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Abstract. It is known that the celebrated theorem by Hawking which assures the

existence of a Big-Bang under physically motivated hypotheses, uses geometric

ideas inspired in classical Myers theorem. Our aim here is to go a step further:

first, a result which can be interpreted as the exact analogy in pure Riemannian

geometry to Hawking theorem will be proven and, then, the isomorphic role of the

hypotheses in both theorems will be analyzed. This will provide some interesting

links between Riemannian and Lorentzian geometries, as well as an introduction

to the latter.

The reader interested only in Riemannian Geometry can regard this new

result as a simple application of Myers theorem combined with the properties

of focal points. However, readers with broader perspectives will learn that when

a geometer thinks in our space as a complete Riemannian manifold, a relativist

may think in our spacetime as predictable, or that suitable bounds on the Ricci

tensor will force geodesics either to converge in the space or to join in the time.

Moreover, the limitation of the distance from any point to a hypersurface in a

Riemannian manifold, may turn out into a catastrophic relativistic limit for the

duration of our physical Universe.
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1. Introduction

One of the most classical theorems in Riemannian Geometry is Myers’ one [16],
which can be stated as follows:

Theorem 1.1 (Myers). Let (M, gR) be a (connected) complete Riemannian manifold.
If its Ricci tensor is lower bounded by some constant (n− 1)k > 0 (i.e., Ric(v, v) ≥
(n− 1)kgR(v, v) for all tangent vectors v), then its diameter is at most π/

√
k.
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Myers theorem is a refinement of a previous one by Bonnet, which yields the
same conclusion under the stronger assumption that the sectional curvatures are
lower bounded by k. Known consequences of Myers theorem are that only compact
manifolds can admit complete metrics with a positive lower bound for the Ricci
curvature, and that the fundamental group of such manifolds must be finite (see for
example the nice exposition in [9]).

A natural extension of Riemannian Geometry is Lorentzian one, where the
(positive definite) Riemannian metric gR is replaced by a (index one) Lorentzian
metric gL. Such a change may be scaring for a pure Riemannian geometer, as most
of the power of Riemannian geometry relies on the positive character of the metric.
However, the applicability of Lorentzian Geometry to Einstein’s General Relativity
has led many physicists, as well as a quickly increasing number of mathematicians,
to focus in this geometry.

A Lorentzian manifold (M, gL) admits a standard Levi-Civita connection as in
the Riemannian case and, then, local concepts such a geodesics, curvature tensor or
covariant derivative. Nevertheless, difficulties to translate global Riemannian tools
to the Lorentzian setting appear from the very beginning. In fact, there is no any
distance associated to a Lorentzian metric and, thus, no any analogy to Hopf-Rinow
theorem exists —notice that this theorem is the elementary starting point at any
global Riemannian result. So, the name “complete” for a Lorentzian metric can
be used only in the sense of “geodesically complete” but, beware, even a compact
Lorentzian manifold can be (geodesically) incomplete [17, 7.16].

Nevertheless, intuitions about the structure of our physical Universe have led
to the development of a nowadays well-settled Global Lorentzian Geometry. This
is broadly inspired in the Riemannian one, but it also presents striking differences
[3, 14, 17]. Among the results in this geometry, a specially representative example
is Hawking’s celebrated theorem about singularities on spacetimes (see the detailed
expositions in [12] or [17]). This is commonly regarded as a strong support for the
existence of the Big-Bang. Its precise statement is the following:

Theorem 1.2 (Hawking). Let (M, gL) be a spacetime such that:

(i) It is globally hyperbolic.
(ii) Some spacelike Cauchy hypersurface Σ is strictly expanding, i.e., H ≥ C > 0

for some constant C, where H is the future mean curvature (that is, �H = H�n
with �n the future unit normal).

(iii) Strong energy (or timelike convergence) condition holds: Ric(v, v) ≥ 0 for any
timelike tangent vector v.

Then, the time-separation dL satisfies dL(p,Σ) < 1/C for any p ∈ I−(Σ). In partic-
ular, any past-directed timelike geodesic γ is incomplete.

This may seem beyond comprehension to non-initiated people, but even geome-
ters who have some acquaintance with Lorentzian Geometry cannot see any relation
to Riemannian Geometry. In fact, only the appearance of the Ricci tensor in the
third hypotheses suggests some link with Myers’; neither the other hypotheses nor
the conclusion seem to be related.
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Our purpose here is to fill this gap, by proving a purely Riemannian result close
in spirit to Hawking’s, and analyzing the dual role of the hypotheses. Concretely:

Theorem 1.3. Let (M, gR) be a connected Riemannian manifold satisfying the fol-
lowing conditions:

(i) gR is complete.
(ii) There exists some embedded hypersurface S “separating” M in M+ and M−

(definition 3.1), and with an infimum C > 0 of its expansion towards M+, i.e.,

its mean curvature vector �H = H�n satisfies H ≥ C > 0, where �n is the unit
vector field normal to S which points out M−.

(iii) Ric(v, v) ≥ 0 for every tangent vector v.

Then, the distance to S satisfies d(p, S) ≤ 1/C for every p ∈ M−.

As we will see, this result can be obtained by using standard techniques in the
study of Myers theorem and focal points. However, we are not aware of a similar
proven result in the literature, and a proof (plus a discussion about its applicability,
Remark 3.2) will be provided in Section 3. Previously, in Section 2, we recall briefly
the background needed for the proof. This background will be introduced in the
general semi-Riemannian setting, which includes both, Riemannian and Lorentzian
geometries, since it will be also used for (Lorentzian) Hawking theorem.

In Section 4.1, the Lorentzian setting of relativistic spacetimes will be briefly
introduced. No previous knowledge on Lorentzian Geometry is assumed and, so, this
may serve as a first contact with this geometry. The proof of Hawking’s theorem
will be carried out in Section 4.2, by following exactly the same pattern as in the
Riemannian version. The similarities between the proofs of Theorem 1.2 and 1.3 will
be discussed further in Section 5. In fact, we will stress the isomorphic role of each
one of the hypothesis (i), (ii) and (iii) in the corresponding proofs.

We remark that, in spite of the similarities between the proofs of both theorems,
the conclusions admit very different interpretations. Roughly, in Riemannian The-
orem 1.3 the conclusion is just that the distances from M− to S must be bounded
by 1/C; that is, there is a limit for the “width” of M−. However, in Lorentzian
Theorem 1.2, the most striking conclusion asserts geodesic incompleteness. As we
will see, this conclusion can be interpreted as the existence of some “singularity” in
our past, that is, that our Universe has an initial limit with some sort of Big-Bang.
After the proof of each theorem (1.2 or 1.3), a remark will be devoted to outline this
geometrical or physical meaning respectively.

2. Semi-Riemannian background

Let us start bringing together the main classical results to be used. The aim is
to set notation and let the reader know the roots of our theorem. As explained
above, this section will be semi-Riemannian, since these results will be used to prove
both, the Lorentzian theorem by Hawking and our Riemannian version. A thorough
exposition of the semi-Riemannian setting can be found in O’Neill’s book [17], our
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main reference along this section. In what follows, the reader interested only in the
Riemannian result can simply consider that the metric g below is Riemannian and
ignore some observations for the indefinite case.

Let M be a (smooth, connected, Hausdorff, necessarily paracompact) manifold
endowed with a semi-Riemannian metric g, i.e., g is a non-degenerate two covari-
ant symmetric tensor, possibly Riemannian (g is definite positive), Lorentzian (the
index of g is one (−,+, . . . ,+)) or with a higher index and, thus, with a canonical
Levi-Civita connection. Consider a piecewise smooth curve σ : [a, b] → M , and a
(piecewise smooth) variation of σ, that is, σs(t) ≡ f(s, t) with f : (−δ, δ)×[a, b] → M
and σ0 = σ (see for example [17], above its Proposition 10.2). The variation f has
an associated variational field

V (t) =
∂f

∂s
(0, t)

and viceversa, any (piecewise smooth) vector field on σ, V ∈ X(σ), is a variational
field for some variation. One can define the functional “length” as:

L : (−δ, δ) → R s �→ length(σs) :=

∫ b

a

√∣∣∣∣g
(
∂f

∂t
(s, t),

∂f

∂t
(s, t)

)∣∣∣∣dt

where the absolute value takes into account that g is not necessarily positive definite.
Consider an (embedded) submanifold P of (M, g) which is nondegenerate, i.e., the
restriction of g to the bundle TP is not degenerate. This implies that P can be
also regarded as a semi-Riemannian manifold endowed with this restriction, the
orthogonal bundle TP⊥ satisfies TP ⊕ TP⊥ ↪→ TM and the second fundamental
form II : X(P )× X(P ) → X(P )⊥ of P is well defined. For any q ∈ M , put:

Ω(P, q) = {piecewise smooth curves running from P to q}.

In particular, given a curve σ ∈ Ω(P, q) we will consider (P, q)-variations of σ, that
is, any variation such that all its longitudinal curves σs belong to Ω(P, q). Such a
variation can be regarded as a curve in Ω(P, q) (s �→ σs) passing through σ = σ0.
Then, its variational field V can be seen as a tangent vector to Ω(P, q) in σ. This
suggests to denote, for any σ ∈ Ω(P, q):

TσΩ(P, q) = {piecewise smooth fields along σ with V (a) ∈ Tσ(a)P and V (b) = 0}.

This set has a natural structure of vectorial space and, consistently, it is easy to
check that there exists a (P, q)-variation with variational vector field V for every
V ∈ TσΩ(P, q) (see [17, Lemma 10.49]). These concepts allow to give the following
variational characterization of a geodesic normal to a submanifold (see [17, Corollary
10.26]), which extends trivially a well-known Riemannian one.

Proposition 2.1. Let (M, g) be a semi-Riemannian manifold, P a nondegenerate
submanifold, and q ∈ M . Let σ : [a, b] → M be a curve of Ω(P, q) with constant

sign ε ∈ {−1,+1} of g(σ′, σ′) and constant speed c =
√

|g(σ′, σ′)| > 0. Then, the
following statements are equivalent:
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(i) σ is a geodesic normal to P (that is, σ′(a)⊥Tσ(a)P ); in particular, σ is smooth
on all [a, b].

(ii) σ is a critical point of the length for any (P, q)-variation, that is, L′(0) = 0 for
any such variation of σ.

Remark 2.2. Recall that, by assumption, g(σ′, σ′) cannot vanish, that is, σ is non-
null; by continuity, this property will hold for nearby longitudinal curves too. More-
over, we will be interested in the case that σ is a co-spacelike curve, that is, the
orthogonal of σ is positive definite and, therefore, either g is Riemannian (case
ε = 1) or g is Lorentzian (ε = −1); in the latter case, σ is called timelike, consis-
tently with the definitions in Section 4.1. As a consequence, P will be spacelike, in
the sense that g restricted to TP is positive definite.

For these curves with the property of being critical points for any (P, q)-
variation, it is natural to consider the second derivative L′′(0). That is the origin of
the next concept:

Definition 2.3 (Index form). Let (M, g) be a semi-Riemannian manifold, P a nonde-
generate submanifold, q ∈ M and σ ∈ Ω(P, q) be a nonnull geodesic which is normal
to P at its origin. The index form of σ is the unique symmetric bilinear form

Iσ : TσΩ(P, q)× TσΩ(P, q) → R

satisfying Iσ(V, V ) = L′′(0), where L is the length functional associated to any
(P, q)-variation of σ with variational field V .

Remark 2.4. Recall that, in order to make consistent this definition, one should check
that the value of L′′(0) only depends on the (P, q)-variation through its variational
field V . All these standard details hold as in the Riemannian case, and they are
exhaustively explained in the first three sections of [17, Chapter 10]. In this reference,
an explicit expression for Iσ(V,W ) (which we will not need here) can be also found.
The case of null geodesics and its index forms is studied carefully in [3, Section 10.3].

Finally, let us recall the next two standard concepts, which will be combined
with the previous index form in Proposition 2.7.

Definition 2.5 (P -Jacobi field). Let (M, g) be a semi-Riemannian manifold, P a
nondegenerate submanifold, and σ : [a, b] → M a geodesic normal to P at the
origin. A P -Jacobi field along σ is a field J ∈ X(σ) satisfying the Jacobi equation:

J ′′ +R(J, σ′)σ′ = 0

and the next two conditions at the origin:

1. J(a) ∈ Tσ(a)P.

2. tan(J ′(a)) = ĨI(J(a), σ′(a)), being tan(·) the tangent component to the subspace

Tσ(a)P , and ĨI the operator associated to the second fundamental form II of P

defined by g(ĨI(V,Z),W ) = −g(II(V,W ), Z) for all V,W ∈ X(P ), Z ∈ X(P )⊥

(see for example [17, Remark 4.39]).
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This definition is equal to the one given in [17, Proposition 10.28], and a better
geometrical understanding of the two conditions on the origin can be found in this
reference. However, we will use the notion of P -Jacobi field just in order to introduce
the next classical concept [17, Definition 10.29].

Definition 2.6 (P -focal point). Let (M, g) be a semi-Riemannian manifold, P a non-
degenerate submanifold, and σ : [a, b] → M a geodesic normal to P at the origin. A
value r ∈ (a, b] is called P -focal value (or σ(r) is called P -focal point) if there exists
a non identically zero P -Jacobi field with J(r) = 0.

The next proposition (a standard result of geometrical calculus of variations,
see for example [17, Theorem 10.34]) will be essential for the proof of both, Hawk-
ing’s theorem and our Riemannian version. It deals with a well-known property
for geodesics in the Riemannian setting: “among nearby curves, geodesics minimize
before their first focal point” (and not beyond it). This type of property can be
extended to cospacelike geodesics (in the sense of Remark 2.2). Indeed, a formally
analogous computation in the Lorentzian setting shows that “among nearby curves,
timelike geodesics maximize the length before their first focal point”.

Proposition 2.7 (Focal points theorem). Let (M, g) be a Riemannian or Lorentzian
manifold, P a nondegenerate submanifold and σ : [a, b] → M a cospacelike geodesic
normal to P at the origin. If σ has a P -focal value r ∈ (a, b), then Iσ is indefinite.

Recall that r must be in the open interval (a, b). The geometric meaning of this
result is clear: under the assumptions considered for σ, there exist (P, q)-variations
of σ for which L has a minimum at σ and others for which it has a maximum. In
particular, there are strictly shorter and longer curves than σ connecting P and σ(b),
which can be chosen arbitrarily close to σ.

To end up, we are going to provide a result that, under certain hypotheses,
enables one to find a focal point along a geodesic. Roughly, in Hawking’s theorem
and our Riemannian version, this result will guarantee the existence of a focal point
precisely in the open interval (a, b) of a curve, and then we will be able to apply
Proposition 2.7, which will lead to a contradiction (see the detailed proofs in the
corresponding sections).

Proposition 2.8 (Existence of focal points). Let (M, g) be a Riemannian or Loren-
tzian manifold, P a nondegenerate submanifold and σ : [0, b] → M a cospacelike
geodesic normal to P at the origin. Suppose:

(i) K := g
(
σ′(0), �Hσ(0)

)
> 0, where �H is the mean curvature vector.

(ii) Ric(σ′, σ′) ≥ 0, where Ric is the Ricci tensor.

Then, there is a P -focal value at some r ∈ (0, 1/K], provided that σ is defined in this
interval, that is, if 1/K ≤ b.

Remark 2.9. The detailed proof is elementary and can be found in [17, Proposition
10.37]. Remarkably, this proposition can be regarded as a corollary to Myers’ theorem
(or at least, to its technique): a close look at the proof of this theorem in [9, Theorem
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9.3.1] reveals an analogous pattern to the cited proof of Proposition 2.8 in [17]. This
influence is pointed out in the graphic summary of Figure 3.

3. Riemannian version of Hawking’s theorem

With this classical background settled, we are ready to prove the announced The-
orem 1.3: the Riemannian version of Hawking’s. Figure 1 may help to follow the
geometrical idea of the proof. We insist on the purely Riemannian character of both
the result and the proof. Previously, the following definition may clarify the hypoth-
esis (ii) of the theorem.

Definition 3.1. Let M be a connected manifold and S an embedded closed hyper-
surface. We will call S a separating hypersurface if M − S has two connected parts
M− and M+, with common boundary S. In that situation, it is possible to speak of
a transverse vector to S as pointing out M− or M+.

Figure 1. Elements in the proof of Theorem 1.3.

Proof of Theorem 1.3. Assume that there exists some q0 ∈ M− such that b0 :=
d(q0, S) > 1/C. After some steps, this will lead to a contradiction:

1. We claim the existence of a point p0 ∈ S such that the distance d associated to
gR satisfies d(q0, p0) = b0. In fact, let B be the closed ball B̄(q0, 2b0) centered at
q0 with radius 2b0. As B is closed and bounded in (M, gR), it is also compact by
the completeness of gR and Hopf-Rinow theorem. Moreover, by hypothesis, S
is closed and, so, B ∩S �= ∅ is compact. This and the continuity of the distance
d, yield a point p0 ∈ B ∩S such that d(q0, p0) = d(q0, B ∩S). Furthermore, the
definition of B implies that d(q0, B ∩ S) = d(q0, S) = b0.

2. Since (M, gR) is Riemannian, complete and connected, Hopf-Rinow theorem
provides a minimizing geodesic σ : [0, b0] → M with constant speed 1 such that
σ(0) = p0, σ(b0) = q0.

3. We also claim that σ is normal to S at p0 and points out M−, i.e., σ
′(0) is equal

to �n(p0), the unit normal vector pointing out at M−. For the first assertion,
simply, use Proposition 2.1, as L(σ) = d(q0, S) and, thus, σ is a minimum for the
length functional L. For the second one, notice that, from the proven properties,
σ′(0) must be either �n(p0) or −�n(p0). Nevertheless, the latter option can be
discarded as, otherwise, there would exist some δ > 0 such that σ(0, δ) ⊆ M+.
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However, as σ(b0) = q0 ∈ M−, there would be some t0 ≥ δ such that σ(t0) ∈ S.
This would make σ

∣∣
[t0,b0]

be a curve connecting S and q0, strictly shorter than

σ, a contradiction.

4. Let �Hp0 = H(p0)�n(p0) be the mean curvature vector. Let us check that if
1/H(p0) < b0, then σ has a focal value at some r ∈ (0, b0). This is a straightfor-
ward consequence of Proposition 2.8, as Ric(σ′, σ′) ≥ 0 by the hypothesis (iii)
of Theorem 1.3 and, using the previous item,

K = gR

(
σ′(0), �Hp0

)
= gR (�n(p0), H(p0)�n(p0)) = H(p0).

5. The last point is applicable, that is, σ must have a focal point in r ∈ (0, b). In
fact, 1/H(p0) < b0, as hypothesis (ii) of the theorem says H(p0) ≥ C and we
are assuming b0 > 1/C.

6. This focal point yields a contradiction, as Proposition 2.7 guarantees the exis-
tence of another curve joining p0 and q0 strictly shorter than σ, i.e., d(q0, p0) <
b0 := d(q0, S), in contradiction with the choice of p0.

Remark 3.2. A simple application of Theorem 1.3 is to consider a hypersurface S
embedded in Euclidean space Rn, so that the hypotheses (i) and (iii) of the theorem
are automatically satisfied.

If S is a topological sphere, Jordan-Brouwer theorem assures that it separates
Rn in two regions as required, the inner one M− and the outer one M+. Moreover,
it is well known that there exists an (elliptic) point p0 ∈ S such that the second
fundamental form is positive definite with respect to �n(p0) (just take any point
p− ∈ M− and choose p0 ∈ S with d(p−, p0) = d(p−, S)), and thus H(p0) > 0. In the
case of S being an ovaloid, we have H(p) > 0 for all p ∈ S, and then H ≥ C > 0 by
the compactness of S. Thus, Theorem 1.3 becomes applicable, and the optimality
of the bound for d(p−, S) is attained, for instance, when p− is the center of a round
sphere. The case of a big square with rounded corners shows that the inequality
H ≥ 0 is not enough to obtain a bound in the spirit of Theorem 1.3.

The cases when S is a cylinder or a paraboloid in R3 show, respectively, the
applicability of Theorem 1.3 for a non compact hypersurface and the necessity to
strenghten H > 0 into a positive lower bound for H. The case of the cylinder also
shows that Theorem 1.3 does not yield always an optimal bound; nevertheless, one
should take into account that Theorem 1.3 is applicable when M is nonnegatively
Ricci curved (sharper bounds could be found for spaces with nonnegative sectional
curvature, as Rn itself).

4. Hawking’s original theorem

Before sketching the proof of Hawking’s result, we recall some specific Lorentzian
notions, which complete the semi-Riemannian ones provided in Section 2.
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4.1. Framework of Lorentzian manifolds and relativistic spacetimes

For the description of the next Lorentzian concepts, we follow mostly the conventions
of [17] and include some recent developments surveyed in [14].

A Lorentzian metric gL on a manifold M yields a Lorentzian scalar product
(gL)p with signature (−,+, . . . ,+) at each tangent space TpM , p ∈ M . A non-zero
tangent vector vp ∈ TpM \ {0p} is called timelike (resp. lightlike; causal; spacelike)
if gL(vp, vp) < 0 (resp. gL(vp, vp) = 0; vp is timelike or lightlike i.e., gL(vp, vp) ≤
0; gL(vp, vp) > 0). The timelike vectors of TpM are distributed in two connected
parts, each one called a time cone. When one chooses one of these time cones and
declares that it is the future cone (and, so, the non-chosen one is the past cone) then
(TpM, (gL)p) is time-oriented. A time-orientation in a Lorentzian manifold (M, gL)
is a smooth choice of a future timelike cone for every TpM, p ∈ M . Here, smooth
means that the time-orientation at each point is provided by some timelike vector
field X on M . Not all the Lorentzian metrics admit a time-orientation, and neither
all the smooth manifolds admit a Lorentzian metric [17, Prop. 6.37].

Definition 4.1. A (relativistic) spacetime is a connected Lorentzian manifold (M, gL)
endowed with a time-orientation.

In a spacetime, a (piecewise smooth) curve γ is called future or past directed
timelike/causal when so is its velocity everywhere (no change of cone is allowed at
the possible breaks of γ). In Relativity, the reader, as well as any massive particle,
is represented by means of a future-directed timelike curve.

The following binary relations�, <,≤ between the points of a spacetime (M, gL)
become important:

Chronological: p � q ⇐⇒ ∃ a future directed timelike curve from p to q.
Strict causal: p < q ⇐⇒ ∃ a future directed causal curve from p to q.

Causal: p ≤ q ⇐⇒ p < q or p = q.

The chronological and causal futures of a point p are defined, resp., as:

I+(p) = {q ∈ M : p � q} J+(p) = {q ∈ M : p ≤ q}

and analogously are defined the past notions I−(p), J−(p). For a subset A ⊆ M , one
writes, for example, I+(A) := ∪p∈AI

+(p); easily, I±(A) is always an open subset of
M (see the first section of [17, Chapter 14] or [14]).

These relations of causality generate a whole branch of Lorentzian Geometry,
the Causality Theory, which is conformally invariant. Global conditions of causality
are natural conditions imposed on the causality of a spacetime in order to make it
both, physically more realistic and mathematically more interesting. We will only
use the following two conditions (a complete study can be found in [3] or [14]).

Definition 4.2. A spacetime (M, gL) is:

• Causal, if it does not contain any closed causal curve.
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• Globally hyperbolic, if it is causal1 and J+(p) ∩ J−(q) is compact for every
p, q ∈ M (i.e., there exist no “naked singularities”).

An important characterization of global hiperbolicity is carried out in terms of
Cauchy hypersurfaces, which appear in the statement of Hawking theorem.

Definition 4.3. Let (M, gL) be a spacetime.

A spacelike Cauchy hypersurface is a smooth hypersurface Σ which is spacelike
(i.e., gL restricted to TΣ is positive definite) and which is crossed exactly once by
any inextendible timelike curve.

A Cauchy temporal function is an onto smooth function τ : M → R such that
all its levels Σa := τ−1(a), a ∈ R, are spacelike Cauchy hypersurfaces and τ satisfies
that τ ◦ γ is increasing for any future-directed causal curve γ.

The link between these three notions comes from the following result2:

Theorem 4.4 (Characterization of global hyperbolicity). Let (M, gL) be a spacetime.
The following properties are equivalent:

1. (M, gL) is globally hyperbolic.
2. (M, gL) admits a spacelike Cauchy hypersurface.
3. (M, gL) admits a Cauchy temporal function.

Remark 4.5. Let us discuss briefly the three alternative properties in the previous
theorem (a more detailed discussion with further references can be found in [15]).

The definition of global hyperbolicity in Definition 4.2 comprises two physical
requirements: the impossibility for matter or energy to travel to its own past (i.e.,
to be causal) and the property of absence of naked singularities. The latter means
that if a singularity existed (in the sense that some matter or energy “appears” or
“disappears” in the spacetime) then this is not visible for any observer. The typical
singularities of black holes or Big-Bang models are not naked, i.e., they do not violate
global hyperbolicity. Intuitively, the existence of a naked singularity would produce
an unpredictable spacetime.

Moreover, the existence of a Cauchy hypersurface Σ is linked to the predictability
of the spacetime in the following sense: the conditions imposed on Σ by definition,
allow one to ensure the existence and uniqueness of solutions to hyperbolic equations
(as Einstein’s one) for well-posed data on Σ.

Remarkably, this is equivalent to the existence of a (highly non-unique) Cauchy
temporal function τ , which allows one to split the spacetime in “space” and “time”.

1In classical references such as [3, 12, 17] a more restrictive and technical condition, strong causality,

is used instead of causality. However, the possibility to optimize the definition of global hyperbolicity

by using just causality was proved recently in [6] (see also [14, Section 3.11]).
2In Definition 4.3 and Theorem 4.4 we are following the explanation in [14, Section 3.11], instead of

more classical references such as [3, 17]. The reason is that a topological version of Theorem 4.4 was

proved by Geroch in a celebrated article [11] published in 1970. The question whether the “smooth”

version stated here holds, remained open until the papers [4, 5], which show the equivalences (1)

⇐⇒ (2) and (1) ⇐⇒ (3), resp.
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Moreover, any Cauchy hypersurface Σ can be understood as a level of such a τ and,
so, Σ becomes “the full space at an instant of time”.

Figure 2. In globally hyperbolic spacetimes one has a (non-unique)
choice of time such that the levels τ = constant are spacelike Cauchy
hypersurfaces and, then, the spacetime can be predicted from suitable
data in any of them.

The last notion to be recalled is the Lorentzian distance or time-separation of
a spacetime (see [17, Chapter 14]). For this purpose, denote:

C c
pq = {piecewise smooth future directed causal curves from p to q}

Definition 4.6 (Time separation). Let (M, gL) be a spacetime and p, q ∈ M . The
Lorentzian distance or time-separation from p to q is defined as:

dL(p, q) =

{
sup{L(α) : α ∈ C c

pq} if C c
pq �= ∅

0 if C c
pq = ∅

}
∈ [0,∞].

Analogously, if Σ is a subset of M , the Lorentzian distance or time separation
from p to Σ, denoted dL(p,Σ), is the supremum of the lengths of the future-directed
causal curves from p to Σ (if there are not such curves, dL(p,Σ) := 0).

In some way, the Lorentzian distance will play a role analogous to the natural
distance associated to a Riemannian metric. However, there are substantial differ-
ences, since the Lorentzian distance is not even an abstract distance —in fact, it
is non-symmetric in any causal spacetime. However, it satisfies a sort of reversed
triangle inequality, namely:

p ≤ q ≤ r ⇒ d(p, q) + d(p, r) ≤ d(p, r).

Finally, let us recall two Lorentzian results to be used. In some way, the first one
will play the role of Hopf-Rinow theorem for the Lorentzian case (see the discussion
in Section 5). It is a standard result of causality theory, whose proof can be seen in
[17, Propositions 14.19 and 14.21].

Theorem 4.7 (Avez-Seifert). Let (M, gL) be a globally hyperbolic spacetime.
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1. If p, q ∈ M satisfy p < q, there exists a future directed causal geodesic from p
to q with length equal to dL(p, q) (i.e., the geodesic is maximizing).

2. The time-separation dL : M ×M → [0,∞] is finite-valued and continuous.

The second result is just a technical lemma, but it will be crucial at a step
of Hawking’s theorem. As stressed in Section 5, this lemma is a major difference
between the proofs of Lorentzian and Riemannian versions. A detailed proof can be
found in [13, Lemma 3.71]; it is also straightforward from the results on limit curves
in [3], and it is implicit in the results along [17, Chapter 14].

Lemma 4.8. Let (M, gL) be a globally hyperbolic spacetime and Σ a Cauchy hyper-
surface of M . Then, for every p ∈ I−(Σ) the set J+(p) ∩ Σ is compact.

4.2. Proof of Hawking‘s Theorem

In this subsection, we are going to sketch the proof of classical Hawking’s theorem,
following the same steps as in our Riemannian version, in order to emphasize the
analogy and our source of inspiration.

Notice that the thesis of the theorem states a bound about the time separation,
and this thesis implies easily the last assertion on timelike geodesic incompleteness.
In fact, any past-directed timelike geodesic γ must cross Σ (as it is Cauchy) and
enter in I−(Σ). However, the length of the part of γ in I−(Σ) must be smaller than
1/C because, otherwise, the inequality dL(p,Σ) < 1/C would be violated. So, we
concentrate on the main thesis of the theorem.

Proof of dL(p,Σ) < 1/C in Theorem 1.2. Suppose that there exists some q0 ∈ I−(Σ)
such that b0 := dL(q0,Σ) ≥ 1/C. This will lead us to a contradiction:

1. We claim the existence of a point p0 ∈ Σ such that dL(q0, p0) = b0 (< ∞).
Certainly, b0 = dL(q0,Σ) = dL(q0, J

+(q0) ∩ Σ). Under our hypothesis of global
hyperbolicity, Avez-Seifert theorem guarantees the continuity and finiteness of
dL, and Lemma 4.8 ensures the compactness of J+(q0) ∩ Σ. Thus, we find the
required p0 ∈ J+(q0) ∩ Σ.

2. Since (M, gL) is globally hyperbolic, Avez-Seifert theorem provides (after a
reparametrizacion) a maximizing timelike geodesic σ : [0, b0] → M with con-
stant speed 1 such that σ(0) = p0, σ(b0) = q0. Recall that, by hypotheses, we
know b0 ≥ 1/C. Even more, we can assume b0 > 1/C because, in the case of
equality, we could extend the geodesic σ to [0, b0 + ε] for some ε > 0. Then, it
would be enough to reason with q′0 := σ(b0+ε) instead of q0 (the corresponding
b′0 would satisfy b′0 > b0 = 1/C).

3. We also claim that σ is normal to Σ at p0 and points out I−(Σ), i.e., σ′(0)
is equal to −�n(p0) (recall that we took �n as future-directed). For the first
assertion, use Proposition 2.1, as L(σ) = dL(q0,Σ) (i.e., σ is a local maximum
for the length functional L). For the second one, notice that, from the proven
properties, σ′(0) must be either �n(p0) or −�n(p0). However, the first option can
be discarded as, otherwise, there would exist some δ > 0 such that σ(0, δ) ⊆
I+(Σ). However, as σ(b0) = q0 ∈ I−(Σ), there would be some t0 ≥ δ such that
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σ(t0) ∈ Σ. Then, σ would be a timelike curve that crosses twice the Cauchy
hypersurface Σ, a contradiction.

4. Let �Hp0 = H(p0)�n(p0) be the mean curvature vector. Let us check that if
1/H(p0) < b0, then σ has a focal value at some r ∈ (0, b0). This is a straight-
forward consequence of Proposition 2.8, as Ric(σ′, σ′) ≥ 0 by the timelike con-
vergence hypothesis (iii) of Theorem 1.2 and, using the previous item,

K = gL

(
σ′(0), �Hp0

)
= −gL (�n(p0), H(p0)�n(p0)) = H(p0),

the latter as �n(p0) is timelike and unit.
5. The last point is applicable, that is, σ must have a focal point in r ∈ (0, b0). In

fact, 1/H(p0) < b0, as hypothesis (ii) of the theorem says H(p0) ≥ C, and by
step (2) we have b0 > 1/C .

6. This focal point yields a contradiction, as Proposition 2.7 guarantees the exis-
tence of another curve γ joining p0 and q0, close to σ (so that γ can be chosen
timelike) and strictly longer than σ, i.e., dL(q0, p0) > b0 := dL(q0,Σ), in con-
tradiction with the choice of p0. �

Remark 4.9. As pointed out in the introduction, Theorem 1.2 admits an interesting
cosmological interpretation, in addition to its geometrical implications.

Let us begin with the interpretation of the hypotheses. The hypothesis (i) is
just global hyperbolicity (already explained in Remark 4.5). This is reasonable as the
predictability of our Universe becomes very appealing both, physically and philo-
sophically. Moreover, as physicists think that the temperature of the Universe is
decreasing on average, the inverse of the temperature (in absolute Kelvin scale)
would seem a good tool to construct a Cauchy temporal function.

The hypothesis (ii) is justified by astronomical observations. In fact, astrono-
mers have measured that, on average, the stars are clearly moving away from us.
As they have also measured a high scale regularity, it is natural to assume that
some Cauchy hypersurface Σ through our present position p0 will be expanding
with |H(p)−H(p0)| < ε for all p ∈ Σ and some small ε ∈ (0, H(p0)).

The hypothesis (iii) is called the timelike convergence condition because it means
that, on average, gravity attracts. In fact, a well-known interpretation of the Jacobi
equation in Riemannian Geometry yields the following interpretation: the condition
Ric(v, v) ≥ 0 for all v means that, on average, nearby geodesics are attracted by
curvature. In Lorentzian Geometry, to assume this inequality only for timelike (or
spacelike) vectors is natural and, then, the geometric interpretation of (iii) becomes:
on average, nearby timelike geodesics are attracted by curvature. However, gravity
is modelled in Relativity by the curvature of the spacetime, and massive particles
in free fall (i.e., only “accelerated by gravity”) are modelled by (future-directed)
timelike geodesics. In conclusion, (iii) turns into the attractive character of gravity.
In principle, this interpretation of (iii) is highly plausible, as everybody learned when
child the hypothesis that gravity attracts. Nevertheless, the remarkable discovery of
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the accelerated expansion of the Universe at the end of the XX century3 questions
the reliability of this hypothesis (and opened all type of speculations on dark energy
and matter). Summing up, with some caution we can regard (iii) still as a reasonable
hypotheses for a first approach.

For the interpretation of the thesis of Theorem 1.2, remind that we, as well as
any massive physical particle, are represented by a future-directed timelike curve γ.
Moreover, the length of its restriction to some interval γ|a,b] represents the “proper
time” that we have experienced between the events γ(a) and γ(b). So, the conclusion
of Theorem 1.2 means: no massive particle could live a proper time bigger than 1/C,
that is, all the particles when crossing Σ are “younger” than 1/C. This supports the
idea of the “sudden appearance” of the Universe before a time 1/C (where C would
be close to the measured value of H(p0) by astronomers). This suggests the idea of a
Big-Bang, which is also supported by other physical and philosophical arguments4.

5. Further comparison and summary

The duality between Hawking’s theorem and our Riemannian version has been
stressed both, in the statement of their hypothesis (i), (ii), (iii) and in the six steps
of their proofs (Sections 3 and 4.2). The next figure 3 summarizes graphically the
logical interdependence between the main results involved in these proofs.

Figure 3. Visual summary of the relations between the main results.

To end up, let us summarize the isomorphic role of all the elements in the
proofs:

3This discovery was awarded with the Nobel Prize in Physics of 2011. See

http://www.nobelprize.org/nobel prizes/physics/laureates/2011
4Among the latter, one has Penrose’s cosmic censorship hypothesis, see for example [7, 15].
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1. In both theorems a global condition is imposed on the manifold: completeness
in the Riemannian case and global hyperbolicity in the Lorentzian. These con-
cepts seem quite different at a first look, but the theorems by Hopf-Rinow and
Avez-Seifert allow one to find an analogy in the existence of minimizing and
maximizing geodesics (apparent in the second step of the provided proofs).

Completeness ↔ Global hiperbolicity
⇓ ⇓

(Hopf-Rinow) (Avez-Seifert)
⇓ ⇓

∃ minimizing geodesic ↔ ∃ maximizing geodesic

2. In both theorems, we assume positiveness for the Ricci tensor:

Ric ≥ 0 ∀v ∈ TM ↔ Ric ≥ 0 ∀v timelike

This was a subtle difference in their geometric/physical motivation pointed out
in Remark 4.9. Nevertheless, both hypotheses are used at the same moment: in
step (4) of the proofs, in order to apply Proposition 2.8. Notice how the notion
of cospacelike curve allows us to use the mentioned proposition in both cases.

3. In both theorems we admit the existence of an embedded hypersurface, S or Σ,
satisfying analogous hypothesis on its mean curvature:

(Complete) separating hypersurface ↔ Cauchy hypersurface

The notion of Cauchy hypersurface requires a Lorentzian framework not avail-
able in the Riemannian case. However, it is not difficult to prove that any
Cauchy hypersurface is separating according to definition 3.1. From the mathe-
matical viewpoint, the separating property is used in the third step of the proof,
forcing σ to cross either S or Σ twice.

4. Along the proofs, the Riemannian distance d and the time-separation dL are
playing isomorphic roles. This is quite surprising, as there are remarkable dif-
ferences: dL is defined as a supremum instead of an infimum, and it is not a
true distance in spite of its alternative name of Lorentzian distance.

Riemannian distance ↔ Time separation

These analogies may shed some light on the links between Riemannian and
Lorentzian Geometry. However, it is also interesting to stress some differences, em-
phasizing that we are dealing with very different geometries:

1. The conclusion seems to be similar expressed in terms of the Riemannian/Lo-
rentzian distance. However, as explained in the introduction and along the
paper, the geometrical/physical meaning is quite different.

2. In the first step of the proofs, we obtained a point p0 which materializes the
distance from q0 to the hypersurface. However, the techniques are very different.
In the Riemannian case the compactness of closed and bounded subsets (Hopf-
Rinow theorem) is used. In the Lorentzian one, we needed the auxiliary Lemma
4.8 in addition to Avez-Seifert theorem. Certainly, these results rely heavily on
purely Lorentzian notions.
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3. It is also interesting to realize the subtle difference in the third step of the
proofs of Theorems 1.3 and 1.2. In both cases we obtained a contradiction, but
different facts were contradicted: in the Riemannian case the contradiction is
that σ is minimizing, while in the Lorentzian case the contradiction is that Σ
is a Cauchy hypersurface.

Finally, we would like to emphasize that singularity theorems not only consti-
tuted a classical topic of research in the General Relativity of XX century (see Sen-
ovilla [18] for a summary), but also an active field for the future, which includes links
with Riemannian and Finslerian Geometries. We refer to Senovilla and Garflinke [19]
for the impact of classical Penrose’s theorem (the first modern singularity theorem)
in current research, and Galloway and Senovilla [10] for a recent result which unifies
classical Hawking’s, Penrose’s and other results. Recently, Aazami and Javaloyes [1]
have obtained a result in the spirit of Penrose’s for Finsler spacetimes, and Bailleul
[2] has introduced a probabilistic viewpoint. The reader is also referred to [8] for an
updated review about mathematical relativity and to [7] for a clean introduction to
black holes and Penrose inequality (one of the outstanding fields of research linked
to singularities), written for an audience of mathematicians.
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