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Abstract. We review some recent results on minimisers of a non-local perimeter
functional, in connection with some phase coexistence models whose diffusion
term is given by the fractional Laplacian.

1. The fractional perimeter

A notion of fractional perimeter was introduced in [8]. To introduce it in a soft way,
we consider a (measurable) set E ⊆ Rn (say with n � 2) and a bounded, open1

set U as in Figure 1.
The main idea of the fractional perimeter is that any point inside E “interacts”

with any point outside E giving rise to a functional whose minimisation is taken
into account. On the other hand, in the functional one may neglect the interactions
that are fixed as “boundary datum” since they cannot contribute to the minimisation
(and they also may give an infinite contribution, which is safer to take away). That is,
the set U splits E and its complement into four sets, two inside E, namely E′ := E∩U
and E′′ := E\U , and two outside E, namely O′ := U\E and O′′ := (Rn\E)∩(Rn\U),
see Figure 2. Then the functional is the collection of the interactions of the points
in E′ and E′′ with the points in O′ and O′′, with the exception of the interactions
of points in E′′ with the ones in O′′, that are “fixed by the boundary values”.

Namely, one considers the functional

Pers(E,U) := I (E′, O′) + I (E′, O′′) + I (E′′, O′), (1.1)

I am greatly indebted to Begoña Barrios, Luis Caffarelli, Serena Dipierro, Alessio Figalli, Giampiero

Palatucci, Ovidiu Savin and Yannick Sire: the results outlined in this note are the fruit of the very

pleasant and stimulating collaboration with them and I profited enormously from the possibility

of having them as mentors and coworkers. This work is supported by the ERC project ε (Elliptic

Pde’s and Symmetry of Interfaces and Layers for Odd Nonlinearities) and the FIRB project A&B

(Analysis and Beyond).
1In the sequel, for simplicity, the domain U will be often implicitly assumed connected and with

smooth boundary.

Milan J. Math. Vol. 81 (2013) 1–23
DOI 10.1007/s00032-013-0199-x
Published online March 22, 2013
© 2013 Springer Basel Milan Journal of Mathematics



2 E. Valdinoci Vol.81 (2013)

E

U

Figure 1. The sets E (in gray) and U .
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Figure 2. The sets E′, E′′, O′ and O′′ and their interactions.

which formally coincides with I (E,Rn \ E) − I (E′′, O′′) (though the latter may
have no sense since both I (E,Rn \ E) and I (E′′, O′′) could be infinite!). The
interaction I that was considered in [8] is

I (A,B) :=
∫∫
A×B

dx dy

|x− y|n+2s

for any disjoint, measurable sets A, B and for a fixed s ∈ (0, 1/2). The restriction
on the range of s is natural, since the integrals in (1.1) diverge in general when s ∈
(−∞, 0] ∪ [1/2,+∞) (more precisely, for s � 0 the contributions at infinity become
unbounded, while for s � 1/2 the problem arises from point x and y arbitrarily close
to each other). The functional in (1.1) naturally produces a minimisation problem:
that is, one says that E is s-minimal in U if Pers(E,U) � Pers(F,U) for any
measurable set F that coincides with E outside U (i.e., F \ U = E \ U).
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The necessary compactness and semicontinuity properties to ensure the exis-
tence of such s-minimisers are proved in Section 3 of [8], and the following result
was obtained:

Theorem 1.1 (Theorem 3.2 in [8]). Let U ⊂ Rn be a bounded Lipschitz domain and
Eo ⊂ Rn \ U be a given set. There exists a set E, with E \ U = Eo such that

Pers(E,U) � Pers(F,U)

for any F such that F \ U = Eo \ U .

Moreover, in [8] s-minimisers are proved to satisfy a suitable integral equation,
that is the Euler-Lagrange equation corresponding to the functional in (1.1). Namely
suppose that E is s-minimal in U and that xo ∈ U ∩ (∂E): then2∫

Rn

χE(xo + y) − χRn\E(xo + y)
|y|n+2s dy = 0. (1.2)

From the geometric point of view, (1.2) states that a suitable average of E (centred at
any point of ∂E) is balanced by the average of its complement. Due to the singular-
ity of the denominator, (1.2) only makes sense for smooth sets: at this level, without
knowing any a priori regularity for the set E, we must recall that equation (1.2) must
be taken in the viscosity sense (we refer to Theorem 5.1 in [8] for details): in this
setting, it may be interesting to notice that (1.2) says that (−Δ)sχ̃E = 0 along ∂E,
with χ̃E := χE − χRn\E (see, e.g., [25, 13] for a basic introduction on the fractional
Laplacian operator). The proof of (1.2) is not a completely straightforward pertur-
bation argument, since it uses a symmetry method in order to obtain cancellations
in the integrals (see [8]).

Now we keep on discussing the properties of the fractional perimeter. Of course,
the functional in (1.1) may present a cumbersome combinatorics which may com-
plicate the computation of the interactions. One may somehow turn around this
difficulty by reducing the minimisation problem in (1.1) to a pde problem in Rn ×
(0,+∞). For this, given u : Rn → R, one introduces the extension of u as

ũ(X) :=
∫
Rn

P(x− y, xn+1)u(y) dy with P(X) :=
cn,sx

2s
n+1

|X|n+2s .

Here we used the notation X := (x, xn+1) ∈ Rn × (0,+∞), and cn,s > 0 is a
normalising constant. Given Ω ⊂ Rn+1 and v : Rn × (0,+∞) → R, we define

EΩ(v) :=
∫

Ω∩{xn+1>0}
x1−2s
n+1 |∇v(X)|2 dX.

Then we have the following result:
2We adopt the standard notation for the characteristic function of a set E, namely

χE(x) =

{
1 if x ∈ E,

0 otherwise.
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Proposition 1.1 (Proposition 7.3 in [8]). The set E is an s-minimiser in a ball B if
and only if the extension ũ of χE − χRn\E satisfies

EΩ(ũ) � EΩ(v)

for all bounded Lipschitz domains Ω ⊂ Rn+1 with Ω ∩ {xn+1 = 0} � B and all
functions v that equal ũ in a neighbourhood of ∂Ω and take the values ±1 on Ω ∩
{xn+1 = 0}.

The minimisation problem of Proposition 1.1 is described in Figure 3. Notice
that the restriction for v to take values ±1 “on the trace” {xn+1 = 0} (that is, to
“agree with a set” on Rn) causes several analytical difficulties in the choice of the
admissible perturbations of ũ.

B|v|=1 here

~v=u here

Ω

Figure 3. The minimisation problem in the extended setting.

One of the main questions addressed in [8] is the one of the regularity of the
s-minimisers: that is, it is shown there that s-minimisers are smooth sets outside a
singular set of (n− 2)-Hausdorff dimension:

Theorem 1.2 (Main Theorem 2.4 in [8]). If E is an s-minimiser in B1, then ∂E∩B1/2
is, to the possible exception of a closed set Σ of finite (n− 2)-Hausdorff dimension,

a C1,α-hypersurface around each of its points.

Notice that one expects ∂E to be “an (n−1)-dimensional object”, so the state-
ment that Σ is “an (n− 2)-dimensional object” states that Σ is somehow negligible
inside ∂E, hence ∂E is smooth near “the majority of its points”. On the other hand,
Theorem 1.2 leaves many questions open: for instance, is there any singular set at
all? are there any singularities if the dimension n is small enough? what do the
s-minimisers look like?



Vol.81 (2013) A Fractional Framework for Perimeters and Phase Transitions 5

Some of these questions will be discussed in further detail in § 1.2-1.3. As for
the latter problem, it is quite embarrassing to admit that, at the moment, there
is a real lack of explicit examples: indeed, the only explicit s-minimiser known is
the half-plane (which is in fact a minimiser in any domain U): this was proved in
Corollary 5.3 in [8] and the proof is based on a comparison principle (i.e., if an s-
minimiser is contained in some strip outside U , then it is contained in the same strip
inside U too). Notice that this lack of explicit examples does not prevent s-minimisers
from existing (recall Theorem 1.1). In any case, at the moment, no s-minimiser with
a non-void singular set is known.

Figure 4. The cone K .

One may also wonder if there are sets satisfying the Euler-Lagrange equation
in (1.2) that possess a non-void singular set: the answer is in the affirmative, and a
simple example is given by the classical cone in the plane

K := {(x, y) ∈ R2 s.t. xy > 0}, (1.3)

see Figure 4. Of course, K has a singularity at the origin, and, by symmetry, one
sees that

K satisfies (1.2) (possibly in the viscosity sense). (1.4)

1.1. Asymptotics of the s-perimeter

Up to now, the reason for which we think that the functional in (1.1) is a “fractional
perimeter” may seem mysterious to a reader not familiar with the subject. The
motivation arises for the asymptotics as s ↗ 1/2 in which the functional Pers
(suitably renormalised) approaches the classical perimeter (as usual, we use the
notation ωn−1 := H n−1(Sn−1) for the surface of the (n− 1)-dimensional sphere):
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Theorem 1.3 ([9, 1]).
• Let α ∈ (0, 1), R > 0, sk ↗ 1/2 and E be a set with C1,α-boundary in BR.
Then

lim
k↗+∞

(1 − 2sk) Persk(E,Br) = ωn−1 Per(E,Br) a.e. r ∈ (0, R).

• Let R > r > 0, sk ↗ 1/2 and Ek be such that

sup
k∈N

(1 − 2sk) Persk(Ek, BR) < +∞.

Then, up to subsequence, χEk
converges in L1(Br) to χE, for a suitable E with

finite perimeter in Br.
• Let R > r > 0. Let sk ↗ 1/2 and Ek be sk-minimisers in BR, with χEk

converging in L1(BR) to χE. Then E has minimal perimeter in Br. Also, Ek

approach E uniformly in Br, meaning that for any ε > 0 there exists ko (possibly
depending on r and ε) such that if k � ko then Ek∩Br and Br\Ek are contained,
respectively, in an ε-neighbourhood of E and of Rn \E.

Also, one can show that the convergence of the functional in (1.1) to the classical
perimeter as s ↗ 1/2 holds in a suitable Γ-convergence sense: see [1]. In any case,
we hope that this motivates the notation of fractional perimeter introduced in (1.1).
On the other hand, when s ↘ 0, it is conceivable that the functional in (1.1) must
approach, in some sense, the Lebesgue measure L n (up to scaling). To see this, let
us recall the notion of Gagliardo seminorm of a function u:

[u]G,s :=

√√√√∫∫
R2n

|u(x) − u(y)|2
|x− y|n+2s dx dy.

By taking the Fourier transform, one sees that

[u]2G,s = c(n, s)
∫
Rn

|ξ|2s|û(ξ)|2 dξ,

for any u in the Schwartz space C∞
↓ (Rn) of rapidly decreasing smooth functions: here

above û is the Fourier transform of u and c(n, s) is a suitable normalising constant
with the property that

lim
s↘0

c(n, s) s = cn

for an appropriate cn > 0 (see, e.g., Proposition 3.4 and Corollary 4.2 in [13]).
Therefore

lim
s↘0

s[u]2G,s = lim
s↘0

c(n, s) s
∫
Rn

|ξ|2s|û(ξ)|2 dξ

= cn

∫
Rn

|ξ|0|û(ξ)|2 dξ = cn‖û‖2
L2(Rn) = cn‖u‖2

L2(Rn),

(1.5)

thanks to Plancherel Theorem. Though this formula is obtained here for u ∈
C∞
↓ (Rn), it holds true also for functions u ∈ L2(Rn) for which [u]G,so is finite
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for some so ∈ (0, 1) (see, e.g., [17] for a general theory in Lp-spaces). In particular,
we may take u := χE in (1.5) for a smooth E ⊂ U (the smoothness of E ensures
that [χE ]G,so is finite and the boundedness of E that χE ∈ L2(Rn)): we conclude
that

lim
s↘0

2sPers(E,U) = lim
s↘0

2s
∫∫

E×(Rn\E)

dx dy

|x− y|n+2s = lim
s↘0

s[χE ]2G,s

= cn‖χE‖2
L2(Rn) = cn L n(E).

(1.6)

The asymptotic behaviour as s ↘ 0 in the general case is slightly more complicated
and it is dealt with in [14]: the main difficulties are that the limit may not even
exist and, when it does exist, it is a suitable convex combination of the normalised
Lebesgue measure of E ∩ U with the one of U \ E, with the convex interpolation
parameter depending on the “shape of E outside U”. More precisely, one introduces
the parameter

a(E) := lim
s↘0

2s
ωn−1

∫
E\B1

dy

|y|n+2s (1.7)

and the normalised Lebesgue measure M (E) := ωn−1L (E). Notice that

a(E) � lim
s↘0

2s
ωn−1

∫
Rn\B1

dy

|y|n+2s = lim
s↘0

2s

+∞∫
1

ρn−1 dρ

ρn+2s = 1

hence a(E) ∈ [0, 1]. Then, in some sense (that we will make precise below in Theo-
rem 1.4), the asymptotic behaviour as s ↘ 0 is given by the formula

lim
s↘0

2sPers(E,U) =
(
1 − a(E)

)
M (E ∩ U) + a(E)M (U \E). (1.8)

Notice that when E is a smooth subset of U , then E ⊂ BR for some R > 0, hence

a(E) � lim
s↘0

2s
ωn−1

∫
BR\B1

dy

|y|n+2s = lim
s↘0

2s

R∫
1

ρn−1 dρ

ρn+2s = 0,

i.e. a(E) = 0 and so (1.8) boils down to (1.6). Moreover, (1.8) states that the s-
perimeter (suitably normalised, which has a non-local nature) approaches as s ↘ 0
the convex combinations of two measures “localised” in U (namely M (E ∩ U)
and M (U \ E)), but the combination parameter a(E) takes into account the con-
tribution of E “coming from infinity”. Though this is rather attractive, a rigorous
statement has to take into account the possibilities that the above limits do not
exist, and the precise result on the asymptotics as s ↘ 0 reads as follows:

Theorem 1.4 (Theorems 2.5 and 2.7 in [14]). Let E be such that Perso(E,U) < +∞
for some so ∈ (0, 1/2) and suppose that the limit defining a(E) in (1.7) exists. Then
the limit in (1.8) holds true.

Also, if Perso(E,U) < +∞ for some so ∈ (0, 1/2) and L n(E∩U) = L n(U\E),
then the existence of the limit defining a(E) in (1.7) is equivalent to (1.8).
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The existence condition on the limit defining a(E) in (1.7) cannot be removed
from Theorem 1.4, since [14] also provides an example when such limit does not
exist (and the limit in (1.8) does not exist as well).

Figure 5. An example for which the limit as s ↘ 0 of the fractional
perimeter does not exist.

Very roughly speaking, the example (as grossly depicted in Figure 5) considers
a set E which “looks like a cone” of a small opening in the annulus BR2 \ BR1 ,
then like a cone of a big opening in the annulus BR3 \ BR2 , and so on, alternating
cones of small and big openings in subsequent annuli, with Rk → +∞ to be chosen
appropriately. Then, the idea is that a(E) would “feel alternatively” the small and
the big cone openings in the asymptotics and consequently the limit in (1.7) does
not exist (of course, some computation is needed to relate the “spatial oscillation” in
the annuli with the parameter s ↘ 0, see Example 2.7 in [14] for details). Anyway,
from Theorems 1.3 and 1.4, with a slight abuse of notation, one may think that the
fractional perimeter interpolates the classical perimeter with a weighted Lebesgue
measure when the parameter s varies in the range (0, 1/2).

1.2. Regularity of s-minimal sets in the plane

Now we go back to the regularity issue of the s-minimal sets. Since this topic seems
to be very difficult to deal with in the general case, we start with the case of low
dimension n = 2. For this, first we point out that

the cone K in (1.3), that is the “black cone” in Figure 4, is not s-minimal. (1.9)
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The proof given here is due to an original idea of L. Caffarelli. Suppose, by contra-
diction, that K is s-minimal. Then consider the set K ′ in Figure 6 that is obtained
from K by adding another little square adjacent to the origin.

Figure 6. The cone K ′.

Then, the s-perimeter of K ′ (in a domain large enough to contain the additional
little square) is equal to that of K .

To check this, just compare Figures 7 and 8: in K the additional little square
is “white” and therefore it interacts with the “black quadrants” A and B and with
the “black rectangles” C and D in Figure 7, while in K ′ the additional little square
is “black” and therefore it interacts with the “white quadrants” A′ and B′ and with
the “white rectangles” C ′ and D′. Since the interactions with A ∪B (resp., C ∪D)
are equal to the ones with A′ ∪ B′ (resp., C ′ ∪ D′), we have that the s-perimeter
of K ′ is equal to that of K (notice that – due to the finite space at our disposal
– Figures 7 and 8 only represent a “bounded portion” of R2, and the sets A, B, C,
D, A′, B′, C ′ and D′ are actually all unbounded).

As a consequence, K ′ is s-minimal (since we supposed that so is K ), and
therefore K ′ satisfies the Euler-Lagrange equation in (1.2) at the origin. But this
cannot be, since the “black region” contributes more than the “white one”, namely∫

Rn

χK ′(y) − χRn\K ′(y)
|y|n+2s dy > 0.

This contradiction shows that the cone K is not s-minimal, proving (1.9).
Moreover, recalling (1.4), we have that K is an example of a set that satis-

fies (1.2) but that is not s-minimal: thus the Euler-Lagrange equation in (1.2) is
implied by, but it is not equivalent to, s-minimality.
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D

C

A

B

Figure 7. The sets A, B, C and D that interact with the little white
square in K .

A’

B’

C’

D’

Figure 8. The sets A′, B′, C ′ and D′ that interact with the little
black square in K ′.

It would be interesting to construct examples (if they exist) of smooth sets that
satisfy the Euler-Lagrange equation in (1.2) without being s-minimal.

From (1.9) one may conjecture that s-minimal sets are smooth in dimension n =
2 (I mean, if any singularity occurs, one can prove that one can reduce to a cone, and
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so one should suspect that the “worst” cone is the ninety degree one in Figure 4).
Unfortunately it is not easy to extend the above geometric argument to the general
case (for instance, the singular cone could be made of many sectors, and these sectors
could differ one from the other, see Figure 11). To get around this difficulty, in [23]
the regularity of s-minimal sets in dimension 2 is proved using an analytic argument
based on domain perturbations. The result obtained3 is the following:

Theorem 1.5 ([23]). Let n = 2. If R > r > 0 and E is an s-minimal set in BR,
then (∂E) ∩ Br is a C∞-curve. If E is an s-minimal set in Bρ for every ρ > 0,
then ∂E is a straight line.

As a byproduct of Theorem 1.5 and of a dimensional reduction in [8], one also
improves Theorem 1.2, obtaining that the singular set Σ in Rn has finite (n − 3)-
Hausdorff dimension (instead of n − 2: and we do not know whether or not this is
optimal, see Theorem 1.6 below).

The last claim in Theorem 1.5 somehow states that fractional geodesics in the
plane are straight lines, as happens in the classical case. The proof of Theorem 1.5
is based on domain perturbation. The idea of the proof may be sketched by thinking
about classical geodesics in the plane.

O

Figure 9. An edge in the plane is not a geodesic: the classical proof

The classical proof to show that an edge is not a geodesic consists in cutting the
angle in O and shortening the length by the dashed segment as shown in Figure 9.
This type of proof is difficult to transpose into a fractional framework, since the new

3In the regularity results such as Theorem 1.5, we are implicitly ruling out the trivial cases in which

either E or its complement is empty. Also, for the sake of precision, we point out that in [23] the

regularity obtained is only of C1,α-type: the bootstrap improvement towards C∞-regularity is not

trivial and it is contained in [2].
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object is not a smooth deformation of the original one. But there is a modification
of this argument that shortens the length by taking a domain perturbation near O
of the edge plus a suitable gluing at infinity. This alternative argument is depicted
in Figure 10.

O

P
A

B

C

Figure 10. An edge in the plane is not a geodesic: the domain
variation proof.

The argument goes like this (we follow the right side of the picture, the left
one being symmetric). We translate the vertex slightly upwards, say, in such a way
that AO has length 1. Then, the length of AB is strictly shorter than the one of OP ,
say

AB = OP − δ (1.10)
for some δ > 0. This is not a contradiction yet, since AB is not a compact modifica-
tion of OP , so, for our purposes, we need to glue AB with OP . For this, we take a
suitably large R > 0, and we join B to the point C, which is chosen in the half line
from O to P in such a way that PC has length R. Then, by Pythagoras’ Theorem,

BC =
√

BP
2 + PC

2 �
√

AO
2 + PC

2 =
√

1 + R2 � R +
C

R
. (1.11)

Now, if R is chosen large enough, we obtain that the polygonal chain ABC is shorter
than the segment OC, namely:

OC −ABC = OP + PC − (
AB + BC

)
� δ + R−

(
R +

C

R

)
= δ − C

R
> 0. (1.12)

The argument on the left in Figure 10 is the same, and so we have shown that the
edge has a longer length than the polygonal chain on the top of it.

This alternative argument proving that the edges in the plane are not geodesic
may be extended to the fractional case. That is, one considers a minimal cone E ⊂ R2

(different than a hyperplane) and constructs a set Ẽ as a translation of E in BR/2
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which coincides with E outside BR. Then we use Proposition 1.1 to compute the
difference between the energies of the extensions of Ẽ and E: we obtain that this
difference is bounded by C/R2s (notice that formally the limit case s = 1/2 goes
back to the term C/R in (1.11)). Technically, this estimate is achieved by considering
a smooth perturbation φ ∈ C∞

0 (R3), with φ(X) = 1 if |X| � 1/2 and φ(X) = 0
if |X| � 3/4, and considering the diffeomorphism

R3 � X �→ Y (X) := X +
(
φ(X/R), 0, 0

)
. (1.13)

The inverse diffeomorphism is denoted, with a slight but common abuse of notation,
R3 � Y �→ X(Y ) = X. Given u to be the extension of χE, according to Proposi-
tion 1.1, one defines u+

R(Y ) := u(X). Similarly, by switching φ with −φ in (1.13),
we can define u−R(Y ). Of course, the derivatives of u± may be computed from the
ones of u via the Chain Rule: in this way, we can compute EBR

(u±) and compare it
with EBR

(u): one obtains

EBR
(u+

R) + EBR
(u−R) − 2EBR

(u) � C

R2s .

Then, since u is a minimiser, EBR
(u) � EBR

(u−R) and so we obtain

EBR
(u+

R) − EBR
(u) � C

R2s . (1.14)

Now we look at the cone E in R2: up to a rotation, we may suppose that a sector of E
has an angle less than π and is bisected by e2. Thus, there exist M � 1 and p ∈ BM ,
on the e2-axis, such that p lies in the interior of E, and p + e1 and p− e1 lie in the
exterior of E, and we let P := (p, 0) ∈ R3 (see Figure 11 where q := p + e1).

p q

Figure 11. The singular cone E, with p ∈ BM and q := p + e1 (or
traditional Japanese flag).
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Taking R much larger than M we see that u+
R(Y ) = u(Y − e1) if |Y | � 2M ,

and u+
R coincides with u if |Y | � R. We define

vR(X) := min{u(X), u+
R(X)} and wR(X) := max{u(X), u+

R(X)}. (1.15)

By construction, u+
R < wR = u in a neighbourhood of P , and u < wR = u+

R in
a neighbourhood of P + e1, that is u and u+

R cross each other inside the ball of
radius 2M . This and the maximum principle imply that wR (as well as vR) cannot
be a minimiser with respect to compact perturbations in the ball of radius 2M : that
is, there exists δ > 0 and a modification u∗ of wR inside B2M such that

EB2M
(u∗) � EB2M

(wR) − δ. (1.16)

Notice that this δ > 0 is independent of R (since wR restricted to the ball of
radius 2M is simply the maximum between u and its translation and so it is is
independent of R). The role played by δ here is indeed analogous to the one of (1.10).
Since u∗ = wR outside B2M we have that

EBR\B2M
(u∗) = EBR\B2M

(wR),

and so (1.16) becomes
EBR

(u∗) � EBR
(wR) − δ. (1.17)

The advantage of working with (1.17) rather than (1.16) is that the energy domain
is now the ball of radius R (that is the domain that supports the perturbation),
but δ is independent of R. The minimality of u also gives that

EBR
(u) � EBR

(vR). (1.18)

Now, in light of (1.15), we point out the integral identity

EBR
(vR) + EBR

(wR) = EBR
(u) + EBR

(u+
R). (1.19)

All in all, we have that

EBR
(u) − EBR

(u∗)
by (1.17) � EBR

(u) − EBR
(wR) + δ

by (1.19) = EBR
(vR) − EBR

(u+
R) + δ

by (1.18) � EBR
(u) − EBR

(u+
R) + δ

by (1.14) � δ − C

R2s ,

(1.20)

which is strictly positive for R large enough. This is in contradiction with the mini-
mality of u and so it completes the proof of Theorem 1.5.

Notice that (1.20) plays the role of (1.12) in this case. Furthermore, the tech-
nique used to prove Theorem 1.5 seems to work for a wide class of variational
problems: see e.g. [24], where these ideas are exploited to prove monotonicity and
symmetry results for minimisers and stable solutions of a very general class of func-
tionals.



Vol.81 (2013) A Fractional Framework for Perimeters and Phase Transitions 15

1.3. Regularity of s-minimal sets when s is close to 1/2

Having settled the regularity of s-minimal sets in the plane in Theorem 1.5, we
discuss now the possible regularity in a higher dimension. As far as we know, this
problem is open up to now. Though no example of a singular set in any dimension
and for any s ∈ (0, 1/2) is known, the only regularity result available at the moment
seems to be the following one, which recovers the classical minimal surface regularity
theory when s is sufficiently close4 to 1/2:

Theorem 1.6 ([10]). For any n ∈ N there exists εn ∈ (0, 1/2] such that if s ∈
((1/2)−εn, 1/2) then s-minimal sets are “as regular as the classical minimal surfaces

in dimension n”, namely:

• If n � 7 and s ∈ ((1/2) − εn, 1/2), then any s-minimal set is locally a C∞-

surface.
• If n = 8 and s ∈ ((1/2) − ε8, 1/2), then any s-minimal set is locally a C∞-
surface except, at most, at countably many isolated points.

• If n � 8 and s ∈ ((1/2) − εn, 1/2), then any s-minimal set is locally a C∞-
surface outside a closed set Σ ⊂ ∂E with finite (n− 8)-Hausdorff dimension.

Of course, in the notation of Theorem 1.6, Σ could well be empty. The finite (n−
8)-Hausdorff dimension statement in Theorem 1.6 improves (when s in the “right
range”) the previous ones mentioned in Theorem 1.2 and right below Theorem 1.5.
Unfortunately the proof of Theorem 1.6 uses a compactness argument, therefore
nothing is known on εn (except that it is a positive, universal quantity, depending
only on n, but no explicit bound is available). Of course, from Theorem 1.5 we know
that ε2 = 1/2 is fine for the regularity theory when n = 2 (but this really comes
from [23] and it cannot be proved with the argument in [10]). Of course, any explicit
bound on εn would be welcome to make Theorem 1.6 applicable in concrete cases.

Notice also that, in view of Theorem 1.4, we know that for s close to 0 the
s-minimal sets seem related to the minimisers of the Lebesgue measure, for which
no regularity result is possible (a set can have a small Lebesgue measure and possess
a very wild boundary). Therefore, the regularity of s-minimal sets when s is close
to 0 (if it holds true) is conceivably more difficult than in the case in which s is close
to 1/2.

2. The fractional Allen-Cahn equation

Classical minimal surfaces naturally arise in phase transition models. Similarly s-
minimisers of the functional in (1.1) arise in non-local phase transition models, in
which the classical diffusion term is replaced by the fractional Laplacian. To see this,
let us briefly review the relation between phase transitions and minimal surfaces in

4As already pointed out in the footnote on page 11, in [10] the regularity theory is of C1,α-type: for

the bootstrap to C∞-regularity see [2].
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the standard case. We take W ∈ C2(R) to be a “double-well potential”, say, for
concreteness,

W (t) :=
(1 − t2)2

4
.

Then, the classical Allen-Cahn (or scalar Ginzburg-Landau) phase coexistence model
investigates the functional

F (u,U) :=
∫
U

|∇u(x)|2
2

+ W (u(x)) dx. (2.1)

The minimisers of this functional satisfy the Allen-Cahn equation

−Δu = u− u3 in U, (2.2)

and they have a strong tendency to stay close to ±1 (which are the “pure phases”
of the model) since these values kill the potential energy, while the gradient term
forces the transition to occur with the least possible surface tension. These heuristic
considerations can be made rigorous by introducing a parameter ε and by considering
the rescaled minimiser

Rεu(x) := u(x/ε). (2.3)

Scaling u to Rεu in (2.1) (and normalising by a multiplicative factor of order εn−1

which does not change the notion of minimisers), one is lead to study the functional

Fε(u,U) :=
∫
U

ε|∇u(x)|2
2

+
1
ε
W (u(x)) dx. (2.4)

Then, the following classical result holds true:

Theorem 2.1 ([18, 7]).

• As ε ↘ 0, Fε Γ-converges to the classical perimeter functional, i.e., for any
set E of locally finite perimeter, the following holds:

– For any uε ∈ L1
loc(R

n, [−1, 1]) converging to χE − χRn\E in L1
loc(R

n), we
have that

Per(E,U) � lim inf
ε↘0

Fε(uε, U);

– There exists uε ∈ L1
loc(R

n, [−1, 1]) that converges to χE−χRn\E in L1
loc(R

n)
such that

Per(E,U) � lim sup
ε↘0

Fε(uε, U);

• The following compactness properties holds: if uε ∈ L1
loc(R

n, [−1, 1]) and

sup
ε∈(0,1)

Fε(uε, U) < +∞,

then there exists E and a convergent subsequence such that uε converges to χE−
χRn\E in L1

loc(R
n).
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• Fixed R > r > 0, ϑ1, ϑ2 ∈ (−1, 1), if uε minimises Fε in BR (i.e. if F (u,BR) �
FBR

(u + ϕ) for any ϕ ∈ C∞
0 (BR)), and uε(0) > ϑ1 then

L n
(
BR ∩ {uε > ϑ2}

)
� cRn,

provided that ε < c(ϑ1, ϑ2)R. Also, {uε > ϑ2} approaches E uniformly in Br,
and E minimises the perimeter in Br with respect to its boundary data.

The aim of the following pages is to present what happens to these results in
the fractional framework and to discuss some possible consequences. For this, we
first introduce a domain notation by setting

QU :=
(
U × U

) ∪ (
(Rn \ U) × U

) ∪ (
U × (Rn \ U)

)
= R2n \ ((Rn \ U) × (Rn \ U)

)
.

The set QU will represent the natural domain of a non-local interaction between
particles in Rn: namely this interaction is represented by an integral over Rn ×Rn,
but we will remove from this integral the contribution given by two particles both
lying in the complement of U , since this will be considered fixed by the datum (this
is the same type of renormalisation procedure performed in (1.1)). More concretely,
for any s ∈ (0, 1) we consider the functional

G (u;U) :=
∫∫
QU

|u(x) − u(y)|2
2 |x− y|n+2s dx dy +

∫
U

W (u(x)) dx. (2.5)

Notice that the functional G differs from the functional F in (2.1) since the gradient
part (i.e., the H1-seminorm of u in U) is replaced here by a double integral of
Gagliardo type, which tries to mimic a long-range particle interaction energy. The
Euler-Lagrange equation associated with G is

(−Δ)su = u− u3 in U, (2.6)

which may be seen as a fractional variant of the classical Allen-Cahn equation in (2.2)
(see, e.g., [16] for applications to fractional mean curvature flows). To obtain a
functional on which a Γ-convergence problem is well-posed, we proceed as before,
taking Rεu as in (2.3), and scaling u to Rεu in (2.5): unlike the classical case,
here it is also necessary to normalise by a multiplicative factor that depends on s,
namely εn−2s if s ∈ (0, 1/2), εn−1 if s ∈ (1/2, 1) and εn−1 log(1/ε) when s = 1/2
(often, in fractional problems, a logarithmic correction at s = 1/2 is necessary to
match the case s ∈ (0, 1/2) with the case s ∈ (1/2, 1)). This procedure leads to the
following functional,
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Gε(u;U) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∫
QU

|u(x) − u(y)|2
2 |x− y|n+2s

dx dy +
1
ε2s

∫
U

W (u(x)) dx, if s ∈ (0, 1/2),

log(1/ε)
∫∫
QU

|u(x) − u(y)|2
2 |x− y|n+2s

dx dy +
log(1/ε)

ε

∫
U

W (u(x)) dx, if s = 1/2,

ε2s−1

∫∫
QU

|u(x) − u(y)|2
2 |x− y|n+2s

dx dy +
1
ε

∫
U

W (u(x)) dx, if s ∈ (1/2, 1).

2.1. Γ-convergence and density estimates

In this non-local setting for phase transitions, one may recover the Γ-convergence
and density estimates results of Theorem 2.1, though they now provide an alternative
selection of local and non-local limit interfaces, according to the cases s ∈ (0, 1/2)
and s ∈ [1/2, 1). Namely, the limit problem reduces to the s-perimeter functional5

when s ∈ (0, 1/2) and to the classical perimeter functional when s ∈ [1/2, 1). This
is somehow consistent with the fact that the s-perimeter reduces to the classical
perimeter as s ↗ 1/2 (recall Theorem 1.3). Also, from the point of view of the
applications, it suggests that the limit interfaces of the non-local Allen-Cahn phase
transition may be either local or non-local according to whether the fractional pa-
rameter s is above or below the critical threshold 1/2 (that is, when s � 1/2 the
nonlocal effect is lost by the limit interface). In further detail, the result obtained
reads as follows:6

Theorem 2.2 ([20, 21, 22]).

• As ε ↘ 0, Gε Γ-converges to the s-perimeter functional when s ∈ (0, 1/2) and

the classical perimeter functional when s ∈ [1/2, 1)
• The following compactness property holds: if uε ∈ L1

loc(R
n, [−1, 1]) and

sup
ε∈(0,1)

Gε(uε, U) < +∞,

then there exists E and a convergent subsequence such that uε converges to χE−
χRn\E in L1

loc(R
n).

• Fixed R > r > 0, ϑ1, ϑ2 ∈ (−1, 1), if uε minimises Gε in BR and uε(0) > ϑ1
then

L n
(
BR ∩ {uε > ϑ2}

)
� cRn,

provided that ε < c(ϑ1, ϑ2)R. Also, {uε > ϑ2} approaches E uniformly in Br,
and E minimises either the s-perimeter or the classical perimeter in Br with
respect to its boundary data (depending on whether s ∈ (0, 1/2) or s ∈ [1/2, 1)).

5The careful reader will have noticed that the s-perimeter functional is defined only for s ∈ (0, 1/2)

while the fractional Allen-Cahn equation for any s ∈ (0, 1).
6Some preliminary work needed for the proof of Theorem 2.2 and a careful analysis of the one-

dimensional case was also performed in [19].
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We try to translate the statement of Theorem 2.2 into an evocative picture that
involves the parameters ε and s ∈ (0, 1). Namely, in Figure 12, s ranges horizontally
and ε vertically; on the top of the picture (corresponding to the case ε = 1) we
have a phase transition function uε whose level sets as ε ↘ 0 approach some ∂E,
which is drawn in the bottom of the picture (which corresponds to the case ε = 0).
When s ∈ (0, 1/2) this ∂E is an s-minimal set, while for s ∈ [1/2, 1) it is a classical
minimal surface (since “classical minimal surfaces are nice” and “s-minimal sets
might be somewhat wild” the picture is trying to distinguish between them by
showing either smooth surfaces or singular cones).

+1

s=0 s=1s=1/2

−1

Figure 12. Γ-convergence for fractional phase transitions.

As a matter of fact, the bottom of Figure 12 should be reconsidered in the light
of Theorem 1.6: namely, at least when n � 7, the s-minimal sets should not look as
“wild” as they were depicted, at least for s ∈ ((1/2) − εn, 1/2) (and, when n = 2,
for any s ∈ (0, 1/2), recall Theorem 1.5): we try to take into account this further
regularity property in Figure 13, by extending the picture of the “nice” surface down
to an unknown exponent s =?.

Now we discuss if and how these types of results may have an influence on the
symmetry properties of the solution of the fractional Allen-Cahn equation.

2.2. One-dimensional symmetry

The classical Allen-Cahn equation (2.2) is linked to a very famous problem posed
by De Giorgi:
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+1

s=0 s=1s=1/2

−1

s=?

Figure 13. Γ-convergence for fractional phase transitions, taking
into account Theorem 1.6.

Conjecture 2.1 ([11]). Let u ∈ C2(Rn)∩L∞(Rn) be a solution of the classical Allen-
Cahn equation (2.2) in the whole of Rn and suppose that ∂xnu(x) > 0 for all x ∈ Rn.

Then, is it true that u is one-dimensional (i.e., it depends only on one Euclidean
variable up to rotation, and its level sets are hyperplanes), at least if n � 8?

Many outstanding mathematicians have given fundamental contributions to
this problem and we cannot do justice here to all the results obtained and of all the
important generalisations performed (see, e.g., [15] for a recent review on the topic):
here we will just mention that Conjecture 2.1 is known to have an answer in the
affirmative when n � 3 and in the negative when n > 8. Also, it is conceivable that
Conjecture 2.1 was inspired by the relation between the phase transitions and the
minimal surfaces (recall Theorem 2.1) and by the rigidity and regularity features of
the minimal surfaces.

Of course, a natural question is whether or not results inspired by Conjecture 2.1
hold true when the classical Allen-Cahn equation (2.2) is replaced by the fractional
Allen-Cahn equation (2.6). This question was addressed in [6] when n = 2 and s =
1/2, in [26, 5] when n = 2 and s ∈ (0, 1), in [3] when n = 3 and s = 1/2 and in [4]
when n = 3 and s ∈ [1/2, 1). We summarise these results in the following statement:

Theorem 2.3 ([6, 26, 5, 3, 4]). Let either

n = 2 and s ∈ (0, 1) (2.7)
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or

n = 3 and s ∈ [1/2, 1). (2.8)

Let u ∈ C2(Rn) ∩L∞(Rn) be a solution of the fractional Allen-Cahn equation (2.6)
in the whole of Rn and suppose that ∂xnu(x) > 0 for all x ∈ Rn. Then u is one-

dimensional.

Clearly, Theorem 2.3 leaves many questions open. For instance, unlike the clas-
sical case, no counterexample is known in a higher dimension (it is conceivable, but
not trivial to prove, that the counterexample in [12] works for n > 8 and s ∈ [1/2, 1);
the other ranges of n and s seem to be completely unknown). Furthermore, the ranges
in (2.7) and (2.8) are still rather mysterious. One may think that these ranges are
somehow reminiscent of the limit behaviour of the interfaces, according to Theo-
rem 2.2. In this spirit, one may suspect that the symmetry result in Theorem 2.3
under condition (2.7) is a byproduct of the complete regularity theory of the min-
imisers of the related perimeter functionals (i.e., of the classical minimal surfaces
when s ∈ [1/2, 1), and of the s-minimal sets when s ∈ (0, 1/2), by Theorem 1.5).
Similarly, one may suspect that the threshold s = 1/2 of condition (2.8) is an off-
spring of the same threshold that appears in Theorem 2.2, i.e. that the symmetry
properties in Theorem 2.3 may break down in general when s ∈ (0, 1/2) due to the
“wilderness” of the limit s-minimal sets. These arguments lead to the feeling that
the threshold s = 1/2 in (2.8) is optimal.

On the other hand, some other observations may lead to an opposite conclusion,
that is the feeling that the threshold s = 1/2 in (2.8) may be lowered a bit (maybe
in dimensions n = 3, . . . , 8). Indeed, the proofs of Theorem 2.3 do not explicitly
use any regularity properties of the (possibly fractional) minimal surfaces and the
threshold s = 1/2 in (2.8) does not come from geometric considerations but from
analytical energy estimates. Moreover, if any relation between symmetry results for
phase transitions and regularity results for (possibly fractional) minimal surfaces
really holds true, then these regularity results for s-minimisers hold true up to a
threshold s = (1/2)− εn, so it seems conceivable that the symmetry properties may
hold even slightly below s = 1/2 at least when n � 8 (recall Theorem 1.6 and
Figure 13). So we believe that any further investigation into the possible regularity
of the s-minimal sets and the possible symmetries of the monotone solutions of the
fractional Allen-Cahn equation would be a pleasant challenge for the researchers
involved and a welcome progress for mathematics.
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[6] X. Cabré, J. Solà-Morales, Layer solutions in a half-space for boundary reactions,
Comm. Pure Appl. Math. 58 (12) (2005) 1678–1732.
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