

0
eintdνxα+yβ,z(t) = 〈Unx, z〉α+ 〈Uny, z〉β

=

∫ 2π

0
eint(dνx,z(t)α+ dνy,z(t)β), n ∈ Z.

The uniqueness of the q-positive measure appearing in Theorem 3.5 allows to con-
clude that

νxα+yβ,z(t) = νx,z(t)α+ νy,z(t)β

and hence we have proved (i). Property (ii) is proved in a similar fashion, observing
that ᾱ, β̄ commute with eint.

If n = 0 in (3.9), then

〈x, y〉 =
∫ 2π

0
dνx,y(t) = νx,y([0, 2π])

and thus we can use an analog of the Cauchy-Schwarz inequality (see Lemma 5.6 in
[11]) to obtain

νx,y([0, 2π]) ≤ ‖x‖‖y‖
and hence we have proved (iii). �

Remark 3.9. Contrary to the classical complex Hilbert space setting, νx,y need not
equal ν̄y,x.

It follows from statements (i), (ii) and (iii) in Theorem 3.8 that φ(x) = νx,y(σ),
where y ∈ H and σ ∈ B([0, 2π]) are fixed, is a continuous right linear functional.
Moreover, an analog of the Riesz representation theorem (see Theorem 6.1 in [11] or
Theorem 7.6 in [13]) gives that corresponding to any x ∈ H, there exists a uniquely
determined vector w ∈ H such that

φ(x) = 〈x,w〉,
i.e., νx,y(σ) = 〈x,w〉. Use (i) and (ii) in Theorem 3.8 to deduce that w = E(σ)∗y.
The uniqueness of E follows readily from the construction. Thus, we have

νx,y(σ) = 〈E(σ)x, y〉, x, y ∈ H and σ ∈ B([0, 2π]), (3.10)

whence

〈Unx, y〉 =
∫ 2π

0
eintd〈E(t)x, y〉. (3.11)

To prove the main properties of the operator E we need a uniqueness results
on quaternionic measures which is a corollary of the following:

Theorem 3.10. Let µ and ν be C-valued measures on [0, 2π]. If

r(n) =

∫ 2π

0
eintdµ(t) =

∫ 2π

0
eintdν(t), n ∈ Z, (3.12)

then µ = ν.

Proof. See, e.g., Theorem 1.9.5 in [30]. �
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Theorem 3.11. Let µ and ν be H-valued measures on [0, 2π]. If

r(n) =

∫ 2π

0
eintdµ(t) =

∫ 2π

0
eintdν(t), n ∈ Z, (3.13)

then µ = ν.

Proof. Write r(n) = r1(n) + r2(n)j, µ = µ1 + µ2j and ν = ν1 + ν2j, where
r1(n), r2(n) ∈ C and µ1, µ2, ν1, ν2 are C-valued measures on [0, 2π]. It follows from
(3.13) that

r1(n) =

∫ 2π

0
eintdµ1(t) =

∫ 2π

0
eintdν1(t), n ∈ Z

and

r2(n) =

∫ 2π

0
eintdµ2(t) =

∫ 2π

0
eintdν2(t), n ∈ Z.

Use Theorem 3.10 to conclude that µ1 = ν1, µ2 = ν2 and hence that µ = ν. �

Theorem 3.12. The operator E given in (3.10) enjoys the following properties:

(i) ‖E(σ)‖ ≤ 1;
(ii) E(∅) = 0 and E([0, 2π]) = IH;
(iii) If σ ∩ τ = ∅, then E(σ ∪ τ) = E(σ) + E(τ);
(iv) E(σ ∩ τ) = E(σ)E(τ);
(v) E(σ)2 = E(σ);
(vi) E(σ) commutes with U for all σ ∈ B([0, 2π]).

Proof. Use (3.10) with y = E(σ)x and (iii) in Theorem (3.8) to obtain

‖E(σ)x‖2 ≤ ‖x‖‖E(σ)x‖,
whence we have shown (i). The first part of property (ii) follows directly from the
fact that νx,y(∅) = 0. The last part follows from (3.11) when n = 0. Statement (iii)
follows easily from the additivity of the measure νx,y.

We will now prove property (iv). It follows from (3.11) that

〈Un+mx, y〉 =
∫ 2π

0
einteimtd〈E(t)x, y〉

= 〈Un(Umx), y〉

=

∫ 2π

0
eintd〈E(t)Umx, y〉.

Using the uniqueness in Theorem 3.11 we obtain

eimtd〈E(t)x, y〉 = d〈E(t)Umx, y〉
and hence, denoting the characteristic function of the set σ by 1σ, we have

∫ 2π

0
1σ(t)e

imtd〈E(t)x, y〉 = 〈E(σ)Umx, y〉.

But ∫ 2π

0
1σ(t)e

imtd〈E(t)x, y〉 = 〈Umx,E(σ)∗y〉 =
∫ 2π

0
eimtd〈E(t)x,E(σ)∗y〉.
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Using the uniqueness in Theorem 3.11 once more we get

1σ(t)d〈E(t)x, y〉 = d〈E(t)x,E(σ)∗y〉

and hence ∫ 2π

0
1τ (t)1σ(t)d〈E(t)x, y〉 = 〈E(t)x,E(σ)∗y〉

and thus

〈E(σ ∩ τ)x, y〉 = 〈E(σ)E(τ)x, y〉.

Property (v) is obtained from (iv) by letting σ = τ .

Finally, since U is unitary one can check that

〈U(x± U∗y), x± U∗y〉 = 〈U(Ux± y), Ux± y〉

and hence from (3.9) and the uniqueness in Theorem 3.11 we obtain

νx±U∗y = νUx±y.

Similarly,

νx±U∗yi = νUx±yi

νx±U∗yj = νUx±yj

and

νx±U∗yk = νUx±yk.

It follows from (3.8) that

νx,U∗y = νUx,y.

Now use (3.10) to obtain

〈E(σ)x, U∗y〉 = 〈E(σ)Ux, y〉,

i.e.,

〈UE(σ)x, y〉 = 〈E(σ)Ux, y〉, x, y ∈ H. �

If U : Hn → Hn is unitary, then (3.11) and Theorem 3.12 assert that

U =

n∑
a=1

eiθaPa, (3.14)

where θ1, . . . , θn ∈ [0, 2π] and P1, . . . , Pn are oblique projections (i.e. (Pa)
2 = Pa but

(Pa)
∗ need not equal Pa). Corollary 6.2 in [34] asserts, in particular, the existence

of V : Hn → Hn which is unitary and θ1, . . . , θn ∈ [0, 2π] so that

U = V ∗diag(eiθ1 , . . . , eiθn)V. (3.15)

In the following remark we will explain how (3.14) and (3.15) are consistent.
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Remark 3.13. Let U : Hn → Hn be unitary. Let V and θ1, . . . , θn be as above. If we
let ea = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Hn, where the 1 is the a-th position, then we can
rewrite (3.15) as

U =

n∑
a=1

V ∗eiθaeae
∗
aV.

Note that V ∗eiθaeae
∗
aV = eiθaV ∗eae

∗
aV if and only if V : Cn → Cn. In this case

U : Cn → Cn and

U =

n∑
a=1

eiθaPa,

where Pa denotes the orthogonal projection given by V ∗eiθaeae
∗
aV .

Remark 3.14. Observe that in the proof of the spectral theorem for Un we have
taken the imaginary units i, j, k for the quaternions and we have determined spectral
measures d〈E(t)x, y〉 that are supported on the unit circle in Ci. In the case one uses
other orthogonal units I, J and K ∈ S to represent quaternions, then the spectral
measures are supported on the unit circle in CI .

Observe that (3.11) provides a vehicle to define a functional calculus for unitary
operators on a quaternionic Hilbert space. For a continuous H-valued function f on
the unit circle, which will be approximated by the polynomials

∑
k e

iktak. We will
consider a subclass of continuous quaternionic-valued functions defined as follows,
see [24]:

Definition 3.15. The quaternionic linear space of slice continuous functions on an
axially symmetric subset Ω of H, denoted by S(Ω) consists of functions of the form
f(u + Iv) = α(u, v) + Iβ(u, v) where α, β are quaternionic valued functions such
that α(x, y) = α(u,−v), β(u, v) = −β(u,−v) and α, β are continuous functions.
When α, β are real valued we say that the continuous slice function is intrinsic. The
subspace of intrinsic continuous slice functions is denoted by SR(Ω).

It is important to note that any polynomial of the form P (u+ Iv) =
∑n

k=0(u+
Iv)nan, an ∈ H is a slice continuous function in the whole H. A trigonometric
polynomial of the form P (eIt) =

∑n
m=−n e

Imtam is a slice continuous function on
∂B, where B denotes the unit ball of quaternions.

Let us now denote by PS(σS(T )) the set of slice continuous functions f(u +
Iv) = α(u, v) + Iβ(u, v) where α, β are polynomials in the variables u, v.

In the sequel we will work on the complex plane CI and we denote by TI the
boundary of B∩CI . Any other choice of an imaginary unit in the unit sphere S will
provide an analogous result.

Remark 3.16. For every I ∈ S, there exists J ∈ S so that IJ = −JI. Bearing in

mind Remark 3.6, we can construct ν
(J)
x,y so that (3.9) can also be written as

〈Unx, y〉 =
∫ 2π

0
eIntdν(J)x,y (t), x, y ∈ H and n ∈ Z. (3.16)
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Consequently, (3.11) can be written as

〈Unx, y〉 =
∫ 2π

0
eint〈EJ(t)x, y〉, (3.17)

where EJ is given by

ν(J)x,y (σ) = 〈EJ(σ)x, y〉, x, y ∈ H and σ ∈ B(TI).

Moreover, EJ satisfy properties (i)–(v) listed in Theorem 3.12.

Theorem 3.17 (The spectral theorem for quaternionic unitary operators). Let U be
an unitary operator on a right linear quaternionic Hilbert space H. Let I, J ∈ S, I
orthogonal to J . Then there exists a unique spectral measure EJ defined on the Borel
sets of TI such that for every slice continuous function f ∈ S(σS(U)), we have

f(U) =

∫ 2π

0
f(eIt)dEJ(t).

Proof. Let us consider a polynomial P (t) =
∑n

m=−n e
Imtam defined on TI . Then

using (3.17) we have

〈Umx, y〉 =
∫ 2π

0
eImt〈dEJ(t)x, y〉 x, y,∈ H.

By linearity, we can define

〈P (U)x, y〉 =
∫ 2π

0
P (eIt)〈dEJ(t)x, y〉, x, y,∈ H.

The map Ψ : PS(σS(U)) → H defined by ψU (P ) = P (U) is R-linear. By
fixing a basis for H, e.g. the basis 1, i, j, k, each slice continuous function f can be
decomposed using intrinsic function, i.e. f = f0+f1i+f2j+f3k with f� ∈ SR(σS(U)),
� = 0, . . . , 3, see [24, Lemma 6.11]. For these functions the spectral mapping theorem
holds, thus f�(σS(U)) = σS(f�(U)) and so ‖f�(U)‖ = ‖f�‖∞, see [24, Theorem 7.4].
The map ψ is continuous and so there exists C > 0, that does not depend on �, such
that

‖P (U)‖H ≤ C max
t∈σS(U)

|P (t)|.

A slice continuous function f ∈ S(σS(U)) is defined on an axially symmetric sub-
set K ⊆ T and thus it can be written as a function f(eIt) = α(cos t, sin t) +
Iβ(cos t, sin t). By fixing a basis of H, e.g. 1, i, j, k, f can be decomposed into four
slice continuous intrinsic functions f�(cos t, sin t) = α�(cos t, sin t) + Iβ�(cos t, sin t),
� = 0, . . . , 3, such that f = f0 + f1i+ f2j + f3k.

By the Weierstrass approximation theorem for trigonometric polynomials, see,
e.g., Theorem 8.15 in [29], each function f� can be approximated by a sequence of
polynomials

R̃�n = ã�n(cos t, sin t) + Ib̃�n(cos t, sin t),



Vol.84	(2016)	 The	Spectral	Theorem	for	Unitary	Operators	Based	on	the	S-Spectrum	 57The Spectral Theorem for Unitary Operators Based on the S-Spectrum 17

� = 0, . . . , 3 which tend uniformly to f�. These polynomials do not necessarily belong
to the class of the continuous slice functions since ã�n, b̃�n do not satisfy, in general,
the even and odd conditions in Definition 3.15. However, by setting

a�n(u, v) =
1

2
(ã�n(u, v) + ã�n(u,−v)),

b�n(u, v) =
1

2
(b̃�n(u,−v)− b̃�n(u, v))

we obtain that the sequence of polynomials a�n + Ib�n still converges to f�, � =
0, . . . , 3. By putting R�n = a�n(cos t, sin t) + Ib�n(cos t, sin t), � = 0, . . . , 3 and Rn =
R0n+R1ni+R2nj+R3nk we have a sequence of slice continuous polynomials Rn(e

It)
converging to f(eIt) uniformly on R.

By the previous discussion, {Rn(U)} is a Cauchy sequence in the space of
bounded linear operators since

‖Rn(U)−Rm(U)‖ ≤ C max
t∈σS(U)

|Rn(t)−Rm(t)|,

so as Rn(U) has a limit which we denote by f(U). �

Remark 3.18. Fix I ∈ S. It is worth pointing out that f(u+ Iv) = (u+ Iv)−1 is an
intrinsic function on CI ∩ ∂B, where ∂B = {q ∈ H : |q| = 1}, since

f(u+ Iv) =
u

u2 + v2
+

(
−v

u2 + v2

)
J.

Thus, using Theorem 3.17, we may write

U−1 =

∫ 2π

0
e−ItdEJ(t) (3.18)

and

U =

∫ 2π

0
eItdEJ(t). (3.19)

4. The S-spectrum and the spectral theorem

In this last section we show that the spectral theorem is based on the S-spectrum.
We will be in need of the Cauchy formula for slice hyperholomorphic functions; we
will briefly recall it below and we refer the reader to [17, 23] for more details.

Definition 4.1 (Cauchy kernels). We define the (left) Cauchy kernel, for q �∈ [s], by

S−1
L (s, q) := −(q2 − 2qRe(s) + |s|2)−1(q − s̄). (4.1)

We define the right Cauchy kernel, for q �∈ [s], by

S−1
R (s, q) := −(q − s̄)(q2 − 2Re(s)q + |s|2)−1. (4.2)
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Theorem 4.2. Let Ω ⊆ H be an axially symmetric s-domain such that ∂(Ω ∩ CI)
is union of a finite number of continuously differentiable Jordan curves, for every
I ∈ S. Let f be a slice hyperholomorphic function on an open set containing Ω and,
for any I ∈ S, set dsI = −Ids. Then for every q = u+ Iqv ∈ Ω we have:

f(q) =
1

2π

∫

∂(Ω∩CI)
SL(s, q)dsIf(s). (4.3)

Moreover, the value of the integral depends neither on Ω nor on the imaginary unit
I ∈ S.
If f is a right slice hyperholomorphic function on a set that contains Ω, then

f(q) =
1

2π

∫

∂(Ω∩CI)
f(s)dsIS

−1
R (s, q). (4.4)

Moreover, the value of the integral depends neither on Ω nor on the imaginary unit
I ∈ S.

We are now ready to prove the following fundamental result, which shows the
relation between the spectral measures and the S-spectrum.

Theorem 4.3. Fix I, J ∈ S, with I orthogonal to J . Let U be an unitary operator
on a right linear quaternionic Hilbert space H and let E(t) = EJ(t) be its spectral
measure. Assume that σ0

S(U) ∩ CI is contained in the arc of the unit circle in CI

with endpoints t0 and t1. Then

P(σ0
S(U)) = E(t1)− E(t0).

Proof. The spectral theorem implies that the operator S−1
R (s, U) can be written as

S−1
R (s, U) =

∫ 2π

0
S−1
R (eIt, s)dE(t).

The Riesz projector is given by

P(σ0
S(U)) =

1

2π

∫

∂(Ω0∩CI)
dsIS

−1
R (s, U)

where Ω0 is an open set containing σ0
S(U) such that ∂(Ω0 ∩ CI) is a smooth closed

curve in CI . Write

P(σ0
S(U)) =

1

2π

∫

∂(Ω0∩CI)
dsI

(∫ 2π

0
S−1
R (eIt, s)dE(t)

)

and use the Fubini theorem to obtain

P(σ0
S(U)) =

∫ 2π

0

( 1

2π

∫

∂(Ω0∩CI)
dsIS

−1
R (eIt, s)

)
dE(t).

It follows from the Cauchy formula that

1

2π

∫

∂(Ω0∩CI)
dsIS

−1
R (eIt, s) = 1[t0,t1],
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where 1[t0,t1] is the characteristic function of the set [t0, t1], and thus the statement
follows, since

P(σ0
S(U)) =

∫ 2π

0
1[t0,t1]dE(t) = E(t1)− E(t2). �
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ematics, Birkhäuser Springer Basel AG, Basel, 2011.

[18] N. Dunford, J. Schwartz, Linear Operators, part I: General Theory , J. Wiley and Sons

(1988).

[19] N. Dunford, J. Schwartz, Linear Operators, part II: Spectral theory , J. Wiley and Sons

(1988).
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[30] Z. Sasvári, Positive definite and definitizable functions, Mathematical Topics, Vol. 2,

Akademie Verlag, Berlin, 1994.

[31] L. Schwartz, Sous espaces hilbertiens d’espaces vectoriels topologiques et noyaux as-

sociés (noyaux reproduisants), J. Analyse Math., 13 (1964), 115–256.

[32] C.S. Sharma, T.J. Coulson, Spectral theory for unitary operators on a quaternionic

Hilbert space, J. Math. Phys., 28, (1987), 1941–1946.

[33] K. Viswanath, Normal operators on quaternionic Hilbert spaces, Trans. Amer. Math.

Soc., 162 (1971), 337–350.

[34] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997),

21–57.

Daniel Alpay

Department of Mathematics

Ben-Gurion University of the Negev

Beer-Sheva 84105

Israel

e-mail: dany@math.bgu.ac.il



Vol.84	(2016)	 The	Spectral	Theorem	for	Unitary	Operators	Based	on	the	S-Spectrum	 61The Spectral Theorem for Unitary Operators Based on the S-Spectrum 21

Fabrizio Colombo

Politecnico di Milano

Dipartimento di Matematica

Via E. Bonardi, 9

20133 Milano

Italy

e-mail: fabrizio.colombo@polimi.it

David P. Kimsey

Department of Mathematics

Ben-Gurion University of the Negev

Beer-Sheva 84105

Israel

e-mail: dpkimsey@gmail.com

Irene Sabadini

Politecnico di Milano

Dipartimento di Matematica

Via E. Bonardi, 9

20133 Milano

Italy

e-mail: irene.sabadini@polimi.it

Received: October 8, 2015.

Accepted: November 9, 2015.


	The Spectral Theorem for UnitaryOperators Based on the S-Spectrum
	Abstract
	1. Introduction
	2. Quaternionic Riesz projectors
	3. The spectral theorem for quaternionic unitary operators
	4. The S-spectrum and the spectral theorem
	References




