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Abstract. We introduce generalized Schur functions and generalized positive func-

tions in the setting of slice hyperholomorphic functions and study their realizations

in terms of associated reproducing kernel Pontryagin spaces. To this end, we also

prove some results in quaternionic functional analysis like an invariant subspace

theorem for contractions in a Pontryagin space. We also consider slice hyperholo-

morphic functions on the half space H+ of quaternions with positive real parts

and we study the Hardy space H2(H+) and Blaschke products in this framework.
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1. Introduction

In this paper we continue the study of Schur analysis in the hyperholomorphic
setting, initiated in [4], and continued in [6, 5, 2]. To set the framework we first
recall a few facts on the classical case.

1.1. Schur analysis

Functions analytic and contractive in the open unit disk, or in an open half-plane,
play an important role in operator theory, signal processing and related fields. Their
study, and the study of their counterparts in various settings, may be called Schur
analysis; see [35, 1, 26]. In the case of matrix-valued, or operator-valued functions,

D. Alpay thanks the Earl Katz family for endowing the chair which supported his research, and the

Binational Science Foundation Grant number 2010117. F. Colombo and I. Sabadini acknowledge

the Center for Advanced Studies of the Mathematical Department of the Ben-Gurion University of

the Negev for the support and the kind hospitality during the period in which part of this paper

has been written.

Milan J. Math. Vol. 83 (2015) 91–144
DOI 10.1007/s00032-014-0231-9
Published online December 5, 2015
© 2014 Springer Basel Milan Journal of Mathematics

http://crossmark.crossref.org/dialog/?doi=10.1007/s00032-014-0231-9&domain=pdf


92	 D.	Alpay,	F.	Colombo,	I.	Lewkowicz	and	I.	Sabadini	 Vol.83	(2015)2 D. Alpay, F. Colombo, I. Lewkowicz and I. Sabadini

contractivity is considered with respect to an indefinite metric. An important exam-
ple is that of the characteristic operator function and associated operator models.

More precisely, let T be a (say, bounded, for the present discussion) self-adjoint
operator in a Hilbert space such that T − T ∗ has finite rank, say m. Let

T − T ∗ =
CJC∗

2i

where J is a m × m matrix which is both self-adjoint and unitary (a signature
matrix). Then, the matrix-valued function

Θ(z) = I + 2iC∗(zI − T )−1CJ

is such that

Θ(z)JΘ(z)∗ ≥ J, (1.1)

for z in the intersection Ω(T ) of the upper open half-plane and of the spectrum of
T . The function Θ is the characteristic operator function of T .

Property (1.1) is called J-expansivity (or−J-contractivity), and is in fact equiv-
alent to the fact that the kernel

KΘ(z, w)
def.
=

Θ(z)JΘ(w)∗ − J

−2i(z − w̄)
= C∗(zI − T )−1(wI − T )−∗C (1.2)

is positive definite in Ω(T ).

The function Θ provides a functional model for T , see [24]. A key fact in the
theory is the multiplicative structure of J-expansive functions, due to V. Potapov, see
[55]. We also refer to the historical note of M. Livsic [53]. It is also worth mentioning
the original papers of M. Livsic [51, 52], where the notion of characteristic operator
function first appears.

Replacing J by −J we obtain J-contractive, rather than J-expansive functions,
and this is the choice we make in the sequel (see in particular the last section).

1.2. Negative squares

One can consider functions Θ such that the associated kernel KΘ has a finite num-
ber of negative squares (see Definition 2.3), rather than being positive definite.
Such classes of operator-valued functions were introduced and studied by Krein and
Langer in a long series of papers, see for instance [44, 45, 46, 47, 48]. These works
are set in the framework of the open upper half-plane. To make a better connection
with the quaternionic case we consider here the open right half-plane. In the com-
plex variable case, the two cases are equivalent via a conformal map. This differs
from the quaternionic setting, as will be clear in the sequel. First recall that an
operator J in a Hilbert space H is called a signature operator if it is self-adjoint
and unitary. Its spectrum is then concentrated on ±1. When −1 is an eigenvalue of
finite order, we denote this multiplicity by ν−(J). Let H1 and H2 be two Hilbert
spaces and let J1 ∈ L(H1) and J2 ∈ L(H2) be two signature operators, such that
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ν−(J1) = ν−(J2) < ∞. The L(H1,H2)-valued function S analytic in an open subset
Ω of the open right half-plane is called a generalized Schur function if the kernel

J2 − S(z)J1S(w)
∗

z + w
(1.3)

has a finite number of negative squares in Ω.

For instance when J1 = J2 =

(
0 −i
i 0

)
, functions in the corresponding class

are introduced and used in [45] to describe the set of all generalized resolvents of a
given Hermitian operator, see [45, Satz 3.5, p. 407 and Satz 3.9, p. 409].

Similarly given a Hilbert space H and a signature operator J (possibly with
ν−(J) = ∞, see [42, p. 358, footnote]), a L(H)-valued function Φ analytic in some
open subset Ω of the right open half-plane Π+ is called generalized positive if the
kernel

JΦ(z) + Φ(w)∗J

z + w̄
(1.4)

has a finite number of negative squares in Ω. The Q-function of an Hermitian op-
erator in a Pontryagin space, introduced by Krein and Langer has such a property,
see [43]. The function Φ will be called positive if the kernel (1.4) is positive definite.

In both cases, Krein and Langer proved in the above mentioned works, among
numerous results, realization formulas which ensure the existence of a meromorphic
extension to the whole of Π+. It is worth mentioning that a key result to prove
this extension is that the part of the spectrum of a contraction in a Pontryagin
space which lies outside the closed unit disk consists only of a finite number of
eigenvalues. One proof of this fact uses the Schauder-Tychonoff fixed point theorem
(see the discussion [28, p. 248]). We also mention that a study of generalized Schur
function of the open unit disk has been given in [8] and that unified formulas for a
number of cases which include the line and circle case were developed in [3], based
on an approach including both the disk and half-plane cases developed in [3, 10].

Finally we mention the works [17, 18, 38] to stress the interest of positive and
generalized positive functions in linear system theory and operator theory.

1.3. The slice hyperholomorphic case

In previous papers we extended results of Schur analysis in the slice hyperholomor-
phic case, in the setting of the unit ball B1 of the quaternions. We considered in [4]
the Schur algorithm, and the underlying counterpart of the Hardy space. Blaschke
products and related interpolation problems in the Hardy space were studied in [5].
Nevanlinna-Pick interpolation for Schur functions is studied in [2] while the case of
kernels having a number of negative squares was studied in [6].

In contrast to the above mentioned papers, we consider in this work functions
which are slice hyperholomorphic in an open subset of the open half-space

H+ = {p ∈ H ; Re p > 0} ,
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which intersects the positive real axis.

We define and study the counterparts of the kernel (1.3) and (1.4) in the setting
of slice hyperholomorphic functions. Here we consider the case of operator-valued
generalized positive functions and generalized Schur functions, rather than scalar or
matrix-valued functions. The extension of realization of generalized positive func-
tions to the slice hyperholomorphic setting, introduced in this work, calls upon
a corresponding extension of the Kalman-Yakubovich-Popov lemma (also known as
Positive Real Lemma; see the discussion for the classical case in the next paragraph).
This will be addressed in another work.

A Cp×p-valued function F (s), analytic in C+ is said to be positive if

F (s) + F (s)∗ ≥ 0, s ∈ C+, (1.5)

where the inequality sign means that the Hermitian matrix is non negative, and
where C+ denotes the open right half of the complex plane. The study of rational
positive functions has been motivated from the 1920’s by (lumped) electrical net-
works theory, see e.g. [16], [20]. From the 1960’s positive functions also appeared in
books on absolute stability theory, see e.g. [54]. A Cp×p-valued function of bounded
type in C+ (i.e. a quotient of two functions analytic and bounded in C+) is called
generalized positive if

F (iω) + F (iω)∗ ≥ 0, a.e. ω ∈ R, (1.6)

where F (iω) denotes the non-tangential limit1 of F at the point iω. In the classical
setting, generalized positive functions were introduced in the context of the Positive
Real Lemma (PRL), see [15] and references therein2. For applications of generalized
positive functions see [40]. The renowned Kalman-Yakubovich-Popov Lemma, which
has been recognized as a fundamental result in System Theory, establishes a connec-
tion between two presentations of positive functions, as rational functions and the
respective state space realization, see e.g. [16], [33]. For its extension to generalized
positive functions, see [15], [27].

The paper consists of seven sections, besides the Introduction. In Section 2 we
recall the notion of quaternionic Pontryagin spaces, and we discuss some preliminar-
ies on negative squares, kernels and realizations; then we provide some preliminaries
on slice hyperholomorphic functions, the class of functions that we use in this pa-
per. Section 3 deals with operator-valued slice hyperholomorphic functions, their
products and a useful property of extension, see Proposition 3.24. In Section 4 we
study the Hardy space of the half-space H+ of quaternions with real positive part
and Blaschke factors and products in this framework. Then, in Section 5 we provide
the proof of the quaternionic version of the Schauder-Tychonoff fixed point theorem
whose proof is not substantially different from the one in the complex case, but we
insert it for the sake of completeness. This result is crucial to show an invariant

1This limit exists almost everywhere on iR because F is assumed of bounded type in C+, see e.g.

[30].
2The original formulation was real. The case we address is in fact generalized positive and complex,

but we wish to adhere to the commonly used term: Positive Real Lemma.
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subspace theorem for contractions in Pontryagin spaces. Sections 6 and 7 deal with
the study of kernels with a finite number of negative squares and associated with
generalized Schur functions and we prove a realization theorem in this setting. We
also give as an example the characteristic operator function of a quaternionic non
anti-self-adjoint operator. Section 8 deals with realizations for generalized positive
functions. We also define the positive function associated to a pair of anti-self-adjoint
operators. The properties of this function will be presented in a future publication.

2. Preliminaries

In this section, which is divided into three subsections, we collect a number of facts
respectively on Pontryagin spaces, slice hyperholomorphic functions and their real-
izations.

2.1. Negative squares and kernels

An important role in this paper is played by quaternionic Pontryagin spaces, and
we first recall this notion. We refer to [7, 13] for more details. Let V be a right
quaternionic vector space endowed with a Hermitian form (also called inner product)
[·, ·] from V × V into H, meaning that:

[ua+ vb, w] = [u,w]a+ [v, w]b,

[v, w] = [w, v],

for all choices of u, v, w ∈ V and a, b ∈ H. In particular the inner product [·, ·] satisfy
[va, wb] = b[v, w]a.

When the space V is two-sided, we require that

[v, aw] = [av, w], a ∈ H, v, w ∈ V. (2.1)

Condition (2.1) is used in particular in the proof of formula (7.8).

Definition 2.1. The space V is called a right-quaternionic Pontryagin space if there
exists two subspaces V+, V− of V such that V = V+ + V− and:

(i) The space V+ endowed with [·, ·] is a right-quaternionic Hilbert space.
(ii) The space V− endowed with −[·, ·] is a finite dimensional right-quaternionic

Hilbert space.
(iii) The sum V+ + V− is direct and orthogonal, meaning that V+ ∩ V− = {0} and

[v+, v−] = 0 for every choice of v+ ∈ V+ and v− ∈ V−.

We denote a direct and orthogonal sum by

V = V+[
·
+]V−. (2.2)

In general, such a decomposition will not be unique. The inner product

〈v, w〉 = [v+, w+]− [v−, w−]

where v±, w± ∈ V±, makes V into a Hilbert space. The inner product depends on
the decomposition, but all the associated topologies are equivalent. We refer to [13]
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for more details on these facts in the quaternionic case, while the case of the field of
complex numbers we refer to [21].

We now recall a few facts on matrices with quaternionic entries and on kernels,
which we will need in the sequel. A matrix A ∈ Hm×m can be written in a unique
way as

A = A1 +A2j,

where A1 and A2 belong to Cm×m. The map χ : Cm×m → C2m×2m defined by

χ(A) =

(
A1 A2

−A2 A1

)
(2.3)

satisfies

χ(AB) = χ(A)χ(B) and χ(A∗) = (χ(A))∗.

See for instance [64, Theorem 4.2, p. 29] (see also [13, Proposition 3.8, p. 439]). The
result itself is due to Lee [50].

A key fact is that A ∈ Hm×m is Hermitian (that is, A = A∗) if and only if it
can be written as UDU∗, where U ∈ Hm×m is unitary and D ∈ Rm×m is diagonal.
The matrix D is uniquely determined up to permutations, and one can define the
signature of an Hermitian matrix with quaternionic entries as the signature of D,
see [64, Corollary 6.2, p. 41] and the references therein. The following result follows
from the properties of χ and can be found in [13, Proposition 3.16, p. 442].

Lemma 2.2. Assume A ∈ Hm×m Hermitian. Then A has signature (ν+, ν−, ν0) if
and only if χ(A) has signature (2ν+, 2ν−, 2ν0).

We now turn to the notion of kernels having a finite number of negative squares.

Definition 2.3. Let H be a two-sided quaternionic Hilbert space, with inner product
〈·, ·〉, and let K(z, w) be a L(H,H)-valued function defined for z, w in some set Ω.
The kernel is called Hermitian if

K(z, w) = K(w, z)∗, z, w ∈ Ω.

It is said to have a finite number (say κ) of negative squares if for every choice
of N ∈ N, of vectors c1, . . . , cN ∈ H and of points w1, . . . , wN ∈ Ω, the N × N
Hermitian matrix with (u, v) entry

[K(wu, wv)cu, cv]

has at most κ strictly negative eigenvalues, counted with multiplicities, and exactly
κ strictly negative eigenvalues for some choice of N,w1, . . . , wN and c1, . . . , cN .

When κ = 0 we have the classical notion of positive definite function. Given a
set Ω, the one-to-one correspondence between positive definite functions on Ω and
reproducing kernel Hilbert spaces of functions defined on Ω extends to a one-to-one
correspondence between functions having a finite number of negative squares and
reproducing kernel Pontryagin spaces (for more information on these spaces see [13]).
This fact is due to P. Sorjonen [59] and L. Schwartz [58] in the complex case, and is
proved in [13] in the quaternionic case.
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We conclude by mentioning a result, [6, Proposition 5.3], which will be used in
the sequel:

Proposition 2.4. Assume that K(p, q) is HN×N -valued and has κ negative squares
in V and let α(p) be a HN×N -valued slice hyperholomorphic function and such that
α(0) is invertible. Then the function

B(p, q) = α(p) � K(p, q) �r α(q)
∗ (2.4)

has κ negative squares in V .

2.2. Slice hyperholomorphic functions

Let H be the real associative algebra of quaternions with respect to the basis
{1, i, j, k} satisfying the relations i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj =
i, ki = −ik = j. We will denote a quaternion p as p = x0 + ix1 + jx2 + kx3, xi ∈ R,
its conjugate as p̄ = x0 − ix1 − jx2 − kx3, and |p|2 = pp. The real part x0 of a
quaternion will be denoted also by Re(p), S is the 2-sphere of purely imaginary unit
quaternions, i.e.

S = {p = ix1 + jx2 + kx3 | x21 + x22 + x23 = 1}.
Note that if I ∈ S then I2 = −1 and a nonreal quaternion p = x0 + ix1 + jx2 + kx3
uniquely determines an element Ip = ix1 + jx2 + kx3/|ix1 + jx2 + kx3| ∈ S. When
p is real, then p = p+ I0 for all I ∈ S.

Definition 2.5. Given p ∈ H, p = p0 + Ipp1 we denote by [p] the set of all elements
of the form p0 + Jp1 when J varies in S.

The set [p] is a 2-sphere (we will often write that [p] is a sphere, for short) which is
reduced to the point p when p ∈ R. We now recall the definition of slice hyperholo-
morphic function.

Definition 2.6. Let Ω ⊆ H be an open set and let f : Ω → H be a real differentiable
function. Let I ∈ S and let fI be the restriction of f to the complex plane CI :=
R + IR passing through 1 and I and denote by x + Iy an element on CI . We say
that f is a left slice hyperholomorphic (or slice hyperholomorphic or slice regular)
function in Ω if, for every I ∈ S, we have

1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ Iy) = 0.

We say that f is a right slice hyperholomorphic function in Ω if, for every I ∈ S, we
have

1

2

(
∂

∂x
fI(x+ Iy) +

∂

∂y
fI(x+ Iy)I

)
= 0.

Slice hyperholomorphic functions have a nice behavior on the so called axially
symmetric slice domains defined below.

Definition 2.7. Let Ω be a domain in H. We say that Ω is a slice domain (s-domain
for short) if Ω ∩ R is non empty and if Ω ∩ CI is a domain in CI for all I ∈ S. We
say that Ω is axially symmetric if, for all q ∈ Ω, the sphere [q] is contained in Ω.
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Remark 2.8. Assume that f : Ω ⊆ C ∼= CI → H is a holomorphic map. Let UΩ

be the axially symmetric completion of Ω, i.e. UΩ =
⋃

J∈S,x+Iy∈Ω(x + Jy). Its left

slice hyperholomorphic extension ext(f) : UΩ ⊆ H → H is computed as follows (see
[25]):

ext(f)(x+ Jy) =
1

2
[f(x+ Iy) + f(x− Iy) + JI(f(x− Iy)− f(x+ Iy))] . (2.5)

It is immediate that ext(f + g) = ext(f) + ext(g) and that if f(z) =
∑∞

n=0 fn(z)
then ext(f)(z) =

∑∞
n=0 ext(fn)(z). It is also useful to recall that any function h slice

hyperholomorphic on an axially symmetric s-domain Ω satisfies the formula, see [25,
Theorem 4.3.2]

h(x+ Jy) =
1

2
[h(x+ Iy) + h(x− Iy) + JI(h(x− Iy)− h(x+ Iy))] . (2.6)

Let f, g : Ω ⊆ H be slice hyperholomorphic functions. Their restrictions to the
complex plane CI can be decomposed as fI(z) = F (z)+G(z)J , gI(z) = H(z)+L(z)J
where J ∈ S, J ⊥ I where F , G, H, L are holomorphic functions of the variable
z ∈ Ω ∩ CI , see [25], p. 117. The �l-product of f and g, see [25], p. 125, is defined
as the unique left slice hyperholomorphic function whose restriction to the complex
plane CI is given by

(fI �r gI)(z) : = (F (z) +G(z)J) �l (H(z) + L(z)J)

= (F (z)H(z)−G(z)L(z̄)) + (G(z)H(z̄) + F (z)L(z))J.
(2.7)

If f, g are right slice hyperholomorphic, then with the above notations we have
fI(z) = F (z) + JG(z), gI(z) = H(z) + JL(z) and

(fI �r gI)(z) : = (F (z) + JG(z)) �r (H(z) + JL(z))

= (F (z)H(z)−G(z̄)L(z)) + J(G(z)H(z) + F (z̄)L(z))J,
(2.8)

and f �r g = ext(fI �r gI).

Remark 2.9. In the sequel, we will consider functions k(p, q) left slice hyperholo-
morphic in p and right slice hyperholomorphic in q̄. When taking the �-product of a
function f(p) slice hyperholomorphic in the variable p with such a function k(p, q),
we will write f(p) � k(p, q) meaning that the �-product is taken with respect to the
variable p; similarly, the �r-product of k(p, q) with functions right slice hyperholo-
morphic in the variable q̄ is always taken with respect to q̄.

Let Ω be an axially symmetric s-domain and let p0 ∈ Ω. Let us consider a
function f slice hyperholomorphic in Ω and assume that, in a neighborhood of p0 in
Ω, it can be written in the form f(p) =

∑+∞
n=−∞(p− p0)

�nan where an ∈ H.

Following the standard nomenclature and [60] we have:

Definition 2.10. A function f has a pole at the point p0 if there exists m ≥ 0 such
that a−k = 0 for k > m. The minimum of such m is called the order of the pole;
If p is not a pole then we call it an essential singularity for f ;
f has a removable singularity at p0 if it can be extended in a neighborhood of p0 as
a slice hyperholomorphic function.
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Note the following important fact: a function f has a pole at p0 if and only if
its restriction to a complex plane has a pole. Note that there can be poles of order
0: let us consider for example the function (p + I)−� = (p2 + 1)−1(p − I). It has a
pole of order 0 at the point −I which, however, is not a removable singularity, see
[25, p.55] also for the definition of the �-inverse.

Definition 2.11. Let Ω be an axially symmetric s-domain in H. We say that a function
f : Ω → H is slice hypermeromorphic in Ω if f is slice hyperholomorphic in Ω′ ⊂ Ω
such that Ω \ Ω′ has no point limit in Ω and every point in Ω \ Ω′ is a pole.

The functions which are slice hypermeromorphic are called semi-regular in [60]
and for these functions we have the following result, proved in [60, Proposition 7.1,
Theorem 7.3]:

Proposition 2.12. Let Ω be an axially symmetric s-domain in H and let f, g : Ω → H
be slice hyperholomorphic. Then the function f−� � g is slice hypermeromorphic in
Ω. Conversely, any slice hypermeromorphic function on Ω can be locally expressed
as f−� � g for suitable f and g.

Remark 2.13. Since f−� = (f � f c)−1f c (see [25] for the notation) it is then clear
that the poles of a slice hypermeromorphic function occur in correspondence to the
zeros of the function f �f c and so they are isolated spheres, possibly reduced to real
points.

3. Slice hyperholomorphic operator-valued functions

We begin the section by characterizing slice hyperholomorphic functions as those
functions which admit left derivative on each complex plane CI :

Definition 3.1. Let f : Ω ⊆ H → H and let p0 ∈ U be a nonreal point, p0 = u0+ Iv0.
Let fI be the restriction of f to the plane CI . Assume that

lim
p→p0, p∈CI

(p− p0)
−1(fI(p)− fI(p0)) (3.1)

exists. Then we say that f admits left slice derivative in p0. If p0 is real, assume that

lim
p→p0, p∈CI

(p− p0)
−1(fI(p)− fI(p0)) (3.2)

exists, equal to the same value, for all I ∈ S. Then we say that f admits left slice
derivative in p0. If f admits left slice derivative for every p0 ∈ Ω then we say that f
admits left slice derivative in Ω or, for short, that f is left slice differentiable in Ω.

It is possible to give an analogous definition for right slice differentiable func-
tions: it is sufficient to multiply (p − p0)

−1 on the right. In this case we will speak
of right slice hyperhomolomorphic functions. In this paper, we will speak of slice
differentiable functions or slice hyperholomorphic functions when we are considering
them on the left, while we will specify if we consider the analogous notions on the
right.

We have the following result:
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Proposition 3.2. Let Ω ⊆ H be an open set and let f : Ω ⊆ H → H be a real
differentiable function. Then f is slice hyperholomorphic on Ω if and only if it admits
slice derivative on Ω.

Proof. Let f be a slice hyperholomorphic function on Ω. Then its restriction to the
complex plane CI can be written as fI(p) = F (p) + G(p)J where J is any element
in S orthogonal to I, p belongs to CI and F,G : Ω ∩ CI → CI are holomorphic
functions. Let p0 be a nonreal quaternion and let p0 ∈ Ω ∩ CI . Then we have

lim
p→p0, p∈CI

(p− p0)
−1(fI(p)− fI(p0))

= lim
p→p0, p∈CI

(p− p0)
−1(F (p) +G(p)J − F (p0)−G(p0)J)

= F ′(p0) +G′(p0)J

(3.3)

so the limit exists and f admits slice derivative at every nonreal point in Ω. If p0 is
real then the same reasoning shows that the limit in (3.3) exists on each complex
plane CI . Moreover, since f is slice hyperholomorphic at p0 we have

F ′(p0) +G′(p0)J =
1

2

(
∂

∂x
− I

∂

∂y

)
(F +GJ)(p0) =

∂

∂x
f(p0)

and so the limit exists on CI for all I ∈ S equal to ∂
∂xf(p0).

Conversely, assume that f admits slice derivative in Ω. By (3.1) and (3.2) fI
admits derivative on Ω∩CI for all I ∈ S. Decomposing fI into complex components
as fI(p) = F (p)+G(p)J , where F,G : Ω∩CI → CI , p = x+ Iy and J is orthogonal
to I, we deduce that both F and G admits complex derivative and thus they are in
the kernel of the Cauchy Riemann operator ∂x+ I∂y for all I ∈ S as well as fI . Thus
f is slice hyperholomorphic. �

Remark 3.3. The terminology of Definition 3.1 is consistent with the notion of slice
derivative ∂sf of f , see [25], which is defined by:

∂s(f)(p) =




1
2

(
∂
∂xfI(x+ Iy)− I ∂

∂yfI(x+ Iy)
)

if p = x+ Iy, y �= 0,

∂f

∂x
(p) if p = x ∈ R.

It is immediate that, analogously to what happens in the complex case, for any slice
hyperholomorphic function we have ∂s(f)(x+ Iy) = ∂x(f)(x+ Iy).

In the sequel, let X denote a left quaternionic Banach space and let X ∗ denote
its dual, i.e. the set of bounded, left linear maps from X to H. In order to have that
X ∗ has a structure of quaternionic linear space, it is necessary to require that X is a
two sided quaternionic vector space. In this case, X ∗ turns out to be a right vector
space over H.

Definition 3.4. Let X be a two sided quaternionic Banach space and let X ∗ be its
dual. Let Ω be an open set in H.

A function f : Ω → X is said to be weakly slice hyperholomorphic in Ω if Λf
admits a slice derivative for every Λ ∈ X ∗.
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A function f : Ω → X is said to be strongly slice hyperholomorphic in Ω if

lim
p→p0,p∈CI

(p− p0)
−1(fI(p)− fI(p0)) (3.4)

exists in the topology of X in case p0 ∈ Ω is nonreal and p0 ∈ CI and if

lim
p→p0,p∈CI

(p− p0)
−1(fI(p)− fI(p0)) (3.5)

exists in the topology of X for every I ∈ S, equal to the same value, in case p0 ∈ Ω
is real.

Since the functionals Λ ∈ X ∗ are continuous, every strongly slice hyperholo-
morphic function is weakly slice hyperholomorphic. As it happens in the complex
case, let us show that also the converse is true.

To this end, let us observe that the following lemma holds. We omit the proof
since it works exactly as in the complex case (see e.g. [56], p. 189).

Lemma 3.5. Let X be a two sided quaternionic Banach space. Then a sequence {vn}
is Cauchy if and only if {Λvn} is Cauchy uniformly for Λ ∈ X ∗, ‖Λ‖ ≤ 1.

Theorem 3.6. Every weakly slice hyperholomorphic function on Ω ⊆ H is strongly
slice hyperholomorphic on Ω.

Proof. The proof will follow the lines of the proof in the complex case in [56], p.
189. Let f be a weakly slice hyperholomorphic function on Ω. Then, for any Λ ∈ X ∗

and any I ∈ S, we can choose J ∈ CI and write (Λf)I(p) = (Λf)I(x + Iy) =
FΛ(x+Iy)+GΛ(x+Iy)J where FΛ, GΛ : CI → CI . By hypothesis, for any p0 ∈ Ω∩CI

the limit limp→p0, p∈CI
(p− p0)

−1((Λf)I(p)− (Λf)I(p0)) exists, and so the limits

lim
p→p0, p∈CI

(p− p0)
−1(FΛ(p)− FΛ(p0)), lim

p→p0, p∈CI

(p− p0)
−1(GΛ(p)−GΛ(p0))

exist. Thus the functions FΛ and GΛ are holomorphic on Ω∩CI and so they admit a
Cauchy formula on the plane CI , computed e.g. on a circle γ, contained in CI , whose
interior contains p0 and is contained in Ω. Note that (Λf)I(x+ Iy) = ΛfI(x+ Iy).
Moreover, if p0 is real we can pick any complex plane CI . For any increment h in
CI we compute

h−1((Λf)I(p0 + h)− (Λf)I(p0))− ∂s(Λf)I(p0))

=
1

2π

∫

γ

[
h−1

(
1

p− (p0 + h)
− 1

p− p0

)
− 1

(p− p0)2

]
dpI(Λf)I(p)),

where dpI = (dx+ Idy)/I. Then we observe that (Λf)I(p) is continuous on γ which
is compact, so |(Λf)I(p)| ≤ CΛ for all p ∈ γ. The family of maps f(p) : X ∗ → H is
pointwise bounded at each Λ, thus supp∈γ ‖fi(p)‖ ≤ C by the uniform boundedness
theorem, see [7]. Thus we have

∣∣Λ(h−1(fI(p0 + h)− fI(p0))− ∂s(Λf)I(p0)
∣∣

≤ C

2π
‖Λ‖

∫

γ

∣∣∣∣
(

1

p− (p0 + h)
− 1

p− p0

)
− 1

(p− p0)2

∣∣∣∣ dpI ,
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so h−1(fI(p0 + h) − fI(p0)) is uniformly Cauchy for ‖Λ‖ ≤ 1 and by Lemma 3.5 it
converges in X . Thus f admits slice derivative at every p0 ∈ Ω and so it is strongly
slice hyperholomorphic in Ω. �

Definition 3.7. Let X be a two-sided Banach space over H. We say that a function
f : Ω → X is (weakly) slice hypermeromorphic if for any Λ ∈ X ∗ the function
Λf : Ω → H is slice hypermeromorphic in Ω.

Remark 3.8. The previous definition means, in particular, that f : Ω′ → X is slice
hyperholomorphic, where the points in Ω \ Ω′ are the poles of f and Ω \ Ω′ has no
point limit in Ω.

Our next task is to prove that weakly slice hyperholomorphic functions are
those functions whose restrictions to any complex plane CI are in the kernel of the
Cauchy-Riemann operator ∂x + I∂y.

Proposition 3.9. Let X be a two sided quaternionic Banach space. A real differ-
entiable function f : Ω ⊆ H → X is weakly slice hyperholomorphic if and only if
(∂x + I∂y)fI(x+ Iy) = 0 for all I ∈ S.

Proof. If f is weakly slice hyperholomorphic, then, as it happens in the classical
complex case, for every nonreal p0 ∈ Ω, p0 ∈ CI , we can compute the limit (3.1)
for the function ΛfI choosing p = p0 + h with h ∈ R and for p = p0 + Ih with
h ∈ R. We obtain, respectively, ∂xfIΛ(p0) and −I∂yΛfI(p0) which coincide. Thus
we get (∂x+I∂y)ΛfI(p0) = Λ(∂x+I∂y)fI(p0) = 0 for any Λ ∈ X ∗ and the statement
follows by the Hahn-Banach theorem. If p0 is real, then the statement follows by an
analogous argument since the limit (3.2) exists for all I ∈ S. Conversely, if fI satisfies
the Cauchy-Riemann on Ω∩CI then Λ((∂x+ I∂y)fI(x+ Iy)) = 0 for all Λ ∈ X ∗ and
all I ∈ S. Since Λ is linear and continuous we can write (∂x + I∂y)ΛfI(x+ Iy) = 0
and thus the function ΛfI(x + Iy) is in the kernel of ∂x + I∂y for all Λ ∈ X ∗ or,
equivalently by Proposition 3.2, it admits slice derivative. Thus at every p0 ∈ Ω∩CI

we have

lim
p→p0,p∈CI

(p− p0)
−1(ΛfI(p)− ΛfI(p0)) = lim

p→p0,p∈CI

Λ((p− p0)
−1(fI(p)− fI(p0))),

for all Λ ∈ X ∗. It follows that f is weakly slice hyperholomorphic. �

Since the class of weakly and strongly slice hyperholomorphic functions coincide
and in view of Proposition 3.9, from now on we will refer to them simply as slice hy-
perholomorphic functions and we denote the set of X -valued slice hyperholomorphic
functions on Ω by S (Ω,X ).

The following result is immediate:

Proposition 3.10. Let X be a two sided quaternionic Banach space. Then the set
of slice hyperholomorphic functions defined on Ω ⊆ H with values in X is a right
quaternionic linear space.

Proposition 3.11 (Identity Principle). Let X be a two sided quaternionic Banach
space, Ω be an s-domain and let f, g : Ω ⊆ H → X be two slice hyperholomorphic
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functions. If f = g on a set Z ⊆ Ω ∩ CI having an accumulation point, for some
I ∈ S, then f = g on Ω.

Proof. The hypothesis implies Λf = Λg on Z for every Λ ∈ X ∗ thus the slice
hyperholomorphic function Λ(f − g) is identically zero not only on Z but also on Ω
by the Identity Principle for quaternionic-valued slice hyperholomorphic functions.
By the Hahn-Banach theorem f − g = 0 on Ω. �

Remark 3.12. The Identity Principle implies that two slice hyperholomorphic func-
tions defined on an s-domain and with values in a two sided quaternionic Banach
space X coincide if their restrictions to the real axis coincide. More in general, any
real analytic function f : [a, b] ⊆ R → X can be extended to a function ext(f)
slice hyperholomorphic on an axially symmetric s-domain Ω containing [a, b]. The
existence of the extension is assured by the fact that for any x0 ∈ [a, b] the function
f can be written as f(x) =

∑
n≥0 x

nAn, An ∈ X , and x such that |x − x0| < ε

and thus (extf)(p) =
∑

n≥0 p
nAn for |p − x0| < εx0 . Thus the claim holds setting

B(x0, εx0) = {p ∈ H : |p− x0| < εx0} and Ω = ∪x0∈IB(x0, εx0).

Let us recall, see [25], that the Cauchy kernel to be used in the Cauchy formula
for slice hyperholomorphic functions is

S−1
L (s, p) = −(p2 − 2pRe(s) + |s|2)−1(p− s).

It is a function slice hyperholomorphic on the left in the variable p and on the right
in s. In the case of right regular functions the kernel is

S−1
R (s, q) := −(q − s̄)(q2 − 2Re(s)q + |s|2)−1,

which is slice hyperholomorphic on the right in the variable q and on the left in
s. The Cauchy formula holds for slice hyperholomorphic functions with values in a
quaternionic Banach space:

Theorem 3.13 (Cauchy formulas). Let X be a two sided quaternionic Banach space
and let W be an open set in H. Let Ω ⊂ W be an axially symmetric s-domain, and
let ∂(Ω ∩ CI) be the union of a finite number of rectifiable Jordan curves for every
I ∈ S. Set dsI = ds/I. If f : W → X is left slice hyperholomorphic, then, for q ∈ Ω,
we have

f(p) =
1

2π

∫

∂(Ω∩CI)
S−1
L (s, p)dsIf(s), (3.6)

if f : W → X is right slice hyperholomorphic, then, for q ∈ Ω, we have

f(q) =
1

2π

∫

∂(Ω∩CI)
f(s)dsIS

−1
R (s, q), (3.7)

and the integrals (3.6), (3.7) do not depend on the choice of the imaginary unit I ∈ S
and on Ω ⊂ W .

Proof. We have proved that weakly slice hyperholomorphic functions are strongly
slice hyperholomorphic functions, so in particular they are continuous functions, so
the validity of the formulas (3.6), (3.7) follows as in point (b) p. 80 [57]. �



104	 D.	Alpay,	F.	Colombo,	I.	Lewkowicz	and	I.	Sabadini	 Vol.83	(2015)14 D. Alpay, F. Colombo, I. Lewkowicz and I. Sabadini

We now show another description of the class S (Ω,X ) of slice hyperholomor-
phic functions on Ω with values in X .

Definition 3.14. Consider the set of functions of the form f(p) = f(x + Iy) =
α(x, y) + Iβ(x, y) where α, β : Ω → X depend only on x, y, are real differentiable,
satisfy the Cauchy-Riemann equations ∂xα − ∂yβ = 0, ∂yα + ∂xβ = 0 and assume
that α(x,−y) = α(x, y), β(x,−y) = −β(x, y). We will denote the class of function
of this form by H (Ω,X ).

Observe that the conditions on α and β are required in order to have that
the function f is well posed. Note also that if p = x is a real quaternion, then I
is not uniquely defined but the hypothesis that β is odd in the variable y implies
β(x, 0) = 0.

Theorem 3.15. Let Ω be an axially symmetric s-domain and let X be a two sided
quaternionic Banach space. Then S (Ω,X ) = H (Ω,X ).

Proof. The inclusion H (Ω,X ) ⊆ S (Ω,X ) is clear: any function f ∈ H (Ω,X )
is real differentiable and such that fI satisfies (∂x + I∂y)fI = 0 (note that this
implication does not need any hypothesis on the open set Ω). Conversely, assume
that f ∈ S (Ω,X ). Let us show that

f(x+ Iy) =
1

2
(1− IJ)f(x+ Jy) +

1

2
(1 + IJ)f(x− Jy).

If we consider real quaternions, i.e. y = 0, then the formula holds trivially. For
nonreal quaternions, set

φ(x+ Iy) =
1

2
(1− IJ)f(x+ Jy) +

1

2
(1 + IJ)f(x− Jy).

Then, using the fact that f is slice hyperholomorphic, it is immediate that (∂x +
I∂y)φ(x+ Iy) = 0 and so φ is slice hyperholomorphic. Since φ = f on Ω ∩ CI then
it coincides with f on Ω by the Identity Principle. By writing

f(x+ Iy) =
1

2
[(f(x+ Jy) + f(x− Jy) + IJ(f(x− Jy)− f(x+ Jy))]

and setting α(x, y) = 1
2(f(x+Jy)+f(x−Jy)), β(x, y) = 1

2J(f(x−Jy)−f(x+Jy))
we have that f(x + Iy) = α(x, y) + Iβ(x, y). Reasoning as in [25, Theorem 2.2.18]
we see that α, β do not depend on I. It is then an easy computation to verify that
α, β satisfy the above assumptions. �

Using this alternative description of slice hyperholomorphic functions with val-
ues in X , we can now define a notion of product which is based on a suitable
pointwise multiplication. To this end we need an additional structure on the two
sided quaternionic Banach space X . Assume that in X is defined a multiplication
which is associative, distributive with respect to the sum in X . Assume also that
q(x1x2) = (qx1)x2 and (x1x2)q = x1(x2q) for all q ∈ H and for all x1, x2 ∈ X . Then
we will say that X is a two sided quaternionic Banach algebra. As customary we
will say that the algebra X is with unity is X possesses a unity with respect to the
product.
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Definition 3.16. Let Ω ⊆ H be an axially symmetric s-domain and let f, g : Ω → X
be slice hyperholomorphic functions with values in a two sided quaternionic Banach
algebra X . Let f(x+ Iy) = α(x, y) + Iβ(x, y), g(x+ Iy) = γ(x, y) + Iδ(x, y). Then
we define

(f � g)(x+ Iy) := (αγ − βδ)(x, y) + I(αδ + βγ)(x, y). (3.8)

By construction, the function f �g is slice hyperholomorphic, as it can be easily
verified.

Remark 3.17. If Ω is a ball with center at a real point (let us assume at the origin
for simplicity) then it is immediate that f , g admit power series expansion and thus
if f(p) =

∑∞
n=0 p

nan, g(p) =
∑∞

n=0 p
nbn, an, bn ∈ X for all n. Then f � g(p) :=∑∞

n=0 p
n(
∑n

r=0 arbn−r) where the series converges.

Remark 3.18. In case we consider right slice hyperholomorphic functions, the class
H (Ω,X ) consists of functions of the form f(x + Iy) = α(x, y) + β(x, y)I where
α, β satisfy the assumptions discussed above. We now give the notion of right slice
product, denoted by �r. Given two right slice hyperholomorphic functions f, g : Ω →
X with values in a two sided quaternionic Banach algebra X where f(x + Iy) =
α(x, y) + β(x, y)I, g(x+ Iy) = γ(x, y) + δ(x, y)I, we define

(f �r g)(x+ Iy) := (αγ − βδ)(x, y) + (αδ + βγ)(x, y)I. (3.9)

Remark 3.19. It is important to point out that if one is in need of considering
slice hyperholomorphic functions on axially symmetric open sets U which are not
necessarily s-domains, then it is more convenient to use the class H(Ω,X ) because
they allow to have a notion of multiplication.

Remark 3.20. Consider the following case: let Ω be an axially symmetric s-domain
in H and let Hi; i = 1, 2, 3 be two sided quaternionic Hilbert spaces. Let f : Ω →
L(H1,H2), g : Ω → L(H2,H3) be slice hyperholomorphic and let

f(p) = f(x+ Iy) = α(x, y) + Iβ(x, y), g(p) = g(x+ Iy) = γ(x, y) + Iδ(x, y).

We define the �-product as in (3.8) If f, g are right slice hyperholomorphic, then
we define the �r-product as in (3.9). The product α(x, y)γ(x, y) (and the other
three products appearing in f � g) is an operator belonging to L(H1,H3), thus
f � g : Ω → L(H1,H3). In the special case in which

f(p) =

∞∑
n=0

pnAn, An ∈ L(H1,H2),

g(p) =
∞∑
n=0

pnBn, Bn ∈ L(H2,H3),

then we have

f � g(p) =

∞∑
n=0

pn(

n∑
r=0

ArBn−r),

as expected.
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3.1. Realizations

The following notions of S-spectrum and of S-resolvent operator will be used in the
sequel.

Definition 3.21. Let X be a two sided quaternionic Banach space and let A be a
bounded operator on X into itself. We define the S-spectrum σS(A) of A as:

σS(A) = {p ∈ H : A2 − 2 Re (p)A+ |p|2I is not invertible}.

The S-resolvent set ρS(A) is defined by ρS(A) = H \ σS(A).

For p ∈ ρS(A) the right S-resolvent operator is defined as

S−1
R (p,A) := −(A− pI)(A2 − 2Re (p)A+ |p|2I)−1. (3.10)

Remark 3.22. It is useful to recall that when A is a matrix its (point) S-spectrum
coincides with its right spectrum, see e.g. [6]. When p ∈ R or, more in general, when
p commute with an operator A, then S−1

R (p,A) = (pI −A)−1, see Proposition 3.1.6
in [25].

Proposition 3.23. Let X be a two sided quaternionic Banach space and let f : ρS(A)∩
R \ {0} → X be the function f(x) = (I − xA)−1. Then

p−1S−1
R (p−1, A) = (I − p̄A)(I − 2Re(p)A+ |p|2A2)−1

is the unique slice hyperholomorphic extension to ρS(A).

Proof. The fact that p−1S−1
L (p−1, A) is slice hyperholomorphic in p outside the S-

spectrum is trivial since it is the S-resolvent and it coincides with the function f on
the real axis. The uniqueness follows from the identity principle. �

The notation S−1
R (p−1, A) comes from [25] but we will also write

p−1S−1
R (p−1, A) = (I − pA)−�.

This last expression makes sense when A acts on a two-sided quaternionic vector
space. In a more general setting, we have the following result:

Proposition 3.24. Let A be a bounded linear operator from a right-sided quaternionic
Banach P space into itself, and let G be a bounded linear operator from P into
Q, where Q is a two sided quaternionic Banach space. The slice hyperholomorphic
extension of G(I − xA)−1, 1/x ∈ σS(A) ∩ R, is

(G− pGA)(I − 2Re(p)A+ |p|2A2)−1.

Proof. First we observe that G(I − xA)−1 =
∑∞

n=0 x
nGAn for |x|‖A‖ < 1. It is

immediate that, for |p|‖A‖ < 1, the slice hyperholomorphic extension of the series∑∞
n=0 x

nGAn is
∑∞

n=0 p
nGAn (as it is a converging power series with coefficients on

the right). To show that

∞∑
n=0

pnGAn = (G− pGA)(I − 2Re(p)A+ |p|2A2)−1
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we prove instead the equality

(

∞∑
n=0

pnGAn)(I − 2Re(p)A+ |p|2A2) = (G− pGA).

The left hand side gives
∞∑
n=0

pnGAn − 2

∞∑
n=0

Re(p)pnGAn+1 +

∞∑
n=0

|p|2pnGAn+2

= G+ (p− 2Re(p))GA+ (p2 − 2pRe(p) + |p|2)
∞∑
n=0

pnGAn+2

= G− p̄GA

where we have used the identity p2−2pRe(p)+|p|2 = 0. This completes the proof. �

Remark 3.25. In analogy with the matrix case we will write, with an abuse of nota-
tion in this case, G� (I−pA)−� instead of the expression (G−pGA)(I−2Re(p)A+
|p|2A2)−1.

Proposition 3.26. With the notation in Remark 3.25 it holds that

D + pC � (I − pA)−1B = D−1 − pD−1C � (I − p(A−BD−1C))−�BD−1, (3.11)

and

(D1 + pC1 � (I − pA1)
−�B1) � (D2 + pC2 � (I − pA2)

−�B2)

= D1D2 + p
(
C1 D1C2

)
�

(
I − p

(
A1 B1C2

0 A2

))−�(
B1D2

B2

)
.

(3.12)

Proof. When p is real, the �-product is replaced by the operator product (or matrix
product in the finite dimensional case) and formulas (3.11) and (3.12) are then well
known, see e.g. [19]. Slice-hyperholomorphic extensions lead then to the required
result. �

4. The Hardy space of the half-space H+

Let Π+ be the right open half-plane of complex numbers z such that Re(z) > 0. The
Hardy space H2(Π+) consists of functions f holomorphic in Π+ such that

sup
x>0

∫ ∞

−∞
|f(x+ iy)|2dy < ∞. (4.1)

We recall that a function f ∈ H2(Π+) has nontangential limit f(iy) for almost all
iy on the imaginary axis and f(iy) ∈ L2(R), see [36, Theorem 3.1], moreover

sup
x>0

∫ ∞

−∞
|f(x+ iy)|2dy =

∫ ∞

−∞
|f(iy)|2dy. (4.2)

Let us consider the kernel

kΠ+(z, w) =
1

2π

1

z + w̄
,
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which is positive definite on Π+. Then, the associated reproducing kernel Hilbert
space is the Hardy space H2(Π+) endowed with the scalar product

〈f, g〉H2(Π+) =

∫ +∞

−∞
g(iy)f(iy)dy,

where f, g ∈ H2(Π+), and the norm in H2(Π+) is given by

‖f‖H2(Π+) =

(∫ +∞

−∞
|f(iy)|2dy

) 1
2

.

The kernel kΠ+(z, w) is reproducing in the sense that for every f ∈ H2(Π+)

f(w) = 〈f(z), kΠ+(z, w)〉H2(Π+) =

∫ ∞

−∞
kΠ+(w, iy)f(iy)dy,

Let us now consider the half-space H+ of the quaternions q such that Re(q) > 0 and
set Π+,I = H+ ∩CI . We will denote by fI the restriction of a function f defined on
H+ to Π+,I . We define

H2(Π+,I) = {f slice hyperholomorphic in H+ :

∫ +∞

−∞
|fI(Iy)|2dy < ∞},

where f(Iy) denotes the nontangential value of f at Iy. Note that these value exist
almost everywhere, in fact any f ∈ H2(Π+,I) when restricted to a complex plane
CI can be written as fI(x+ Iy) = F (x+ Iy) +G(x+ Iy)J where J is any element
in S orthogonal to I, and F,G are CI -valued holomorphic functions. Since the non-
tangential values of F and G exist almost everywhere at Iy, also the nontangential
value of f exists at Iy a. e. on Π+,I and fI(Iy) = F (Iy) +G(Iy)J a.e.

Remark 4.1. In alternative, we could have defined H2(Π+,I) as the set of slice hy-

perholomorphic functions f such that supx>0

∫ +∞
−∞ |fI(x + Iy)|2dy < ∞. However

note that fI(x + Iy) = F (x + Iy) + G(x + Iy)J , see the above discussion, and so
|fI(x+ Iy)|2 = |F (x+ Iy)|2 + |G(x+ Iy)|2. Thus, using (4.2), we have

sup
x>0

∫ +∞

−∞
|fI(x+ Iy)|2dy

= sup
x>0

∫ +∞

−∞
|F (x+ Iy)|2dy + sup

x>0

∫ +∞

−∞
|G(x+ Iy)|2dy

=

∫ +∞

−∞
|F (Iy)|2dy +

∫ +∞

−∞
|G(Iy)|2dy =

∫ +∞

−∞
|fI(Iy)|2dy.

(4.3)

In H2(Π+,I) we define the scalar product

〈f, g〉H2(Π+,I) =

∫ +∞

−∞
gI(Iy)fI(Iy)dy,

where fI(Iy), gI(Iy) denote the nontangential values of f, g at Iy on Π+,I . This
scalar product gives the norm

‖f‖H2(Π+,I) =

(∫ +∞

−∞
|fI(Iy)|2dy

) 1
2



Vol.83	(2015)	 Realizations	of	Slice	Hyperholomorphic	Generalized	Functions	 109Realizations of Slice Hyperholomorphic Generalized Functions 19

(which is finite by our assumptions).

Proposition 4.2. Let f be slice hyperholomorphic in H+ and assume that f ∈H2(Π+,I)
for some I ∈ S. Then for all J ∈ S the following inequalities hold,

1

2
‖f‖H2(Π+,I) ≤ ‖f‖H2(Π+,J ) ≤ 2‖f‖H2(Π+,I).

Proof. Formula (2.6) implies the inequality

|f(x+ Jy)| ≤ |f(x+ Iy)|+ |f(x− Iy)|,

and also

|f(x+ Jy)|2 ≤ 2(|f(x+ Iy)|2 + |f(x− Iy)|2). (4.4)

Using (4.3), (2.6) and (4.4) we deduce

‖f‖2H2(Π+,J )
=

∫ +∞

−∞
|fJ(Jy)|2dy = sup

x>0

∫ +∞

−∞
|fJ(x+ Jy)|2dy

≤ sup
x>0

∫ +∞

−∞
2(|fI(x+ Iy)|2 + fI(x− Iy)|2)dy

= 4

∫ +∞

−∞
|fI(Iy)|2dy

and so ‖f‖2H2(Π+,J )
≤ 4‖f‖2H2(Π+,I)

. By changing J with I we obtain the reverse

inequality and the statement follows. �

An immediate consequence of this result is:

Corollary 4.3. A function f ∈ H2(Π+,I) for some I ∈ S if and only if f ∈ H2(Π+,J)
for all J ∈ S.

We now introduce the Hardy space of the half space H+:

Definition 4.4. We define H2(H+) as the space of slice hyperholomorphic functions
on H+ such that

sup
I∈S

∫ +∞

−∞
|f(Iy)|2dy < ∞. (4.5)

We have:

Proposition 4.5. The function

k(p, q) = (p̄+ q̄)(|p|2 + 2Re(p)q̄ + q̄2)−1 (4.6)

is slice hyperholomorphic in p and q̄ on the left and on the right, respectively in its
domain of definition, i.e. for p �∈ [q̄]. The restriction of 1

2πk(p, q) to CI×CI coincides
with kΠ+(z, w). Moreover we have the equality:

k(p, q) = (|q|2 + 2Re(q)p+ p2)−1(p+ q). (4.7)



110	 D.	Alpay,	F.	Colombo,	I.	Lewkowicz	and	I.	Sabadini	 Vol.83	(2015)20 D. Alpay, F. Colombo, I. Lewkowicz and I. Sabadini

Proof. Some computations allow to obtain k(p, q) as the left slice hyperholomorphic
extension in z of kq(z) = k(z, q), by taking z on the same complex plane as q.
The function we obtain turns out to be also right slice hyperholomorphic in q̄. The
second equality follows by taking the right slice hyperholomorphic extension in q̄
and observing that it is left slice hyperholomorphic in p. �

Proposition 4.6. The kernel 1
2πk(p, q) is reproducing, i.e. for any f ∈ H2(H+),

f(p) =

∫ ∞

−∞

1

2π
k(p, Iy)f(Iy)dy.

Proof. Let q = u+ Iqv and let p = u+ Iv be the point on the sphere determined by
q and belonging to the plane CI . Then we have

f(p) =

∫ ∞

−∞

1

2π
k(p, Iy)f(Iy)dy, f(p̄) =

∫ ∞

−∞

1

2π
k(p̄, Iy)f(Iy)dy.

The extension formula (2.5) applied to kIy(p) = k(p, Iy) shows the statement. �

The following property will be useful in the sequel:

Proposition 4.7. The kernel k(p, q) satisfies

pk(p, q) + k(p, q)q = 1.

Proof. From the expression (4.6), and since q commutes with (|p|2+2Re(p)q̄+ q̄2)−1,
we have

p(p̄+ q̄)(|p|2 + 2Re(p)q̄ + q̄2)−1 + (p̄+ q̄)(|p|2 + 2Re(p)q̄ + q̄2)−1q

= (|p|2 + pq̄ + p̄q̄ + q̄2)(|p|2 + 2Re(p)q̄ + q̄2)−1 = 1. �

We know that if {φn(z)} is an orthonormal basis for H2(Π+,I), for some I ∈ S,
then

k(z, w) =

∞∑
n=1

φn(z)φn(w), (4.8)

and so the kernel k(z, w) is positive definite. We now prove the following:

Proposition 4.8. Let {φn(z)} be an orthonormal basis for H2(Π+,I), for some I ∈
S, and let {Φn(q)} = {ext(φn(z))} be the sequence of the slice hyperholomorphic
extensions of its elements. Then {Φn(q)} is an orthonormal basis for H2(H+), and

k(p, q) =

∞∑
n=1

Φn(p)Φn(q).

Proof. Let {φn(z)} be an orthonormal basis for H2(Π+,I) and let {Φn(q)} =
{ext(φn(z))} be the sequence of the slice hyperholomorphic extensions of its ele-
ments. Then {Φn(q)} is a generating set for H2(H+). In fact take any f ∈ H2(H+)
and consider its restriction to a complex plane CI , for some I ∈ S. Then, by
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choosing J ∈ S such that I, J are orthogonal, and taking q = x + Iy we have
fI(x+ Iy) = F (x+ Iy) +G(x+ Iy)J with F,G holomorphic on Π+,I and

∫ +∞

−∞
|f(Iy)|2dy =

∫ +∞

−∞
(|F (Iy)|2 + |G(Iy)|2)dy < ∞

and, as a consequence,
∫ +∞

−∞
|F (Iy)|2dy ≤

∫ +∞

−∞
(|F (Iy)|2 + |G(Iy)|2)dy < ∞.

We deduce that both∫ +∞

−∞
|F (Iy)|2dy and

∫ +∞

−∞
|G(Iy)|2dy

are finite and so F,G belong to H2(Π+,I). We can write F (x+ Iy) =
∑∞

n=1 φn(z)an
and G(x+ Iy) =

∑∞
n=1 φn(z)bn, thus fI(x+ Iy) =

∑∞
n=1 φn(z)(an+ bnJ). By taking

the extension with respect to z we finally obtain f(q) =
∑∞

n=1Φn(q)(an+ bnJ). The
fact that {Φn(p)} is made by orthonormal elements (thus linearly independent) in
H2(H+) follows from

〈Φn(p),Φm(p)〉H2(Π+,Ip )
=

∫ ∞

−∞
Φm(Ipy)Φn(Ipy)dy

=

∫ ∞

−∞
φm(Ipy)φn(Ipy)dy = δnm.

Then (4.8) yields

k(p, w) = extzk(z, w) =
∞∑
n=1

extz(φn)(z)φn(w) =
∞∑
n=1

Φn(p)φn(w),

where we have written extz to emphasize that we are taking the extension in the
variable z (note that in this way we have obtained the kernel written in the form

(4.6)). Now we observe that the function
∑∞

n=1Φn(p)Φn(q) is slice hyperholomorphic
on the left and on the right with respect to p and q̄, respectively, and coincides with
k(p, w) when restricted to the plane containing w. By the uniqueness of the extension

we have k(p, q) =
∑∞

n=1Φn(p)Φn(q), and the statement follows. �

We now introduce the Blaschke factors in the half space H+.

Definition 4.9. For a ∈ H+ set

ba(p) = (p+ ā)−� � (p− a).

The function ba(p) is called Blaschke factor at a in the half space H+.

Remark 4.10. The function ba(p) is defined outside the sphere [−a] as it can be
easily seen by rewriting it as

ba(p) = (p2 + 2Re(a)p+ |a|2)−1(p+ a) � (p− a) = (p2 + 2Re(a)p+ |a|2)−1(p2 − a2)

and it has a zero for p = a. Note in fact that p = −a is not a zero since it is a pole
(of order 0). When a ∈ R the function ba(p) = (p+a)−1(p−a) has a pole at p = −a
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and a zero at a. A Blaschke factor is slice hyperholomorphic where it is defined, by
construction.

We have the following result which characterizes the convergence of a Blaschke
product. We denote by Π� the �-product:

Theorem 4.11. Let {aj} ⊂ H+, j = 1, 2, . . . be a sequence of quaternions such that∑
j≥1Re(aj) < ∞. Then the function

B(p) := Π�
j≥1(p+ āj)

−� � (p− aj), (4.9)

converges uniformly on the compact subsets of H+.

Proof. We reason as in the proof of the corresponding result in the complex case
(but see also the proof of Theorem 5.6 in [5]). We note that, see Remark 5.4 in [5],
we can write

(p+ āj)
−� � (p− aj) = (p̃+ āj)

−1(p̃− aj) (4.10)

where p̃ = λc(p)−1pλc(p) and λc(p) = p+ aj (note that λc(p) �= 0 for p �∈ [−aj ]) and
so

(p+ āj)
−� � (p− aj) = (p̃+ āj)

−1(p̃− aj) = 1− 2Re(aj)(p̃+ āj)
−1. (4.11)

By taking the modulus of the right hand side of (4.9), using (4.11), and reasoning
as in the complex case, we conclude that the Blaschke product converges if and only
if
∑∞

j=1Re(aj) < ∞. �

As in the unit disk case, we have two kinds of Blaschke factors. In fact, products
of the form

ba(p) � bā(p) = ((p+ ā)−� � (p− a)) � ((p+ a)−� � (p− ā))

can be written as

ba(p) � bā(p) = (p2 + 2Re(a)p+ |a|2)−1(p2 − 2Re(a)p+ |a|2),

and they admit the sphere [a] as set of zeros. Note that slice regular functions which
vanish at two different points belonging to the same sphere in reality vanish on the
whole sphere (see [25, Corollary 4.3.7]. Thus if we want to construct a Blaschke prod-
uct vanishing at some prescribed points and spheres, it is convenient to introduce
the following:

Definition 4.12. For a ∈ H+ set

b[a](p) = (p2 + 2Re(a)p+ |a|2)−1(p2 − 2Re(a)p+ |a|2).

The function ba(p) is called Blaschke factor at the sphere [a] in the half space H+.

Note that the definition is well posed since it does not depend on the choice of
the point a. As a consequence of Theorem 4.11 we have:
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Corollary 4.13. Let {cj} ⊂ H+, j = 1, 2, . . . be a sequence of quaternions such that∑
j≥1Re(cj) < ∞. Then the function

B(p) := Πj≥1(p
2 + 2Re(cj)p+ |cj |2)−1(p2 − 2Re(cj)p+ |cj |2), (4.12)

converges uniformly on the compact subsets of H+.

Proof. It is sufficient to write B(p) =
∏

j≥1 b[cj ](p) =
∏

j≥1 bcj (p) � bc̄j (p) and to

observe that
∑

j≥1Re(cj) < ∞ by hypothesis. �

To state the next result, we need to repeat the notion of multiplicity of a sphere
of zeros and of a point which is an isolated zero.

We say that the multiplicity of the spherical zero [cj ] of a function Q(p) is mj

if mj is the maximum of the integers m such that (p2 + 2Re(cj)p + |cj |2)m divides
Q(p).

Let αj ∈ H \ R and let

Q(p) = (p−α1)�. . .�(p−αn)�g(p), αj+1 �= ᾱj , j = 1, . . . , n−1, g(p) �= 0. (4.13)

We say that α1 is a zero of Q of multiplicity 1 if αj �∈ [α1] for j = 2, . . . , n.

We say that α1 is a zero of Q ofmultiplicity n ≥ 2 if αj ∈ [α1] for all j = 2, . . . , n.

If αj ∈ R we can repeat the notion of multiplicity of α1 where (4.13) holds by
removing the assumption αj+1 �= ᾱj . This definition coincides with the standard
notion of multiplicity since, in this case, the �-product reduces to the pointwise
product. Note that if a function has a sphere of zeros at [α] with multiplicity m,
at most one point on [α] can have higher multiplicity; in fact if there are two such
points it means that the sphere [α] of zeros has higher multiplicity.

Thus we can prove the following:

Theorem 4.14. A Blaschke product having zeros at the set

Z = {(a1, µ1), (a2, µ2), . . . , ([c1], ν1), ([c2], ν2), . . .}

where aj ∈ H+, aj have respective multiplicities µj ≥ 1, [ai] �= [aj ] if i �= j, ci ∈ H+,
the spheres [cj ] have respective multiplicities νj ≥ 1, j = 1, 2, . . ., [ci] �= [cj ] if i �= j
and ∑

i,j≥1

(
µj(1− |aj |) + 2νi(1− |ci|)

)
< ∞

is given by
∏
i≥1

(b[ci](p))
νi

�∏
j≥1

�µj∏
k=1

(bajk(p))
�µj ,

where a11 = a1 and ajk ∈ [aj ] are such that αj+1 �= ᾱj, j = 1, . . . , n−1, if αj ∈ H\R,
k = 1, 2, 3, . . . , µj.

Proof. The Blaschke product converges and defines a slice hyperholomorphic func-
tion by Theorem 4.11 and its Corollary 4.13. Let us consider the product:

�µ1∏
i=1

(Bai1(p)) = Ba11(p) � Ba12(p) � . . . � Ba1µ1
(p). (4.14)
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As we already observed in the proof of Proposition 5.10 in [5] this product admits
a zero at the point a11 = a1 and it is a zero of multiplicity 1 if n1 = 1; if n1 ≥ 2,
the other zeros are ã12, . . . , ã1n1 where ã1j belong to the sphere [a1j ] = [a1]. Thus
ã12, . . . , ã1n1 all coincide with a1 which is the only zero of the product (4.14) and it
has multiplicity µ1. Let us now consider r ≥ 2 and

�µr∏
j=1

(Barj (p)) = Bar1(p) � . . . � Barnr
(p), (4.15)

and set

Br−1(p) :=

�(r−1)∏
i≥1

�µj∏
k=1

(Bajk(p)).

Then from the formula that relates the �-product to the pointwise product (see
Proposition 4.3.22 in [25]) we have that:

Br−1(p) � Bar1(p) = Br−1(p)Bar1(Br−1(p)
−1pBr−1(p))

has a zero at ar if and only if Bar1(Br−1(ar)
−1arBr−1(ar)) = 0, i.e. if and only if

ar1 = Br−1(ar)
−1arBr−1(ar). If nr = 1 then ar is a zero of multiplicity 1 while if

µr ≥ 2, all the other zeros of the product (4.15) belongs to the sphere [ar] thus the
zero ar has multiplicity µr. �

We conclude this section by proving that the operator of multiplication by a
Blaschke factor is an isometry. In the proof we are in need of the notion of conjugate
of a function f . Given a slice hyperholomorphic function f consider its restriction to a
complex plane CI and write it, as customary, in the form fI(z) = F (z)+G(z)J where
J is an element in S orthogonal to I and F,G are CI -valued holomorphic functions.
Define f c(p) = ext(F (z̄)−G(z)J) where the extension operator is defined in (2.5).
Note that if f(p) =

∑
n≥0 p

nan then f c(p)
∑

n≥0 p
nān. We have the following:

Lemma 4.15. Let f ∈ H2(H+). Then ‖f‖H2(H+) = ‖f c‖H2(H+).

Proof. By definition we have

‖f‖2H2(Π+,I)
=

∫ +∞

−∞
|fI(Iy)|2dy =

∫ +∞

−∞
(|F (Iy)|2 + |G(Iy)|2)dy

and

‖f c‖2H2(Π+,I)
=

∫ +∞

−∞
|f c

I (Iy)|2dy =

∫ +∞

−∞
(|F (−Iy)|2 + |G(Iy)|2)dy

=

∫ +∞

−∞
(|F (−Iy)|2 + |G(Iy)|2)dy.

Thus ‖f‖2H2(Π+,I)
= ‖f c‖2H2(Π+,I)

and taking the supremum for I ∈ S the statement

follows. �
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Theorem 4.16. Let ba be a Blaschke factor. The operator

Mba : f �→ ba � f

is an isometry from H2(H+) into itself.

Proof. Recall that, by (4.10), we can write ba(p) = (p̃ + ā)−�(p̃ − a) for p̃ =
λc(p)−1pλ(p). Let us set p̃ = Iy where I ∈ S. We have

|ba(Iy)| = |(Iy + ā)−1(Iy − a)| = | − (Iy + ā)−1(Iy + a)| = 1.

Similarly, |bca(Iy)| = 1. We now observe that for any two functions f and g we have
(f�g)c = gc�f c. We prove this equality by showing that the two functions (f�g)c and
gc � f c coincide on a complex plane (so the needed equality follows from the identity
principle). Using the notation introduced above, let us write fI(z) = F (z) +G(z)J
and gI(z) = H(z) + L(z)J . We have

(f � g)I(z) = fI(z) � gI(z) = (F (z)H(z)−G(z)L(z̄)) + (F (z)L(z) +G(z)H(z̄))J

so, by definition of (f � g)c, we have

(f � g)cI(z) = (F (z̄)H(z̄)−G(z̄)L(z))− (F (z)L(z) +G(z)H(z̄))J

and

(gc � f c)I(z) = (H(z̄)− L(z)J) � (F (z̄)−G(z)J)

= (H(z̄)F (z̄)− L(z)G(z̄))− (H(z̄)G(z) + L(z)F (z))J

the two expressions coincide since the functions F,G,H,L are CI -valued and thus
they commute. To compute ‖ba � f‖H2(H+), where f ∈ H2(H+), we follow an idea

used in [2] and we compute ‖(ba � f)c‖2H2(H+). Note that (f c � bca)(x+ Iy) = 0 where

f c(x+ Iy) = 0, i.e. on a set of isolated points on Π+,I while, if q = f c(x+ Iy) �= 0,
(f c � bca)(x + Iy) = f c(x + Iy)bca(q

−1(x + Iy)q), see [25, Proposition 4.3.22], where
q−1(x + Iy)q = x+ I ′y, see [37, Proposition 2.22]. Thus we have (f c � bca)(Iy) =
f c(Iy)bca(I

′y) almost everywhere and

‖ba � f‖2H2(H+) = ‖(ba � f)c‖2H2(H+)

= sup
I∈S

∫ +∞

−∞
|(f c � bca)(Iy)|2dy

= sup
I∈S

∫ +∞

−∞
|f c(Iy)bca(I

′y)|2dy

= sup
I∈S

∫ +∞

−∞
|f c(Iy)|2|bca(I ′y)|2dy

= sup
I∈S

∫ +∞

−∞
|f c(Iy)|2dy

= ‖f c‖2H2(H+).

By the previous lemma, we have ‖f c‖2H2(H+) = ‖f‖2H2(H+) and this concludes the

proof. �
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Blaschke factors will provide a concrete example of the functions studied in
Section 7, see Example 7 there.

5. The Schauder-Tychonoff fixed point theorem

In this section we extend the Schauder-Tychonoff fixed point theorem to the quater-
nionic setting. The proof repeats that of the classical case given in [29], in fact it is
readily seen that the arguments hold also in the quaternionic case, but we include
it for the reader’s convenience. This results is crucial to prove an invariant subspace
theorem for contractions in a Pontryagin spaces.

5.1. The Schauder-Tychonoff fixed point theorem

In the sequel we will use a consequence of the Ascoli-Arzelà theorem that we state
in this corollary.

Lemma 5.1 (Corollary of Ascoli-Arzelá theorem). Let G1 be a compact subset of a
topological group G and let K be a bounded subset of the space of quaternionic-valued
continuous functions C(G1). Then K is conditionally compact if and only if for every
ε > 0 there is a neighborhood U of the identity in G such that |f(t) − f(s)| < ε for
every f ∈ K and every pair s, t ∈ G1 with t ∈ Us.

Proof. It is Corollary 9 p. 267 in [29] and its proof can be obtained in the same
arguments. �

Definition 5.2. We say that a quaternionic topological vector space V has the fixed
point property if for every continuous mapping T : V → V there exists u ∈ V such
that u = T (u).

To show our result we need the following Lemmas:

Lemma 5.3. Let C be the subspace of �2(H) defined by

C = {{ξn} ∈ �2(H) : |ξn| ≤ 1/n, ∀n ∈ N}.

Then C has the fixed point property.

Proof. Let Pn : C → C be the map

Pn(ξ1, ξ2, . . . , ξn, ξn+1 . . .) = (ξ1, ξ2, . . . , ξn, 0, 0, . . .).

Then Cn = Pn(C) is homeomorphic to the closed sphere in H ∼= R4n. Let now
T : C → C be a continuous map. Then PnT : Cn → Cn is continuous. Brower
theorem implies that there is a fixed point ζn ∈ Cn ⊆ C and so

|ζn − T (ζn)| ≤

( ∞∑
i=n+1

1

i2

) 1
2

.

Since C is compact, then {ζn} contains a subsequence converging to a point which
is a fixed point of T . �
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Lemma 5.4. Let K be a compact convex subset of a locally convex linear quaternionic
space V and let T : K → K be continuous. If K contains at least two points, then
there exists a proper closed convex subset K1 ⊂ K such that T (K1) ⊆ K1.

Proof. It is possible to assume that K has the V∗ topology.

We will say that a set of continuous linear functionals F is determined by
another set G, if for every f ∈ F and ε > 0 there exists a neighborhood

N (0; γ, δ) = {v ∈ V : |g(v)| < δ, g ∈ γ},

where γ is a finite subset ofG with the property that if u, v ∈ K and u−v ∈ N (0; γ, δ)
then |f(Tu)− f(Tv)| < ε. It is clear that if F is determined by G, then g(u) = g(v)
for g ∈ G implies that f(Tu) = f(Tv) for f ∈ F . Each continuous linear functional
f is determined by some countable set of functional G = {gm}m∈N.

Thanks to Lemma 5.1 the scalar function f(Tu) is uniformly continuous on the
compact set K. Hence for every integer n there is a neighborhood N (0; γn, δn) of the
origin in V, given by a set of linear continuous functionals γn and a δn > 0, such that
if u, v ∈ K and u− v ∈ N (0; γn, δn) then |f(Tu)− f(Tv)| < 1/n. Let G =

⋃∞
n=1 γn

then f is determined by G. It follows that if F is a countable subset of V∗, there
exists a countable subset GF of V∗ such that each f ∈ F is determined by GF .
We claim that each continuous linear functional f can be included in a countable
self-determined set G of functionals. In fact, if f is determined by the countable
set G1, let each functional in G1 be determined by the countable set G2; then let
each functional in G2 be determined by the countable set G3, and so on. We obtain
a sequence {Gi} and we set G = {f} ∪ ∪∞

i=1Gi. Assume now that K contains two
points u, v, u �= v and let f ∈ V∗ be such that f(u) �= f(v). Let G = {gi} be a
countable self-determined set of continuous linear functionals containing f . Since K
is compact, gi(K) is a bounded set of scalars for every i and since we can multiply gi
by a suitable constant we may suppose that gi(K) ≤ 1/i. In this case the mapping
H : K → �2(H), defined by

H(k) := [gi(k)]

is a continuous mapping of K onto a compact convex subset K0 of the subspace C
of �2(H). Then C contains trivially at least two points since there are at least two
points in �2(C), see [29]. Consider the mapping

T0 = HTH−1 : K0 → K0

since G is self determined T0 is single-valued. To see that T0 is continuous, let b0 ∈ K0

and ε ∈ (0, 1). Choose N such that
∑∞

i=N+1 1/i
2 < ε. Then G is self-determined,

there exists a δ > 0 and an m such that if |gj(u)− gj(v)| < δ, j = 1, . . . ,m then

|gi(Tu)− gi(Tv)| <
√
ε/N, i = 1, . . . , N. (5.1)
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Thus if |b− b0| < δ and u and v are point in K with b = [gi(u)] and b0 = [gi(v)] then
(5.1) holds and

|T0(b)− T0(b0)|2 = |HTH−1(b)−HTH−1(b0)|2

≤
N∑
i=1

|gi(Tu)− gi(Tv)|2 + 2
∞∑

i=N+1

1/i2

< 3ε.

So T0 is a continuous mapping of K0 into itself. From the fixed point property of C,
see Lemma 5.3, it follows that T0 has a fixed point k0. Thus

TH(k0) ⊆ H−1T0(k0) = H−1(k0).

Setting K1 = H−1(k0) we note that K1 is a proper closed subset of K, and that
T (K1) ⊆ K1 The linearity of H implies that K1 is convex. This concludes the proof.

�

Theorem 5.5 (Schauder-Tychonoff). A compact convex subset of a locally convex
quaternionic linear space has the fixed point property.

Proof. By the Zorn lemma there exists a minimal convex subset of K1 of K with
the property that TK1 ⊆ K1. By Lemma 5.4 this minimal subset contains only one
point. �

5.2. An invariant subspace theorem

As we explained at the beginning of the section, the Schauder-Tychonoff theorem
is now used to prove an invariant subspace theorem for contractions in quater-
nionic Pontryagin spaces. This theorem is used in the realization theorems to prove
the existence of slice hyperholomorphic extensions of certain functions defined in
a neighborhood of a point on the positive axis. In the complex numbers case, this
theorem can be found in [28, Theorem 1.3.11]. We also refer to [28, Notes on chapter
1] for historical notes on the theorem.

Theorem 5.6. A contraction in a quaternionic Pontryagin space has a unique max-
imal invariant negative subspace, and it is one-to-one on it.

Proof. The proof of [28] carries up to the quaternionic setting, and we recall the main
lines for the convenience of the reader. Let A be a contraction in the Pontryagin
space P. To prove that A has a maximal negative invariant subspace we first recall
a well known fact in the theory of linear fractional transformations (see for instance

[31] for more details). Let P = P+[
·
+]P− be a fundamental decomposition of P. Let

A =

(
A11 A12

A21 A22

)

be the block decomposition of A along P+[
·
+]P−. Since A is a contraction, and hence

a bicontraction (see [6][Theorem 7.2]) we have

A21A
∗
21 −A22A

∗
22 ≤ −I,
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and it follows that A−1
22 and A−1

22 A21 are strict contractions. Thus the map

L(X) = (A11X +A12)(A21X +A22)
−1

is well defined, and sends in fact the closed unit ball B1 of L(P,P+) into itself. The
main point in the proof of the theorem is to show that the map L is continuous in
the weak operator topology from B1 into itself. Since B1 is compact in this topology
(and of course convex) the Schauder-Tychonoff theorem implies that L has a unique
fixed point, say X. To conclude one notes (see Theorem [28, 1.3.10]) that the space
spanned by the elements

f +Xf, f ∈ P− (5.1)

is then negative. It is maximal negative because X cannot have a kernel (any f such
that Xf = 0 will lead to a strictly positive element of (5.1)). �

6. The spaces P(S)

We now introduce the counterparts of the kernels (1.3) in the slice hyperholomorphic
setting. In the quaternionic case signature operators are defined as in the complex
case. Here we consider real signature operators, that is, which are unitarily equivalent
to an operator of the form (

I+ 0
0 −I−

)
.

It is clear that the S-spectrum is concentrated on ±1, so if J is a signature operator
we define ν−(J) as in the complex case. This follows by simple computations, that
is 1± 2Re(s0) + |s|2 = 0 which give ±1.

In next result we set L(H)
def.
= L(H,H) where H is a two sided quaternionic

Hilbert space.

Definition 6.1. Let H1 and H2 be two quaternionic two-sided Hilbert spaces and let
J1 ∈ L(H1) and J2 ∈ L(H2) be two real signature operators such that ν−(J1) =
ν−(J2) < ∞. The L(H1,H2)-valued function S slice hypermeromorphic in an axially
symmetric s-domain Ω which intersects the positive real line belongs to the class
Sκ(J1, J2) if the kernel

KS(p, q) = J2k(p, q)− S(p) � k(p, q) �r J1S(q)
∗

has κ negative squares in Ω, where k(p, q) is defined in (4.6).

We do not mention the dependence of the class on Ω. As we will see, every
element of these classes has a unique meromorphic extension to H+.

To reduce the case of arbitrary signature operators (with same number of neg-
ative squares) to the case of the identity, we define the Potapov-Ginzburg transform
in the present setting. We refer to the book [24] for the classical case, even though
some formulas are also recalled in [1].

We begin with a lemma. A proof in the classical case can be found in [8, Lemma
4.4.3, p. 164] (the argument there is based on [9, Lemma 2.1, p. 20]) but we repeat
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the argument for completeness. First a remark: a matrix A ∈ Hm×m is not invertible
if and only if there exists c �= 0 ∈ Hm such that c∗A = 0. This fact can be seen
for instance from [49, Theorem 7, p. 202], where it is shown that a matrix over a
division ring has row rank equal to the column rank, or [63, Corollary 1.1.8].

Lemma 6.2. Let T be a Hm×m-valued function slice hyperholomorphic in an axially
symmetric s-domain Ω which intersect the positive real line, and such that the kernel

T (p) � k(p, q) �r T (q)
∗ − k(p, q)Im

has a finite number of negative squares, say κ, in Ω. Then T is invertible in Ω, with
the possible exception of a countable number of spheres.

Proof. We first show that T is invertible on Ω∩R+ with the possible exception of a
countable number of points. Let x1, . . . , xM be zeros of T . Then, there exist vectors
c1, . . . , cM such that

c∗jT (xj) = 0, j = 1, . . . ,M.

Thus

mjk = c∗jk(xj , xk)ck = −
c∗jck

xj + xk
.

To conclude we apply [9, Lemma 2.1, p. 20] to the matrix with block entries χ(mjk)
(which is unitarily equivalent to the matrix χ((mjk)))) to see that the M×M matrix
with jk entry mjk is strictly negative, and so M ≤ k. The result in [9, Lemma 2.1,
p. 20] is proved for the case of complex numbers, but extends to the quaternionic
case, as is seen by using the map χ defined in (2.3) and Lemma 2.2. �

Let now S ∈ Sκ(J1, J2) and let

S =

(
S11 S12

S21 S22

)
(6.1)

be the decomposition of S according to fundamental decompositions of the coefficient
spaces. In the statement of the following theorem, we denote by I2+ the identity of
the positive space in the fundamental decomposition of H2.

Theorem 6.3. Let S ∈ Sκ(J1, J2), defined in an axially symmetric s-domain Ω inter-
secting the real positive axis, and with decomposition (6.1). Then the function S22 is
�-invertible in Ω, with the possible exception of a countable number of spheres. Let

A(p) =

(
I2+ S12(p)
0 S22(p)

)
and Σ(p) =

(
S11 − S12 � S

−�
22 � S21 S12 � S

−�
22

S−�
22 � S21 S−�

22

)
(p). (6.2)

Then,

J2k(p, q)− S(p) � k(p, q) �r J1S(q)
∗

= A(p) � (k(p, q)− Σ(p) � k(p, q) �r Σ(q)
∗) �r A(q)

∗,
(6.3)

and the kernel

k(p, q)− Σ(p) � k(p, q) �r Σ(q)
∗ (6.4)
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has a finite number of negative squares on the domain of definition of Σ in Ω and
hence has a slice hyperholomorphic extension to the whole of the right half-space,
with the possible exception of a finite number of spheres.

The function Σ is called the Potapov-Ginzburg transform of S, see e.g. [9, (i),
p. 25].

Proof of Theorem 6.3. To show that S22 is �-invertible, we note that

(
0 I

)
(J2k(p, q)− S(p) � k(p, q) �r J1S(q)

∗)

(
0
I

)

= S22(p) � k(p, q) �r S22(q)
∗ − k(p, q)Im.

This last kernel has therefore a finite number of negative squares, and Lemma 6.2 al-
lows to conclude that S22 is �-invertible, and the definition of the Potapov-Ginzburg
transform makes sense.

When p ∈ Ω∩R+, the star product is replaced by the pointwise product and the
(6.3) then follow from [8, p. 156]. The case of p ∈ Ω follows by slice hyperholomorphic
extension. The claim on the number of negative squares of (6.4) follows

k(p, q)− Σ(p) � k(p, q) �r Σ(q)
∗

= A(p)−� � (J2k(p, q)− S(p) � k(p, q) �r J1S(q)
∗) �r (A(q)∗)−�r , (6.5)

and from an application of Proposition 2.4. �

Definition 6.4. Let S ∈ Sκ(J1, J2). We denote by P(S) the associated reproducing
kernel Pontryagin space of H2-valued functions defined in Ω and with reproducing
kernel KS(p, q).

7. Realization for elements in Sκ(J1, J2)

In this section we present a realization theorem for elements in Sκ(J1, J2), where
the state space is the reproducing kernel Pontryagin space P(S) (see Definition 6.4
for the latter). In the case κ = 0 one could get the existence of a realization using a
Cayley transform in the variable and use our previous results in [4]. Here we give a
direct proof to get a realization defined in P(S), taking into account that κ may be
strictly positive. We begin with a definition:

Definition 7.1. Let P1 and P2 be two quaternionic right Pontryagin spaces. A pair of
operators (G,A) ∈ L(P1,P2)×L(P1) is called observable (or closely outer connected)
if

∞⋂
n=0

kerGAn = {0} .

The terminology observable is the one from the theory of linear systems, while
closely outer connected has been used in operator theory in particular by Krein and
Langer, see [8].
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Theorem 7.2. Let x0 be a strictly positive real number. A function S slice hyperholo-
morphic in an axially symmetric s-domain Ω containing x0 is the restriction to Ω
of an element of Sκ(J1, J2) if and only if it can be written as

S(p) = H − (p− x0)
(
G− (p− x0)(p+ x0)

−1GA
)

×
(
|p− x0|2

|p+ x0|2
A2 − 2Re

(
p− x0
p+ x0

)
A+ I

)−1

F,
(7.1)

where A is a linear bounded operator in a right-sided quaternionic Pontryagin space
Πκ of index κ, and, with B = −(I + x0A), the operator matrix

(
B F
G H

)
:

(
Πk

H1

)
−→

(
Πk

H2

)

is co-isometric. In particular S has a unique slice hypermeromorphic extension to
H+. Furthermore, when the pair (G,A) is observable, the realization is unique up to
a unitary isomorphism of Pontryagin right quaternionic spaces.

Remark 7.3. When the operators are finite matrices we note that formula (7.1) can
be rewritten as:

S(p) = H − (p− x0)G � ((x0 + p)I + (p− x0)B)−�F.

Sometimes, and by abuse of notation, we will use this expression also for the infinite
dimensional case, see Proposition 3.24 for more information.

Proof of Theorem 7.2. We proceed in a number of steps, and first prove in Steps 1-8
that a realization of the asserted type exists with Πk = P(S). We denote by H2(J2)
the space H2 endowed with the indefinite inner product

[u, v]J2 = [u, J2v]

and similarly H1(J1). Both H1(J1) and H2(J2) are quaternionic Pontryagin spaces,
and they have the same index.

Following [3, pp. 51-52] we introduce a relation R in (P(S)⊕H2(J2))× (P(S)⊕
H1(J1)) by the linear span of the vectors of the form (U, V ) where

U =

(
KS(·, q)(x0 − q)u

(x0 − q)v

)

V =

(
KS(·, q)(x0 + q)u− 2x0KS(·, x0)u+

√
2x0KS(·, x0)(x0 − q)v√

2x0(S(q)
∗ − S(x0)

∗)u+ S(x0)
∗(x0 − q)v

)
.

STEP 1: The relation R is isometric.

Indeed, let (F1, G1) and (F2, G2) be two elements in the relation, corresponding
to q1 ∈ Ω, u1, v1 ∈ H1 and to q2 ∈ Ω, u2, v2 ∈ H2 respectively. On the one hand we
have

[F2, F1] = [(x0 − q1)KS(q1, q2)(x0 − q2)u2, u1] + [(x0 − q1)J2(x0 − q2)v2, v1].
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On the other hand, with G1 =

(
g1
h1

)
where

g1(·) = KS(·, q1)(x0 + q1)u1 − 2x0KS(·, x0)u1 +
√
2x0KS(·, x0)(x0 − q1)v1,

h1 =
√
2x0(S(q1)

∗ − S(x0)
∗)u1 + S(x0)

∗(x0 − q1)v1

(and similarly for G2) we have

[G2, G1] = [g2, g1] + [h2, h1].

We want to show that

[F2, F1] = [g2, g1] + [h2, h1]. (7.2)

In the computations of these inner products, there are terms which involve only
u1, u2, terms which involve only v1, v2 and similarly for u1, v2 and v1, u2. We now
write these inner terms separately:

Terms involving u1, u2. To show that these terms are the same on both sides of
(7.2) we have to check that

[(x0 − q1)KS(q1, q2)(x0 − q2)u2, u1]

= [(x0 + q1) (KS(q1, q2)(x0 + q2)− 2x0KS(x0, q2)(x0 + q2)

−2x0(x0 + q1)KS(q1, x0) + 4x20KS(x0, x0)
)
u2, u1]

+ 2x0[(S(q1)− S(x0))J1(S(q2)
∗ − S(x0))u2, u1].

Using

k(x0, x0) =
1

2x0
and KS(x0, x0) =

1

2x0
(J2 − S(x0)J1S(x0)

∗) , (7.3)

we see that this is equivalent to proving that

(x0 − q1)J2k(q1, q2)(x0 − q2)− (x0 − q1)S(q1)J1k(q1, q2)S(q2)
∗(x0 − q2)

= (x0 + q1)J2k(q1, q2)(x0 + q2)− (x0 + q1)S(q1)J1k(q1, q2)S(q2)
∗(x0 + q2)

− 2x0(J2 − S(q1)J1S(x0)
∗)− 2x0(J2 − S(x0)J1S(q2)

∗)

+ 2x0 (J2 − S(x0)J1S(x0)
∗)

+ 2x0(S(q1)− S(x0)J1(S(q2)
∗ − S(x0)

∗).

But this amounts to checking that

q1k(q1, q2) + k(q1, q2)q2 = 1,

which has been seen to hold in Proposition 4.7.

Terms involving v1, v2. To show that these terms are the same on both sides of
(7.2) we have to check that

(x0 − q1)J2(x0 − q2) = [(x0 − q1)S(x0)J1S(x0)
∗(x0 − q2)v2, v1]

+ 2x0[(x0 − q1)KS(x0, x0)(x0 − q2)v2, v1].

This follows directly from the formula for KS(x0, x0), see (7.3).
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Terms involving u2, v1. There are no such terms on the left side of (7.2) and so
we need to show that the terms on the right add up to 0. This is the case since

√
2x0[(x0 − q1)S(x0)J1(S(q2)

∗ − S(x0)
∗)u2, v1]

+
√
2x0[(x0 − q1) (KS(x0, q2)(x0 + q2)− 2x0KS(x0, x0))u2, v1] =

= [Xu2, v1]

= 0

with

X =
√
2x0(x0 − q1)S(x0)J1(S(q2)

∗ − S(x0)
∗)

+
√
2x0(x0 − q1)× (J2 − S(x0)J1S(q2)

∗)

−
√
2x0(x0 − q1) (J2 − S(x0)J1S(x0)

∗) = 0

since

KS(x0, q2)(x0 + q2) = J2 − S(x0)J1S(q2)
∗.

Terms involving u1, v2. These form a symmetric expression to the previous one,
and will not be written down.

STEP 2: The domain of R is dense.

To prove this step, let

(
f
w

)
∈ (P(S)⊕H2(J2)) be orthogonal to DomR. Then,

for all q ∈ Ω and u, v ∈ H2 we have

[(x0 − q)f(q), u] + [(x0 − q)w, v]J2 = 0.

It follows that w = 0 and that

(x0 − q)f(q) ≡ 0, q ∈ Ω,

and so f ≡ 0 in Ω.

STEP 3: The relation R extends to the graph of an isometry

Indeed, the spaces P(S) ⊕ H2(J2) and P(S) ⊕ H1(J1) are Pontryagin spaces
with same index. By the quaternionic version of a theorem of Shumlyan (see [8,
Theorem 1.4.1, p. 27] for the classical case and [5, Theorem 7.2] for the quaternionic
case) a densely defined contractive relation defined on a pair of Pontryagin spaces
with same index extends to the graph of a contraction.

In preparation to the next step we introduce an operator Rx0 as follows. Let H
be a two-sided quaternionic Hilbert space. A H-valued function slice hyperholomor-
phic in a neighborhood of x0 > 0 can be written as a convergent power series

f(p) =
∞∑
n=0

(p− x0)
nfn,

where the coefficients fn ∈ H. We define

(Rx0f)(p) = (p−x0)
−1(f(p)−f(x0))

def.
=

{ ∑∞
n=1(p− x0)

n−1fn, p �= x0,

f1, p = x0.
(7.4)
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STEP 4: Let V denote the isometry in the previous step. We compute V ∗ and show
that, with

V ∗ =

(
B F
G H

)
: P(S)⊕H2(J2) =⇒ P(S)⊕H2(J1), (7.5)

we have H = S(x0) and

Bf = −(I + 2x0Rx0)f, (7.6)

Fu = −
√
2x0Rx0Su, (7.7)

Gf =
√
2x0f(x0). (7.8)

To compute (7.6) let f ∈ P(S) and (p, u) ∈ Ω×H2. We have

[(x0 − p)(Bf(p)), u] = [Bf,KS(·, p)(x0 − p)u]

= [f,B∗(KS(·, p)(x0 − p)u)]

= [f,KS(·, p)(x0 + p)u− 2x0KS(·, x0)u]
= [(p+ x0)f(p)− 2x0f(x0), u],

and so

(x0 − p)(Bf(p)) = (p+ x0)f(p)− 2x0f(x0), p ∈ Ω,

which can be rewritten as (7.6).

Similarly, to compute (7.7) let v ∈ H2. We have:

[(x0 − p)((Fv)(p)), u] = [Fv,KS(·, p)(x0 − p)u]

= [v,
√
2x0(S(p)

∗ − S(x0)
∗)u]

= [
√
2x0(S(p)− S(x0))v, u],

and so

(x0 − p)(Fv(p)) =
√
2x0(S(p)− S(x0))v, p ∈ Ω.

Finally, we have:

[(x0 − p)Gf, v] = [Gf, (x0 − p)v]

= [f,G∗(x0 − p)v)]

= [f,
√
2x0KS(·, x0)(x0 − p)v]

=
√
2x0[(x0 − p)f(x0), v].

where we have used (2.1) to get the first equality.

STEP 5: We prove (7.1) for real p near x0.

The operator I + 2x0Rx0 is bounded and so is the operator Rx0 (with x0 > 0).
Let f ∈ P(S), with power series expansion

f(p) =

∞∑
n=0

(p− x0)
nfn, f0, f1, . . . ∈ H2,
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around x0. We have for real p = x near x0:

f(x) =
∞∑
n=0

(x− x0)
nfn

=
1√
2x0

∞∑
n=0

(x− x0)
nGRn

x0
f

=
1√
2x0

G(I − (x− x0)Rx0)
−1f.

Applying this formula to f = Rx0Su = − 1√
2x0

Fu where u ∈ H1 we have

(Rx0Su)(x) = −G(2x0I − 2(x− x0)x0Rx0)
−1Fu

and so, since B = −I − 2x0Rx0 ,

S(x)u = S(x0)u+ (x− x0)(Rx0Su)(x)

= S(x0)u− (x− x0)G(2x0I − 2(x− x0)x0Rx0)
−1Fu

= S(x0)u− (x− x0)G(2x0I + (x− x0)(B + I))−1Fu

= S(x0)u− (x− x0)G((x+ x0)I + (x− x0)B)−1Fu.

STEP 6: Assume that J1 = IH1 and J2 = IH2. Then, the operator (x0+x)I+(x−x0)B
is invertible for all real x, with the possible exception of a finite set in R.

Assume first the kernel KS to be positive definite. Then, the operator matrix
(7.5) is a contraction between Hilbert spaces and so B is a Hilbert space contraction,
and the operator

I − x0 − x

x0 + x
B

is invertible for all x > 0, with the possible exception of a finite set, since |x0−x
x0+x | < 1

for such x.

Assume now that P(S) is a Pontryagin space. The operator V ∗ is a contraction
between Pontryagin spaces of same index, and so its adjoint V is a contraction (see
[6, Theorem 7.2]). So it holds that

B∗B +G∗G ≤ I.

But

〈G∗Gf, f〉 = 〈Gf,Gf〉H2 ≥ 0

since J2 = IH2 and so B is a contraction. It admits a maximal strictly negative in-
variant subspace, sayM (see [28, Theorem 1.3.11] for the complex case and Theorem
5.6 for the quaternionic case). Writing

P(S) = M[+]M[⊥],

the operator matrix representation of B is upper triangular with respect to this
decomposition where

B =

(
B11 B12

0 B22

)
.
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The operator B22 is a contraction from the Hilbert space M[⊥] into itself, and so
I − x0−x

x0+xB22 is invertible for every x > 0, with the possible exception of a finite set.
The operator B11 is a contraction from the finite dimensional anti-Hilbert space M
onto itself, and so has right eigenvalues outside the open unit ball. So the operator
I− x0−x

x0+xB11, is invertible in x > 0, except the points x �= x0 such that x+x0
x−x0

is a real
eigenvalue of B11 of modulus greater or equal to 1. There is a finite number of such
points since, see [64, Corollary 5.2, p. 39], a n × n quaternionic matrix has exactly
n right eigenvalues (counting multiplicity) up to equivalence (in other words, it has
exactly n spheres of eigenvalues).

It follows that the operator

I − x0 − x

x0 + x
B =

(
I − x0−x

x0+xB11 −x0−x
x0+xB12

0 I − x0−x
x0+xB22

)

is invertible for all x > 0, with the possible exception of a finite number of points.

STEP 7: Assume that J1 = IH1 and J2 = IH2. The function S admits a slice
hypermeromorphic extension to H+, with the possible exception of a finite number
of spheres.

We note that, for p ∈ H near x0 we can extend S(x)u computed in STEP 5 to
a slice hyperholomorphic function:

S(p)u = S(x0)u+
x0 − p

x0 + p
G �

(
I − x0 − p

x0 + p
B

)−�

Fu

= S(x0)u

+
p− x0
p+ x0

�

(
G− x0 − p̄

x0 + p̄
GB

)(
|x0 − p|2

|x0 + p|2
B2 − 2Re

(
x0 − p

x0 + p

)
B + I

)−1

Fu.

Let t = Re q
|q|2 where q = x0−p

x0+p . We have

|q|2B2 − 2(Re q)B + I

= |q|2
(
B2

11 − 2tB11 +
1

|q|2 B11B12 +B12B22 − 2tB12 +
1

|q|2

0 B2
22 − 2tB22 +

1
|q|2

)
.

By the property of the resolvent, the operator B2
22−2tB22+

1
|q|2 is invertible for

q such that 1
|q|2 is in the resolvent set of B22. Since B22 is a Hilbert space contraction,

this happens in particular when |q| < 1, see [25], proof of Theorem 4.8.11. Similarly
the operator B2

11 − 2tB11 +
1

|q|2 is invertible if and only if 1
|q|2 is in the resolvent set

of B11. Since B11 is a finite dimensional Hilbert space expansion, it has just point
S-spectrum which is inside the closed unit ball. The point S-spectrum coincides with
the set of right eigenvalues, see Remark 3.22, and it consists of a finite number of
(possibly degenerate) spheres.

We now consider the case of arbitrary signature matrices, with same negative
index.
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STEP 8: We use the Potapov-Ginzburg transform to show that S has a meromorphic
extension.

This follows from computing S from its Potapov-Ginzburg transform.

STEP 9: Any S with a realization of the form (7.1) is in a class Sκ(J1, J2).

Indeed, for real p = x and q = y near x0, the existence of the realization leads
to

J2 − S(x)J1S(y)
∗

x+ y
= G(I(x0 + x)− (x+ x0)B)−1(I(y + x0)− (y − x0)B)−∗G∗,

where B = −(I + x0A). Thus, with K(x, y) = G(I(x0 + x) − (x + x0)B)−1(I(y +
x0)− (y − x0)B)−∗G∗,

J2 − S(x)J1S(y)
∗ = xK(x, y) +K(x, y)y

and the result follows by observing that (7.1) is the hyperholomorphic extension.

STEP 10: The realization is unique up to isomorphism when it is observable.

We follow [8]. Let p be a real number and set x = p−x0

p+x0
. When p varies in a

real neighborhood of x0 then x varies in a real neighborhood I0 of the origin. For
x, y ∈ I0 we have

J2 − S(x)J1S(y)
∗

1− xy
= G1(IP1 − xB1)

−1(IP1 − yB1)
−∗G∗

1

= G2(IP2 − xB2)
−1(IP2 − yB2)

−∗G∗
2,

where the indices 1 and 2 correspond to two observable and coisometric realizations,
with state spaces P1 and P2 respectively. Then the domain and range of the relation
R spanned by the pairs

((IP1 − yB1)
−∗G∗

1h, (IP2 − yB2)
−∗G∗

2k), h, k ∈ H2,

are dense. By the quaternionic version of a theorem of Shmulyan (see [5, Theorem
7.2]) R is the graph of a unitary map, which provides the desired equivalence. The
arguments are as in [8]. �

Remark 7.4. In the case x0 → 0, we can rewrite the computations with

G0f = f(x0)

F0u = Rx0Su

I +B = −x0Rx0 ,

I −B = 2I + x0Rx0 ;

we have that

S(p)u = S(x0)u+ (p− x0)G 

(
M�

x0+p +M�
p−x0

B
)−1

F0u

= S(x0) + (p− x0)2x0G0 
 (x0(I −B) + p(I +B))−1 F0u

= S(x0) + (p− x0)G0 
 (I + x0Rx0 − pRx0)
−1 F0u

which tends formally to the backward shift realization as x0 → 0.
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Example. We now show how to obtain a realization for a Blaschke factor ba(p). For
real p = x, using formula (4.10) we obtain that ba(x) = (x− ā)−1(x− a), moreover

ba(x) = ba(1) + ba(x)− ba(1)

=
1− a

1 + ā
+ (x− 1)

2Re(a)

(x+ a)(1 + a)

=
1− a

1 + ā
+ (x− 1)

2Re(a)

(x+ 1−B
1+B )(1 + a)

, where B =
1− a

1 + a

=
1− a

1 + ā
+ (x− 1)

2Re(a)(1 +B)

(x(1 +B) + (1−B))(1 + a)

=
1− a

1 + ā
+ (x− 1)

2Re(a)

(x(1 +B) + (1−B))

2

(1 + a)2

=
1− a

1 + ā
+ (x− 1)

2Re(a)

1 + a
((x+ 1) + (x− 1)B)−1 2

1 + a

since
1 +B

1 + a
=

2

(1 + a)2
.

Now note that

ba(p) = H − (p− 1)G � ((p+ 1) + (p− 1)B)−�F

is slice hyperholomorphic, extends S(x), and

(
B F
G H

)
=




1− a

1 + a

2
√
Re a

1 + a

−2
√
Re a

1 + a

1− a

1 + ā




.

This matrix is unitary.

We now present an example of functions in a class S0(J, J). Consider a linear
bounded operator A in a right quaternionic Hilbert space H, and assume that A+A∗

is finite dimensional, say of rank m. We can thus write:

A+A∗ = −CJC∗,

where J ∈ Hm×m is a real signature matrix, and where C is linear bounded operator
from Hm into H. We will assume (C,A) observable.

Remark 7.5. The pair (C,A) is observable if and only if there is no non trivial
invariant subspace of A on which A+A∗ = 0.

The proof of this lemma is as in the complex case, and will be omitted.

We conclude this section with an example of a function in S0(J, J), which, by
analogy with the classical case, we call the characteristic operator function of the
operator. Connections with operator models will be considered elsewhere, but we
remark here that the function S in (7.9) defined uniquely A when the pair (C,A) is
observable.
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Definition 7.6. The function

S(p) = I − pC∗ � (I − pA)−�CJ (7.9)

is called the characteristic operator function of the operator A.

Theorem 7.7. The characteristic operator function belongs to S0(J, J).

Proof. Let

K(p, q) = C∗ � (I − pA)−�(I − qA∗)−�r �r C.

Then it holds that

J − S(p)JS(q)∗ = pK(p, q) +K(p, q)q.

This formula is proved by first considering the case of real p and q, and taking the
slice hyperholomorphic extension, and proves that S ∈ S0(J, J). �

We note that formula (7.9) corresponds to a realization centered at 0, as in
Remark 7.4, and not to a realization of the form (7.1). It would be interesting to
find a functional model for the operator A in terms of S. The special case where S
is a (possibly infinite convergent) Blaschke product is of special interest. The case of
general S leads to the question of finding the �-multiplicative structure of elements
in S0(J, J), that is the counterpart of the paper [55] in the present setting.

8. The space L(Φ) and realizations for generalized positive
functions

In the present section we give realization for a generalized positive function with
L(Φ) as state space. Note that a Cayley transform (with real coefficients) will map
a generalized positive function into a generalized Schur function, and even more
a Cayley trasform on the variable will reduce the problem to the case of a Schur
function of the quaternionic unit ball. But this procedure will not lead an intrinsic
realization in the natural space associated to generalized positive function.

8.1. The indefinite case

Definition 8.1. Let H be a quaternionic Hilbert space, and let J ∈ L(H) be a real
signature operator. A L(H)-valued function Φ slice hyperholomorphic in an axially
symmetric s-domain Ω which intersects the positive real line belongs to the class
GPκ(J) if the kernel

KΦ(p, q) = JΦ(p) � k(p, q) + k(p, q) �r Φ(q)
∗J (8.1)

has κ negative squares in Ω.

Lemma 8.2. The kernel KΦ satisfies

pKΦ(p, q) +KΦ(p, q)q = JΦ(p) + Φ(q)∗J. (8.2)

Proof. It follows with immediate computations from Proposition 4.7. �
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As in the case of generalized Schur functions, we do not mention the dependence
of the class on Ω since, as we prove later, every element of a class GPκ(J) has a
unique slice hypermeromorphic extension to H+.

We note that J does not play a role, as noted in [42, p. 358, footnote], and
could be set to be the identity. We denote by H a two sided quaternionic Hilbert
space, and recall that L(H)=L(H,H).

Theorem 8.3. A L(H)-valued function Φ slice hyperholomorphic in an axially sym-
metric s-domain Ω containing x0 > 0 is in the class GPκ(J) if and only if there
exists a right quaternionic Pontryagin space Πκ of index κ and operators(

B F
G H

)
:

(
Πk

H

)
−→

(
Πk

H

)

verifying

(I + 2x0B)(I + 2x0B)∗ = I

and such that Φ can be written as

Φ(p) = H − (p− x0)G � ((p+ x0)I + (p− x0)B)−�F. (8.3)

Furthermore, Φ has a unique slice hypermeromorphic extension to H+. Finally, when
the pair (G,B) is observable, the realization is unique up to a unitary isomorphism
of Pontryagin right quaternionic spaces.

Proof. Given Φ ∈ GPκ(J), we denote by L(Φ) associated right reproducing kernel
Pontryagin space of H-valued functions with reproducing kernel KΦ. We proceed in
a number of steps to prove the theorem.

STEP 1: The formula

(p− x0)(Bh(p)) = (p+ x0)h(p)− 2x0h(x0), h ∈ L(Φ). (8.4)

defines a (continuous) coisometry in L(Φ).
Indeed, define a relation Rx0 on L(Φ) × L(Φ) generated by the linear span of

the pairs
Rx0 = (KΦ(·, p)(p− x0)u, (KΦ(·, p)−KΦ(·, x0))u) . (8.5)

Then the following holds:

(f, g) ∈ Rx0 =⇒ [f, f ] = [f + 2x0g, f + 2x0g]. (8.6)

We first prove that

[f, g] + [g, f ] + 2x0[g, g] = 0. (8.7)

An element in Rx0 can be written as (f, g) with

f(p) =

m∑
j=1

KΦ(p, pj)(pj − x0)uj

g(p) =

m∑
j=1

KΦ(p, pj)uj −KΦ(p, x0)d, where d =

m∑
j=1

uj .

(8.8)
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With f and g as in (8.8) we have:

[f, g] =




m∑
i,j=1

u∗iKΦ(pi, pj)(pj − x0)uj


− d∗




m∑
j=1

KΦ(x0, pj)(pj − x0)uj


 ,

[g, f ] =




m∑
i,j=1

u∗i (pi − x0)KΦ(pi, pj)uj


−

(
m∑
i=1

u∗i (pi − x0)KΦ(pi, x0)

)
d.

Thus

[f, g] + [g, f ] = −2x0




m∑
i,j=1

u∗iKΦ(pi, pj)uj




+

m∑
i,j=1

u∗i {piKΦ(pi, pj)+KΦ(pi, pj)pj}uj−d∗




m∑
j=1

KΦ(x0, pj)pjuj




+ x0d
∗




m∑
j=1

KΦ(x0, pj)uj


−

(
m∑
i=1

u∗i piKΦ(pi, x0)

)
d

+ x0




m∑
j=1

u∗jKΦ(pj , x0)


 d.

Taking into account (8.2) we have

[f, g] + [g, f ] = −2x0




m∑
i,j=1

u∗iKΦ(pi, pj)uj




+

(
m∑
i=1

u∗i JΦ(pi)

)
d+ d∗




m∑
j=1

Φ(pj)
∗Juj




− d∗




m∑
j=1

KΦ(x0, pj)pjuj


+ x0d

∗




m∑
j=1

KΦ(x0, pj)uj




−

(
m∑
i=1

u∗i piKΦ(pi, x0)

)
d+ x0

(
m∑
i=1

u∗iKΦ(pi, x0)

)
d.

We now turn to [g, g]. We have:

[g, g] =




m∑
i,j=1

u∗i (KΦ(pi, pj)uj


− d∗




m∑
j=1

KΦ(x0, pj)uj




−

(
m∑
i=1

u∗iKΦ(pi, x0)

)
d+ d∗KΦ(x0, x0)d.
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Thus

[f, g] + [g, f ] + 2x0[g, g] =

(
m∑
i=1

u∗i JΦ(pi)

)
d+ d∗




m∑
j=1

Φ(pj)
∗Juj




− d∗




m∑
j=1

KΦ(x0, pj)pjuj


− x0d

∗




m∑
j=1

KΦ(x0, pj)uj




−

(
m∑
i=1

u∗i piKΦ(pi, x0)

)
d− x0

(
m∑
i=1

u∗iKΦ(pi, x0)

)
d

+ 2x0d
∗KΦ(x0, x0)d

=

(
m∑
i

u∗i JΦ(pi)

)
d+ d∗




m∑
j=1

Φ(pj)
∗Juj




− d∗




m∑
j=1

KΦ(x0, pj)(pj + x0)uj




−




m∑
j=1

u∗i (pi + x0)KΦ(pi, x0)


 d+ 2d∗x0KΦ(x0, x0)d

using

KΦ(x0, x0) =
1

2x0
(JΦ(x0) + Φ(x0)

∗J) ,

we obtain

[f, g] + [g, f ] + 2x0[g, g] =

(
m∑
i

u∗i JΦ(pi)

)
d+ d∗




m∑
j=1

Φ(pj)
∗Juj




− d∗


∑

j=1

(JΦ(x0) + Φ(pj)
∗J)uj




−




m∑
j=1

u∗i (JΦ(pi) + Φ(x0)
∗J)


 d+ 2d∗x0KΦ(x0, x0)d

= 0

and so we have proved (8.7). Equation (8.6) follows since

[f + 2x0g, f + 2x0g] = [f, f ] + 2x0 ([f, g] + [g, f ] + 2x0[g, g]) .

Equation (8.7) expresses that the linear space of functions (f, f + 2x0g) with
f, g as in (8.8) define an isometric relation R from the Pontryagin space L(Φ) into
itself. Let now h ∈ L(Φ) be such that

[h,KΦ(·, p)(p− x0)u] = 0 ∀p ∈ Ω and u ∈ H.



134	 D.	Alpay,	F.	Colombo,	I.	Lewkowicz	and	I.	Sabadini	 Vol.83	(2015)44 D. Alpay, F. Colombo, I. Lewkowicz and I. Sabadini

Then

(p− x0)h(p) = 0, ∀p ∈ Ω

and h ≡ 0 in Ω (recall that the elements of L(Φ) are slice hyperholomorphic in Ω).
Thus the domain of this relation is dense. By the quaternionic version of Shmulyan’s
theorem (see [5, Theorem 7.2]), R extends to the graph of a (continuous) isometry,
say B∗, on L(Φ). We have for h ∈ L(Φ)

u∗(p− x0)((Bh(p)) = [Bh,KΦ(·, p)(p− x0)u]

= [h,B∗(KΦ(·, p)(p− x0)u)]

= [h,KΦ(·, p)(p− x0)u+ 2(KΦ(·, p)−KΦ(·, p))u]
= u∗ ((p− x0)h(p) + 2h(x0)− 2h(x0))

= u∗ ((p+ x0)h(p)− 2h(x0)) .

We note that Rx0 extends to the graph of R∗
x0
.

STEP 2: The function p �→ Rx0Φη belongs to L(Φ) for every η ∈ H and the operator
F from H into L(Φ) defined by

Fη = Rx0Φη

is bounded.

We note that B = I +2x0Rx0 and so Rx0 is a bounded operator in L(Φ). From
(8.2) we have for ξ ∈ H

JΦ(p)ξ +Φ(x0)
∗Jξ = pKΦ(p, x0)ξ +KΦ(p, x0)ξx0. (8.9)

Apply Rx0 on both sides (as an operator on slice hyperholomorphic functions; the
two sides of (8.9) will no belong to L(Φ) in general). Note that

Rx0(pf(p)) = f(p) + x0(Rx0f)(p),

and so we obtain

Rx0ΦJξ = KΦ(p, x0)ξ + x0(Rx0KΦ(·, x0)ξ)(p) + (Rx0KΦ(p, x0)ξx0)(p),

and this expresses Rx0ΦJξ as an element of L(Φ) since Rx0 is bounded in L(Φ) and
so the elements on the right side of the above equality belong to L(Φ). This ends
the proof of the first claim since J is invertible. Finally, to see that the operator F
is bounded we remark that it is closed and everywhere defined.

We remark that the argument is different from the one for the corresponding
operator F (defined by (7.7)) in the spaces P(S). In the classical case, the argument
we are aware of, uses a Cayley transform to go back to the case of generalized Schur
functions. The argument we presented here is probably known in the classical case,
but we are not aware of any reference for it.

STEP 3: The realization formula (8.3) holds.

The proof is the same as the one in STEP 6 for S.

STEP 4: The function Φ admits a slice hypermeromorphic extension to H+.
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Recall that T = I+2x0B is co-isometric. Using Theorem 5.6 we can thus write
T as

T =

(
T11 T12

0 T22

)

where T11 is a bijective contraction from a anti-Hilbert space onto itself, and T22 is
a contraction from a Hilbert space into itself. By scaling we can reduce to the case
x0 = 1. Thus for x > 0 in a neighborhood of 1,

(1 + x)I + (x− 1)B = (1 + x)I + (x− 1)

(
T − I

2

)

= (3 + x) + (x− 1)T

= (3 + x)

(
I +

(x−1
3+xT11

x−1
3+xT12

0 x−1
3+xT22

))

and hence the result by slice hyperholomorphic extension since q−1
3+q sends H+ into

B1.

STEP 5: A function Φ admitting a realization of the form (8.3) is in a class GPκ(J).

The proof is as in the case of the functions S and is based on the identity

JΦ(x) + Φ(y)∗J = (x+ y)G(I(x0 + x)− (x0 − x)B)−1(I(x0 + y)− (x0 − y)B)−∗,

where x, y are real and in a neighborhood of x0.

STEP 6: An observable realization of the form (8.3) is unique up to a isomorphism
of quaternionic Pontryagin spaces. �

We note that the relation (8.5) is inspired from [14, p. 708] and more generally,
by the constructions of the ”ε-method” developed in the papers of Krein and Langer;
see for instance [42, 43] for the latter.

Corollary 8.4. In L(Φ) it holds that

Rx0 +R∗
x0

= −2x0R
∗
x0
Rx0 . (8.10)

Proof. This is a rewriting of (8.6). �

We note that (8.10) is a special case of the structural identity characterizing
L(Φ) spaces in the complex case, see [22]. To ease the notation we consider the case
J = I.

Theorem 8.5. Let the L(H)-valued function Φ be slice hyperholomorphic in an ax-
ially symmetric s-domain Ω containing p = 0, such that the associated space does
not contain non zero constants, and has its elements slice hyperholomorphic in a
neighborhood of the origin. Assume that Φ ∈ GPκ(I). Then there exists a right
quaternionic Hilbert space H1 and operators(

A B
C D

)
: H1 ⊕H −→ H1 ⊕H

such that
Φ(p) = D + pC � (IH1 − pA)−�B (8.11)
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and

Re

(
A B
C D

)(
IH1 0
0 −IH

)
= 0.

Proof. We first define a linear relation RΦ in (L(Φ) ⊕ H) × (L(Φ) ⊕ H) via the
formulas ((

−KΦ(·, q)qu
u

)
,

(
KΦ(·, q)u
Φ(q)∗u

))
. (8.12)

STEP 1: The relation RΦ satisfies

Re 〈
(

f
−g

)
,

(
F
G

)
〉 = 0. (8.13)

Furthermore, it has dense domain since the space L(Φ) contains no non zero constant
functions.

Let (
f
−g

)
= −

t∑
n=1

(
KΦ(·, qn)qnun

un

)
,

and (
F
G

)
=

t∑
n=1

(
KΦ(·, qn)un
Φ(qn)

∗un

)
.

Then

〈
(

f
−g

)
,

(
F
G

)
〉 = −

t∑
n,m=1

u∗mKΦ(qm, qn)qnun + u∗mΦ(qn)um

so that, using (8.2), we obtain

Re 〈
(

f
−g

)
,

(
F
G

)
〉 = 0.

STEP 2: The relation RΦ is the graph of a densely defined operator which has a
continuous extension, and its adjoint is the backward-shift realization(

A B
C D

)
,

where

pAf(p) = f(p)− f(0),

pBu(p) = (Φ(p)− Φ(0))u,

Cf = f(0),

Du = Φ(0)u.

We only have to consider the operator B. Consider a family T of pairs (q, u) ∈
Ω×H such that the functions KΦ(·, q)u are linearly independent and span the space
of all the functions KΦ(·, p)v, where p runs through all of Ω and v runs through all
of H. Define a densely defined operator from L(Φ) into H by

X(KΦ(·, p)u) = (Φ(p)∗ − Φ(0)∗)u, (p, u) ∈ A.
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We claim that X has an adjoint which is the operator B above. To see that, we
remark that (8.13) can be rewritten as

〈
(

f
−g

)
,

(
A∗ C∗

X D∗

)(
f
g

)
〉+ 〈

(
A∗ C∗

X D∗

)(
f
g

)
,

(
f
−g

)
〉 = 0. (8.14)

Using the quaternionic polarization formula it follows that for any

(
f1
g1

)
and

(
f2
g2

)

in the domain of RΦ we have

〈
(

f1
−g1

)
,

(
A∗ C∗
X D∗

)(
f2
g2

)
〉+ 〈

(
A∗ C∗

X D∗

)(
f1
g1

)
,

(
f2
−g2

)
〉 = 0 (8.15)

and so RΦ has an adjoint and so does X. It is then clear that X∗ = B on a dense
set, from the definition of X. �

It is useful to note that the operator B appearing in the previous theorem is
the opposite of the operator in (7.6).

Example. As an illustration of the previous theorem consider the function

ϕ(p) = (p+ a)−�, (8.16)

where a ∈ H is such that Re a = 0. Set

M(p, q) = (p+ a)−�(q + a)−�.

Since a+ a = 0 we have

pM(p, q) +M(p, q)q = ϕ(p) + ϕ(q),

and so ϕ is a positive function. For p = x > 0 we have

ϕ(x) = a−1 − x

(1 + xa−1)a2
,

which leads to the realization (8.11) with

(
A B
C D

)
=

(
−a−1 a−1

−a−1 a−1

)

So

2Re

(
A B
C D

)(
1 0
0 −1

)
= −(a−1 + a−1)

(
1 1
1 1

)
=

(
0 0
0 0

)

since a+ a = 0.
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8.2. The positive case

In this section we prove results in the case κ = 0 and J = I. We say that the
function Φ is positive rather that writing Φ ∈ GP0(I). The proof uses the existence
of a squareroot of a positive operator in a quaternionic Pontryagin space. In the
indefinite case, such a result still exists in the complex case (this is called the Bognar-
Kramli theorem, see [21, Theorem 2.1 p. 149], [28, Theorem 1.1.2]). A quaternionic
version of this factorization theorem is not available at present.

Theorem 8.6. Let Φ be slice-hyperholomorphic in an axially symmetric s-domain of
the origin with realization (8.11) such that

Re

(
A B
C D

)(
IH1 0
0 −IH

)
≤ 0.

Then Φ is positive.

Proof. We first note that a positive operator T , in a quaternionic Hilbert space
has a squareroot, that is, there exists a positive operator X such that X2 = T . The
proof uses the spectral theorem, which holds for Hermitian operators in quaternionic
Hilbert spaces. The theorem is mentioned without proof in a number of papers (see
for instance [34], [61], [62]). The spectrum used in these works is not the S-spectrum,
see [25, p. 141]); a proof is given in the preprint [7]. Another way to prove the
existence of a squareroot is to define (assuming first ‖T‖ ≤ 1), as in the complex
case, a sequence of operators X0, X1, . . . by X0 = 0 and

Xn+1 =
1

2
((I − T ) +X2

n), n = 0, 1, . . . ,

(see for instance [39, p. 64]) and check that:

(1) A weakly convergent increasing sequence of positive operators converges strong-
ly.

(2) An increasing family (Xn)n∈N of bounded positive operators such that

lim
n→∞

〈Xnf, f〉 < ∞, ∀f ∈ H

converges strongly to a positive operator. Since the arguments do not differ
from the complex case we omit them.

Let X be the squareroot of −Re

(
A B
C D

)(
IH1 0
0 −IH

)
. We write

X =

(
L
K

)

where L is a linear operator from H×H1 into H and K is a a linear operator from
H×H1 into H1.

Let now

Re

(
A B
C D

)(
IH1 0
0 −IH

)
= −

(
L
K

)(
L
K

)∗
,
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Then

Φ(x) + Φ(y)∗ = D +D∗ + xC(I − xA)−1B + yB∗(I − yA)−∗C∗

= KK∗ + xC(I − xA)−1(C∗ − LK∗)

+ y(C −KL∗)(I − yA)−∗C∗

= (K − xC(I − xA)−1L)(K − yC(I − yA)−1L)∗

+ xC(I − xA)−1C∗ + yC(I − yA)−∗C∗

− xyC(I − xA)−1LL∗(I − yA)−∗C∗.

But, using A+A∗ + LL∗ = 0, we have

xC(I − xA)−1C∗ + yC(I − yA)−∗C∗ − xyC(I − xA)−1LL∗(I − yA)−∗C∗

= (x+ y)C(I − xA)−1(I − yA)−∗C∗

The claim follows by slice hyperholomorphic extension. �

We note that the computations are classical, see for instance [33], [32, Theorem
3.3, p. 26].

We conclude this section with an example of elements of GP0(I) (that is, posi-
tive functions) which play an important role in models for pairs of anti self-adjoint
operators. This originates with the paper of de Branges and Rovnyak [23]. We re-
fer to [11, 12, 41] for examples and applications of the model of de Branges and
Rovnyak. In this section, we briefly outline how a positive function also appears in
the present setting. We follow the approach of [12], and consider bounded operators
for the sake of illustration. The proof of the following lemma is as in [12, p. 18] and
is omitted.

Lemma 8.7. Let T+ and T− be two anti-self-adjoint operators in the quaternionic
space H. Then:

(1) The space

∩∞
u=1 ker(T

u
+ − T u

−) (8.17)

is the largest subspace, invariant under T+ and T− and on which they coincide.
(2) Assume that rankT+−T− = n < ∞. Then there exists a n×n matrix J ∈ Hn×n

such that J2 = −In and J∗ = −J , and a linear bounded operator C from H
into Hn such that

T+ − T− = −C∗JC.

Theorem 8.8. Using the notation of the preceding lemma, the function

Φ(p) = J + C � (pI − T+)
−�C∗

is positive and its inverse is equal to

Φ−�(p) = −J − JC � (pT − T−)
−�C∗J.
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Proof. For x, y on the positive real axis we have (recall that T ∗
+ = −T+)

Φ(x) + Φ(y)∗ = J + J∗ + C(xI − T+)
−1C∗ + C(yI − T+)

−∗C∗)

= C(xI − T+)
−1C∗ + C(yI + T+)

−1C∗

= xK(x, y) +K(x, y)y,

where K(x, y) = C(xI − T+)
−1(yI − T+)

−∗C∗. The result follows then by slice
hyperholomorphic extension.

Still for positive x and using for instance formula (3.11) we have

Φ(x)−1 = J−1 − J−1C(xI − (T+ − C∗J−1C∗)−1C∗J−1

= −J − JC(xI − T−)
−1C∗J.

The formula for Φ−1 follows then by slice hyperholomorphic extension. �

When the space (8.7) in Lemma 8.7 is trivial the function Φ characterizes the
pair (T+, T−). Models for pairs of (possibly unbounded) anti-self-adjoint operators
in a quaternionic Hilbert space in terms of the reproducing kernel Hilbert spaces
L(Φ) and L(Φ−1), and related trace formulas similar to the ones presented in the
papers [23, 12] will be considered elsewhere.
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Schur–Analysis, volume 16 of Teubner–Archiv zur Mathematik. B.G. Teubner Verlags-

gesellschaft, Stuttgart–Leipzig, 1991.

[36] J. Garnett. Bounded Analytic Functions. Pure and Applied Mathematics, volume 96,

Academic Press Inc., 1981.
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[39] P.R. Halmos. A Hilbert space problem book, volume 19 ofGraduate Texts in Mathematics.

Springer-Verlag, New York, second edition, 1982. Encyclopedia of Mathematics and its

Applications, 17.

[40] B. Hassibi, A.H. Sayed and T. Kailath, Indefinite-Quadratic Estimation and Control- a

unified approach to H2 and H∞ theories, SIAM, 1999.

[41] A. Iacob. On the spectral theory of a class of canonical systems of differential equations.

PhD thesis, The Weizmann Institute of Sciences, 1986.
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