Milan J. Math. Vol. 83 (2015) 237-278 @ CrossMark
DOI 10.1007/s00032-015-0242-1

Published online August 19, 2015 - -
© 2015 Springer Basel I Milan Journal of Mathematics

The Role of Surface Diffusion
in Dynamic Boundary Conditions:
Where Do We Stand?

Ciprian G. Gal

Abstract. In this study, we investigate reaction-diffusion and elliptic-like equa-
tions with two classes of dynamic boundary conditions, of reactive and reactive-
diffusive type. We provide sharp upper and lower bounds on the dimension of
the global attractor in all these cases. In particular, we emphasize how surface
diffusion can act as a damping force in reducing the degree of complexity in these
systems. We obtain a new Weyl asymptotic law for eigenvalue sequences asso-
ciated with a family of perturbed Wentzell operators which is of independent
interest.
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1. Introduction

Reaction—diffusion equations and elliptic equations, subject to various dynamic
boundary conditions, are known to have a finite-dimensional asymptotic (in time)
behavior (see, e.g., [17, 18, 19, 20, 21, 22], and references therein). Moreover, un-
der natural assumptions on the nonlinearities and in the absence of external forces,
these systems enjoy the property of global asymptotic stability, in the sense that
any given solution trajectory will converge asymptotically as time goes to infinity to
some equilibrium of the system (see [22] for elliptic equations and [20, 21, 41, 46] for
reaction—diffusion equations). These properties also show up through the fact that
such systems possess finite-dimensional global attractors and have a gradient struc-
ture. As a compact invariant subset of the phase space, the global attractor attracts
images of all bounded sets (as time tends to infinity) and contains all of the non-
trivial limit dynamics of the system in question. When the dynamics on the global
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attractor is finite dimensional, the limit dynamics of the infinite-dimensional dynam-
ical system becomes equivalent to an appropriate finite dynamical system defined on
a compact subset of R (see [35]). Generally speaking, the dimension of the global
attractor is used to indicate the number of degrees of freedom needed to simulate
the given system and is associated with the temporal and spatial complexity of the
long-time dynamics. Additionally, the dimension of the global attractor may be used
to suggest the correct resolution needed for numerical computations by relating it to
a fundamental length scale of the original problem. Dynamic boundary conditions
have been proposed and used in many applications. An enormous amount of litera-
ture for the rigorous treatment of dynamic boundary conditions in various contexts
(such as, diffusion phenomena in thermodynamics, phase-transition phenomena in
material science, climate science, control theory and special flows in hydrodynamics)
has steadily grown over the last decade and is still presently growing at a rapid rate.
Without being too exhaustive, we refer the reader to the references [18, 22, 28], and
references therein, where such descriptions have been undertaken in detail.
Consider now the parabolic partial differential equation

Ou = vAu — f (u) + A, (t,x) € (0,400) x £, (1.1)

where u = u(t,z) € R, Q C R", n > 1, is a bounded domain with boundary I
of class C%, v, \ are positive constants and f plays the role of a source/sink like
nonlinearity. The function f : R — R is assumed to be Cﬁj’cl, that is, continuous and
with a (locally) Lipschitz continuous first derivative, which satisfies, among other

natural growth conditions (see Section 3),
f (y) > —cy, for all y € R, for some c; > 0. (1.2)

We equip (1.1) with dynamic boundary conditions of pure-reactive (6 = 0) and
reactive-diffusive type (§ > 0), of the form

0w — §Aru + vOqu =0, on (0,00) x I'. (1.3)

Here, n € R" denotes the outward normal at I', Opu is the outward normal derivative
of u, Ar is the Laplace-Beltrami operator on I' and § > 0 plays the role of a surface
diffusion coefficient. Naturally, the system (1.1)-(1.3) is also equipped with initial
conditions for u in Q at time ¢ = 0.

In the context of reaction—diffusion equations, dynamic boundary conditions
have been rigorously derived in [28] based on first and second thermodynamical
principles and their physical interpretation was also given in [27]. It is worth empha-
sizing that the derivation in [28] obtains the dynamic boundary condition (1.3) both
as a sufficient and necessary condition for thermodynamic processes which incorpo-
rate thermodynamic sources located along the boundary I', and in which the second
law plays a crucial role, while in [27] it has been introduced only as a sufficient
condition. We shall denote the system (1.1), (1.3) as problem (RDE)s and thus view
the corresponding problem with § > 0 as a diffusive perturbation of (RDE)( along
the boundary I'. Another problem (denoted here as (EE)s, § > 0) that we wish to
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consider in this contribution is the elliptic-parabolic system

vAu — Au =0, in (0,00) x £,
Opu + vopu = §Aru — g(u), on (0,00) x T, (1.4)
u|t=0 - ¢Oa on Fa

where A > 0, with g € Cﬁ)’i (R) satisfying (1.2) among other natural assumptions.
Recently, the system (EE)s for § > 0 has been systematically investigated in [22]
and one has now a rather complete picture of the well-posedness, blow-up phenom-
ena, regularity and the asymptotic stability (in terms of finite dimensional global
attractors and convergence to single equilibria) of classical solutions for this system.
These issues are also complete for the parabolic system (RDE)g, see [17, 46]. For a
more general system than (1.1), (1.3), we also refer the reader to [18, 33].

The main purpose of this study is to clarify the role of the additional term
—0Aru in either boundary conditions (1.3) or (1.4), and its both qualitative and
quantitative effects on solutions and their long-time asymptotic behavior for the
corresponding reaction—diffusion systems (RDE)s and elliptic systems (EE)s, re-
spectively. To set the scene, recall from [17] that, for a polynomial nonlinearity f
satisfying (1.2), problem (RDE)j generates a dynamical system on the phase-space
Xy = L?(Q) x L? (T'), possessing a finite dimensional global attractor Gy. Moreover,
the Hausdorff and fractal dimensions of Gy satisfy the following upper and lower
bounds:

n—1 n—1
o (i) IT| < dimy (Go) < dimp (Go) < 1 (1 + L2 : 4 IFl”(””> . (15)

in dimension n > 3, with positive constants ¢y, c; depending only on n and the
shape of  but not its size, and are independent of ¥ and A\. We note that, for a
fixed domain €, the estimates in (1.5) are sharp with respect to v — 0% (for each
fixed A > 0), and for sufficiently large A (if v > 0 is fixed). Analogous estimates in
dimension n = 2 are also provided in [17] but these also depend on the “volume” of
) while retaining the same exponent n — 1 in (1.5).

Consider the reaction—diffusion system (RDE);s in which the term dAru, 6 > 0,
provides, in addition to classical bulk diffusion, a diffusion mechanism present along
the boundary I'. A typical example in the theory of heat conduction (see [28]) arises
when a given body €2 is in perfect thermal contact with a sufficiently thin metal sheet
I', possibly of different material and completely insulating the internal body €2 from
external contact with, say, a well-stirred hot or cold fluid. Now, a key question is to
ask how much significance could such a “viscous” §-regularization have on the system
from both a quantitative and qualitative point of view. In considering the answer
to this question, we prove in Section 3 that problem (RDE)s for 6 > 0 generates
yet another dynamical system on the energy space X and that it possesses a finite
dimensional global attractor Gs. We then demonstrate that boundary diffusion has
no essential qualitative impact on the energy estimates and regularity of individual
solutions of (RDE)s, 6 > 0, other than the fact that the additional term generally
enhances the boundary regularity of solutions by a fraction of 1/2. This, of course,
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is not that all surprising in light of a series of analytical results involving such
systems and also proved recently (see, e.g., [17, 18, 19, 20, 21, 41, 33, 46|, and the
references therein). However what turns out to be remarkable is that the additional J-
regularization does have a significant qualitative impact from a global and dynamical
point of view. For such systems, the Hausdorff and fractal dimensions of Gs, § > 0,
satisfy the following upper and lower bounds:

A\ 2 . . A om) 2
co <V> Q| < dimp (Gs) < dimp (Gs) < c3 <1 + CfT \Q|2/ > , (1.6)

in dimension n > 1, where ca, c3 depend only on n and the shape of €2 but not its
size, and are independent of v, > 0 and A > 0. In light of estimates (1.5)-(1.6),
the degree of complexity of the “permanent regime” of (RDE)q changes significantly
when surface diffusion is simply accounted for in the dynamical behavior of I". An
heuristic explanation for this effect is simply given by the fact that the dynamic
condition (1.3) when § = 0, is in fact a transport equation dyu + v -Vu =0 on T,
in which the “flow” u is carried over from any point of I', in all directions normal
to I', inside the bulk domain Q with a constant velocity v. = vn € R”. In this
case, the mechanism for producing the observed dynamical behavior is determined
solely by advective transport and the fact that in this case the boundary equation is
purely hyperbolic. In the case 6 > 0, the dynamic condition (1.3) can be viewed as a
combination of both advection and diffusive forces in which, of course, the additional
d-viscous regularization for 6 > 0 changes (1.3) into merely a parabolic equation on

I.

On the other hand, for the elliptic-parabolic system (EE)s, 6 > 0, we provide
similar and comparable results. First, in Section 4 we devise a new approach to han-
dle the well-posedness of the system (EE)s, by viewing it as a singular perturbation
(as ¢ — 0T) of a sequence of parabolic systems, of the form

oy — VAU + Au = 0, in (0,00) x €,
Opu + vopu = §Aru — g(u), on (0,00) x T, (1.7)
ult=0 = up in Q, uli=o =1y on T,

where ¢ € (0, 1] is a given relaxation parameter. We then give optimal conditions on
the nonlinearity g which allows to prove the global existence of strong solutions for
the original problem (EE)s, by first deducing sufficiently strong (uniform as e — 07)
estimates for solutions of the system (1.7) and then by exploiting data reconstruction
techniques, and employing compactness arguments (see Section 4.1) to pass to the
limit. Furthermore, for a polynomial nonlinearity g which satisfies (1.2) we show
that both problems (EE)y and (EE)s, § > 0, generate a dynamical system on the
phase-space L? (I'), possessing a finite dimensional global attractor &, § > 0. Going
further to Section 4.2, arguments in the theory of infinite-dimensional dynamical
systems imply the following sharp two-sided estimates on the Hausdorff and fractal
dimensions of & in any space dimension n > 2, of the form
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n—1
er(§)" 1Tl < dimpr (60) < dimp (&) < e (4)" I, (1)

n-1 n-l .
ea($) T I0) < dim (&) < dimp (8) < s (4) 1T,

for sufficiently small 6, v, where 0 < ¢ := ¢ (z), z € R is a fixed constant steady-
state solution of (1.4) and ¢4, ¢5 depend only on n and the shape of 2, T" but not their
“size”, and are independent of v, § and A > 0. What is also interesting to observe here
is that, for a fixed domain €, X and ¢, and as the bulk diffusion coefficient v — 07,
the permanent regime of the reaction—diffusion system (RDE)( and eliptic-parabolic
system (EE)q bear the same degree of complexity as reflected in the dimension
estimates (1.5) and the first of (1.8), respectively. By this token, perhaps we may
argue that the parabolic equation in the bulk 2 is not much relevant to the global
(and also, possibly local) dynamical behavior of problem (RDE)y.

The theory of Dynamical Systems has always been driven by the need to un-
derstand concrete problems and hence it has incorporated a wide variety of mathe-
matical tools from functional analysis and mathematical physics. An important link
between the behavior of dynamical systems and spectral theory, which nowadays has
itself grown in a large and separate field, is the study of the spectral properties of the
underlying linear operators: when does a differential operator define a self-adjoint
operator, when does it have a compact resolvent, and what asymptotic properties
does its spectrum have? In particular, the asymptotic distribution of eigenvalues
is one of the most important problems of the spectral theory of partial differential
operators and since the pioneer work of H. Weyl in 1915, the validity of various as-
ymptotic formulas for a diverse classes of differential operators in various situations
have been established. Weyl asymptotic formulae for a given linear differential oper-
ator is intimately connected not only with the geometrical properties of the domain
and the type of boundary conditions, but also to the dynamical properties of non-
linear partial differential equations associated with that linear operator. This body
of work also collectively describes the spectral properties of a new class of (second-
order) self-adjoint operators, referred here as the perturbed (§ > 0) and unperturbed
(6 = 0) Wentzell Laplacians A%, which are associated with the reaction—diffusion
problems (RDE)s for § > 0. A interesting feature of the (un)perturbed Wentzell
Laplacian is that it involves an eigenvalue problem for the Laplacian —vA which
involves a boundary condition that depends on the eigenvalue explicitly. For the
elliptic-parabolic system (EE)s, a family of perturbed Steklov eigenvalue problems
and the corresponding asymptotic eigenvalue distribution will play an essential role
in establishing the sharp dimension estimates in (1.8). A large body of this work, in
particular Section 2, is devoted to this new class of operators and complete proofs
of their spectral properties. For instance, employing variational and perturbation
methods we derive a new Weyl asymptotic law for the eigenvalue distribution of the
perturbed Wentzell Laplacian; this will be also used to deduce (1.6). The importance
of these laws will become more apparent in the subsequent Sections 3 and 4.
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2. Weyl asymptotic laws for eigenvalues

To get started, we briefly elaborate in this section the relevant functional framework
associated with our problems. In the first part we prove a basic fact about sesquilin-
ear forms and the linear operators associated with them. We devote the final and
second part of this section to characterizing all spectral properties of the so-called
perturbed and unperturbed Wentzell Laplacian.

2.1. Perturbation of forms

Let A, B,C be three linear (possibly) unbounded self-adjoint operators such that
C=A+Bwith D(C)=D(A)and D(A) C D(B) C H (H is some Hilbert space).
We assume that each of the operators A, B, C can be associated with the sesquilinear
forms g4, qp and gc = qa + qB, respectively, such that D (qc) = D (qa) € D (¢pB).
More precisely, let us assume that

qA:VAXVA—HR,qB:VBXVB—HR,QctVAXVA%R

are symmetric, closed and bounded from below on the corresponding spaces, see,
e.g., [36]. By the second representation theorem for symmetric sesquilinear forms,
the linear operator A associated with the form g4 is defined in the following way

D (A) ={u € V4 :3f € H such that g4 (u,v) = (f,v)y, Yv € Va}, (2.1)

Au = f.
The operator A is selfadjoint on H and generates a (Cp)-semigroup T4 =
{Ta (t) : t > 0} satisfying T4 (t) = Ta (t)* and [|[T4 (¢)|| < 1 for all ¢ > 0. Simi-
lar definitions are applied to the operators B,C. The eigenvalues {\4;}, {Ap;},

{Ac;}, 7 € J (J is either N or Ny) associated with the operators A, B and C,
respectively, then obey the following min-max characterizations:

A4; = min  max M, (2.2)
LiCVa, 0uel;  |ul
dim(L;)=j
Ap;j= min max LEAGIR) (u,Qu)’
L;CVp, 07éu€Lj HUHH
dim(L;)=j
. qc (u, u)
Ac; = mi max ———> = +qp.
C.j L;CVa, U#UEL]' ”qu ) qc qga 4B
dim(L;)=j

We assume that each eigenvalue sequence for corresponding eigenvalue problems
Au = \u, Bu = \u, satisfies the following Weyl asymptotic law:

Aaj=Caj? +0(3%), Apj =Cpj1+0(j?), as j — oo, (2.3)

for some Cy4,Cp > 0, and some p,q € Ry with p > q.

We prove a simple but crucial result on the eigenvalue asymptotic formulae for
Ac,j as j goes to infinity. Roughly speaking it states that A¢ ; and A4 ; have the same
asymptotic behavior at infinity when B is an “infinitesimal” small perturbation of

A.
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Lemma 2.1. Suppose that (2.3) holds and that the form qp is infinitesimally form
bounded with respect to qa, i.e., for every € > 0, there is a positive constant C =
C: > 0, independent of u, such that

¥, < e llully,, + Cellullzy . for every u € Va. (2.4)
Then the eigenvalue sequence {)\C,j}, j € J, obeys the following Weyl law:
Acj = Caj? +0(57), as j — oo. (2.5)
Proof. By the description (2.2), it is clear that
Ao = Aay, forall j e J

Thus, on account of (2.3), we immediately get

j—oo ]

A s
liminf =L > €y (2.6)
By (2.4), we infer that
ac (u,u) = ga () + g5 (u,u) < (1+€) ga () + Ce [Jul[f
Thus, from the description (2.2) we deduce
Ao < (I4+e)daj+C;, forall jeJ (2.7)

and so we have

P
limsup% <Ca(l+e).

j—oo J
Since € > 0 was arbitrary, together with (2.6) we immediately obtain the conclusion
(2.5) as well. The proof is finished. O

2.2. The Wentzell Laplacian

In this subsection, we recall that a certain realization of A = —A with various
Wentzell boundary conditions is self-adjoint and nonnegative on a proper Hilbert
space. We shall refer to this realization as the Wentzell Laplacian. While these gen-
eration results are known to various experts in various forms and in a more general
context (such as, more general elliptic second-order differential operators, with or
without surface diffusion Ar in the boundary conditions), using different approaches
based on energy methods, form methods and operator matrix methods, we choose
to give proofs based on the form method for the sake of completeness. However, we
refer the reader to [7, 15, 26] for an extensive survey of these results and the relevant
literature (which lies outside the scope of this article). We point out that our main
interest lies in a detailed study of the asymptotic behavior of the eigenvalues of the
Wentzell Laplacian and not its generation properties. Henceforth, we shall derive
a number of specific properties of the “Wentzell” eigenvalues associated with the
perturbed and unperturbed Wentzell Laplacian, including a fairly precise descrip-
tion of their structure, of the regularity of the eigenfunctions, and also a number of
variational and asymptotic results. To the best of our knowledge, these properties
are fairly unknown to the scientific community.
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To this end, let 2 be a bounded domain in R™, n > 1 with Lipschitz continuous
boundary I'. We recall that the natural space for our problems is LP (ﬁ, d,u) , where

dp =dzx @ dS,

dx denotes the Lebesgue measure on €2 and dS denotes the natural surface measure
dS on I'. It is easy to see that LP (ﬁ, d,u) may be identified

L7 (Q,dp) = L (Q,dzx) x LP (T, dS), 1 <p < oc. (2.8)

Since p is also a Radon measure on B (ﬁ), Le (ﬁ, d,u) can be identified with
L*>* (Q,dz) x L* (I",dS) with norm

lullx, = max { ull oy Nl oe s }

Let now U = (u,v), where u: Q — R and v : I' = R are measurable functions such
that

/Q\U(w)lpdwr/r|v(x)\pd5<oo.

We define the norm |-[|; of U as follow

1ol = ( [ [ <az>|f’ds)l/p,

for 1 < p < oo, and observe that the L? (€, du) norm and the [-[I, norm are
the same. From now on denote this norm by ||-|[x . Moreover, if we identify every

u e C(Q) with U = (u,ur) € C(Q) x C(T'), where up d:eftrace(u) € C (I') we define
X, to be the completion of C' (2) in the norm ||| x,- But one can easily show that

X, = L? (Q,du) (see [14]). In general, any function v € X, will be of the form
v = (v1,v2) with v; € LP (Q,dz) and vo € LP (I',dS), and there need not be any
connection between v; and vy. Finally, let Vs, 6 > 0, be the completion of C! (ﬁ) in
the norm

ol = [ (@ 290 @P)dot [ (@R +5(9ru)P) s

where Vr denotes the surface gradient on I'. Note that for any f € Vs, we have
f € H' (Q) so that fr makes sense in the trace sense. The space Vs is topologically
isomorphic to H' () x H' (') if 6 > 0, and Vo = H' (Q).

Let us now recall that Xy = L? (Q,dz) x L? (', dS) is also Hilbert space when
equipped with the canonical inner product

(U, V>X2 = (u1, U1>L2(Q) + (uz, U2>L2(F,dS) )
for all U = (uy,uz) € Xo, V = (v1,v2) € Xs. For all § > 0, we also define the linear
space
Ws = {(u1,u2) € Vs : ug = trace (up)}.
We emphasize that Ws is not a product space as Vs. Clearly, W5 C X5 densely since
the trace operator acting on functions H'! (Q) and into H'/? (I') is bounded and
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onto, and Wj is a Hilbert space with respect to the inner product inherited from Vi,
0 > 0. Thus by definition we can identify

Ws = {(u,ur) € H'(Q) x HY (T) : ur = trace (w)},
for each § > 0, and
Wo = {(u, ur) € H (Q) x HY2 (') : up = trace (u)} . (2.9)
We also recall the Stokes divergence theorem on I,

/ AruvdS = — / Vru - VrvdS, u e H* (T),v € H' (T) (2.10)
r r

and the notion of a weak normal derivative in the case when I' is only Lipschitz
continuous. Indeed, for functions v € H' () which satisfy Au € L?(Q), we say
that u has a weak normal derivative if there exists a function ¢ € L? (T') such that

/ Vu - Vvdr — / Auvdr = / CvdS, for allv e H'(Q). (2.11)
Q Q r

In this case, the function ¢ € L? (T") verifying (2.11) is unique; we denote ¢ by dyu.
We have the following generation result (cf. [34] in the case § = 0).

Theorem 2.2. Let ) be a bounded open set of R™ with Lipschitz boundary I' and
0<qeL>®(Q). Forv>0 and 6 > 0 define the linear operator A;’;S on Xo, by

volw\ [ —vAu+tq(z)u
AW <UF> T (—5AFUF + V8nu>7 (2'12)
with domain
DALY == {U = (u,ur) € Ws : Aue L* (), — 0Arur + vdqu € L*(I)}.
(2.13)

Then, A;{/& is self-adjoint and nonnegative on Xo. Moreover, the resolvent opera-
tor (I + A‘V,[’,‘s)_1 € L(X3) is compact. Thus, AI'jI’,(S generates a self-adjoint compact
analytic (Cy)-semigroup TS = {T{/jv’(s (t) :t >0} on X.

Proof. We define the sesquilinear form as with form domain D (as5) = Ws on the
Hilbert space Xs by

as (U, V) = / (vVu-Vu+q(z)uwv) dr + / dVru - VrodS, (2.14)
Q r

for U = (u,ur),V = (v,ur) € Ws. Our next goal is to show that as (which is
sesquilinear, nonnegative and symmetric by definition, and densely defined) is as-
sociated with the self-adjoint operator AVV{,‘s on Xs. Clearly, the form ag is closed
since the form norm ||U||36 = a5 (U,U) + HU||§(2 is equivalent to HU”)QM; with re-
spect to which W;s is complete. We claim that A’{,{,a is the operator associated
with the form as. Denote by B the self-adjoint operator associated with as. Let

U = (u,ur) € D (B) C Ws, and let

BU = & <§> € Xo.
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Then
/ (vVu - Vv + quv) dz + / dVrur - VrordS = as (U, V) = (F, V), ,
Q r

for all V' = (v,vr) € Ws. Choosing v € D (2), we deduce that —vAu+q(x)u = f
in . Hence, also applying the surface divergence theorem (2.10), we have

/ (vVu - Vv + quv) d:n—{—/
Q

Q
for all V'€ Ws. In particular, by (2.11) { = vd,u exists and

—vAuvdr = / (g + 0Arpur) vpdS,
r

vOu = g+ 6Arur on I

Thus, we have proved that U € D(Al‘;[’,‘;) and Al‘;{,&U = BU. In order to prove the
converse, let U € D(A‘V,[’,(s). Then,

/(uVu-Vv+quv) d:L‘—/l/Auvdx = /uﬁnuvpdS
0 0 r

= / (g + (5A1“U1“) UFdS,
r

where g = —dArur + vo,u on I, for all V' € Ws. Hence,

as (U, V) = /Q (—vAu + qu) vdzx + /ngpdS,

for all V' € Ws. By the definition of the operator B associated with the form ags, we
deduce that U € D (B) and

BU = <_”AZ * q“) = A%

To prove compactness, it suffices to show that the injection of (D (as) , ||-|,,) into X
is compact. But this is immediate since D (as) = Ws and the injections H! () —
L% () and H'/2(T") < L? (I") are both compact by the Sobolev embedding theorem.
The rest of the claim follows. U

From now on we shall refer to A;{/O as the unperturbed Wentzell Laplacian
and A;{,é for § > 0 as the perturbed Wentzell Laplacian. The eigenvalue problem

associated with these operators is given by AVW’5<,0 = Ap; this leads to the following
spectral problem for the Laplacian

—vAp+q(xz)p=Apin Q, (2.15)
with a boundary condition that depends on the eigenvalue A explicitly:
—0Arp +vopp = Ap on I (2.16)
The eigenvalue problem (2.15)-(2.16) can be then expressed in a weak form as
as (U, V) =AU, V)x, = A (/ uvdx + / urvpd5’> , (2.17)
Q r

for all V- = (v,vr) € Ws, 6 > 0. Such a function U will be called an eigenfunction
associated with A and the set of all eigenvalues A of (2.15)-(2.16) will be denoted
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by )\VW5, v>0and d > 0. Let U; and )\Vm’/‘;, j € J, denote all the eigenfunctions and
eigenvalues of (2.15)-(2.16). We will show that the index set J is countably infinite.
We denote by N the set of all positive integers and by Ny = N U {0}. From now,
we also make the convention that if zero is an eigenvalue then it will be denoted by
Ax,0, X is a given self-adjoint operator.

Concerning the eigenvalue problem (2.15)-(2.16) we then have the following.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold. Let ¢ > 0 with [, q (x) dx >
0. Then, for each 6 > 0, the index set J = N, that is, there exists a sequence of
numbers

Vv(s V75 7/,5 1/,6
O0<Apn =A< S Ay S A <o (2.18)

converging to +00, with the following properties:

(a) The spectrum of Aa}é is given by

o (AYS :{/\”’5.} 5> 0,0>0
(Aw) WiSjies -
and each number )\l‘j{,{sj, j € J, is an eigenvalue for A%’f of finite multiplicity.

(b) For each § > 0, there exists a countable family of orthonormal eigenfunctions
for AVM’;S which spans Xao. More precisely, there exists a collection of functions

{Uj}jeJ with the following properties:
U; € D(AYY) and A U; = X U;, j € J, (2.19)
(U]7 Uk>X2 = 5jk7 ja ke J;

X = @lin.span{U;},_; (orthogonal direct sum).

(c) IfT' is Lipschitz, then every eigenfunction U; € Wy is bounded in L™ (2, dx) x
L>(T,dS) for 6 > 0, and in fact U; = (uj,ur;) belongs to C (Q) x C ('),
uj € C®(Q), for every j provided that ¢ = 0. If ' is also of class C2, then
every eigenfunction U; € Ws N (C2 (ﬁ) x C? (F)) , for every j.

(d) The following min-mazx principle holds:

A = min max RS vvU), jeld, 2.20
W= i e R (0.0). (2.20)
dim Y/ =j

where the Rayleigh quotient RY,, § > 0, for the Wentzell operators AVV[’f, s given
by
as (U> U)

RS, (U,U) = ,
U1,

04U €W (2.21)

Proof. Let U be an eigenfunction associated with an eigenvalue A\, see (2.15)-(2.16).
By definition, we can readily see that )\;’,6 C [0, 00), for each 6 > 0 and v > 0,

as (U,U)

>0, if¢g=0,
1U1%,
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and A7’ C (0, 00) , since
as (U,U)
U1,
Next, recall that (I + AVW’O)*I e L(Xq), (I+ AVM’,‘S)*l € L (X2) are both self-adjoint
and compact in Xs. Thus, the spectrum of B‘lj‘}‘S =+ Al‘;[’/fs)_l € L (X3) is given by

o (By) = {“;’ij}jg = {(1 + A;’V‘fj)l} o (2.22)

jeJ

> 0, if ¢ > 0 with /q(m)dm>0.
Q

Now, from the spectral theory of compact, self-adjoint (injective) operators on
Hilbert spaces (see, e.g., [37, Theorem 2.36]), it follows that there exists a family of
functions {Uj}, ; for which

U; € Ws and By U; = iUy, j € J, (2.23)
<U]7Uk>X2 = 5jk7 j7k € J7

V=> (V,Uj)y,Uj, V€ X,
j=1

with convergence in X5. Obviously,
v . 1 v
ME{MWZ:yeJ}@E—le)\Wd.

Thus, the set )\Vw}é can be arranged as an increasing sequence of numbers {)\Vw}dj} ,
) ged

v v 1 .
)\W‘;:{)\ijzm—l:jEJ}, (2.24)
W,

for each 6 > 0. In the case ¢ = 0, we can easily see that 0 = )\;{,50 € )\;[’,5; in fact,

)\;[’,(750 = 0 is a simple eigenvalue, since an eigenfunction U associated with )\;[’,(750 is
constant, owing to V' = U in (2.17). Finally, unraveling notation, (2.19) then readily
follow from (2.23). In order to see that (d) holds, recall that BZI’,‘; =T+ 141{4’/6)*1 €
L (X3) is a compact operator. Therefore, we can apply the Courant-Fischer principle,
to write

Ul2
Hlljt}éj = min max 191, 2 0 J (2:25)
; YoCWs, 02U€Y; as (U, U) + HU”XQ
dimY?=j

The statement (d) of the theorem follows easily from (2.24). Finally, each eigen-
function Uj, j € J, belongs to W, since Uj; is also a weak solution of (2.15)-(2.16).
In fact each such weak solution U; € X (see, for instance, [23]). By employing a
series of bootstrap arguments for elliptic equations with inhomogeneous boundary
conditions, the claim (c) also follows. Indeed, the case § = 0 is classical (see [2]). A
variational approach to the elliptic boundary value problem (2.15)-(2.16) in the case
d > 0 can be traced back as far as the work of Agmon et. al. [2], Hormander [30],
Peetre [38] and Visik [42]. These contain results on general elliptic operators with
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second-order derivatives in the boundary conditions. In this sense (cf. e.g., [42]), the
elliptic boundary value problem (2.15)-(2.16) with 6 > 0, admits a unique solution
ue H™2(Q), for each f:= M€ H™ (Q) and g := Au € H™ Y2(I'), m € N, and
the following a priori estimate holds:

[ull mt2q) < C (HfHHm(Q) + HgHHm—1/2(r)> ; (2.26)

for some C' > 0 independent of u. It is easy to see that if each weak solution
Uj = (uj,ur;) of problem (2.15)-(2.16) belongs to W, then (2.26) yields u; € H3 ()
and a boot strap argument yields u; € (|~ H k(Q) provided that T is smooth
enough and ¢ = 0. It is also worth mentioning that much of the classical existence
theory, including Schauder type estimates u; € C?s (ﬁ) , € € (0,1), for the linear
problem (2.15)-(2.16) (recall that we have set f = Au, g = Au) was done by Luo and
Trudinger in the early 1990s (see [32]). O

Concerning the case ¢ = 0, minor adaptations of the foregoing proof yield the
following.

Theorem 2.4. Let the assumptions of Theorem 2.2 hold. Let ¢ = 0. Then, for each
6 > 0, the index set J = Ny := {0,1,2,...}, that is, there exists a sequence of
numbers

o\ v,0 v,0 v,0 v,0
0= Ay < A <A, <L S AR <AL <L

converging to +oo, with the following properties:

(a) The spectrum of Ayﬂ’ré 18 given by
g AV‘{? = {AVH’JV } 5 (5 > 07
( ) J jeJ

and each number )\l‘;[’,(fj, j € J, is an eigenvalue for A?/V of finite multiplicity.

(b) For each § > 0, there exists a countable family of orthonormal eigenfunctions
for AVV{,(S which spans Xo. More precisely, the same conclusion (b) of Theorem
2.3 holds in this case as well. Finally, both conclusions (c) and (d) in Theorem
2.3 hold in the case ¢ =0 as well.

Remark 2.5. We note that both Theorems 2.3, 2.4 give the orthogonality of the
eigenfunctions Uj in terms of the inner product for Xy (cf. (2.19) above). Here we
remark that the eigenfunctions U; are also orthogonal with respect to the inner
product of W, for each § > 0. In fact, under the assumptions of Theorem 2.3,

{Zj}jen = {Uj ()‘VI/I,/(,Sj)lp}

is an orthonormal subset of Wjs, when endowed with the new inner product of as (-, -).
We claim further that {Z;}, y is in fact an orthonormal basis for Ws with this new
inner product. To see this, it suffices to verify that

jeN

as (U;,U) =0, j €N,
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implies that U = 0. But this identity is clearly true, since both identities
»6 — y
as (Ujv U) = AVWJ <Uja U>X2 = 07 JE N7

force U =0, as {U; }j cy is @ basis for X». Consequently, we have
(o]
V=> as(V,Z)) Z;, V € Ws,
j=1

with convergence in W.

Consider now the map A : L? (T') — L? (), related to the homogeneous Dirich-
let problem
—vAu+q(x)u=0in Q,
{ u=fonl,

for f € L?(T'). The map A is well-defined, linear and bounded from L? (') (respec-
tively, H'/2 (")) to L? (Q) (respectively, H! (Q)). As usual, we define the Dirichlet-
to-Neumann operator N¥% : L? (I') — L?(T), given by

Npu = vo, (Au),

with domain

D(Np)={ue L*(T): Njue L*(I)}.
The following result is generally known by experts. We include a proof taken from
[29, Appendix C] for the sake of completeness.

Theorem 2.6. Let 0 < q € L™ (). The operator N}, with domain D (N},) is non-
negative, self-adjoint and (I + N%) ™t € L (L?(T)) is compact.

Proof. We shall employ the form method when ¢ = 0 (the case ¢ > 0 with [, ¢ (z) dx
> 0 is analogous). Define a form on H'/2 (I') by

an (f,9) f:V/QV(Af)-V(Ag)dm,

forall f,g € H'/? (T). It is easy to see that gy is sesquilinear, nonnegative, symmetric
and bounded. Moreover, qy is L? (I')-elliptic in the sense that for all A > 0 there
exists a constant C' = C () such that

an (f, ) + M2y = C ey

for all f € D(qy) = HY?(T). To see this even when ¢ = 0, fix A\ > 0. By the
Sobolev inequality (i.e., HfH%Qn/(n—Q)(Q) <C <HVfH2L2(Q) + HfHQLQ(F)> , C' > 0; here

the inequality is true when n > 2, and for n = 1,2, one can take any LP-norm on
the left-hand side), and using the fact that trace(Af) = f, we have

an (f, ) + M2y = IV (AN T20) + M 172y
> C (Qv )‘7 V) ||AfH%2n/(n*2)(Q)
> C (A1) |Afl 20 -
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In particular,
av (£, 1) + M2y = C QA IV A2 + MALIF 20
> C (A 32y

by the trace theorem. Next, we establish that N7, is the operator associated with
the form gn. That operator, call it Np, is given by

D(Np) ={f e D(an): I e L2 (1), an (f.9) = (h.9)so(ry» Y9 € D(Q)},
Npf = h.

Suppose that f € D (Np). We have f € D(qn) = H'Y2(I'), which implies that
N4 f = v, (Af) € L*(T), and Af € H3?(Q), by standard elliptic regularity
theory. Then for any g € D (qn),

z//V(Af)-V(Ag)dx:u/AfA(Ag)d:c+y/V(Af)-V(Ag)d:c
Q Q Q

— /F O (Af) gdS,

that is, gn (f, g) = (O, (Af) ,g)Lz(F) .This shows that if f € D (N}) then f € D(ND)
and N, C N p in the sense of operators. For the converse, let f € D(]V D), write
]VDf = h, and for v € H! (Q) arbitrary, write v = u + Ag, where u € H} (Q) and
g € H'/2(Q). Then Af € H' (Q) and vA (Af) = 0 in the sense of distributions;

moreover,
V/ V (Af) - Vudz =0,
Q

since trace(u) = 0. It follows that
V/QUA(Af)dx—i—y/QV(Af)-Vvdm
:I// V(Af)-Vudﬂf—Fu/ V (Af) -V (Ag)dx
Q Q

= Z//trace (v) hdS,
r

for all v € H' (), where in the last step we have used the definition of Np. By
definition, h = v0, (Af), that is, f € D(N}) and Njf = h = Npf. Hence,
Np = N p is associated with the form ¢y. Now it follows that N7, has compact
resolvent since the form domain D (qy) = H'/? (I') embeds compactly into L? (I")
by the Sobolev embedding theorem. The proof is finished. O

Next, we define the sesquilinear form g7, with form domain D (qz) = H' (') on
the Hilbert space L? (T') by

qr (Ua U) = (5/ Vru - VrudS,
r
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for u,v € D (qr). It is well-known that the operator Csu := —dAru,
ue D (Cs)={ue H' (I'):6Arue L* (I}

is self-adjoint, nonnegative, having the opposite operator with compact resolvent,
(I+C)tec (L*(T')) provided that T' is Lipschitz continuous and § > 0 (see,
e.g., [4, 5, 8, 30, 31]). This follows employing the form method and the surface
divergence theorem (2.10). On the other hand, we let Bs := Cs + N}, with domain
D (Bs) = D(Cs) if 6 > 0 and let By = N}, in the operator sense. In the same
fashion as in the proof of Theorem 2.6, for § > 0 we have that Bjs is nonnegative,
self-adjoint on L2 (T'), with (I + Bs) ™' e L (L? (")) compact. Indeed, this operator
is associated with the sesquilinear form

qrn (u, u) d:equ (u,u) + qn (u,u),u € D(qr) = H(I).

We have the following basic property concerning the two operators By = N,
and Bs = By + Cj.

Proposition 2.7. Let v > 0, § > 0. The form qn is infinitesimally form bounded with
respect to qr, on L*(T).

Proof. By interpolation [H* (T"), L* (T")] = H'2 (") and Young’s inequality, we

2,1/2
have
aw (,0) = [ F Bz < C 1l agey Il oy
C
< S sy + 1 g
C
=2 11172y + ar (u, ),
for any € > 0, for some C' > 0 independent of ¢, u. O

Remark 2.8. If T' is of C%-class and § > 0, then N¥ is relatively Bs-bounded with
null Bs-bound owing to the fact that D (Cs) = H? (') and interpolation (see, e.g.,
[29]).

In the remainder of this section we devote our attention to the asymptotic be-
havior of the eigenvalue sequence )\Vm}éj, j € J, of the perturbed and unperturbed

Wentzell Laplacians AVM’,CS as well-as the behavior of the eigenvalue sequence associ-
ated with the operator Bs, § > 0. In order to do so, several other self-adjoint versions
of the Laplacian, subject to standard boundary conditions, will become important.
For a bounded domain ) with Lipschitz boundary I', denote by

0<Npy SNy < S SN <
the collection of the eigenvalues for the Dirichlet Laplacian Ap = —vAp (again,
listed according to their multiplicity). Then, if ¢ > 0, g € L*> (2), we have a known
formula (cf., e.g., [11], for ¢ = 0),

N, .= min max Rp(UU), j€J
Dd ™ y.cv, o£UCY; (O.U). j e,
dim Y/ =j
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where Rp (U,U), the Rayleigh quotient for the perturbed Dirichlet Laplacian, is
given after a suitable isomorphic identification of

u € H (Q) ~ Vod:ef {U = (u,ur) :ue H (Q) : ur = trace (u) =0},

by
2
v [Vl g + a2
Rp (U,U) = B H HL"’(‘”, U € Vo with u # 0. (2.27)
HU||L2(Q)
Similarly, we denote by
0 <AV S A 2 <o SAL; S AL S (2.28)

the collection of the eigenvalues for the perturbed Neumann Laplacian Ay = —vAyN

(again, listed according to their multiplicity, and which converge to +oc0). Then, if
q >0, g€ L*>®(Q) and since W is topologically isomorphic to H' (Q) in the sense
of (2.9), we have a known formula

N o= mi Ry (UU), j e J, 2.29
Ny = i max By (U.0), ] (2.29)
dimY;=j

where the Rayleigh quotient Ry (U,U) for the Neumann Laplacian Ay coincides
exactly with the right-hand side of (2.27).

The following result shows that the nonzero eigenvalues of the Wentzell Lapla-
cian A;{,(S, & > 0, are at most as large as the corresponding eigenvalues of the Dirichlet
and Neumann Laplacian, respectively.

Theorem 2.9. Let the assumptions of Theorem 2.2 hold. Then, the non-zero eigen-
values of the Wentzell Laplacians A;{,& satisfy

A SN S Xy and N < XK, for all j € . (2.30)
Proof. For U € H} () =~ Vo C W;, we have
wU0) o gy w,v), (2:31)
U1,

whenever U = (u,ur) € Vp with 0 # u € H} () (note that ur = 0 in the trace
sense). With this at hand, the second inequality in (2.30) follow from (2.31) and
(2.20). The first inequality in (2.30) is a simple consequence of the fact that,

ao (U7 U) as (U7 U)
5 S 2
U1, U1,
for all U € W5 C Wy with U # 0, owing to (2.20). The last inequality in (2.30) is
also immediate. O

The next result establishes another upper bound for the eigenvalue sequence
/\VW‘SJ-, j € J. But first, we want to recall some known facts. For a bounded domain
Q with Lipschitz continuous boundary I', denote by

) v,5 v,0 v,0
0< MG <MY <. SN SN <
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the collection of the eigenvalues for the operators Bs (again, listed according to
their multiplicity). The eigenvalue problem associated with the operator By is to
the following Steklov eigenvalue problem:

—vAp+q(z)p=0in Q,
{ —0Arp +vopp = Ap on I (2.32)

Then, if ¢ > 0, g € L™ (2), we have (cf., e.g., [40])

M0 = min max RY(U,U), jeJ, 2.33
S5 = o, oI, s (U, U), j (2.33)
dim Y =j

where Rg (U,U), the Rayleigh quotient for the (un)perturbed Steklov operator By,
is given by

2 2 1/2, 12
R (U, U) := v | Vulzz) + 8 I Vrurllzaw + [|la2ull 2 g,

)

lur |22y
for all U € Ws, U # 0 such that v > 0 and § > 0.

Theorem 2.10. Under the assumptions of Theorem 2.9, for each fixed v > 0 and
6 > 0 the non-zero eigenvalues of the Wentzell Laplacian AVV{,‘g satisfy

N S NG, for all j € . (2.34)
Moreover, )\g’g < )\g’j forall j € J.
Proof. Indeed, the proof follows from (2.20) and (2.33), and the fact

Riy (U,U) < Rg (U, U),
for all 0 #£ U € Wjs. The final claim is also immediate on account of the variational

characterization (2.33) and the fact that W5 C W, for § > 0. O

We will now study the asymptotic behavior of the eigenvalue sequence /\l‘;{,{?j,

j € J, in detail. Let us recall a classical result concerning the asymptotic behavior of
the eigenvalues {)‘VDJ }je J for the Dirichlet operator Ap = —vAp. It is well known
(see, e.g., [3]), for a bounded domain Q C R™, n > 1, with Lipschitz boundary T,
that

Ap,; =vCp (Q) 7" 40 <j2/"> , as j — +o00, (2.35)

where )
Cp (@)
(on [2])*/"
Here v, denotes the volume of the unit ball in R", and we recall that |$2| stands for
the n-dimensional Lebesgue measure of 2. From Theorem 2.9, one might expect an
analogous asymptotic behavior for the eigenvalues )\";[’,?j of the Wentzell Laplacian
AIV/{,O. But this turns out to be true only in one space dimension; in dimensions n > 2,
the eigenvalues )\I'j{,?j grow like j1/(»=1)_ By Theorem 2.10, this growth coincides with

the growth order of the unperturbed (§ = 0) Steklov eigenvalues )\g’?, j € J. The
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eigenvalues for the Dirichlet-to-Neumann map By = D%, = v0, (A) behave according
to the following asymptotic formula:

N0 = 0Cs () V) 4o (jl/(”*l)) , as j — +oo, (2.36)
where the Steklov constant Cg (I") is defined as
def 2m
Cs(T) = :
(v )0
where we recall that |I'| := S (I") stands for the usual (n — 1)-dimensional Lebesgue

surface measure on I' (see [40, Section 4]).
The eigenvalue sequence associated with Bs = Cs+ By, d > 0 has the following
asymptotic behavior.

Theorem 2.11. Let v, > 0 be fized. The eigenvalue sequence )\g’j obeys the following
Weyl law:

NGG = 0Cs (1) j% 71 4 o(j% D), as j — oo, (2.37)
where
=~ def (2m)?
(vn 1 [T
Proof. We know how the spectrum of Cs for 6 > 0 behaves asymptotically. This is
the classical result due to Hérmander [31]. We have

ACy.j = 6Cs (D) 721 4o (jz/("_1)> , a8 j — 00

while A\p, ; = )\g’g obeys the Weyl-like law (2.36). The statement of Theorem 2.11
follows then from Proposition 2.7 and Lemma 2.1. O

In the case 6 = 0, we have the following result for )\;{,?j (cf., [16]).

Theorem 2.12. Let the assumptions of Theorem 2.2 hold. The eigenvalue sequence

{/\"j[’,oj} ; of the Wentzell Laplacian A;[’,O satisfies:
P ]G
(i) Forn > 2, we have

Nl = Gy (1) Y/ 4o (j1/<"—1>) . as j — oo, (2.38)
for some
Cw (,T) € { Csér)(g[?:(/p(;_l)’ 1.] ’ form =3, (2.39)
’ [m,mm{% (Q),Cs (r)}} . forn=2.

(ii) Forn =1, we have

)\VW?j =vCp (Q)j* +0(5%), asj — +oc. (2.40)

Remark 2.13. In the case n = 1, Al‘;[’,o = AVM’/6 in the operator sense, since the Laplace-
Beltrami operator Ar does not appear in the boundary condition (2.16).
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It remains to investigate the asymptotic behavior of the eigenvalue sequence
associated with the Wentzell Laplacian A;{/& for § > 0 and in any space dimension n >
2. It turns out that the asymptotic behavior of the eigenvalue sequences associated
with C5 and a “gentle” perturbation of the classical Neumann Laplacian operator
for & > 0 is crucial. For the latter, the perturbation occurs in the homogeneous
boundary condition. That is, for a bounded domain €2 with Lipschitz boundary I,
denote by

v,0
N7]+1 g o

76 76 75
0 <A S AV <. <Y <A
the collection of the eigenvalues for the perturbed (6 > 0) Neumann Laplacian A‘]SV
(again, listed according to their multiplicity). More precisely, the eigenvalue problem

associated with this operator is

—vAp+q(x)p = Apin Q, (2.41)
—0Arp+vdyp=0onT, '

where ¢ > 0, ¢ € L (). In particular, by (2.28) we note that )\]”\}?j = Ay, for all
j € J. With the domain D (A?V), consisting of functions U € Wy, which satisfy
Au € L?(Q), 6Aur € L*(I') and the boundary condition —JArp + v, = 0
on I', A}, = —vA is nonnegative, selfadjoint on L? (Q) and with compact resolvent
(I + A?V) er (L2 (Q)) This operator is naturally associated with the sesquilinear
form as (U,U), U € D (as) = W;s. Moreover, analogous to the proof of Theorem 2.3
we have

A = min max RS (UU), jeJ, 2.42
N,j yioW;, 0AUEY, N ( ), J ( )
diij‘S:j

where R?V (U,U), the Rayleigh quotient for the operator A%, is given by

2
v IV ull72q) + 0 I Vrurl7zy + la"ul[ 2

R (U,U) :

)

ull72 (0
for all U € Wy, U # 0 such that v > 0 and 6 > 0.
We have the following basic comparison result for the eigenvalue sequence )\Efj.

For this result, we assume that ¢ = 0 without loss of generality (so that )\?\}50 =0
is an eigenvalue of (2.41); in this case, the eigenvalue sequence is arranged as 0 =

)\}50 < )\']’\}61 < )\]"\}52 <...< )\']’\}aj < /\E(SJ.Jrl < ..., and converges to +00).

Lemma 2.14. Let v > 0 and § > 0 be fized. There holds )\]V\}?j = Ay, < )‘?\}?j’ for all
7 € Ny, and )\?\}?j_l < Ap,js for all j € N. Moreover, we have the following Weyl law

Ay = vCp () 5" +0(5/™), as j — oc. (243)

Proof. The first inequality follows from the fact that R}, (U,U) = Ry (U,U) <
RS (U,U), for all 0 # U € W, and the variational characterizations (2.42), (2.29).
The second inequality is also a consequence of the min-max characterization of the
corresponding eigenvalue problems since H} (Q) ~ Vo C W; for § > 0. The final
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claim then follows from this comparison and the fact that each one of eigenvalue
sequences Ay ; and A7, ;, respectively, obeys the same Weyl asymptotic law (2.35).
Il

Remark 2.15. The result of Lemma 2.14 carries to the case ¢ > 0 with fQ q(z)dz >0
with minor modifications. Thus the behavior of the eigenvalue sequences assomated
with the perturbed and unperturbed operators A?V is the same.

We are now ready to give the full asymptotic behavior for eigenvalue sequences
associated with the perturbed Wentzell Laplacian A;{f in the case § > 0.

Theorem 2.16. Let the assumptions of Theorem 2.2 hold. The eigenvalue sequence
{)\;’/‘?j }jeJ of the Wentzell Laplacian Al{;{f satisfies
Xt = vCw (977" + 0 (/) as j = +o, (2.44)
for some
Cw () € [272/"Cp (@), Cp ()]

Proof. Fix v,0 > 0. We first observe that by Theorem 2.9 we have
v 5

Q). (2.45)

lim sup—
j—o0 J /

In order to determine a lower bound for {)\IV,{,(SJ} , we use the variational formula-
9 e

tion in the statement of Theorem 2.3 (cf. also Theorem 2.4). Indeed, we notice that
the quadratic form for the inverse of the Rayleigh quotient for I + AI”/{,‘S is given by

U115,
as (U,U) + ||U|I%,

(2.46)

2
lullz2 (e
2 2
~ v Vaullfagg) + S IIVrurllTa ey + [la2ull g + lulle

2
Jur 2

2 2 ’
v [Vl 220 + 0 [Vrur] 2oy + (a4l gy + llur 2

for all U = (u,ur) € W;, such that U # 0. In particular, from (2.46) we observe
that we can estimate this form in terms of the quadratic forms for the inverses of the
Rayleigh quotient for I + A?V and I + Bg, respectively. Since the variation of these
Rayleigh quotients take place in the same space Ws, we see that the left-hand side of
(2.46) can be estimated in terms of the compact operator (I + Afv)_l +(I+Bs)™*

Thus, by a well known spectral estimate for sums of compact operators (see, e.g.,

[12]), we have
v,0 1 1 1

MWj+m -

< v,0 + v, ?
1+)‘W]+m 1—i_)‘N,j 1—i_)‘Sm
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for all j,m € J. This implies for j € J,

(1 + A@) <1 + /\g’j)

)\I/,6 ) > _ 1
w2 =
2 2+ A;;fj + Ag’j
and
v,0 v,0
s (1+ANJH> <1+ASJ)
>‘W,2j+1 = -1,

24+ N+ NG
which yields for all j € J,

Nty | 1 [(AJVV’Z‘)l + 1} (572 X o1 (2.47)

QP ()T e () @

and

v,6 -1 —2/n v,8 - —2/n
W,2j+1 {(AN’J*J 1 (‘7 NG )
27 +1 2/n = . n v,0 -1 v,8 v,0 -1
(2j+1) 2+ 1)2/ [2 (/\N7j+1) +)‘S,j <)‘N,j+l> +1
1
(27 +1)*"

Both the right-hand sides of the preceding inequalities have the same limit as j goes
to infinity, and this limit equals precisely 2=%/"vCp (). Indeed, setting

)\11,5

(2.48)

v,0 .—2/n

def XG53~
Qj B v\ v,8 vs\ L ’
2 ()‘N’J> + A (/\]\},j) +1

@4 def j—Q/n
J 3

v,0 v, [(\v,0
2(\) A ()
we have
AVV{’/%‘ 1 -1 ~ 1
4] 1/,6 ) ) s

Exploiting to the fact that )\xéj — 400, )\g‘; — 400, as j — oo, together with the

’

asymptotic laws (2.37), (2.43) and
—1 -1
. :2/n v,0 T 2/n v,0 _ —1
jh_gloj <)‘N,j+1> = jh_fIOlO] </\N,j) = (Cp (),
we see that

Qj = 1 —>I/CD (Q)

-1 -1 -1 -1
) T e O R O N
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as j — oo while

~ 1
Q]: v,0 _1- v.0 V.0 _1. . -0
2 ()\]\;J) j2/n 4 A (/\N’J) j2/n 4 52/n
Thus, from (2.49) we obtain
/\1/,6 A Q
liminf-—"2 > ”Cl;( ) (2.50)
Analogously for the subsequence )‘II;I’/(L i1 We deduce
)\I/,(S ) Q
lim inf V2L > ”C]-;( ) (2.51)
Thus the claim (2.44) follows from (2.50)-(2.51) and (2.45). O

3. Parabolic equations with dynamic boundary conditions

We consider the parabolic equation
Ou =vAu — f (u) + Au, (t,z) € (0,400) x Q, (3.1)
where Q C R”, n > 1, is a bounded domain with boundary I' of class C? and v, \

are positive constants. The function f: R — R is assumed to be Cllo’i and satisfies

f, (y) > —cy, for all y € R, for some ¢y > 0. (3.2)

We recall that (3.1) is subject to dynamic boundary conditions of pure-reactive
(6 = 0) and reactive-diffusive type (§ > 0), of the form

Oru — 0Aru 4+ vOpu =0, on (0,00) x I (3.3)
Our main goal in this section is to investigate the dependence in § > 0 of the
dimension of the global attractor for the system (3.1)-(3.3). But first, we briefly
explain how to adapt the results of [17] to prove that the system (3.1), (3.3) generates

a dynamical system on Xs, possessing a finite dimensional global attractor g;’f. We
begin by assuming that, in addition to (3.2), the following condition for f holds:

mlylP —Cy < f(y)y <nolyl’ + Cy, (3.4)

for some 7y, 75 > 0, Cy > 0 and p > 2.
We have the following rigorous notion of weak solution to (3.1), (3.3), with
initial condition u (0) = ug, as in [19] (cf. also [17, 18]).

Definition 3.1. Let 6 > 0. The pair U (t) = (u (t) ,ur (t)) is said to be a weak solution
if up (t) =trace(u) for almost allt € (0,T), for any T >0, and U fulfills

UcC(0,T]; X2) N L*(0,T;Ws), u€ LP (2 x (0,T)), (3.5)
u € Higo(0,00; L* (2)), ur € Hijy,(0, 00; L (T)),
U € L* (0, T; Wi + X,),
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such that the identity
<atUa E>X2 +v <vu7 VU>L2(Q) +40 <VFUF7 VFJF>L2(F) + <f (U) - )\U, U>L2(Q) = 07

holds almost everywhere in (0,T), for all = = (o,0r) € W5, 0 € LP(Q). Here q
denotes the dual conjugate of p, 1/q+1/p = 1. Moreover, we have, in the space X3,

U (0) = (uo,vo) =: U, (3.6)

where u (0) = ug almost everywhere in 2, and ur (0) = vy almost everywhere in I'.
Note that in this setting, vy need not be the trace of ug at the boundary.

The following result is a direct consequence of results contained in [17, 18]
(cf. also [20, 21]). Indeed, the linear term JAru in the boundary condition (3.3) is
coercive in the sense

) <Apup, lu["! u>L2(F) =9 <VFUF, Vr <\u|r71 u) >L2(F) (3.7)

o dor ‘
(r+1)°

for any r > 1, so that mathematically speaking this term is of no real significance

to the energy estimates and only enhances the boundary regularity of the solution.

‘vp fur| 5

2y’

Theorem 3.2. Let the assumptions of (3.2), (3.4) be satisfied. For any given initial
data Uy € Xa, the problem (3.1), (3.3), (3.6) has a unique weak solution U in the
sense of Definition 3.1 which depends continuously on the initial data in a Lipschitz
way. Moreover, this problem defines a (nonlinear) continuous semigroup Sf’é acting
on the phase-space X,
S0 Xy — Xy, t >0,
given by
U =U (t).

Next, we first set Vo = (H? (Q)x H3/2 (I))NWy and V5 = (H? (Q)x H? (I'))NW;s
for § > 0. It follows from the proof of [17, Theorem 2.3] (cf. also [18, Section 3.3])
and the elementary observation (3.7) that we have the following.

Theorem 3.3. Let f satisfy assumptions (3.2), (3.4) and let v > 0, § > 0. Then, Stl"‘s
possesses a connected global attractor Q{f{,{s, which is a bounded subset of Vs N Xo.

Moreover, S 9 s uniformly differentiable on ggf with differential
L (t7 U (t)) 10 = (‘51752) €EXom V= (’U,UF) € X2> (38)

where V is the unique solution to
O =vAv— f (u(t))v+ v, (Dwr — 6Arvr + vd,v)p =0, (3.9)
V(0) =6.
Finally, L (t,U (t)) is compact for all t > 0.
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Proof. The existence of an absorbing set in Ws N LP (2) and, hence, the existence
of the global attractor Q{,’I’,{S C W; follows exactly as in the proofs of [19, Theorem
2.8 and Corollary 3.11], owing to (3.7). The boundedness of g;;f in X, is also a
consequence of the proof of [17, Theorem 2.3] and (3.7) since the Laplace-Beltrami
operator Ar is coercive. Indeed, there holds

sup [|U (t)] x,, < C-, (3.10)
t>tg

for some positive constant C, independent of ¢, U and initial data, and some positive
time o = to(||Uo||x,). We briefly explain the reason why Q;’,& is bounded in V; for
d > 0 (The case § = 0 is essentially different and is contained in [17, Proposition
2.6]; in fact, the case 6 > 0 is simpler). We claim that there is a positive constant
(', independent of time and initial data, and there exists 79 = 7 (t9) > 0 such that

HU(t)HV(S < (1, for all ¢ > 7. (3.11)
Before we prove (3.11), let us recall the following estimate:
sup (10 () Ry, + 1000 (1) g0 + 0yur ()72 ) (3.12)
>70
t+1 ) )
sup [ (VIVO(5) ey + 81 r0rur (5) ) ds
t>70 Jt

< Oy,

for some positive constant Co that is independent of time and the initial data (see
[19, Theorems 3.5, 3.10]). We recall that in order to deduce (3.12), it suffices to
differentiate (3.1) and (3.3) with respect to time and to exploit the uniform estimate
(3.10). For 6§ > 0, we observe that U is also a strong solution of the elliptic boundary
value problem

vAu = j; dZEf(‘)tu—i— f(u) —Au, in Q x (79, 00),

SArur — voy, (u) = ja def Owu, on I x (1g,00).
Since j; € L™ (10,00; L? () and jo € L* (79,00;L?(I')) owing to (3.10) and
(3.12), we can now apply elliptic regularity (e.g., [20, Lemma 2.2]) to infer that
U € L™ (1¢,00;Vs). This yields the first claim of the theorem. The uniform dif-

ferentiability of S} 9 on g"j[’,é is also a consequence of the boundedness of g;f into
Vs N X2 and [17, Proposition 2.6] (see also [6]). O

Even though surface diffusion has no qualitative impact on the energy estimates
for problem (3.1)—(3.3), (3.6), it does have a significant qualitative impact from the
dynamical point of view.

Theorem 3.4. Let the assumptions of Theorem 3.3 be satisfied.
(i) Pure-reactive (6 = 0) dynamic boundary conditions. The fractal dimension of

g;’,o admits the two-sided estimate

A n-t 0 cr+ A\t
B < di v < — - . )
o (CW (Q,F)l/> < dimp(Gy, X2) < co <1 + Cw (Q,F)l/> (3.13)



262 C.G. Gal Vol.83 (2015)

(ii) Reactive-diffusive (6 > 0) dynamic boundary conditions. The fractal dimension
of Q{,’I}(S admits the two-sided estimate

A : s cr+ A :
o =—2— ) <dimp(@, Xy) <o (1422 ) . 3.14
0 (C’W (Q)y) r (G, X2) 0( Cw (Q)y) (8.14)

Here ¢y depends on the shape of Q and n > 2 only, and the positive constants
Cw, Cw depend only on n, |Q|, |I'| and are given in Section 2.

Proof. The case (i) is proved in [17, Theorem 2.7 and Theorem 3.1] while the case
(ii) follows in the same fashion after some minor modifications. The crucial piece of
information is found in the asymptotic behavior of the eigenvalue sequence associated
with the perturbed Wentzell Laplacian A;",J (see Theorem 2.16). Following the same
procedure in [17, Theorem 2.7], we consider St”’éUo = U (t), U is the solution of (3.1)-
(3.3), (3.6), Uy, ..., U, are m solutions of (3.8)-(3.9) corresponding to O1,...,0,,
and let @, be the orthogonal projector in X5 onto the space spanned by Uy, ..., Un.
At any given time ¢, let now ¢; = ¢; (), j € N be an orthonormal basis in X3 with
D1y -y Py Spanning Q,, Xo =Span(Uy, ..., Uy,), with ¢; € Ws. We have
m
Tr (L (tv U (t)) Qm) = Z <L (tv U (t)) Pjs ‘pj>X2

Jj=1

= _’/Z HVS"jHi?(Q) - 52 HVFSOJ'HiQ(F)
ot =
Z<f %7%> o T 288 )
j=1

]:

—_

Using assumption (3.2) on f (i.e., f (y) > —cy, for all y € R), we find
Te (L (1,U) @) < v 3 [Veylf7aq 5Z\WF%HL2 + (cp +X)m
7j=1
Arguing in a similar fashion as in the proof of [17, Proposition 5.5, we obtain
Tr(L(t,U) Qm) < < —ve, Cyyma ™t + (cll/CN'W +cp+ )\) m
=:p(m),
since for the perturbed Wentzell Laplacian A;’,é we have

VZHV@JHLQ +5ZHVF(‘0JHL2 >015'W (Q>V(m%+1 _m> )
J=1

for some ¢; > 0 depending only on the shape of  and n. The function p(y) is
concave. The root of the equation p (d) =0 is

%
=1 ST )
ve1Cy ()



Vol.83 (2015) Equations with Dynamic Boundary Conditions 263

Thus, we can apply [10, Corollary 4.2 and Remark 4.1] to deduce that dimp Ay <
d*, from which the right-hand side of the inequality (3.14) follows.

The left-hand side of inequality (3.14) is obtained in the same spirit of [17, The-
orem 3.1], owing to the asymptotic behavior of the eigenvalue sequence associated
with Al'j{/é and relies on the fact that, owing to the boundedness of U € X, NV,
the semigroup S; 9 s uniformly differentiable with derivative of Holder class C?,
a € (0,1). More precisely, there exists a smooth manifold W,ﬂog (U,) (of class C1®)
localized in an open neighborhood of a fixed constant solution U, = (¢, ¢) with finite
instability dimension dim XY 0 (U,) < oo. In particular, X, 0 (Uy) is the unstable
subspace of

vAw — f (U)w + Aw
—vO,w + 0Arw >

which is tangent to Wi"g (Us) at the point U, and we recall that the global attractor
always contains localized unstable manifolds [6, 10]. As in the proof of [17, Theorem
3.1], by virtue of Theorem 2.16, it follows

L(U*)W:<

A 2
dimp(G%0, Xo) > dim X0 (U,) > o [ =——— | .
r(Gyr» X2) (Us) O<Cw(Q)V>

The proof is finished. O

Remark 3.5. Condition (3.2) on f is not necessary for the validity of both statements
(i)—(ii) of Theorem 3.4. The same result can be essentially proven without this as-
sumption and in a more general context, allowing for nonlinear boundary conditions
as well (see [18]).

4. Elliptic equations with dynamic boundary conditions

In this section we consider the following elliptic-parabolic initial-boundary value
problems of the form

vAu — Au =0, in (0,00) x £,
Owu + vopu = 6Aru — g(u), on (0,00) x T, (4.1)
uli=0 = Yy, on I'.

Once again we assume that 2 C R” is a bounded domain with boundary I' of class
CZAeR,v>0,0>0and g e CLL(R).

loc

4.1. Solvability in the class of weak and strong solutions

Generally speaking there are several ways to deal with (4.1) in order to show well-
posedness in various Banach spaces. It is worth emphasizing that the linear case
can be directly solved by the Fourier method (see [22, 43, 44]) in terms of the
eigenfunctions of the operator By (see Section 2.2). On the other hand, the solvability
of the nonlinear problem (4.1) was investigated by J.L. Lions in the late 60s in the
case 0 = 0, using a Galerkin truncation method and compactness arguments, or by
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Escher [13], by means of fixed point theorems when dealing say with global well-
posedness of classical solutions for smooth initial data. We refer the reader to the
recent contribution [22] where a detailed and extensive description of the pertinent
literature for a slightly more general problem than (4.1) can be found. In this section,
we develop a new and more interesting approach to handle the well-posedness of our
system, of that in which (4.1) can be viewed as a singular perturbation of a sequence
of fully parabolic problems, of the form

0y — vAu + du =0, in (0,00) x Q,
Owu + voqu = §Aru — g(u), on (0,00) x T, (4.2)
ul¢=0 = uo, on (,

where ¢ € (0, 1] is a given relaxation parameter. Indeed, if we formally set € = 0 in
the first equation of (4.2), then we can easily deduce (4.1).

It turns out that (4.2) possesses a unique strong solution. The following result
is standard and follows from a series of results proven in [18].

Theorem 4.1. Let € € (0,1] and X € R. Assume that
~9(W)y<cy(y’+1), forally R, (4.3)

for some cg > 0. Then for any initial datum Uy ) (up, upr) € WsNXoo, the parabolic
system (4.2) possesses a unique solution U (t) = (u(t),ur (t)), a.e. t € (0,T), for
any T > 0, with the properties

{ U € L™ (0, T; Ws N Xoo) N L2(0, T; D(AYY)),

Owur € L2 ((0,T) x I'), /20w € L?((0,T) x ), (4.4)

such that u(t)p = ur (1), a.e. on (0,T). The solution satisfies the equations in
a strong sense, i.e., a.e. in (0,T) x Q and (0,T) x I, respectively. Moreover, the
following estimates hold:

sup [|U (t)l|x., < Qe (“", |1 Unllx..) (4.5)
te(0,T)
2 r 2 2
sup U ()3, + / (l0ur )32y + 2 10 ()2 ) ds (46)
te(0,T) 0

2 C.T
< Q- (|00 y,x.. - ¢7)

The function Q. : Ry x Ry — Ry is monotone (in each of its variables) and is
independent of t, T and the initial data.

Proof. We fix ¢ > 0. A basic approach for a proof is to truncate the nonlinearity
g in problem (4.2) in such a way that |g,| < ¢y ~ h™% (8 > 1), i.e., gp is globally
Lipschitz but gy, still obeys (4.3) with a constant ¢, € R independent of A > 0. We
view the new sequence of truncated problems as an abstract Cauchy problem

edpu V6
ALY =
() + v =6 @),



Vol.83 (2015) Equations with Dynamic Boundary Conditions 265

for the Wentzell operator AI”/{,(S (see Section 2.2) with a globally Lipschitz perturbation

Gy (U) def (_;:(“u )). In this case, it is standard to show by semigroup methods that
the latter problem is also globally well-posed for each h > 0 (see, e.g., [24, 25]). Our
point is to observe that gy satisfies the same condition (4.3) and that the various
constants involved in the estimates performed [18, Theorem 3.2 and Remark 3.3] are
actually independent of ¢, T', and h. This procedure allows us to obtain an estimate
like (4.5) uniformly in A > 0. For the last uniform estimate (4.6), we refer the reader
to [18, Proposition 3.7] for a proof which can be easily adapted on account of (4.5)
(cf. also Proposition 4.4 below). It is then standard procedure to pass to the limit
as h — 07, In order to keep the presentation light we refrain from showing all these
constructions in detail, and so we leave the details to the interested reader. [

The first goal of this subsection is to prove the existence of at least one strong
solution to (4.1) by passing to the limit as e — 0 in the parabolic system (4.2).
However, our elliptic system is a singular perturbation (i.e., ¢ = 0) of a parabolic
problem, since when we collapse (4.2) into (4.1), we lose the information on the
initial datum ug in Q. Indeed, (4.1) requires knowledge of only the initial value of
ur (t) =trace(u (t)) at the initial time ¢ = 0. Thus, we must proceed very carefully.
First, we briefly recall how to solve a linear elliptic problem with inhomogeneous
Dirichlet data. More precisely, we consider the following system

{ Au—vAu =0, in €,

ulr =g on T, (4.7

for A € R, and a given g € H'/2(I') N L™ (I'). We prove the following elementary
lemma.

Lemma 4.2. Assume A > A\, & —VAp,1, where Ap1 > 0 is the first eigenvalue of

Ap = —A with null Dirichlet boundary conditions. Then, there exists a unique weak
solution uw = Dy (g) of (4.7),
Dy : H/2 ()N L™ () — H () N L™ (Q) (4.8)
such that u satisfies the following estimates:
HUHHI(Q) <C ||g||H1/2(F) ) (4.9)
gy < € (Iallarraqey s 90 ooy ) (4.10)

for some constant C' > 0 independent of A and u.

Definition 4.3. The precise notion of a weak solution to problem (4.7) is the following:
v (Vu, Vo) 12y + AU, ©) 120y = 0,

for all € H} (Q) with ur = ulr = g.

Proof. Let g € HY?(I') N L* (I). For the solvability of (4.7), we can exploit, for
instance, [22, Lemma 4.1]. It follows that there exists a unique solution w € H* ()

such that ||wHH1(Q) <C H9HH1/2(F)- Moreover, ||w”Lo<>(Q) <C (H9HH1/2(F) ) HQHJ;oo(F))



266 C.G. Gal Vol.83 (2015)

by application of [39, Theorem 7.1]. In order to show uniqueness, let uj,us be any
two weak solutions of (4.7) such that u;jp = ugp = g, for the same given g. Setting
& := uy — u9, we see that £ is a weak solution of the following elliptic problem

A —vAE=0inQ, {p=0.

Testing the first equation by ¢ € H}(Q) and exploiting the Poincare inequality
||V§HL2 > Apa ||§HL2 , yields (A +vAp 1) HgHLQ < 0, from which the desired
conclus10n follows. 0

Step 1. Data reconstruction. We set Xy := HY2(T) and X5 := H'(T) if § > 0,
and then let 1 (= ur (0)) € Xs N L>®(I") be any (but given) initial datum for (4.1)
with 6 > 0. We will now apply Lemma 4.2 to reconstruct an initial datum wug in
the domain 2 in a canonical way. Indeed, ug = D, (1)) has the required properties:
Uo = (uo,¥y) € W5 N X since the solution operator D) obeys the estimates (4.9),
(4.10). Moreover, we have

(w0, Yo)llw; < Clllvolla,) and |[(uo, Po)llx,, < Cllvoll Loo(ry)s (4.11)

for some constant C' > 0 which is independent of € > 0 and the initial datum Uj.
By Lemma 4.2, uy = D) (¢) is also uniquely determined by the boundary data
o for (4.1). Therefore, for each such initial datum Uy € Ws N X constructed
above we can infer from Theorem 4.1 that there exists a unique strong solution
U:(t) = (u®(t),up (t)), t € (0,T), to the parabolic problem (4.2) for any 7" > 0.
This solution belongs to the class of functions (4.4) and satisfies estimates (4.5)-(4.6).
Step 2. Uniform estimates in £ > 0. We aim to provide sufficiently strong estimates
for U, that are also uniform in e € (0,1]. We proceed with this program in several
propositions.

Proposition 4.4. Let A > 0 and assume (4.3). The following estimates hold:

sup ||up (t)”LOO(F) < C(iWoiiLw(F))a (4.12)
te(0,7)
T

sup (U= O, + [ (105 6) ey + < 100 () Eay) ds (413)
te(0,T) 0

< C(||¢0||X§mL°°(F))’

for some function C > 0 which is independent of € and the initial data.

Proof. To show (4.12), we modify the arguments of [22, Proposition 5.11] and [33,
Lemma 5.5.3] slightly. For the sake of notational convenience we drop ¢ from the
solution U, = (u®,uf.). For each € > 0, we define

1/my
Yie (t): </|u m’“d:z:—l—/|ur )| ’“dS) ,
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where the sequence {my}; oy is such that my, := 2% k> 1. We claim that

4 —1 my, |2
oy (1) + 2= 1) / V(6] F | da
’ Q

mg

4 1 my |2
A

mg

< mic (=X u Ol ey + € lur (7 ) +1)

(4.14)

as

for all + > 0. Indeed, testing each equation of (4.2) with |u|™ 2w, and integrat-
ing by parts over Q and I', respectively, (4.14) is immediate from [22, Proposi-
tion 5.11, (5.14)]. Note that the first term on the right-hand side of (4.14) will be
dropped out since A > 0. Next, performing a Moser iteration scheme exactly as in
[22, Proposition 5.11, (5.15)], then applying Growall’s inequality [33, Lemma 5.5.3]
(see also [9, Proposition 9.3.1, (9.3.10)-(9.3.11)]), and exploiting the basic inequality

Ya+b< Ya+ b (a,b>0), we obtain
1/
Yk’g (t) S max {Yk’g( ) <02kTYkmkl E( ) + C) mk} ;

where C' and 7 are positive constants independent of £ > 1 and € > 0. On the other
hand, freezing € € (0, 1] and noting that

Yie (0) < C(Velluoll oo o) + 1ol poo(ry) < Cllltboll poo )
owing to (4.11), we infer from [33, Lemma 5.5.3, Steps (III)-(IV)] that

sup _[Jur (6)]| ey < lim sup Vi (t) < CmaX{WoHLw(F)a sup Yi. (1)
t€(0,T) k=0 t€(0,T)

(4.15)
It is left to show that Y7 . € L* (0,T) uniformly in € > 0. To this end, we test both
equations of (4.2) with u itself and get

% (€ lu ()72 + llur (O] 72 ) (4.16)
+ 20|V (1)1 Z2(q + 8 | Vour (8)][ 72y + A llu (01720
=2(g (ur (), ur () 2ry -

Exploiting the assumption (4.3), we easily derive

d
= (=l @720 + lur Ol 7)) < € (lur @Ol +1)

for some C' > 0 independent of € > 0, time and the initial data. Thus, by Gronwall’s
inequality,

Yie (8) = ellu ()72 + llur (D72 < ((C + Y1 (0)) e, t € (0,T).  (4.17)

Owing once more to (4.11), we have Y3 . (0) < C([|[vbg|[ 1o () uniformly in € € (0, 1].
The desired inequality (4.12) follows then by combining this estimate with (4.15).
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The proof of (4.13) is standard now that we have the first uniform bound (4.12).
Indeed, multiply the first equation of (4.2) by d,u (t), then integrate over 2, and
multiply the second equation of (4.2) by dyur (t) and integrate over I'. Setting

E(t) == Mu@®)lZ2i + v IVu®)l 72 + 6 I Vrur ()72
+2(G (ur (t)), ) piry + Ce,
we obtain
2¢e |]8tu||L2 +2 ||6{LL1"||L2 +0E(t)=0, ae. t€(0,7T). (4.18)

Here the constant Cg > 0 is taken large enough, depending only the initial data ¢,
in order to ensure that £ (¢) is nonnegative (recall that G (y) is bounded for |y| < r).
Furthermore, one can easily check

(U, = Wollzeqy) < € ®) < @ (Tl ) + Clloll ey

for some positive function @ and C' > 0, both independent of ¢. Integrating (4.18)
over time with ¢t € (0,7'), then exploiting (4.12) together with the fact that Y7 . €
L*>(0,T) yields the desired bound in (4.13). The proof is finished. O

We now exploit the preceding result in order to derive additional uniform esti-
mates for the solutions of (4.2) as € — 0. First, a comparison in (4.2) for every ¢ <1
shows that when § > 0 it holds

T
/0 JAu ()220 d5 < Clol o) (4.19)

on account of estimates (4.12)-(4.13). Moreover, by comparison in the second equa-
tion of (4.2) we have

T
/0 100t ()22 ds < C(loll gz r): (4.20)

when 6 = 0, while in the case 6 > 0, the application of [20, Lemma 2.2] with
J1:= —Auf — edwu® and jo := g (uf) — Opuf, entails from (4.12)-(4.13), that

T
| (1 ey + 0t 6) ) ds < Cllwollgpumer)- @20

Summing up, these estimates entail

T 2
/0 |asiv- @) ds < Cllalgoimm) (4.92)

for any 6 > 0, v > 0.

Step 3. Passage to limit as ¢ — (0. We are now ready to pass to the limit, as ¢ — 0,
in the parabolic problem (4.2), using the uniform estimates (4.19)-(4.22) and (4.12)-
(4.13). Indeed, on account of these uniform inequalities, we can find w and up such
that, up to subsequences,
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(uf — up  weakly-x in L> (0,7 L* (I")),
u® — u  weakly-x in L™ (0,T; Xs),
s — Gwur  weakly in L2 ((0,T) x T),
eduf — 0 strongly in L? ((0,T) x Q), (4.23)
Auf — Au weakly in L? (0, T; L* (Q)) , if § =0,
Opt® — Opquf weakly in L? (O,T; L? (Q)) ,if 6 =0,
(v, u$) — (u,ur) weakly in L? (0,T;Vs), if § > 0.

Note that the first and third convergences of (4.23) implies that up belongs to
C ([0,T];L*(I)) such that up (0) = ¥ a.e. on I'. The second and third of (4.23),
and a classical compactness theorem (see, e.g., [10, Theorem 1.4]) yields

up — up  strongly in L? (0, T; L* (I)) . (4.24)

This strong convergences entails that, up to subsequences, uf. converges also to ur
almost everywhere on I, a.e. t € (0, 7). Thus, we can control the nonlinear boundary
term. More precisely, using the fact that g € C!, we have

g (uf) — g (ur) strongly in L? (0,T; L* (")), (4.25)

thanks to (4.24), the first convergence of (4.23), and estimate (4.12). By means of
the above convergence properties (4.23), (4.25), we can now pass to the limit in both
equations of (4.2) to deduce that U = (u,ur) solves the elliptic-parabolic system
(4.1). Moreover, due to the arbitrariness of 7' > 0, passing to limit as ¢ — 0 in
(4.19)-(4.22) and (4.12)-(4.13), and recalling (4.23), we also deduce that the limit
solution (u,ur) satisfies these inequalities with a constant C' > 0 independent of
e>0.
In other words, we have proved the following.

Theorem 4.5. Let A > 0 and assume (4.3). Then, for any initial datum satisfying
o € Xs N L™ ('), the nonlinear elliptic system (4.1) possesses a unique strong
solution with the properties

(u,ur) € L% (0,T; XN L= (), we L™ (0,T; H' (),
Ouur € L2 ((0,T) xT), U € L*(0,T; D(A}?)),

such that u (t) |r = ur (t), a.e. t € (0,T), for any T > 0.

Proof. The existence argument is provided in the Steps 1-3 above. As usual to show
uniqueness, we set U (t) := Uy (t) — Uz (t), where Uy = (u1,uir) and Us = (ug, usr)
are any two strong solutions of (4.1) corresponding to the initial data 1;, i = 1, 2.
We see that U solves

A —vAu =0 a.e. in (0,7) X Q, ulr = ur,
and the boundary condition:

Oyur — 0Arur + vopu = g (uir) — g (uar), a.e. on (0,7) x I.
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Testing the first and last equations by u and ur, respectively, and exploiting the
bound (4.12) yields

 ur (0)2aqry < (9 (e () — g (o (6) ,r ()20
< C(H"/)0||L°°(F)) [Jur (t)H%Q(F) ’

since w;r € L (0,75 L (I')), i = 1,2. Thus, if ¢5; = ¥y on I'; Gronwall’s inequal-
ity gives the desired uniqueness uip (t) = wor (t), on (0,7") x I'. Moreover, in view
of Lemma 4.2 there also holds wu; (t) = ug () in (0,7 x 2. The proof is finished. O

In the final part of this subsection, we briefly explain how to solve (4.1) in the
class of weak L%-energy solutions for a polynomial nonlinearity g. We first give the
following rigorous notion of weak solution to problem (4.1), with initial condition
u (0) = 1o in L2 (T).

Definition 4.6. Let A > 0, 6 > 0. The pair U (t) = (u(t),ur (t)) is said to be a
weak solution of (4.1) if ur (t) = u|r, in the trace sense, for a.e. t € (0,T), for any
T >0, and U fulfills

ur (t) € L= (0,73 L* (1)),
U (t) € L* (0, T;Ws), ur € L1((0,T) x T), (4.26)
Owur (t) € L*(0,T; XF) @ L1((0,T) x I'),
such that the following identity
(Opur (t) ,or) + v (Vu(l),Vo) 2 g (4.27)
+ 0 <VFUF (t) 7VF0F>L2(Q) + <)\u (t) ,O’>
= (g (ur (1)) ,01),
holds for all 2 = (o,0r) € W;s, or € L1(I'), a.e. t € (0,T). Here, q denotes the
dual conjugate of q, i.e., 1/¢+1/q = 1.
Remark 4.7. As usual from (4.26) it holds ur (t) € Cy, ([0, T]; L* (T')), for any T' > 0.
Hence, the initial datum ur (0) = 1), makes sense.
We state the following result.
Theorem 4.8. Assume A\ > 0 and the following conditions:
{ g/ (y) Z —Cg, fOT' all Y S R; (4 28)
Myl =Cy < gy <mlyl”+Cy, forally <R, '

for some 0y, ny >0, Cy,cg > 0 and q > 2. Then, for any initial data g € L? (),
there ezists exactly one global weak solution to problem (4.1) in the sense of Defi-
nition 4.6. Moreover, ur (t) € C ([0,T];L? (")) such that ||u (t)||%2(r) is absolutely
continuous on (0,T), and U = (u,ur) satisfies the following energy identity

1d

> d [lup (t)H%?(r) + v (Vu(t), Vu(t)) 2y + 0 (Vrur (), Vour () 2

— (=M (t) (8) g2y + {9 (ur () ur (1) (4.29)

for almost all t € (0,T).
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Proof. The proof carries over essentially with only minor modifications of the proof
of [18, Theorem 2.2 and Proposition 2.3] (see also [19]), owing to (4.28), with the
exception that we take advantage of a different (but natural) approximation scheme
which is now based on the existence of strong solutions for (4.1), see Theorem 4.5.
Indeed, we can choose a sequence of data 1, € X5 N L (I') such that u® (0) = .
and u (0) — ur (0) = 1y in L?(T). For each 1), there is a unique bounded strong
solution U, of problem (4.1). Another advantage of this construction is that now
every weak solution of (4.1) can be approximated by regular ones U, and the justifi-
cation of our subsequent asymptotic estimates for such solutions is also immediate.
The proof of the energy identity (4.29) follows along the lines of [18, Proposition
2.5] while the uniqueness argument is exactly the same as in the proof of Theorem
4.5, except that we employ the first condition of (4.28). This completes the proof of
the theorem. O

We conclude with the following. Recall that v > 0 and § > 0.
Proposition 4.9. Let the assumptions of Theorem 4.8 be satisfied. Then (4.1) defines

a (nonlinear) continuous semigroup
Tos () : L (I') = L*(T)
given by
Tos () o = ur (1),
where U (t) = (u(t) ,ur (t)) is the (unique) weak solution in the sense of Theorem
4.8.

4.2. Finite dimensional attractors

In this subsection, we wish to investigate the question of regularity and long-time
behavior of the weak solutions constructed in the previous subsection. In particular,
we show that each weak solution becomes a strong solution after some time in the
sense of Theorem 4.5. We begin with the following important result which says
that under assumption (4.28) on g, all such L?-energy solutions become ultimately
bounded and sufficiently smooth for all positive times. To this end, we state the
following straight-forward proposition.

Proposition 4.10. Let the assumptions of Theorem 4.8 be satisfied. Then, every weak
U = (u,ur) of (4.1) satisfies

t+1
lur ()72 + /t (V IV (5)l[72() + 8 | Vrur (3)||%2(r)> ds (4.30)

t+1
[ o Ol ds
2 _
< Cllollzerye ™ +C,
a.e. t > 0, for some positive constants p, C independent of the initial data and time.

Proof. Estimate (4.30) is a direct consequence of the energy identity (4.29), the
second assumption of (4.28) and the Gronwall inequality. O
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In particular, this result implies that the semigroup 7, s associated with (4.1)
possesses an absorbing ball By in L? (T')-topology. More precisely, for each subset
B C L?(T"), there exists a positive time tq = to(|| Bl 2ry) such that 7,5 (t) (B) €
By, for each t > .

Theorem 4.11. There exists a time t; > 0 depending only on tg and the other struc-
tural parameters of the problems, such that

t+1
sup <HUF ()l ooy + 1U () 3y, +/t 10pur (3)IIZ2r) d5> <C, (4.31)

t>t1

for some positive constant C independent of time and the initial data.

Proof. The L (I")-estimate in (4.31) is a consequence of the same Moser iteration
scheme performed in [17, Theorem 2.3] (see also [18, Theorem 3.2]), owing to the
inequality (4.14) and the existence of an absorbing ball By for 7, 5. Next, recall the
energy identity (4.18) which holds a.e. on (tp, o), for the strong solutions U, of the
elliptic-parabolic problem (4.1). The application of the uniform Gronwall lemma,
together with assumption (4.28) and the energy inequality (4.30), gives

t+1
s (urfa O+ [ 10 @) ds) <c (4.32)
U1

for some C > 0 independent of € > 0, time and the initial data. Henceforth, passing
to the limit as ¢ — 0 in (4.32) in a standard way, it is not difficult to realize that
(4.32) also holds for the limit solution U of the elliptic system (4.1). The proof is
complete. O

Consequently, from Lemma 4.2 we also have
Theorem 4.12. Any weak solution U = (u,ur) of (4.1) satisfies
sup |lu (t)HLOO(Q) <C. (4.33)
t>t1

Next, let L : H'/2(T') — X5 be the lifting map
def
L (ur) = (u,ur), u= Dy (ur).
Concerning the long-time behavior of the elliptic-parabolic problem (4.1), we have
proved the following.

Theorem 4.13. Let all the assumptions of Theorem 4.8 be satisfied. The dynamical
system (T,5(t), L*(T)) possesses a connected global attractor £, 5 C L* (') such
that L(E, 5) is bounded in W5 N Xoo. Moreover, &, 5 contains only strong solutions
and is of finite fractal dimension,

dimp (&5, L? T)) < oo.
Proof. The first part of the statement of theorem follows by virtue of the compact

embedding H'/2(T') ¢ L? ('), and from the statements of Theorems 4.11, 4.12. The
last part is a consequence of the proof of Theorem 4.5 and the fact that L(&, 5) is a
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bounded in W; N X, which entails that 7, s is also uniformly differentiable on &, s
(see, e.g., [17, Proposition 2.6]). O

Remark 4.14. Based on the estimates (4.31), (4.33), it is possible to exploit the ideas
contained in [22] and a bootstrap argument to show that each strong solution on
the global attractor is in fact a classical solution u € C? ((tl, 00) X Q) .

Our final goal of this section is to obtain two-sided sharp estimates for the fractal
dimension of the global attractor associated with the elliptic-parabolic system (4.1).

Theorem 4.15. (i) Pure-reactive (§ = 0) dynamic boundary conditions. The fractal
dimension of £, 0 admits the one-sided estimate

n—1
dimp(E,0, L2 (T)) < max {1, co (V CZQ(F)> } . (4.34)
(ii) Reactive-diffusive (6 > 0) dynamic boundary conditions. The fractal dimension
of E,0 admits the one-sided estimate
n—1

5
dimp(E, 5, L2 (1)) < 1, G . 4.35
imp(&, 5 (I')) < max co ((56’3 (F)) ( )

Here ¢y depends on the shape of 2 and n > 2 only, and the positive constants
Cg, Cg depend only on n, |I'| and are given in Section 2.2.

Proof. We shall employ a volume contraction argument as in the proof of Theorem
3.4. The first variation of the elliptic-parabolic system (4.1) is given by the compact
operator for ¢ > 0,

AU (@) : €€ L*(T) = vp € L*(I)
where V' = (v, vr) is the unique strong solution to
A — vAv =0, dyup + vdpv = §Apur — g (ur () v, (4.36)

subject to vr (0) = . Following [10, Chapter III, Definition 4.1], it suffices to esti-
mate the j-trace of the operator A (t,U (t)) as follows:

J
= Z <B(590j7 Soj>L2(F) - )‘Z <30j7 ¢j>L2(Q)
j=1 j=1

+ Z <g/ (ur (1)) @ SOJ'>L2(F)

j=1

where the set of real-valued functions ¢; € W5 N Xoo, j € N, is an orthonormal
basis of L?(T') with {¢1,...,¢,,} spanning Q,, (L*(T')). Here Q,, corresponds to
an orthogonal projector in L? (I') onto the space spanned by m-solutions V1, ..., V,,
of (4.36) corresponding to some data & = &;,...,&,, € L?(I'). Furthermore, recall
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the definition of the operator Bs from Section 2.2 and that the associated Steklov
eigenvalue problem for § > 0 yields a sequence )\g’j converging to +o0o, obeying
an appropriate Weyl asymptotic law (cf. (2.36) and (2.37)). The Courant-Fischer
principle for the operator By further yields

Tr (A (LU)Qm) < =Y NG +egm (4.37)
7=1

owing to A > 0 and the first condition of (4.28). On the other hand, the application
of [45, Chapter VI, Lemma 2.1] together with the fact that as j — oo, )\g’g ~

vCys (D) jY/(=1) and )\gj ~ 6Cg (') 72/(=1 for § > 0, respectively, gives

{ S A0 > euCs (1) mt/ (=D,

=~ 4.38
ST AL > 8 (T) m?/ D4 for § >0, (4.38)

for some absolute constant ¢; > 0 which depends only on the shape of 2 and n > 2.
From (4.37) in the case ¢ > 0, we deduce

Tr (A (t,U) Q) < —16Cs () m? =D+ 4 com =: p(s).

The function p (s) is concave. The root of the equation p (s) = 0 is

n—1

S* — Cg/cl =
3Cs (I) .

Thus, we can apply [10, Corollary 4.2 and Remark 4.1] to deduce that
dimp(E, 5, L* (I')) < max {1,s*},

from which (4.35) follows. The proof of (4.34) when 6 = 0 is based instead on the
first eigenvalue inequality of (4.38) and so the proof is similar. The proof of the
theorem is complete. O

To derive a lower bound for &, s it suffices to analyze the dimension of the
unstable manifold associated with a constant equilibrium z for (4.1); let A = 0 and
observe that steady-state solutions satisfy

Au=01in Q, — dAru+ vdyu =g (ur) onT.

We seek a constant solution z € R of this system: such a solution should satisfy
g (z) = 0and obey g (z) > 0. By the second assumption of (4.28), we have g (z) z < 0
on the interval Ir = (=R, R), if R is large enough. It follows that g (z) = 0 has at
least one solution z = z, (see, e.g., [10, Chapter III]). Now fix a nonlinearity ¢g and
a constant solution z = z, such that {, := g/ (z¢) > 0. In order to find a (sharp)
lower bound on the dimension of the global attractor &, s, it suffices to establish a
lower bound for dim E (z), where E (z) is an invariant subspace of As (z), which
corresponds to Ag (z)w = —Bsw + ¢ (z) w, with spectrum o (A (2)) C {€: & > 0}.
Next, let {¢; (a:)}J cy Pe an orthonormal basis in L? (T) consisting of eigenfunctions
of the operator

Bsp; = X§5p;, G EN, ¢; € X0 C3 (D), (4.39)
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where we recall that {/\g(j} is the (real) sequence associated with the eigenvalue
problem (2.32) (see Section 2.2).

Theorem 4.16. Let A = 0, v > 0, 6 > 0 and assume g satisfies (4.28) such that
(i) The global attractor £, admits the estimate

n—1
dimp (&,0, L* (T')) > dimpy (€0, L* (') > ¢ (<> IT|. (4.40)
v
(i) For d > 0, the global attractor &, 5 admits the estimate
n—1
dimp (€5, L* (I')) > dimy (&,,5, L% (') > (%) . (4.41)

Here ¢y is an absolute constant depending only on n and the shape of Q, but is
independent of the size of Q) and I

Proof. We shall seek for eigenvectors w; € L?(T') of the form w; (z) = ¢; () pj,
pj € R, satisfying equation

As (Z) wj = Cjwj, wj € D (Ag (2:)) =D (B(;) . (4.42)
Substituting such w; into (4.42), taking into account (4.39) and the fact that

A5 (2)wj = =Bsw; + g (z.) wj,
we obtain the equation
76 !
(_)‘g,j +9g (24))pj = Cipy- (4.43)

We prove (i). A nonzero p; exists if v = 0 and ( = (; = g (z:) > 0 (indeed,
this follows by taking the inner product in L* (T') of (4.42) with ;). Therefore, for
sufficiently small v < 1, there exists v > 0 such that when )\gg <7< g (z), the
equation (4.43) has a root (; = (; (v) with ¢; > 0. Therefore, to any such root (;,
we can assign a nontrivial p;, which is a solution of (4.43), and thus an eigenvector
wj = ¢;pj. Let us now compute how many j’s satisfy the inequality /\g’g < 7. In

light of the asymptotic behavior of {)\22} from (2.36), this certainly holds when
n—1
1<j<ey™t (Cs (I) V)lin =aq <C5?F)I/> .
The constant ¢; > 0 is independent of ¢’ (z,). It follows that
n—1
dimpg F4 (2) > ¢ (C'SZI’)I/>

and since dimy (£,,0) > dimy E (z), the claim in (i) follows. The case (ii) is similar
and is left to the reader (we only note that it is instead based on the asymptotic
behavior of the Steklov sequence )\g";, d > 0, from (2.37)). The proof is complete. [
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