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Abstract. We deal with complete spacelike hypersurfaces immersed in the half of

the de Sitter space, which models the so-called steady state space. In this setting,

under some appropriated constraints on the geometry of such a spacelike hyper-

surface, we apply suitable generalized maximum principles in order to guarantee

that it must be isometric to the Euclidean space.
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1. Introduction

Let Ln+2 denote the (n+ 2)-dimensional Lorentz-Minkowski space (n ≥ 2), that is,
the real vector space Rn+2 endowed with the Lorentz metric defined by

〈v, w〉 =
n+1∑
i=1

viwi − vn+2wn+2,

for all v, w ∈ Rn+2. We define the (n + 1)-dimensional de Sitter space Sn+1
1 as the

following hyperquadric of Ln+2

Sn+1
1 =

{
p ∈ Ln+2 : 〈p, p〉 = 1

}
.

The induced metric from 〈, 〉 makes Sn+1
1 a Lorentz manifold with constant sectional

curvature one. Moreover, for all p ∈ Sn+1
1 , we have

Tp

(
Sn+1
1

)
=

{
v ∈ Ln+2 : 〈v, p〉 = 0

}
.
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Let a ∈ Ln+2\{0} be a past-pointing null vector, that is, 〈a, a〉 = 0 and 〈a, en+2〉 > 0,
where en+2 = (0, . . . , 0, 1). Then, the open region of the de Sitter space Sn+1

1 , given
by

Hn+1 =
{
p ∈ Sn+1

1 : 〈p, a〉 > 0
}

is the so-called steady state space.

The importance of considering Hn+1 comes from the fact that, in Cosmology,
H4 is the steady state model of the universe proposed by Bondi and Gold [3], and
Hoyle [9], when looking for a model of the universe which looks the same not only
at all points and in all directions (that is, spatially isotropic and homogeneous), but
also at all times (cf. Section 5.2 of [8] or Section 14.8 of [18]).

On the other hand, apart from their physical meaning, the interest in the study
of spacelike hypersurfaces immersed in a Lorentzian space is motivated by their nice
Bernstein-type properties. In this direction, several authors have approached the
problem of to characterize spacelike hyperplanes ofHn+1, which are totally umbilical
spacelike hypersurfaces that give a complete foliation of Hn+1 and are isometric to
the Euclidean space Rn. We refer to readers, for instance, the works [2, 4, 5, 6, 15].

Proceeding into this branch, our aim in this paper is to apply some appropriated
generalized maximum principles in order to establish new characterization results
concerning these spacelike hyperplanes of the steady state space Hn+1. This manu-
script is organized in the following way: in Section 2 we recall some standard facts
related to the foliation of Hn+1 by spacelike hyperplanes. Afterwards, in Section 3
we establish our characterization results concerning spacelike hyperplanes of Hn+1

(see Theorems 3.2, 3.5 and 3.10, and Corollaries 3.4, 3.7 and 3.11).

2. Foliating the steady state space by spacelike hyperplanes

As introduced before, the (n+1)-dimensional steady state space Hn+1 is the hyper-
quadric

Hn+1 = {p ∈ Sn+1
1 : 〈p, a〉 > 0},

where a ∈ Ln+2 \ {0} is a fixed vector such that 〈a, a〉 = 0 and 〈a, en+2〉 > 0.

We note that the steady state space Hn+1 is extendible and, consequently, a
noncomplete manifold, being only half of the de Sitter space Sn+1

1 and having as
boundary the null hypersurface

L0 =
{
p ∈ Sn+1

1 : 〈p, a〉 = 0
}
,

whose topology is R× Sn−1 (cf. Section 2 of [15]).

Now, we shall consider in Hn+1 the timelike field

V = −〈p, a〉 p+ a. (2.1)

From (2.1), it is not difficult to verify that, for all V ∈ X(Hn+1),

∇V V = −〈p, a〉V,
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where ∇ stands for the Levi-Civita connection of Hn+1. In other words, V is confor-
mal and closed (in the sense that its dual 1-form is closed; see Example 2 of Section
4 of [14]).

From Proposition 1 of [14], we have that the n-dimensional distribution D
defined on Hn+1 by

p ∈ Hn+1 �−→ D(p) =
{
v ∈ TpHn+1 : 〈V(p), v〉 = 0

}

determines a codimension one spacelike foliation F (V) which is oriented by V.
Moreover, from Example 1 of [12], we conclude that the leaves of F (V) are

given by

Lτ =
{
p ∈ Hn+1 : 〈p, a〉 = τ

}
, τ > 0,

which are totally umbilical spacelike hypersurfaces of Hn+1 (that is, the metric
on each Lτ induced from its inclusion on Hn+1 is positive definite), isometric to
the Euclidean space Rn and having constant mean curvature 1 with respect to the
timelike unit normal fields

Nτ = −p+
1

τ
a, p ∈ Lτ . (2.2)

An explicit isometry between the leaves Lτ and Rn can be found at Section 2 of [2].
In this sense, along this work, each Lτ will be called a spacelike hyperplane of Hn+1.

It is also convenient to notice that these spacelike hyperplanes Lτ approach to
the boundary L0 of Hn+1 when the parameter τ tends to zero and that, when τ
tends to +∞, they approach to the spacelike future infinity for timelike and null
lines of Sn+1

1 , that, following [8], we will denote by J +.

3. Characterizing spacelike hyperplanes in the steady state
space

In this section, we will deal with spacelike hypersurfaces ψ : Σn → Hn+1, namely,
the induced metric via such an immersion ψ is a Riemannian metric on Σn. In
this setting, ∇ will denote the Levi-Civita connection of Σn and we will choose the
orientation N of ψ so that it is past-pointing, which means that N must be in the
same half of the null cone of Ln+2 as the nonzero null vector a is (in other words,
〈N, a〉 < 0 along Σn). The mean curvature function of a spacelike hypersurface
Σn is defined as H = 1

ntr(A), where A stands for the shape operator (or second
fundamental form) of Σn with respect to its past-pointing orientation N .

In the paper [19], Yau obtained the following version of Stokes’ Theorem on an
n-dimensional, complete noncompact Riemannian manifold Σn:

If ω ∈ Ωn−1(Σ) is an integrable (n−1)-differential form on Σn, then there exists
a sequence Bi of domains on Σn such that Bi ⊂ Bi+1, Σ

n =
⋃

i≥1Bi and

lim
i→+∞

∫

Bi

dω = 0.
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By applying this result to ω = ι∇f , where f : Σn → R is a smooth function,
∇f denotes its gradient and ι∇f the contraction in the direction of ∇f , Yau estab-
lished an extension of Hopf’s Theorem on a complete Riemannian manifold. In what
follows, L1(Σ) will stand for the space of Lebesgue integrable functions on Σn.

Lemma 3.1. Let Σn be a complete Riemannian manifold and let f : Σn → R be a
smooth function. If f is a subharmonic (or superharmonic) function with |∇f | ∈
L1(Σ), then f must actually be harmonic.

Now, we are in position to state and prove our first result.

Theorem 3.2. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface with mean
curvature H ≥ 1, which is contained in the closure of the interior domain enclosed
by a spacelike hyperplane of Hn+1 determined by the nonzero null vector a ∈ Ln+2.
If one of the following conditions is satisfied:

(a) n = 2 and the Gaussian curvature of Σ2 is nonnegative,
(b) | a�| ∈ L1(Σ),

then Σn is a spacelike hyperplane of Hn+1 determined by a.

Proof. Let us consider the support functions la = 〈ψ, a〉 and fa = 〈N, a〉. We observe
that la is always a positive function, while, from our choice of orientation N of ψ,
fa will be a negative function. Moreover, a direct computation allows us to conclude
that the gradients of such functions are given by ∇la = a� and ∇fa = −A(a�),
where a� stands for the orthogonal projection of a onto the tangent bundle TΣ,
that is,

a� = a+ faN − laψ. (3.1)

Using Gauss and Weingarten formulas, it is not difficult to verify that

∇X∇la = −faAX − laX, (3.2)

for all X ∈ X(Σ). Consequently, from (3.2) we obtain

∆la = −nHfa − nla. (3.3)

From (3.1) we get

f2
a − l2a = |∇la|2. (3.4)

In particular, from (3.4) we have that

0 < la ≤ −fa. (3.5)

Moreover, from equation (3.3) we also have that

1

2
∆l2a = la∆la + |∇la|2 (3.6)

= −nHlafa − nl2a + |∇la|2.

Considering (3.5) into (3.6), we obtain

1

2
∆l2a ≥ n(H − 1)l2a + |∇la|2. (3.7)
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Consequently, since we are supposing that H ≥ 1, from (3.7) we have that

1

2
∆l2a ≥ |∇la|2. (3.8)

On the other hand, according to [15], we observe that our hypothesis that Σn

is contained in the closure of the interior domain enclosed by a spacelike hyperplane
of Hn+1 determined by a means that la ≤ τ , for some τ > 0.

Hence, from (3.8) we conclude that l2a is a bounded subharmonic function.
However, a classical result due to Huber [10] assures that complete surfaces of non-
negative Gaussian curvature must be parabolic. Therefore, if n = 2 and the Gaussian
curvature of Σ2 is nonnegative, we get that la is constant on Σ2, that is, Σ2 is a
spacelike plane of H3 determine by a.

Furthermore, since

|∇l2a| = 2la|∇la| ≤ τ |∇la|,
the hypothesis |∇la| = | a�| ∈ L1(Σ) implies that |∇l2a| ∈ L1(Σ). Thus, in this case,
we can apply Lemma 3.1 in order to conclude that l2a is harmonic. Therefore, taking
into account (3.8) once more, we have that la is constant on Σn.

To finish the proof, we note that from the definition of la, if la ≡ τ̃ on a
complete hypersurface Σn, then Σn ⊂ Lτ̃ . Therefore, by completeness, we must
have Σn = Lτ̃ . �

Remark 3.3. Taking into account once more Example 1 of [12], it follows from the
description of the totally umbilical hypersurfaces of the steady state space given in
Section 3 of [15] that there exists no totally umbilical complete spacelike hypersur-
faces with mean curvature |H| < 1 in Hn+1. So, since our aim in this paper is to
obtain characterizations of spacelike hyperplanes of Hn+1, it is natural to restrict
our attention to complete spacelike hypersurfaces immersed with mean curvature
function H ≥ 1 in Hn+1.

We observe that any timelike unit vector field N normal to a spacelike immer-
sion ψ : Σn → Hn+1 ⊂ Ln+2 can be viewed as a map

N : Σn → {p ∈ Ln+2 : 〈p, p〉 = −1},

where each one of the two sheets of the hyperboloid on the right side are isomet-
ric, with the induced metric, to the hyperbolic space Hn+1 with constant sectional
curvature −1. In this setting, N is said the hyperbolic Gauss map of Σn.

So, with our choice of orientation of ψ, the hyperbolic Gauss map N of Σn

takes values in the lower sheet of the corresponding hyperboloid, which will be
simply denoted by Hn+1. Furthermore, in a similar way of Section 4 of [11], we note
that the level sets

Lρ =
{
p ∈ Hn+1 : 〈p, a〉 = ρ

}
, ρ < 0,

give foliate all Hn+1 by means of parallel horospheres.

In [15], Montiel have proved that if a complete spacelike hypersurface Σn in the
de Sitter space Sn+1

1 with constant mean curvature H ≥ 1 is such that the image of
its hyperbolic Gauss map is contained in the closure of the interior domain enclosed
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by a horosphere, then its mean curvature is, in fact, equal to 1. When n = 2, from [1]
or [16], it follows that Σ2 is also an umbilical surface. From Theorem 3.2 we obtain
a sort of extension of this Montiel’s result. More precisely,

Corollary 3.4. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface with mean
curvature H ≥ 1. Suppose that the image of the hyperbolic Gauss map of Σn is
contained in the closure of the interior domain enclosed by a horosphere of Hn+1

determined by the nonzero null vector a ∈ Ln+2. If one of the following conditions
is satisfied:

(a) n = 2 and the Gaussian curvature of Σ2 is nonnegative,
(b) |a�| ∈ L1(Σ),

then Σn is a spacelike hyperplane of Hn+1 determined by the null vector a.

Proof. We observe that if N(Σ) is contained in the closure of the interior domain
enclosed by a horosphere Lρ of Hn+1 determined by a, then we have that 0 > fa ≥ ρ.
Hence, from (3.5) we get that 0 < la ≤ −ρ, which means that Σn is contained in
the closure of the interior domain enclosed by the spacelike hyperplane L−ρ of Hn+1

determined by the null vector a. Therefore, the result follows from Theorem 3.2. �

From (2.2), we see that the support functions la = 〈ψ, a〉 and fa = 〈N, a〉 of a
spacelike hyperplane Lτ of Hn+1 satisfy the relation la = −fa. This fact allows us
to consider complete spacelike hypersurfaces of Hn+1 whose support functions are
linearly related. In this context, we get the following characterization result:

Theorem 3.5. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface whose support
functions with respect to a nonzero null vector a ∈ Ln+2 satisfy the relation la = λfa,
where λ : Σn → R is a smooth function. Suppose that Σn is contained in the closure
of the interior domain enclosed by a spacelike hyperplane of Hn+1 determined by the
null vector a and that its mean curvature H is such that H ≥ −λ. If one of the
following conditions is satisfied:

(a) n = 2 and the Gaussian curvature of Σ2 is nonnegative,
(b) |a�| ∈ L1(Σ),

then Σn is a spacelike hyperplane of Hn+1 determined by a and λ ≡ −1.

Proof. Initially, from the signs of the functions la and fa, we observe that the sign of
the function λ is strictly negative on Σn. Thus, from (3.4) we conclude that λ takes
its values in the interval [−1, 0).

On the other hand, from equation (3.6) and our hypothesis on the support
functions of Σn, we have that

∆l2a = −2n

(
H

λ
+ 1

)
l2a + 2|∇la|2. (3.9)

Since Σn is contained in the closure of the interior domain enclosed by a space-
like hyperplane Lτ of Hn+1 determined by the null vector a, we have that la ≤ τ .
Consequently, from (3.9) we conclude that l2a is a bounded subharmonic function on
Σn.
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In the case that n = 2, if Σ2 has nonnegative Gaussian curvature, by using
once more Huber’s result [10], we have that la is constant and, hence, Σ2 must be a
spacelike plane of H3 determined by a.

Now, suppose that | a�| ∈ L1(Σ). Then, ∇l2a has integrable norm on Σn. So,
from equation (3.9) we conclude, by applying once more Lemma 3.1, that l2a is
a harmonic function and, returning to equation (3.9), we get that |∇la|2 = 0 on
Σn. Therefore, we also conclude that la is constant and, hence, Σn is a spacelike
hyperplane of Hn+1 determined by a and, from (2.2), we get that λ ≡ −1. �

Remark 3.6. According to Section 3 of [15] (see also Example 2 of [12] or Section
2 of [13]), the so-called hyperbolic cylinder of the de Sitter space Sn+1

1 , which are
defined by

{p ∈ Sn+1
1 : p21 + · · ·+ p2k+1 = cosh2 r},

where 1 ≤ k ≤ n− 1 and r > 0, has two connected components which are isometric
to Sk(cosh r) × Hn−k(sinh r). Moreover, one of the components of the hyperbolic
cylinder is contained in the steady state space Hn+1, and it will be denote by Ck,r.

It is not difficult to verify that Ck,r has the following past-pointing (that is,
contained in the same time cone of the null vector a) hyperbolic Gauss map

N(p) =
1

cosh r sinh r
(ξ(p)− cosh2 r p), (3.10)

where ξ : Ck,r → Ln+2 is given by ξ(p) = (p1, . . . , pk+1, 0, . . . , 0). Consequently, from
(3.10) we conclude that Ck,r is a isoparametric spacelike hypersurface of Hn+1, whose
mean curvature H with respect to N is given by

H =
1

n
(k tanh r + (n− k) coth r). (3.11)

In particular, from (3.11) we get that, for 1 ≤ k ≤ n
2 and all r > 0, H ≥ 1. Moreover,

from (3.10) we see that the support functions of Ck,r satisfy the following relation

la = − tanh r fa.

On the other hand, taking into account once more Lemma 1 of [2], we have that Ck,r
cannot be contained in the closure of the interior domain enclosed by any spacelike
hyperplane of Hn+1.

Proceeding, we rewrite Theorem 3.5 in the following way:

Corollary 3.7. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface whose sup-
port functions satisfy the relation la = λfa, where λ : Σn → R is a smooth function.
Suppose that the image of the hyperbolic Gauss map of Σn is contained in the closure
of the interior domain enclosed by a horosphere of Hn+1 determined by the nonzero
null vector a ∈ Ln+2, and that its mean curvature H is such that H ≥ −λ. If one of
the following conditions is satisfied:

(a) n = 2 and the Gaussian curvature of Σ2 is non-negative,
(b) | a�| ∈ L1(Σ),

then Σn is a spacelike hyperplane of Hn+1 determined by a and λ ≡ −1.
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Remark 3.8. It is worth to make a brief discussion on the meaning of our assumption
in the previous results concerning the integrability of |a�| on the spacelike hyper-
surface Σn, both from geometric and physical viewpoints. From the first viewpoint,
Lemma 1 of [2] asserts that if a complete spacelike hypersurface is contained in
the closure of the interior domain enclosed by a spacelike hyperplane of Hn+1, then
it must be diffeomorphic to Rn. In particular, it follows that there is no compact
(without boundary) spacelike hypersurfaces in Hn+1. In this sense, our assumption
of |a�| ∈ L1(Σ) in our previous results comes to supply the fact that Σn is noncom-
pact.

On the other hand, some physical interpretation is now in order. In fact, assume
n = 3 and use then the orthogonal decomposition TψpH4 = Span{Np} ⊕N⊥

p , where

p ∈ Σ3, ψ : Σ3 → H4 is a spacelike hypersurface and N⊥
p = dψp (TpΣ). Since from

(2.1) it follows that V� = a�, we can write Vp = epNp+a�p , where ep = −〈Vp, Np〉 >
0 and a�p are, respectively, the energy and the 3-momentum that the instantaneous
observer Np measures for Vp.

Furthermore, the quantity
1

ep
a�p is the relative velocity (and, hence,

1

ep
|a�p |

is the relative speed) of Vp with respect to Np (for more details, we refer Section

2.1.3 of [17]). Note that |a�p | =
√

−〈Vp,Vp〉 sinh θp, where θp is the hyperbolic angle

between Vp and Np. Thus, we get |a�p | = ep tanh θp ≤ ep. Consequently, the integra-

bility of |a�| on Σ3 can be regarded as been the 3-momentum of N having integrable
norm along Σ3 and, in particular, such condition is satisfied when the total energy∫

Σ
epdΣ is finite.

By considering a complete spacelike hypersurface ψ : Σn → Hn+1 as being
the boundary of a suitable domain of Hn+1, from Theorem 1 of [7] we get the
following tangency principle (see also Theorem 2 of [15], for a version corresponding
to constant mean curvature spacelike hypersurfaces):

Proposition 3.9. Let Σ1 and Σ2 be complete spacelike hypersurfaces immersed in
Hn+1 with mean curvatures H1 and H2, respectively. Suppose that Σ1 lies above Σ2.
If, in a neighbourhood of a common tangent point, we have that H1 ≤ α ≤ H2, for
some real number α, then Σ1 and Σ2 must coincide.

We refer to the hyperbolic angle θ of a spacelike hypersurface ψ : Σn → Hn+1 as
being the hyperbolic angle between its hyperbolic Gauss mapN and the timelike vec-

tor field V defined in (2.1). In other words, cosh θ = −〈N, ν〉, where ν =
V√

−〈V,V〉
.

In our next result, we will use Proposition 3.9 to revisit Theorem 3.2 of [6]
and present a different and more simple proof of it, without asking that the mean
curvature of the spacelike hypersurface be bounded from above.

Theorem 3.10. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface with mean
curvature H ≥ 1 and contained in the closure of the interior domain enclosed by a
spacelike hyperplane of Hn+1 determined by a nonzero null vector a ∈ Ln+2. If the
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hyperbolic angle θ of Σn satisfies cosh θ ≤ infΣH, then Σn is a spacelike hyperplane
of Hn+1 determine by the null vector a.

Proof. Suppose, by contradiction, that H0 = infΣH > 1. Thus, we consider the
family of totally umbilical spacelike hypersurfaces ofHn+1 with a given common axis
of rotation, having constant mean curvature H0 and such that their corresponding
Gauss map are past-pointing , coming from the future infinity J +. We observe
that, according to the description of the totally umbilical spacelike hypersurfaces of
Hn+1 due to Montiel in Section 3 of [15], such spacelike hypersurfaces are isometric
to suitable hyperbolic spaces. So, in analogy with the context of the hyperbolic
geometry, we will call such spacelike hypersurfaces of equidistant hypersurfaces of
Hn+1.

By a rigid motion of this family, we arrive until the first contact point of Σn

with one of such equidistant hypersurfaces, which occurs in some common interior
point of both hypersurfaces. From Proposition 3.9, we have that Σn must be one of
these equidistant hypersurfaces. But, taking into account once more the study made
by Montiel in Section 3 of [15], we see that such equidistant hypersurfaces cannot be
contained in the closure of the interior domain enclosed by a spacelike hyperplane
of Hn+1. Hence, we arrive at a contradiction and, consequently, H0 = 1.

Therefore, we use the hypothesis cosh θ ≤ H0 to conclude that cosh θ = 1 on
Σn, that is, Σn is a spacelike hyperplane of Hn+1. �

From Theorem 3.10 we obtain the following

Corollary 3.11. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface with mean
curvature H ≥ 1 and contained in the closure of the exterior domain enclosed by
a spacelike hyperplane Lτ of Hn+1 determined by a nonzero null vector a ∈ Ln+2.
Suppose that the hyperbolic image N(Σ) is contained in the closure of the interior

domain enclosed by a horosphere Lρ. If −
ρ

τ
≤ inf

Σ
H, then Σn is a spacelike hyperplane

of Hn+1 determined by the null vector a.

Proof. Initially, we observe that the hyperbolic angle θ of Σn is such that

cosh θ = −〈N, ν〉 = −〈N,−ψ +
1

〈ψ, a〉
a〉 = − 1

〈ψ, a〉
〈N, a〉. (3.12)

Consequently, since we are supposing that Σn is contained in the closure of the
exterior domain enclosed by the spacelike hyperplane Lτ , from (3.12) we get

cosh θ ≤ −1

τ
〈N, a〉. (3.13)

Hence, taking into account our hypothesis on the image of the hyperbolic Gauss
map of Σn, (3.13) amounts to

cosh θ ≤ −ρ

τ
≤ inf

Σ
H.
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Therefore, since inequality (3.5) guarantees that Σn is also contained in the closure
of the interior domain enclosed by the spacelike hyperplane L−ρ, we can apply The-
orem 3.10 in order to conclude that Σn is a spacelike hyperplane of Hn+1 determined
by a. �

Remark 3.12. As it was already observed in Remark 3.4 of [6], when Σn is a compact
spacelike hypersurface immersed with constant mean curvature H > 1 in Hn+1,
whose boundary ∂Σ is contained in a spacelike hyperplane of Hn+1, Theorem 7
of [15] assures that the hyperbolic angle θ of Σn satisfies the estimate cosh θ ≤ H.
In this sense, our restriction on the hyperbolic angle in Theorem 3.10 is a mild
hypothesis.
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