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Abstract. We investigate a nonstandard phase field model of Cahn-Hilliard type.
The model, which was introduced in [16], describes two-species phase segregation
and consists of a system of two highly nonlinearly coupled PDEs. It has been
studied recently in [5], [6] for the case of homogeneous Neumann boundary condi-
tions. In this paper, we investigate the case that the boundary condition for one
of the unknowns of the system is of third kind and nonhomogeneous. For the re-
sulting system, we show well-posedness, and we study optimal boundary control
problems. Existence of optimal controls is shown, and the first-order necessary
optimality conditions are derived. Owing to the strong nonlinear couplings in the
PDE system, standard arguments of optimal control theory do not apply directly,
although the control constraints and the cost functional will be of standard type.
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1. Introduction

Let Ω ⊂ IR3 denote an open and bounded domain whose smooth boundary Γ has
outward unit normal n , let T > 0 be a given final time, and let Q := Ω × (0, T ) ,
Σ := Γ×(0, T ) . In this paper, we study the following initial-boundary value problem:

(ε + 2 ρ)μt + μρt −Δμ = 0 a. e. in Q, (1.1)

δρt −Δρ + f ′(ρ) = μ a. e. in Q, (1.2)
∂ρ

∂n
= 0 ,

∂μ

∂n
= α(u− μ) a. e. on Σ, (1.3)

ρ(x, 0) = ρ0(x) , μ(x, 0) = μ0(x) , for a. e. x ∈ Ω. (1.4)

The PDE system (1.1)–(1.2) constitutes a phase field model of Cahn-Hilliard type
that describes phase segregation of two species (atoms and vacancies, say) on a lattice
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in the presence of diffusion. It has been introduced recently in [16] and [5]; for the
general physical background, we refer the reader to [16]. The unknown variables
are the order parameter ρ , interpreted as a volumetric density, and the chemical
potential μ . For physical reasons, we must have 0 ≤ ρ ≤ 1 and μ > 0 almost
everywhere in Q . The boundary (control) function u on the right-hand side of (1.3) 2
plays the role of a microenergy source. Moreover, ε and δ are positive constants,
and the nonlinearity f is a double-well potential defined in (0, 1) , whose derivative
f ′ is singular at the endpoints ρ = 0 and ρ = 1; a typical example is f = f1 + f2 ,
with f2 smooth and f1(ρ) = c (ρ log(ρ) + (1− ρ) log(1− ρ)) , where c is a positive
constant. It would be interesting to study the non-differentiable case when f1 is the
indicator function of a convex subset of IR (the interval [0, 1] , say). This will be the
subject of a forthcoming paper.
The PDE system (1.1)–(1.4) is singular, with highly nonlinear and nonstandard
coupling. In particular, unpleasant nonlinear couplings involving time derivatives
occur in (1.1), and the expression f ′(ρ) in (1.2) may become singular. In the recent
papers [5], [6], well-posedness and asymptotic behavior for t→∞ and ε↘ 0 of the
system (1.1)–(1.4) were established for the case when the second boundary condition
in (1.3) is replaced by the homogeneous Neumann boundary condition ∂μ/∂n = 0;
a distributed optimal control problem for this situation was analyzed in [7]. We
also refer to the papers [3] and [4], where the corresponding Allen-Cahn model was
discussed.
The paper is organized as follows: in Section 2, we state the general assumptions and
prove the existence of a strong solution to the problem. Section 3 is concerned with
the issues of uniqueness and stability. Section 4 then brings the study of a boundary
control problem for the system (1.1)–(1.4). We show existence of a solution to the
optimal control problem and derive the first-order necessary optimality conditions,
as usual given in terms of the adjoint system and a variational inequality.
Throughout the paper, we make repeated use of Hölder’s inequality, of the elemen-
tary Young inequality

a b ≤ γa2 +
1

4 γ
b2, for every a, b ≥ 0 and γ > 0, (1.5)

of the interpolation inequality

‖v‖Lr(Ω) ≤ ‖v‖θLp(Ω) ‖v‖1−θ
Lq(Ω) ∀ v ∈ Lp(Ω) ∩ Lq(Ω),

where p, q, r ∈ [1,+∞], θ ∈ [0, 1], and
1
r

=
θ

p
+

1− θ

q
, (1.6)

and, since dim Ω ≤ 3 , of the continuity of the embeddings H1(Ω) ⊂ Lq(Ω) for
1 ≤ q ≤ 6 , where, with constants Ĉq > 0 depending only on Ω,

‖v‖Lq(Ω) ≤ Ĉq ‖v‖H1(Ω) ∀ v ∈ H1(Ω) , 1 ≤ q ≤ 6, (1.7)

and where the embeddings are compact for 1 ≤ q < 6 . We also use the Sobolev
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spaces Hs(Ω) of real order s > 0 and recall the compact embeddings Hs(Ω) ⊂
H1(Ω) and Hs(Ω) ⊂ C(Ω) for s > 1 and s > 3/2 , respectively, and, e. g., the
estimate, with a constant Ĉ∞ > 0 depending only on Ω,

‖v‖C(Ω) ≤ Ĉ∞ ‖v‖H2(Ω) ∀ v ∈ H2(Ω) . (1.8)

2. Problem statement and existence

Consider the initial-boundary value problem (1.1)–(1.4). For convenience, we intro-
duce the abbreviated notation

H = L2(Ω), V = H1(Ω), W =
{
w ∈ H2(Ω) : ∂w/∂n = 0 on Γ

}
.

We endow these spaces with their standard norms, for which we use self-explaining
notation like ‖ · ‖V ; for simplicity, we also write ‖ · ‖H for the norm in the space
H×H×H . Recall that the embeddings W ⊂ V ⊂ H are compact. Moreover, since
V is dense in H , we can identify H with a subspace of V ∗ in the usual way, i. e., by
setting 〈u, v〉V ∗,V = (u, v)H for all u ∈ H and v ∈ V , where 〈· , ·〉V ∗,V denotes the
duality pairing between V ∗ and V . Then also the embedding H ⊂ V ∗ is compact.

We make the following assumptions on the data:

(A1) f = f1 + f2 , where f1 ∈ C2(0, 1) is convex, f2 ∈ C2[0, 1] , and

lim
r↘0

f ′
1(r) = −∞, lim

r↗1
f ′
1(r) = +∞. (2.1)

(A2) ρ0 ∈W , f ′(ρ0) ∈ H , μ0 ∈ V , and

0 < ρ0(x) < 1 ∀x ∈ Ω, μ0 ≥ 0 a. e. in Ω. (2.2)

(A3) u ∈ H1(0, T ;L2(Γ)) , and u ≥ 0 a. e. on Σ.

(A4) α ∈ L∞(Γ) , and α(x) ≥ α0 > 0 for almost every x ∈ Γ.

Notice that (A2) implies that ρ0 ∈ C(Ω) and, thanks to the convexity of f1 , also
that f(ρ0) ∈ H .
The following existence result resembles that of Theorem 2.1 in [5].

Theorem 2.1. Suppose that the hypotheses (A1)–(A4) are satisfied. Then the system
(1.1)–(1.4) has a solution (ρ, μ) such that

ρ ∈W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.3)

μ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H3/2(Ω)), (2.4)

f ′(ρ) ∈ L∞(0, T ;H), (2.5)

0 < ρ < 1 a. e. in Q, μ ≥ 0 a. e. in Q. (2.6)

Remark 2.2. The H3/2 space regularity for μ is optimal due to the L2 space reg-
ularity of u given by (A3). Nevertheless, both equation (1.1) and the boundary
condition for μ contained in (1.3) can be understood a.e. in Q and a.e. on Σ,
respectively, and the standard integration by parts is correct, as we briefly explain
(so that we can both refer to that formulation and use integration by parts). In
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principle, one can replace the equation and the boundary condition by the usual
variational formulation, namely∫

Ω
[(ε + 2 ρ)μt + μρt] v dx +

∫
Ω
∇μ · ∇v dx +

∫
Γ
α(μ− u)v dσ = 0

(where dσ stands for the surface measure) for every v ∈ V , a.e. in (0, T ) , or an
integrated-in-time version of it. This implies that (1.1) is satisfied in the sense of
distributions, whence Δμ belongs to L2(Q) by comparison, and the equation can be
understood a.e. in Q , a posteriori. The last regularity (2.4) of μ and the condition
Δμ ∈ L2(0, T ;L2(Ω)) just observed also ensure that the trace ∂μ

∂n |Σ has a meaning
in the space L2(0, T ;L2(Γ)) due to the trace theorem [15, Thm. 7.3] (we just observe
that the space Ξ−1/2(Ω) that enters such a result is larger than L2(Ω) ), so that the
boundary condition can be read a.e. on Σ.

Proof of Theorem 2.1 . The proof follows closely the lines of the proof of Theorem 2.1
in [5], where a homogeneous Neumann boundary condition for μ was investigated.

Step 1: Approximation. We employ an approximation scheme based on a time delay
in the right-hand side of (1.2). To this end, we introduce for τ > 0 the translation
operator Tτ : L1(0, T ;H) → L1(0, T ;H) , which for v ∈ L1(0, T ;H) and almost
every t ∈ (0, T ) is defined by

(Tτ )(t) := v(t− τ) if t > τ, and (Tτ )(t) := μ0 if t ≤ τ . (2.7)

Now, let N ∈ IN be arbitrary, and τ := T/N . We seek functions (ρτ , μτ ) satisfying
(2.3)–(2.6) (with (ρ, μ) replaced by (ρτ , μτ ) ), which solve the system

(ε + 2 ρτ )μτ
t + μτρτt −Δμτ = 0 a. e. in Q, (2.8)

δρτt −Δρτ + f ′(ρτ ) = Tτμτ a. e. in Q, (2.9)

∂ρτ

∂n
= 0 ,

∂μτ

∂n
= α(u− μτ ) a. e. on Σ, (2.10)

ρτ (x, 0) = ρ0(x) , μτ (x, 0) = μ0(x) , for a. e. x ∈ Ω. (2.11)

We note that Remark 2.2 also applies to the approximating problem. To prove the
existence of a solution, we put tn := n τ , In := [0, tn] , 1 ≤ n ≤ N , and consider for
1 ≤ n ≤ N the problem

(ε + 2 ρn)μn
t + μnρnt −Δμn = 0 a. e. in Ω× In, (2.12)

μn(0) = μ0 a. e. in Ω ,
∂μn

∂n
= α(u− μn) a. e. on Γ× In, (2.13)

δρnt −Δρn + f ′(ρn) = Tτμn−1 a. e. in Ω× In, (2.14)

ρn(0) = ρ0 a. e. in Ω ,
∂ρn

∂n
= 0 , a. e. on Γ× In . (2.15)

Notice that the operator Tτ acts on functions that are not defined on the entire
interval (0, T ) . However, its meaning is still given by (2.7) if n > 1 , and for n = 1
we simply put Tτμn−1 = μ0 .
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Clearly, we have (ρτ , μτ ) = (ρN , μN ) if (ρN , μN ) exists. We claim that the systems
(2.12)–(2.15) can be uniquely solved by induction for n = 1, ..., N , where, for 1 ≤
n ≤ N ,

ρn ∈W 1,∞(In;H) ∩H1(In;V ) ∩ L∞(In;W ), (2.16)

μn ∈ H1(In;H) ∩ C0(In;V ) ∩ L2(In;H3/2(Ω)), (2.17)

0 < ρn < 1 a. e. in Ω× In, μn ≥ 0 a. e. in Ω× In. (2.18)

To prove the claim, suppose that for some n ∈ {1, . . . , N} the problem (2.12)–(2.15)
has a unique solution satisfying (2.16)–(2.18), where the index n is replaced by n−1 .
Then it follows with exactly the same argument as in the proof of Theorem 2.1 in [5]
that the initial-boundary value problem (2.14), (2.15) has a unique solution ρn that
satisfies (2.16) and the first inequality in (2.18). Substituting ρn in (2.12), we infer
that the linear initial-boundary value problem (2.12), (2.13) has a unique solution
μn satisfying (2.17). Notice here that the regularity of μn follows from the fact that
u ∈ H1(0, T ;L2(Γ)) .
It remains to show that μn is nonnegative almost everywhere. To this end, we test
(2.12) by −(μn)− , where (μn)− denotes the negative part of μn . Using integration
by parts and the boundary condition in (2.13), we obtain the identity

1
2

∫ t

0

∫
Ω

d

dt

(
(ε + 2ρn)

∣∣(μn)−
∣∣2) dx ds +

∫ t

0

∫
Ω

∣∣∇(μn)−
∣∣2 dx ds

+
∫ t

0

∫
Γ
α
∣∣(μn)−

∣∣2 dσ ds +
∫ t

0

∫
Γ
αu (μn)− dσ ds = 0 .

From the fact that ρn , ρ0 , μ0 , α , u are all nonnegative, we infer that

ε

∫
Ω

∣∣(μn)−(t)
∣∣2 dx ≤

∫
Ω
(ε + 2ρn(t))

∣∣(μn)−(t)
∣∣2 dx

≤
∫

Ω
(ε + 2ρ0)

∣∣μ−
0

∣∣2 dx = 0 .

Hence, (μn)− = 0, i. e., μn ≥ 0 a. e. in Ω× In , and the claim is proved.

Step 2: A priori estimates. Now that the well-posedness of the problem (2.8)–(2.11)
is established, we perform a number of a priori estimates for its solution. For the
sake of a better readability, we will omit the index τ in the calculations. In what
follows, we denote by C > 0 positive constants that may depend on the data of the
system but not on τ . The meaning of C may change from line to line and even in
the same chain of inequalities.

First estimate. Since ∂t
(
(ε/2)μ2 + ρμ2

)
=

(
(ε + 2ρ)μt + μρt

)
μ , testing of (2.8) by

μ yields, for every t ∈ [0, T ] ,∫
Ω

(ε
2
μ2 + ρμ2

)
(t) dx +

∫ t

0

∫
Ω
|∇μ|2 dx ds +

∫ t

0

∫
Γ
αμ2 dσ ds

=
∫

Ω

(ε
2
μ2

0 + ρ0μ
2
0

)
(t) dx +

∫ t

0

∫
Γ
αuμdσ ds,
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whence, using Young’s inequality and (A2)–(A4), we can conclude that

‖μ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ C . (2.19)

Second estimate. Next, we test (2.9) by ρt . By virtue of (2.19) and (A1), also
recalling the fact that f(ρ0) ∈ H , and invoking Young’s inequality, we easily see
that

‖ρ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖f(ρ)‖L∞(0,T ;L1(Ω)) ≤ C . (2.20)

Third estimate. We rewrite Eq. (2.9) in the form

−Δρ + f ′
1(ρ) = − δ ρt − f ′

2(ρ) + Tτμ

and observe that the right-hand side is bounded in L2(Q) . Hence, applying a stan-
dard procedure (e. g., testing by f ′

1(ρ) , and using (2.20) and the convexity of f1 ),
and invoking elliptic regularity, we find that

‖ρ‖L2(0,T ;W ) + ‖f ′
1(ρ)‖L2(Q) ≤ C . (2.21)

Fourth estimate. We differentiate Eq. (2.9) formally with respect to t and test the
resulting equation with ρt (this argument can be made rigorous, see [5]). Since,
owing to the convexity of f1 , f ′′

1 (ρ) is nonnegative almost everywhere, we find the
estimate

δ

2
‖ρt(t)‖2H +

∫ t

0

∫
Ω
|∇ρt|2 dx ds ≤ δ

2
‖Δρ0 − f ′

1(ρ0) + μ0‖2H

+ max
0≤ρ≤1

∣∣f ′′
2 (ρ)

∣∣ ∫ t

0

∫
Ω
|ρt|2 dx ds +

∫ t

0

∫
Ω

(∂tTτμ) ρt dx ds

≤ C +
∫ t−τ

0

∫
Ω
μt(s) ρt(s + τ) dx ds . (2.22)

In order to estimate the last integral, we substitute for μt , using Eq. (2.8). It follows,
using integration by parts:∫ t−τ

0

∫
Ω
μt ρt(·+ τ) dx ds =

∫ t−τ

0

∫
Ω

1
ε + 2ρ

(Δμ− μρt) ρt(·+ τ) dx ds

=
∫ t−τ

0

∫
Ω

[
− ∇μ

ε + 2ρ
· ∇ρt(·+ τ) +

2ρt(·+ τ)
(ε + 2ρ)2

∇μ · ∇ρ

− 1
ε + 2ρ

ρt μρt(·+ τ)
]
dx ds

−
∫ t−τ

0

∫
Γ

α

ε + 2ρ
(u− μ) ρt(·+ τ) dσ ds . (2.23)

Exactly as in the proof of Theorem 2.1 in [5], the domain integral in the second and
third lines of (2.23) can be estimated from above by an expression of the form

1
2

∫ t

0

∫
Ω
|∇ρt|2 dx ds + C

(
1 +

∫ t

0
‖μ(s)‖2V ‖ρt(s)‖2H dx ds

)
. (2.24)
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Observe that, owing to the inequality (2.19), the mapping s �→ ‖μ(s)‖2V belongs to
L1(0, T ) .
Finally, we estimate the boundary term in the last line of Eq. (2.23). To this end,
recall that by the trace theorem there is a constant cΩ > 0 , independent of τ , such
that ‖v‖L2(Γ) ≤ cΩ ‖v‖V for all v ∈ V . Moreover, we have ρ ≥ 0 and α ∈ L∞(Γ) .
Therefore, recalling (A3) and (2.19), we obtain that

∣∣∣
∫ t−τ

0

∫
Γ

α

ε + 2ρ
(u− μ) ρt(·+ τ) dσ ds

∣∣∣

≤ C

∫ t−τ

0
‖ρt(s + τ)‖L2(Γ)

(
‖u(s)‖L2(Γ) + ‖μ(s)‖L2(Γ)

)
ds

≤ C

∫ t−τ

0
‖ρt(s + τ)‖V

(
‖u(s)‖L2(Γ) + ‖μ(s)‖V

)
ds

≤ 1
4

∫ t

0
‖ρt(s)‖2V ds + C . (2.25)

Now we may combine the estimates (2.22)–(2.25) and employ Gronwall’s inequality
to conclude that

‖ρt‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ C . (2.26)

The same argument as in the derivation of (2.21) then shows that also

‖ρ‖L∞(0,T ;W ) + ‖f ′
1(ρ)‖L∞(0,T ;H) ≤ C . (2.27)

Fifth estimate. We test equation (2.8) by μt . Formal integration by parts (this
can be made rigorous), using (A3), (A4), the trace theorem and Young’s inequality,
yields:

ε

∫ t

0

∫
Ω
|μt|2 dx ds +

1
2
‖∇μ(t)‖2H +

∫
Γ

α

2
|μ(t)|2 dσ

≤ C +
∫ t

0

∫
Γ
αuμt dσ +

∫ t

0

∫
Ω
|μρt μt| dx ds

≤ C +
∫

Γ
αu(t)μ(t) dσ −

∫ t

0

∫
Γ
αut μdσ ds +

∫ t

0

∫
Ω
|μρt μt| dx ds

≤ C

γ
+ γ ‖μ(t)‖2V +

∫ t

0
‖μ(s)‖2V ds +

∫ t

0

∫
Ω
|μ| |ρt| |μt| dx ds

≤ C

γ
+ γ‖μ(t)‖2V +

∫ t

0
‖μ(s)‖2V ds +

ε

2

∫ t

0
‖μt(s)‖2H ds

+ C

∫ t

0
‖ρt(s)‖2L4(Ω) ‖μ(s)‖2L4(Ω) ds
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≤ C

γ
+ γ‖μ(t)‖2V +

ε

2

∫ t

0
‖μt(s)‖2H ds

+ C

∫ t

0

(
1 + ‖ρt(s)‖2V

)
‖μ(s)‖2V ds. (2.28)

Hence, using (2.26), choosing γ > 0 sufficiently small, and invoking Gronwall’s
lemma, we can conclude that

‖μ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C . (2.29)

Sixth estimate. Since 0 < ρ < 1 a. e. in Q , and using (2.26), (2.29) and the
continuity of the embedding V ⊂ L4(Ω) , we can estimate as follows:

‖(ε + 2ρ)μt + μρt‖L2(Q) ≤ C ‖μt‖L2(Q) + ‖μ‖L∞(0,T ;L4(Ω)) ‖ρt‖L2(0,T ;L4(Ω))

≤ C
(
‖μt‖L2(Q) + ‖μ‖L∞(0,T ;V ) ‖ρt‖L2(0,T ;V )

)
≤ C . (2.30)

Comparison in (2.8) then shows the boundedness of Δμ in L2(Q) , and it follows
from (2.8), (A3) and standard elliptic estimates that also

‖μ‖L2(0,T ;H3/2(Ω)) ≤ C . (2.31)

Step 3: Conclusion of the proof. Collecting all the above estimates, it turns out that
there is some sequence τk ↘ 0 such that

μτk → μ weakly star in

H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H3/2(Ω)) ,

ρτk → ρ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) ,

f ′
1(ρ

τk) → ξ weakly star in L∞(0, T ;H) .

Thanks to the Aubin-Lions lemma (cf., [14, Thm. 5.1, p. 58]) and similar results
to be found in [17, Sect. 8, Cor. 4], we also deduce (recall that even H3/2(Ω) is
compactly embedded into V ) the strong convergences

μτk → μ strongly in C0([0, T ];H) ∩ L2(0, T ;V ) ,

ρτk → ρ strongly in C0([0, T ];V )

and the Cauchy conditions (1.4) as a consequence. In particular, employing a stan-
dard monotonicity argument (cf., e. g., [1, Lemma 1.3, p. 42]), we conclude that
0 < ρ < 1 and ξ = f ′

1(ρ) a. e. in Q . The strong convergence shown above also
entails that f ′

2(ρ
τk) → f ′

2(ρ) strongly in C0([0, T ];H) (because f ′
2 is Lipschitz

continuous), and that Tτkμτk → μ strongly in L2(Q) .
Now notice that the above convergences imply, in particular, that

ρτk → ρ strongly in C0([0, T ];L6(Ω)) ,

ρτkt → ρt weakly in L2(0, T ;L4(Ω)),

μτk → μ strongly in L2(0, T ;L4(Ω)) ,

μτk
t → μt weakly in L2(Q) .
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From this, it is easily verified that

μτk ρτkt → μρt weakly in L1(0, T ;H),

ρτk μτk
t → ρμt weakly in L2(0, T ;L3/2(Ω)).

Now, we are ready to take the limit as k →∞ in (2.8)–(2.10) (written for τ = τk ).
Precisely, we can do that as far as ρ is concerned, while it is easier to take the limit
in the variational formulation of (2.8) that accounts for the boundary condition (the
same as mentioned in Remark 2.2), or in the following integrated-in-time version
of it ∫ T

0

∫
Ω

[(ε + 2 ρτ )μτ
t + μτρτt ] v dx dt +

∫ T

0

∫
Ω
∇μτ · ∇v dx dt

+
∫ T

0

∫
Γ
α(μτ − u)v dσ dt = 0 for every v ∈ L∞(0, T ;V ).

Then, we obtain the analogue for μ , which implies (1.1) and (1.3) 2 . �

3. Boundedness, uniqueness, and stability

In this section, we derive results concerning boundedness, uniqueness and stability
of the solutions to system (1.1)–(1.4). With respect to boundedness, we have the
following result, which resembles Theorem 2.3 in [5].

Theorem 3.1. Suppose that (A1)–(A4) are fulfilled, and suppose that the following
conditions are satisfied:

(A5) μ0 ∈ L∞(Ω), inf
x∈Ω

ρ0(x) > 0, sup
x∈Ω

ρ0(x) < 1.

(A6) u ∈ L∞(Σ) .

Then any solution (ρ, μ) of (1.1)–(1.4) fulfilling (2.3)–(2.6) also satisfies

μ ≤ μ∗, ρ ≥ ρ∗ , and ρ ≤ ρ∗ a.e. in Q (3.1)

for some constants μ∗ > 0 and ρ∗ , ρ∗ ∈ (0, 1) that depend on the structure of the
system and T , on the initial data, and on an upper bound for the L∞ norm of u ,
only.

Proof. Let us just show the boundedness of μ and the first estimate (3.1); the results
for ρ then follow in exactly the same manner as in the proof of Theorem 2.3 in [5].
Also the result for μ follows – up to some changes that are necessary due to the
different boundary condition for μ – by the same chain of arguments as in the proof
of Theorem 2.3 in [5]; but since this proof does not seem to be standard, we provide it
for the reader’s convenience. So let (ρ, μ) be any solution to the system (1.1)–(1.4),
(2.3)–(2.6). We set

Φ0 := max {1, ‖μ0‖L∞(Ω) , ‖u‖L∞(Σ)} ,
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choose any k ∈ IR such that k ≥ Φ0 , and introduce the auxiliary function χk ∈
L∞(Q) by putting, for almost every (x, t) ∈ Q ,

χk(x, t) = 1 if μ(x, t) > k, and χk(x, t) = 0 otherwise.

Then, we test (1.1) by (μ− k)+ . We obtain, for any t ∈ [0, T ] ,
∫

Ω

(ε
2

+ ρ(t)
)
|(μ(t)− k)+|2 +

∫ t

0

∫
Ω
|∇(μ− k)+|2 dx ds

+
∫ t

0

∫
Γ
α (μ− u) (μ− k)+ dσ ds

=
∫ t

0

∫
Ω
ρt |(μ− k)+|2 dx ds −

∫ t

0

∫
Ω
ρt μ (μ− k)+ dx ds

= − k

∫ t

0

∫
Ω
ρt (μ− k)+ dx ds .

Now observe that α and ρ are nonnegative and that, by definition of k ,

α (μ− u) (μ− k)+ = α
(
|(μ− k)+|2 + (k − u) (μ− k)+

)
≥ 0 a. e. on Σ .

Hence, using Hölder’s inequality, we obtain from the above equality the estimate

ε

2
‖(μ(t)− k)+‖2H +

∫ t

0

∫
Ω
|∇(μ− k)+|2 dx ds

≤ k

∫ t

0
‖χk(s)‖L7/2(Ω) ‖ρt(s)‖L14/3(Ω) ‖(μ− k)+(s)‖L2(Ω) ds ,

whence, using the Gronwall-Bellman lemma as in [2, Lemma A.4, p. 156],

(
ε ‖(μ− k)+‖2C0([0,T ];H) +

∫ T

0

∫
Ω
|∇(μ− k)+|2 dx dt

)1/2

≤ k√
ε

∫ T

0
‖χk(t)‖L7/2(Ω) ‖ρt(t)‖L14/3(Ω) dt

≤ k√
ε
‖ρt‖L7/3(0,T ;L14/3(Ω)) ‖χk‖L7/4(0,T ;L7/2(Ω)) . (3.2)

Next, we apply the continuity of the embedding V ⊂ L6(Ω) and the interpolation
inequality (1.6) with p = 2, q = 6, r = 14/3 , and θ = 1/7 . It follows that

‖ρt‖L7/3(0,T ;L14/3(Ω)) ≤
(∫ T

0
‖ρt(t)‖1/3L2(Ω) ‖ρt(t)‖

2
L6(Ω) dt

)3/7

≤ ‖ρt‖1/7L∞(0,T ;H)

(∫ T

0
‖ρt(t)‖2L6(Ω) dt

)3/7
≤ C ‖ρt‖6/7L2(0,T ;V ) ≤ D0 ,



 Nonstandard System of Phase Field Equations 

where D0 is a positive constant depending only on the data of the problem. More-
over, we have

‖χk‖L7/4(0,T ;L7/2(Ω)) =
[∫ T

0

(∫
Ω
|χk(x, t)|7/2 dx

)1/2
dt
]4/7

=
[∫ T

0

(∫
Ω
|χk(x, t)|4 dx

)1/2
dt
] 1

2
· 8
7 = ‖χk‖8/7L2(0,T ;L4(Ω)) .

Hence, we can infer from (3.2) that for every k ≥ Φ0 it holds the inequality

|||(μ− k)+||| ≤ kD1 ‖χk‖8/7L2(0,T ;L4(Ω)) , (3.3)

where D1 = D0/Min {ε, 1} , and where the norm ||| · ||| is defined by

|||v|||2 := max
t∈[0,T ]

‖v(t)‖2H +
∫ T

0

∫
Ω
|∇v|2 dx dt ∀ v ∈ C0([0, T ];H) ∩ L2(0, T ;V ) .

Moreover, owing to the continuity of the embedding V ⊂ L4(Ω) , there is some
constant D2 > 0 , which only depends on Ω and on T , such that

‖v‖L2(0,T ;L4(Ω)) ≤ D2 |||v||| ∀ v ∈ C0([0, T ];H) ∩ L2(0, T ;V ) . (3.4)

At this point, we select a strictly increasing sequence {kj} depending on a real
parameter m > 1 as follows:

kj := M
(
2− 2−j

)
for j = 0, 1, . . . , with M := mΦ0 . (3.5)

Note that k0 = M > Φ0 and limj→∞ kj = 2M . Then, owing to (3.3) and (3.4), it
is not difficult to check that(

kj+1 − kj
)
‖χkj+1

‖L2(0,T ;L4(Ω)) ≤ ‖(μ− kj)+‖L2(0,T ;L4(Ω))

≤ D2|||(μ− kj)+||| ≤ kj D1D2 ‖χkj‖
8/7
L2(0,T ;L4(Ω)). (3.6)

Therefore, if we set

Sj := ‖χkj‖L2(0,T ;L4(Ω)) for j = 0, 1, . . . ,

then we have

Sj+1 ≤
kj

kj+1 − kj
D1D2 S

8/7
j ≤ 4D1D2 2j S8/7

j for j = 0, 1, . . . .

Using [12, Lemma 5.6, p. 95], we can conclude that Sj → 0 as j → ∞ , provided
that

S0 = ‖χk0‖L2(0,T ;L4(Ω)) ≤ (4D1D2)−7 2−49. (3.7)

Now recall that χk0 = χM and, owing to (3.5), M > Φ0 and m = M/Φ0 . Also,

χM = 1 <
μ− Φ0

M − Φ0
if μ > M, and χM = 0 otherwise.
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Therefore, using (3.3) and (3.4) with k = k0 = M , we find that

S0 ≤
1

M − Φ0
‖(μ− Φ0)+‖L2(0,T ;L4(Ω)) ≤

D2

M − Φ0
|||(μ− Φ0)+|||

≤ D1D2

m− 1
‖χΦ0‖

8/7
L2(0,T ;L4(Ω)) ≤

D1D2

m− 1
|Ω| 14 · 87 T 1

2
· 8
7 .

We are now in a position to choose m := 1 +D1D2|Ω|2/7T 4/7(4D1D2)7 249 . Then,
m > 1 and (3.7) is satisfied. Consequently,

‖χ2M‖L2(0,T ;L4(Ω)) = lim
j→∞

Sj = 0,

due to Beppo Levi’s Monotone Convergence Theorem. This implies that μ ≤ 2M
a.e. in Q , and the boundedness of μ is proved. �

Now that the boundedness condition (3.1) is shown, we can prove the following
uniqueness and stability result, which corresponds to Theorem 2.2 in [5].

Theorem 3.2.

(i) Suppose that (A1)–(A6) are fulfilled. Then the system (1.1)–(1.4) has a unique
solution (ρ, μ) satisfying (2.3)–(2.6).

(ii) Suppose that (A1), (A2), (A4) and (A5) are fulfilled and that the functions u1 ,
u2 satisfy the conditions (A3) and (A6). Moreover, let (ρi, μi) be the solutions
to (1.1)–(1.4) corresponding to ui , i = 1, 2 , and u := u1 − u2 , ρ := ρ1 − ρ2
and μ := μ1 − μ2 . Then we have, for every t ∈ [0, T ] ,

max
0≤s≤t

(
‖μ(s)‖2H + ‖ρ(s)‖2V

)
+

∫ t

0

∫
Ω

(
‖μ(s)‖2V + ‖ρt(s)‖2H + ‖ρ(s)‖2W

)
ds

≤ K∗
1

∫ t

0
‖u(s)‖2L2(Γ) ds , (3.8)

with a constant K∗
1 > 0 that only depends on the data of the system.

Proof. Obviously, the assertion (i) follows directly from (ii). So we only need to
show (ii). To this end, observe that by Theorem 3.1 there are constants M > 0 and
0 < r∗ < r∗ < 1 such that 0 ≤ μi ≤ M and r∗ ≤ ρi ≤ r∗ a. e. in Q , for i = 1, 2 .
Moreover, the function r �→ r−f ′(r), r∗ ≤ r ≤ r∗ , has a Lipschitz constant L > 0 .
Next, we observe that the pair (ρ, μ) is a solution to the system

(ε + 2ρ1)μt + 2 ρμ2,t + μρ1,t + μ2 ρt −Δμ = 0 a. e. in Q, (3.9)

δ ρt −Δρ = μ − (f ′(ρ1)− f ′(ρ2)) a. e. in Q, (3.10)

∂ρ

∂n
= 0 ,

∂μ

∂n
= α(u− μ) a. e. on Σ, (3.11)

ρ(x, 0) = μ(x, 0) = 0 , for a. e. x ∈ Ω. (3.12)
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Now observe that 2 ρ1 μμt =
(
ρ1 μ

2
)
t
− μ2 ρ1,t . Hence, if we test (3.9) by μ then

we obtain, using Young’s inequality, that for every t ∈ [0, T ] it holds
∫

Ω

(ε
2

+ ρ1(t)
)
μ2(t) dx +

∫ t

0

∫
Ω
|∇μ|2 dx ds +

∫ t

0

∫
Γ
α |μ|2 dσ ds

≤ C

∫ t

0

∫
Γ
|u|2 dσ ds +

∫ t

0

∫
Γ

α

2
|μ|2 dσ ds

+
∫ t

0

∫
Ω
|μ|

(
2 |ρ| |μ2,t| + |μ2| |ρt|

)
dx ds . (3.13)

We have, owing to the continuity of the embedding H1(Ω) ⊂ L4(Ω) and to Young’s
inequality,∫ t

0

∫
Ω

2 |μ| |ρ| |μ2,t| dx ds ≤ C

∫ t

0
‖μ2,t(s)‖H ‖μ(s)‖L4(Ω)‖ρ(s)‖L4(Ω) ds

≤ γ

∫ t

0
‖μ(s)‖2V ds +

C

γ

∫ t

0
‖μ2,t(s)‖2H ‖ρ(s)‖2V ds , (3.14)

where, owing to (2.4), the mapping s �→ ‖μ2,t(s)‖2H belongs to L1(0, T ) . Moreover,
we also have μ2 ∈ L∞(Q) , and thus

∫ t

0

∫
Ω
|μ| |μ2| |ρt| dx ds ≤ C

∫ t

0
‖ρt(s)‖H ‖μ(s)‖H ds

≤ γ

∫ t

0
‖ρt(s)‖2H ds +

C

γ

∫ t

0
‖μ(s)‖2H ds . (3.15)

Next, we add ρ on both sides of Eq. (3.10) and test the resulting equation by ρt .
Invoking Young’s inequality, it is easily seen that, for every t ∈ [0, T ] ,

δ

∫ t

0
‖ρt(s)‖2H ds + ‖ρ(t)‖2V

≤ γ

∫ t

0
‖ρt(s)‖2H ds +

C

γ

∫ t

0

(
‖μ(s)‖2H + L2 ‖ρ(s)‖2H

)
ds . (3.16)

Now we can combine (3.13)–(3.16). Choosing γ > 0 sufficiently small, and applying
Gronwall’s lemma, we see that (3.8) is satisfied. �

The stability estimate (3.8) can be improved if further regularity is assumed for f .
The following result is a counterpart of Lemma 3.1 in [7]. We remark at this place
that (2.3) implies, in particular, that ρ is weakly continuous as a mapping from
[0, T ] into W , which justifies the formulation of the estimate (3.17) below.

Theorem 3.3. Suppose that the assumptions of Theorem 3.2,(ii) are satisfied, and
assume that

(A7) f ∈ C3(0, 1) .
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Then we have, for every t ∈ [0, T ] ,

max
0≤s≤t

(
‖μ(s)‖2V + ‖ρt(s)‖2V + ‖ρ(s)‖2W

)

+
∫ t

0

(
‖μt(s)‖2H + ‖ρt(s)‖2W

)
ds

≤ K∗
2

{
‖u(0)‖2L2(Γ) +

∫ t

0

(
‖u(s)‖2L2(Γ) + ‖ut(s)‖2L2(Γ)

)
ds

}
(3.17)

with a constant K∗
2 > 0 that only depends on the data of the system.

Remark 3.4. We note that ‖u(0)‖2L2(Γ) ≤ I(t)/max{1, t} where I(t) denotes the
last integral of (3.17). It follows that ‖u(0)‖2L2(Γ) can be dropped if one pretends
(3.17) just for t = T .

Proof of Theorem 3.3 . We closely follow the lines of the proof of Lemma 3.1 in [7].
Since the proof given there carries over to our situation with minor changes, we can
afford to be brief. First, observe that by Theorem 3.1 there are constants M > 0
and 0 < r∗ < r∗ < 1 such that 0 ≤ μi ≤ M and r∗ ≤ ρi ≤ r∗ a. e. in Q , for
i = 1, 2 . Next, we recall that the pair (ρ, μ) is a solution to the system (3.9)–(3.12).
We test Eq. (3.9) formally by μt . It then follows, with the use of Young’s inequality,
that

ε

∫ t

0
‖μt(s)‖2H ds +

1
2
‖∇μ(t)‖2H +

1
2

∫
Γ
α |μ(t)|2 dσ

≤
∫ t

0

∫
Γ
αuμt dσ ds

+
∫ t

0

∫
Ω

(2|ρ| |μ2,t| + |μ| |ρ1,t| + |μ2| |ρt|) |μt| dx ds . (3.18)

Now, by virtue of integration by parts with respect to t , and invoking (3.8), Young’s
inequality and the trace theorem,

∣∣∣
∫ t

0

∫
Γ
αuμt dσ ds

∣∣∣

≤ γ

∫
Γ
α|μ(t)|2 dσ +

C

γ

∫
Γ
|u(t)|2 dσ +

C

γ

∫ t

0

∫
Γ
|ut| |μ| dσ ds

≤ C γ ‖μ(t)‖2V +
C

γ

∫
Γ
|u(0)|2 dσ +

C

γ

∫ t

0

∫
Γ
(|u|2 + |ut|2) dσ ds . (3.19)

Employing almost exactly the same arguments as in the proof of Lemma 3.1 in [7]
(the minor necessary changes are left as an easy exercise to the reader), and taking
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advantage of (3.8), we conclude the estimate (where γ > 0 is arbitrary)

∫ t

0

∫
Ω

(2|ρ| |μ2,t| + |μ| |ρ1,t| + |μ2| |ρt|) |μt| dx ds

≤ 3 γ
∫ t

0
‖μt(s)‖2H ds +

C

γ

∫ t

0
‖ρ1,t(s)‖2V ‖μ(s)‖2V ds

+
C

γ

∫ t

0
‖μ2,t(s)‖2H ‖Δρ(s)‖2H ds +

C

γ

∫ t

0

∫
Γ
|u|2 dσ ds . (3.20)

Next, we test (3.10) formally by −Δρt . By the same token as in the proof of Lemma
3.1 in [7], we deduce for arbitrary γ > 0 the estimate

δ

∫ t

0
‖∇ρt(s)‖2H ds +

1
4
‖Δρ(t)‖2H ≤ γ

∫ t

0
‖μt(s)‖2H ds

+
C

γ

∫ t

0

(
1 + ‖ρ2,t(s)‖2V

)
‖Δρ(s)‖2H ds + C

∫ t

0

∫
Γ
|u|2 dσ ds . (3.21)

Now observe that, owing to Theorem 2.1, the mappings s �→ ‖ρi,t(s)‖2V , i = 1, 2 ,
and s �→ ‖μ2,t(s)‖2H all belong to L1(0, T ) . Hence, combining the estimates (3.18)–
(3.21), adjusting γ > 0 sufficiently small, and invoking Gronwall’s lemma, we can
conclude that for every t ∈ [0, T ] it holds

∫ t

0

(
‖∇ρt(s)‖2H + ‖μt(s)‖2H

)
ds + max

0≤s≤t

(
‖μ(s)‖2V + ‖ρ(s)‖2W

)

≤ C

{
‖u(0)‖2L2(Γ) +

∫ t

0

∫
Γ

(
|u|2 + |ut|2

)
dσ ds

}
. (3.22)

Next, we formally differentiate (3.10) with respect to t , and obtain

δρtt −Δρt = μt − f ′′(ρ1) ρt − (f ′′(ρ1)− f ′′(ρ2)) ρ2,t , (3.23)

with zero initial and Neumann boundary conditions for ρt . Hence, testing (3.23) by
ρt , invoking Young’s inequality, and recalling (3.8) and (3.22), we find that

δ

2
‖ρt(t)‖2H +

∫ t

0
‖∇ρt(s)‖2H ds

≤ C

{
‖u(0)‖2L2(Γ) +

∫ t

0

∫
Γ

(
|u|2 + |ut|2

)
dσ ds

}

+
∫ t

0

∫
Ω
|ρ2,t| |f ′′(ρ1)− f ′′(ρ2)| |ρt| dx ds . (3.24)
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Moreover, using Hölder’s and Young’s inequalities, (A7) and (3.8), we see that
∫ t

0

∫
Ω
|ρ2,t| |f ′′(ρ1)− f ′′(ρ2)| |ρt| dx ds

≤ C

∫ t

0
‖ρ2,t(s)‖L4(Ω) ‖ρ(s)‖L4(Ω)‖ρt(s)‖H ds

≤ C
(∫ t

0
‖ρt(s)‖2H ds + max

0≤s≤t
‖ρ(s)‖2V

∫ t

0
‖ρ2,t(s)‖2V ds

)

≤ C

∫ t

0

∫
Γ
|u|2 dσ ds . (3.25)

Finally, we test (3.23) by −Δρt . Using Young’s inequality and (3.22), we find that

δ

2
‖∇ρt(t)‖2H +

∫ t

0
‖Δρt(s)‖2H ds

≤ γ

∫ t

0
‖Δρt(s)‖2H ds +

C

γ

{
‖u(0)‖2L2(Γ) +

∫ t

0

∫
Γ

(
|u|2 + |ut|2

)
dσ ds

}

+
∫ t

0

∫
Ω
|ρ2,t| |f ′′(ρ1)− f ′′(ρ2)| |Δρt| dx ds

≤ 2γ
∫ t

0
‖Δρt(s)‖2H ds +

C

γ

{
‖u(0)‖2L2(Γ) +

∫ t

0

∫
Γ

(
|u|2 + |ut|2

)
dσ ds

}

+
C

γ
max
0≤s≤t

‖ρ(s)‖2V
∫ t

0
‖ρ2,t(s)‖2V ds

≤ 2γ
∫ t

0
‖Δρt(s)‖2H ds

+
C

γ

{
‖u(0)‖2L2(Γ) +

∫ t

0

∫
Γ

(
|u|2 + |ut|2

)
dσ ds

}
. (3.26)

Choosing γ > 0 appropriately small, we can infer that the estimate (3.17) is in fact
true. This concludes the proof. �

4. An optimal boundary control problem

In this section, we consider the following optimal boundary control problem:

(CP) Minimize the cost functional

J(u, ρ, μ) =
1
2

∫
Ω
|ρ(x, T )− ρT (x)|2 dx +

β1
2

∫ T

0

∫
Γ
|u(x, t)|2 dσ dt

+
β2

2

∫ T

0

∫
Ω
|μ(x, t)− μT (x, t)|2 dx dt (4.1)
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subject to the state system (1.1)–(1.4) and to the control constraints

u ∈ Uad :=
{
v ∈ H1(0, T ;L2(Γ)) ∩ L∞(Σ) : U1 ≤ v ≤ U2 a. e. on Σ,

‖vt‖L2(0,T ;L2(Γ)) ≤ R
}
. (4.2)

In this connection, we require that the hypotheses (A1)–(A7) be satisfied. In addi-
tion, we postulate:

(A8) R > 0 , βi ≥ 0 , i = 1, 2 , ρT ∈ L2(Ω) , μT ∈ L2(Q) , U1, U2 ∈ L∞(Σ),
and there are constants 0 < u∗ < u∗ < +∞ such that

u∗ ≤ U1 ≤ U2 ≤ u∗ a. e. on Σ . (4.3)

In what follows, we denote

X := H1(0, T ;L2(Γ)) ∩ L∞(Σ) , ‖u‖X := ‖u‖H1(0,T ;L2(Γ)) + ‖u‖L∞(Σ) ,

where ‖ · ‖H1(0,T ;L2(Γ)) is the standard norm in H1(0, T ;L2(Γ)) . Obviously, Uad is
a nonempty, bounded, closed and convex subset of X , and Uad is contained in the
open set U ⊂ X given by

U :=
{
v ∈ X :

1
2
u∗ < ess inf v , ess sup v <

3
2
u∗ , ‖vt‖L2(0,T ;L2(Γ)) < R+1

}
.

By Theorem 3.3, the control-to-state mapping u �→ S(u) := (ρ, μ) is Lipschitz
continuous as a mapping from the set U ⊂ X into the space(

H1(0, T ;W ) ∩ C1([0, T ];V )
)
×

(
H1(0, T ;H) ∩ C0([0, T ];V )

)
.

We may without loss of generality assume (by possibly taking a larger K∗
2 ) that

(3.17) is valid on the whole set U with the same constant K∗
2 > 0 . It also follows

from Theorem 3.1 that there exist constants μ∗ > 0 and 0 < r∗ < r∗ < 1 such that
for every u ∈ U it holds

0 ≤ μ ≤ μ∗ and 0 < r∗ ≤ ρ ≤ r∗ < 1 a. e. in Q, (4.4)

where (ρ, μ) = S(u) . Moreover, a closer inspection of the proof of Theorem 2.1
reveals that there is a constant K∗

3 > 0 such that we have, for any u ∈ U ,

‖ρ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W )

+ ‖μ‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;H3/2(Ω))∩L∞(Q) ≤ K∗
3 . (4.5)

Remark 4.1. Thanks to (4.4) and to f ∈ C3(0, 1) , it holds f ′(ρ) ∈ L∞(Q) . Also, by
the embedding V ⊂ L6(Ω) , we have μ ∈ C0([0, T ];L6(Ω)) . Notice also that (2.3)
implies, in particular, that ρ is continuous from [0, T ] to Hs(Ω) for all s < 2 ;
thus, since Hs(Ω) ⊂ C(Ω) for s > 3/2 , we also have ρ ∈ C(Q) . Therefore, possibly
choosing a larger constant K∗

3 , we may without loss of generality assume that

‖ρ‖C(Q) + ‖μ‖C0([0,T ];L6(Ω)) + ‖ρt‖L2(0,T ;L6(Ω)) ≤ K∗
3 ∀u ∈ U . (4.6)



 P. Colli, G. Gilardi and Jürgen Sprekels

Remark 4.2. The mathematical literature on control problems for phase field systems
is scarce and usually restricted to the so-called Caginalp model of phase transitions
(see, e. g., [11], [9], [10], [18], and the references given there). More general, thermo-
dynamically consistent phase field models were the subject of [13]. In [7], the present
authors investigated a control problem for the system (1.1)–(1.4) with distributed
controls. Since many of the arguments employed in [7] carry over to the boundary
control considered here, we can afford to be sketchy in some of the proofs in the
following exposition.

4.1. Existence

We begin our discussion of the control problem (CP) with the following existence
result:

Theorem 4.3. Suppose that the conditions (A1)–(A8) are satisfied. Then the optimal
control problem (CP) has a solution u ∈ Uad .

Proof. Let {un} ⊂ Uad be a minimizing sequence for (CP), and let {(ρn, μn)} be
the sequence of the associated solutions to (1.1)–(1.4). We then can infer from (4.5)
the existence of a triple (ū, ρ̄, μ̄) such that, for a suitable subsequence again indexed
by n , we have

un → ū weakly star in H1(0, T ;L2(Γ)) ∩ L∞(Σ),

ρn → ρ̄ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ),

μn → μ̄ weakly star in H1(0, T ;H) ∩ L∞([0, T ];V ) ∩ L2(0, T ;H3/2(Ω)).

Clearly, we have that ū ∈ Uad . Moreover, by virtue of the Aubin-Lions lemma (cf.
[14, Thm. 5.1, p. 58]) and similar compactness results (cf. [17, Sect. 8, Cor. 4]), we
also have the strong convergences

ρn → ρ̄ strongly in C0([0, T ];Hs(Ω)) for all s < 2,

μn → μ̄ strongly in C0([0, T ];H) ∩ L2(0, T ;V ).

From this we infer, possibly selecting another subsequence again indexed by n , that
ρn → ρ̄ pointwise a. e. (actually, uniformly) in Q . In particular, r∗ ≤ ρ̄ ≤ r∗ a. e. in
Q and, since f ∈ C2(0, 1) , also f ′(ρn) → f ′(ρ̄) strongly in L2(Q) . Now notice that
the above convergences imply, in particular, that

ρn → ρ̄ strongly inC0([0, T ];L6(Ω)),

∂tρn → ∂tρ̄ weakly in L2(0, T ;L4(Ω)),

μn → μ̄ strongly in L2(0, T ;L4(Ω)),

∂tμn → ∂tμ̄ weakly in L2(Q).

From this, it is easily verified that

μn ∂tρn → μ̄ ∂tρ̄ weakly in L1(0, T ;H),

ρn ∂tμn → ρ̄ ∂tμ̄ weakly in L2(0, T ;L3/2(Ω)).
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In summary, if we pass to the limit as n→∞ in the state equations (1.1)–(1.4) writ-
ten for the triple (un, ρn, μn) , we find that (ρ̄, μ̄) = S(ū) , that is, the triple (ū, ρ̄, μ̄)
is admissible for the control problem (CP). From the weak sequential lower semicon-
tinuity of the cost functional J it finally follows that ū , together with (ρ̄, μ̄) = S(ū) ,
is a solution to (CP). This concludes the proof. �

Remark 4.4. It can be shown that this existence result holds for much more general
cost functionals. All we need is that J enjoy appropriate weak sequential lower
semicontinuity properties that match the above weak convergences.

Remark 4.5. Since the state component ρ is continuous on Q , the existence result
remains valid if suitable pointwise state constraints for ρ are added (provided the
admissible set is not empty).

4.2. Necessary optimality conditions

In this section, we derive the first-order necessary conditions of optimality for prob-
lem (CP). To this end, we first show that the control-to-state operator S : u �→
(ρ, μ) is Fréchet differentiable as a mapping from U ⊂ X into the Banach space
(Y, ‖ · ‖Y) , where

Y :=
(
H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W )

)
×
(
C0([0, T ];H) ∩ L2(0, T ;V )

)
.

4.2.1. The linearized system. Let ū ∈ U and h ∈ X be given and (ρ̄, μ̄) = S(ū) . As
a preparatory step, we consider the following system, which is obtained by linearizing
the system (1.1)–(1.4) at (ρ̄, μ̄) :

(ε + 2ρ̄) ηt −Δη + 2 μ̄t ξ + μ̄ ξt + ρ̄t η = 0 a. e. in Q, (4.7)

δ ξt −Δξ = −f ′′(ρ̄) ξ + η a. e. in Q, (4.8)

∂ξ

∂n
= 0 ,

∂η

∂n
= α(h− η) a. e. on Σ, (4.9)

ξ(x, 0) = η(x, 0) = 0 for a. e. x ∈ Ω. (4.10)

We expect for the Fréchet derivative DS(ū) at ū (if it exists) that (ξ, η) = DS(ū)h ,
provided that (4.7)–(4.10) admits a unique solution (ξ, η) . In view of (2.3), (2.4),
and (3.1), we can guess the regularity of ξ and η :

ξ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) ∩ L∞(Q), (4.11)

η ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H3/2(Ω)). (4.12)

Notice that also in this case we cannot expect that η(t) ∈ H2(Ω) a.e. in (0, T ) due
to the low space regularity of h , and we could repeat Remark 2.2 here. Nevertheless,
if (4.11) and (4.12) hold, then the collection of source terms in (4.7), i. e., the part
−2 μ̄t ξ− μ̄ ξt− ρ̄t η , belongs to L2(Q) , whereas the regularity (4.12) for η allows us
to conclude from (4.8) that also ξ ∈ C(Q) (by applying maximal parabolic regularity
theory, see, e. g., [8, Thm. 6.8] or [18, Lemma 7.12]).
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In fact, ξ is even more regular: indeed, we may differentiate (4.8) with respect to t
to find that

δξtt −Δξt = −f ′′′(ρ̄) ρ̄t ξ − f ′′(ρ̄) ξt + ηt , (4.13)

with zero initial and Neumann boundary conditions for ξt . Since the right-hand
side of (4.13) belongs to L2(Q) , we may test by any of the functions ξt , ξtt , and
−Δξt , to obtain that even

ξ ∈ H2(0, T ;H) ∩ C1([0, T ];V ) ∩H1(0, T ;W ) . (4.14)

Notice, however, that this fact has no bearing on the regularity of η , since the
coefficient μ̄t in (4.7) only belongs to L2(Q) .

The following well-posedness result resembles Proposition 3.2 in [7].

Proposition 4.6. Suppose that (A1)–(A8) are fulfilled. Then the system (4.7)–(4.10)
has a unique solution (ξ, η) satisfying (4.12), (4.14), and

‖ξ‖H2(0,T ;H)∩C1([0,T ];V )∩H1(0,T ;W ) + ‖η‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;H3/2(Ω))

≤ K∗
4 ‖h‖H1(0,T ;L2(Γ)) , (4.15)

with a constant K∗
4 > 0 that is independent of the choice of ū ∈ U and h ∈ X .

Remark 4.7. It follows from Proposition 4.6, in particular, that the linear mapping
h �→ (ξ, η) is continuous from X into Y .

Proof. We follow the lines of the proof of our previous existence results and proceed
in a series of steps.

Step 1: Approximation. As in the proof of Theorem 2.1, we use an approximation
technique based on a delay in the right-hand side of (4.8). To this end, for τ > 0 we
resume the definition of the translation operator Tτ : L1(0, T ;H) → L1(0, T ;H)
by putting, for every v ∈ L1(0, T ;H) and almost every t ∈ (0, T ) ,

(Tτv)(t) = v(t− τ) if t ≥ τ, and (Tτv)(t) = 0 if t < τ. (4.16)

Notice that, for any v ∈ L2(Q) and any τ > 0 , we obviously have ‖Tτv‖L2(Q)
≤ ‖v‖L2(Q) .
Then, for any fixed τ > 0 , we look for functions (ξτ , ητ ) , which satisfy (4.11) and
(4.12) and the system:

(ε + 2ρ̄) ητt −Δητ + 2 μ̄t ξ
τ + μ̄ ξτt + ρ̄t η

τ = 0 a. e. in Q, (4.17)

δ ξτt −Δξτ + f ′′(ρ̄) ξτ = Tτητ a. e. in Q, (4.18)

∂ξτ

∂n
= 0 ,

∂ητ

∂n
= α(h− ητ ) a. e. on Σ, (4.19)

ξτ (x, 0) = ητ (x, 0) = 0 for a. e. x ∈ Ω. (4.20)

Precisely, we choose for τ > 0 the discrete values τ = T/N , where N ∈ IN is
arbitrary, and put tn = n τ , 0 ≤ n ≤ N , and In = (0, tn) . For 1 ≤ n ≤ N , we solve
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the problem

(ε + 2ρ̄) ηn,t −Δηn + 2 μ̄t ξn + μ̄ ξn,t + ρ̄t ηn = 0 a. e. in Ω× In, (4.21)

∂ηn
∂n

= α(h− ηn) a. e. on Γ× In, ηn(x, 0) = 0 for a. e. x ∈ Ω, (4.22)

δ ξn,t −Δξn + f ′′(ρ̄) ξn = Tτηn a. e. in Ω× In, (4.23)

∂ξn
∂n

= 0 a. e. on Γ× In, ξn(x, 0) = 0 for a. e. x ∈ Ω, (4.24)

where the variables ηn and ξn , defined on In , have obvious meaning. Here, Tτ acts
on functions that are not defined on the entire interval (0, T ) ; however, for n > 1
it is still defined by (4.16), while for n = 1 we simply put Tτηn = 0. Notice that
whenever the pairs (ξk, ηk) with

ξk ∈ H1(Ik;H) ∩ C0(Īk;V ) ∩ L2(Ik;W ) ∩ C(Ω× Ik), (4.25)

ηk ∈ H1(Ik;H) ∩ C0(Īk;V ) ∩ L2(Ik;H3/2(Ω)), (4.26)

have been constructed for 1 ≤ k ≤ n < N , then we look for the pair (ξn+1, ηn+1)
that coincides with (ξn, ηn) in In , and note that the linear parabolic problem (4.23),
(4.24) has a unique solution ξn+1 on Ω × In+1 that satisfies (4.25) for k = n + 1.
Inserting ξn+1 in (4.21) (where n is replaced by n+1), we then find that the linear
parabolic problem (4.21), (4.22) admits a unique solution ηn+1 that fulfills (4.26)
for k = n + 1. Hence, we conclude that (ξτ , ητ ) = (ξN , ηN ) satisfies (4.17)–(4.20),
and (4.11), (4.12).

Step 2: A priori estimates. We now prove a series of a priori estimates for the
functions (ξτ , ητ ) . In the following, we denote by Ci ( i ∈ IN) some generic positive
constants, which may depend on ε, δ, ρ∗, ρ∗, μ∗, T,K∗

1 ,K
∗
2 , K∗

3 , but not on τ (i. e.,
not on N ). For the sake of simplicity, we omit the superscript τ and simply write
(ξ, η) .

First a priori estimate. Observe that 2 ρ̄ η ηt =
(
ρ̄ η2

)
t
− ρ̄t η

2 . Hence, testing
(4.17) by η , and invoking (4.19) and Young’s inequality, we have, for 0 ≤ t ≤ T ,∫

Ω

(ε
2

+ ρ̄(t)
)
η(t)2 dx +

∫ t

0
‖∇η(s)‖2H ds +

∫ t

0

∫
Γ
α η2 dσ ds

≤
∫ t

0

∫
Γ

α

2
η2 dσ ds + C1

∫ t

0

∫
Γ
h2 dσ ds

+ 2
∫ t

0

∫
Ω
|μ̄t| |ξ| |η| dx ds +

∫ t

0

∫
Ω
|μ̄| |ξt| |η| dx ds . (4.27)

For any γ > 0 , we have, by Young’s inequality and (4.4), that∫ t

0

∫
Ω
|μ̄| |ξt| |η| dx ds ≤ ‖μ̄‖L∞(Q)

∫ t

0
‖η(s)‖H ‖ξt(s)‖H ds

≤ γ

∫ t

0
‖ξt(s)‖2H ds +

C2

γ

∫ t

0
‖η(s)‖2H ds . (4.28)
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Moreover, ∫ t

0

∫
Ω
|μ̄t| |ξ| |η| dx ds ≤

∫ t

0
‖μ̄t(s)‖H ‖ξ(s)‖L4(Ω) ‖η(s)‖L4(Ω) ds

≤ γ

∫ t

0
‖η(s)‖2V ds +

C3

γ

∫ t

0
‖μ̄t(s)‖2H ‖ξ(s)‖2V ds . (4.29)

Notice that, by virtue of (4.5), the mapping s �→ ‖μ̄t(s)‖2H is bounded by a function
in L1(0, T ) .
Next, we add ξ on both sides of Eq. (4.18) and test the resulting equation by ξt .
On using Young’s inequality again, we obtain:

δ

4

∫ t

0
‖ξt(s)‖2H ds +

1
2
(
‖ξ(t)‖2H + ‖∇ξ(t)‖2H

)

≤ C4

(∫ t

0
‖η(s)‖2H ds +

∫ t

0
‖ξ(s)‖2H ds

)
. (4.30)

Combining the inequalities (4.27)–(4.30), and choosing γ > 0 sufficiently small, we
conclude from Gronwall’s lemma that∫ T

0

(
‖ξt(t)‖2H + ‖η(t)‖2V

)
dt + max

0≤t≤T

(
‖ξ(t)‖2V + ‖η(t)‖2H

)

≤ C5

∫ T

0

∫
Γ
|h|2 dσ dt. (4.31)

Thanks to (4.19), we may also infer (possibly by choosing a larger C5 ) that

‖ξ(t)‖2W ≤ C5

(
‖Δξ(t)‖2H +

∫ T

0

∫
Γ
|h|2 dσ dt

)
for all t ∈ [0, T ] . (4.32)

Second a priori estimate. We test (4.17) by ηt and apply Young’s inequality in
order to obtain

ε

∫ t

0
‖ηt(s)‖2H ds +

1
2
‖∇η(t)‖2H +

∫
Γ

α

2
|η(t)|2 dσ ≤

∫ t

0

∫
Γ
αh ηt dσ ds

+
∫ t

0

∫
Ω

(2 |μ̄t| |ξ|+ |μ̄| |ξt|+ |ρ̄t| |η| ) |ηt| dx ds. (4.33)

By (4.4), we can infer from Young’s inequality that∫ t

0

∫
Ω
|μ̄| |ξt| |ηt| dx ds ≤ γ

∫ t

0
‖ηt(s)‖2H ds +

C6

γ

∫ t

0
‖ξt(s)‖2H ds . (4.34)

Moreover, by virtue of Hölder’s and Young’s inequalities,∫ t

0

∫
Ω
|ρ̄t| |η| |ηt| dx ds

≤ γ

∫ t

0
‖ηt(s)‖2H ds +

C7

γ

∫ t

0
‖ρ̄t(s)‖2L4(Ω)‖η(s)‖

2
L4(Ω) ds

≤ γ

∫ t

0
‖ηt(s)‖2H ds +

C8

γ

∫ t

0
‖ρ̄t(s)‖2V ‖η(s)‖2V ds . (4.35)
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Observe that by (4.5) the mapping s �→ ‖ρ̄t(s)‖2V is bounded by a function in
L1(0, T ) .
Also, we have, owing to the continuity of the embedding W ⊂ L∞(Ω) and (4.32),∫ t

0

∫
Ω

2 |μ̄t| |ξ| |ηt| dx ds

≤ γ

∫ t

0
‖ηt(s)‖2H ds +

C9

γ

∫ t

0
‖μ̄t(s)‖2H ‖ξ(s)‖2L∞(Ω)ds

≤ γ

∫ t

0
‖ηt(s)‖2H ds +

C10

γ

(∫ T

0

∫
Γ
|h|2 dσ dt

+
∫ t

0
‖μ̄t(s)‖2H ‖Δξ(s)‖2H ds

)
, (4.36)

where, owing to (4.5), the mapping s �→ ‖μ̄t(s)‖2H is bounded by a function in
L1(0, T ) .
Finally, we employ integration by parts, Young’s inequality, (4.31), and the trace
theorem to obtain∣∣∣

∫ t

0

∫
Γ
αh ηt dσ ds

∣∣∣ ≤
∫

Γ
α |h(t)| |η(t)| dσ +

∫ t

0

∫
Γ
α |ht| |η| dσ ds

≤
∫

Γ

α

4
|η(t)|2 dσ + C11 ‖h‖2H1(0,T ;L2(Γ)) . (4.37)

Next, we formally test (4.18) by −Δξt to obtain, for every t ∈ [0, T ] ,

δ

∫ t

0
‖∇ξt(s)‖2H ds +

1
2
‖Δξ(t)‖2H =

∫ t

0

∫
Ω

(
− (Tτη) + f ′′(ρ̄) ξ

)
Δξt dx ds. (4.38)

Now, by virtue of (4.31) and invoking Young’s inequality, we have
∣∣∣
∫ t

0

∫
Ω

(Tτη) Δξt dx ds
∣∣∣

≤
∫

Ω
|(Tτη) (t)| |Δξ(t)| dx +

∫ t

0

∫
Ω
|∂t (Tτη)| |Δξ| dx ds

≤ 1
8
‖Δξ(t)‖2H + C12

∫ T

0

∫
Γ
|h|2 dσ dt

+ γ

∫ t

0
‖ηt(s)‖2H ds +

1
4γ

∫ t

0
‖Δξ(s)‖2H ds . (4.39)

Moreover, it turns out that
∣∣∣
∫ t

0

∫
Ω
f ′′(ρ̄) ξ Δξt dx ds

∣∣∣ ≤
∫

Ω
|f ′′(ρ̄(t))| |ξ(t)| |Δξ(t)| dx

+
∫ t

0

∫
Ω

∣∣f ′′′(ρ̄) ρ̄t ξ + f ′′(ρ̄) ξt
∣∣ |Δξ| dx ds. (4.40)
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We have, owing to (4.4) and (4.31),
∫

Ω
|f ′′(ρ̄(t))| |ξ(t)| |Δξ(t)| dx ≤ 1

8
‖Δξ(t)‖2H + C13

∫ T

0

∫
Γ
|h|2 dσ dt . (4.41)

Also the second integral on the right-hand side of (4.40) is bounded, since (4.4),
(4.5), and (4.31) imply that

∫ t

0

∫
Ω

∣∣f ′′′(ρ̄) ρ̄t ξ + f ′′(ρ̄) ξt
∣∣ |Δξ| dx ds

≤ C14

∫ t

0

(
‖ρ̄t(s)‖2L4(Ω) ‖ξ(s)‖

2
L4(Ω) + ‖ξt(s)‖2H

)
ds +

∫ t

0
‖Δξ(s)‖2H ds

≤ C15

(
max

0≤t≤T
‖ξ(t)‖2V

∫ t

0
‖ρ̄t(s)‖2V ds +

∫ t

0
‖ξt(s)‖2H ds

)
+

∫ t

0
‖Δξ(s)‖2H ds

≤ C16

∫ T

0

∫
Γ
|h|2 dσ dt +

∫ t

0
‖Δξ(s)‖2H ds , (4.42)

thanks to the continuity of the embedding V ⊂ L4(Ω) . Thus, combining the es-
timates (4.33)–(4.42), choosing γ > 0 sufficiently small, and invoking Gronwall’s
inequality, we can infer that

∫ T

0

(
‖ηt(t)‖2H + ‖ξt(t)‖2V

)
dt + max

0≤t≤T

(
‖η(t)‖2V + ‖ξ(t)‖2W

)

≤ C17 ‖h‖2H1(0,T ;L2(Γ)) . (4.43)

Next, we compare terms in (4.17) and, arguing as in the derivation of (4.33)–(4.37),
we readily find that

∫ T

0
‖Δη(t)‖2H dt ≤ C18 ‖h‖2H1(0,T ;L2(Γ)) .

Thus, by owing to elliptic regularity (cf. (4.19) and Remark 2.2), we conclude that
∫ T

0
‖η(t)‖2

H3/2(Ω) dt ≤ C19 ‖h‖2H1(0,T ;L2(Γ)) . (4.44)

Finally, we differentiate Eq. (4.18) with respect to t . We obtain:

δ ξtt −Δξt = ∂t(Tτη)− f ′′′(ρ̄) ρ̄t ξ − f ′′(ρ̄) ξt a. e. in Q. (4.45)

From (4.4)–(4.6), (4.43) and (4.44), we can infer that we may test (4.45) by any of
the functions ξt , −Δξt , and ξtt , in order to find that
∫ T

0

(
‖ξtt(t)‖2H + ‖Δξt(t)‖2H

)
dt + max

0≤t≤T
‖ξt(t)‖2V ≤ C20 ‖h‖2H1(0,T ;L2(Γ)) . (4.46)

Step 3: Passage to the limit. Let (ξτ , ητ ) denote the solution to the system (4.17)–
(4.20) associated with τ = T/N , for N ∈ IN . In Step 2, we have shown that there
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is some C > 0 , which does not depend on τ , such that

‖ξτ‖H2(0,T ;H)∩C1([0,T ];V )∩H1(0,T ;W )∩C(Q)

+ ‖ητ‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;H3/2(Ω)) ≤ C ‖h‖H1(0,T ;L2(Γ)) . (4.47)

Hence, there is a subsequence τk ↘ 0 such that

ξτk → ξ weakly star in H2(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W ),

ητk → η weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H3/2(Ω)).

(4.48)

From the trace theorem we can infer that ξ satisfies the boundary condition given in
(4.9), while the boundary condition for η will be satisfied (either in the variational
sense or in the sense of the appropriate trace theorem, see Remark 2.2) once we prove
that we can pass to the limit in the products of (4.7), as shown below. Moreover, it
is easily seen that also (4.10) is fulfilled. By compact embedding, we also have, in
particular,

ξτk → ξ strongly in C(Q), ητk → η strongly in L2(Q), (4.49)

so that ρ̄ ητkt → ρ̄ ηt and μ̄ ξτkt → μ̄ ξt , both weakly in L2(Q) , f ′′(ρ̄) ξτk → f ′′(ρ̄) ξ
strongly in L2(Q) , as well as μ̄t ξ

τk
t → μ̄t ξt and ρ̄t η

τk → ρ̄t η , both strongly in
L1(Q) . Finally, it is easily verified that {Tτkητk} converges strongly in L2(Q) to
η . In conclusion, we may pass to the limit as k → ∞ in the system (4.17)–(4.20)
(written for τk ) to find that the pair (ξ, η) is in fact a solution to the linearized
system (4.7)–(4.10).
We now show the uniqueness. If (ξ1, η1) , (ξ2, η2) are two solutions having the above
properties, then the pair (ξ, η) , where ξ = ξ1 − ξ2 and η = η1 − η2 , satisfies (4.7)–
(4.10) with h = 0. We thus may repeat the first a priori estimate in Step 2 to
conclude that ξ = η = 0.
Finally, taking the limit as τ ↘ 0 in (4.47) and invoking the lower semicontinuity
of norms, we obtain the inequality (4.15). This concludes the proof. �

4.2.2. Fréchet differentiability of the control-to-state mapping. In this section, we
prove the following result.

Proposition 4.8. Suppose that the assumptions (A1)–(A8) are satisfied. Then the
solution operator S , viewed as a mapping from X to Y , is Fréchet differentiable on
U . For any ū ∈ U the Fréchet derivative DS(ū) is for h ∈ X given by DS(ū)h =
(ξ, η) , where (ξ, η) is the unique solution to the linearized system (4.7)–(4.10).

Proof. Let ū ∈ U be given and (ρ̄, μ̄) = S(ū) . Since U is an open subset of X ,
there is some λ > 0 such that ū+h ∈ U whenever h ∈ X satisfies ‖h‖X ≤ λ . In the
following, we consider such perturbations h ∈ X , and we define (ρh, μh) := S(ū+h)
and put

zh := μh − μ̄− ηh , yh := ρh − ρ̄− ξh, (4.50)
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where (ξh, ηh) denotes the unique solution to the linearized system (4.7)–(4.10)
associated with h . Since the linear mapping h �→ (ξh, ηh) is by Proposition 4.6
continuous from X into Y , it obviously suffices to show that there is an increasing
function g : [0, λ] → [0,+∞) which satisfies lim r↘0 g(r)/r2 = 0 and

‖yh‖2H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) + ‖zh‖2C0([0,T ];H)∩L2(0,T ;V )

≤ g
(
‖h‖H1(0,T ;L2(Γ))

)
. (4.51)

Using the state system (1.2)–(1.4) and the linearized system (4.7)–(4.10), we easily
verify that for h ∈ X with ‖h‖X ≤ λ the pair (yh, zh) is a strong solution to the
system

(ε + 2ρ̄) zht + ρ̄t z
h + μ̄ yht + 2μ̄t y

h −Δzh

= −2
(
μh
t − μ̄t

)(
ρh − ρ̄

)
−

(
ρht − ρ̄t

)(
μh − μ̄

)
a. e. in Q, (4.52)

δyht −Δyh + f ′(ρh)− f ′(ρ̄)− f ′′(ρ̄) ξh = zh, a. e. in Q, (4.53)

∂yh

∂n
= 0,

∂zh

∂n
= −α zh, a. e. on Σ, (4.54)

yh(x, 0) = zh(x, 0) = 0 for a. e. x ∈ Ω. (4.55)

Notice that

yh ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) ∩ C(Q̄),

zh ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H3/2(Ω)).

For the sake of a better readability, in the following estimates we omit the superscript
h of yh and zh . Also, we denote by Ci ( i ∈ IN) certain positive constants that
only depend on ε, δ, ρ∗, ρ∗, μ∗, T,K∗

1 ,K
∗
2 ,K

∗
3 ,K

∗
4 , but not on h .

We now add y on both sides of Eq. (4.53) and test the resulting equation by yt .
Using Young’s inequality, we find that for all t ∈ [0, T ] it holds

δ

2

∫ t

0
‖yt(s)‖2H ds +

1
2
(
‖∇y(t)‖2H + ‖y(t)‖2H

)
≤ 2

δ

∫ t

0
‖z(s)‖2H ds

+C1

∫ t

0
‖y(s)‖2H ds + C2

∫ t

0
‖(f ′(ρh)− f ′(ρ̄)− f ′′(ρ̄) ξh)(s)‖2H ds . (4.56)

In order to handle the third term on the right-hand side of (4.56), we note that the
stability estimate (3.17) implies, in particular, that

‖ρh − ρ̄‖2L∞(Q) ≤ K∗
2 ‖h‖2H1(0,T ;L2(Γ)) , (4.57)

that is, ρh → ρ̄ uniformly on Q as ‖h‖H1(0,T ;L2(Γ)) → 0 . Since f ∈ C3(0, 1) , we
can infer from Taylor’s theorem and (4.4) that
∣∣∣f ′(ρh)− f ′(ρ̄)− f ′′(ρ̄) ξh

∣∣∣ ≤ max
r∗≤σ≤r∗

|f ′′′(σ)|
2

∣∣∣ρh − ρ̄
∣∣∣2 + |f ′′(ρ̄)| |y| on Q. (4.58)
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It then follows from the estimates (3.17) and (4.56)–(4.57) that

δ

2

∫ t

0
‖yt(s)‖2H ds +

1
2
‖y(t)‖2V ≤ 2

δ

∫ t

0
‖z(s)‖2H ds + C3

∫ t

0
‖y(s)‖2H ds

+C4 ‖h‖4H1(0,T ;L2(Γ)) . (4.59)

Next, observe that 2 ρ̄ z zt =
(
ρ̄ z2

)
t
− ρ̄t z

2 . Therefore, testing (4.52) by z yields
for every t ∈ [0, T ] that

∫
Ω

(ε
2

+ ρ̄(t)
)
z2(t) dx +

∫ t

0
‖∇z(s)‖2H ds +

∫ t

0

∫
Γ
α |z|2 dσ dt

= −
∫ t

0

∫
Ω

(μ̄ yt + 2 μ̄t y) z dx ds− 2
∫ t

0

∫
Ω

(
μh
t − μ̄t

)(
ρh − ρ̄

)
z dx ds

−
∫ t

0

∫
Ω

(
ρht − ρ̄t

)(
μh − μ̄

)
z dx ds. (4.60)

We estimate the terms on the right-hand side of (4.60) individually. At first, using
(4.4) and Young’s inequality, we find that

∫ t

0

∫
Ω
|μ̄| |yt| |z| dx ds ≤ γ

∫ t

0
‖yt(s)‖2H ds +

C5

γ

∫ t

0
‖z(s)‖2H ds. (4.61)

Moreover, using the continuity of the embedding H1(Ω) ⊂ L4(Ω) , as well as Hölder’s
and Young’s inequalities, we have

2
∫ t

0

∫
Ω
|μ̄t| |y| |z| dx ds ≤ 2

∫ t

0
‖μ̄t(s)‖H ‖z(s)‖L4(Ω) ‖y(s)‖L4(Ω) ds

≤ γ

∫ t

0
‖z(s)‖2V ds +

C6

γ

∫ t

0
‖μ̄t(s)‖2H ‖y(s)‖2V ds . (4.62)

Observe that by (2.4) the mapping s �→ ‖μ̄t(s)‖2H belongs to L1(0, T ) .
At this point, we can conclude from (3.17) and (4.57), invoking Young’s inequality,
that

∫ t

0

∫
Ω

2
∣∣∣μh

t − μ̄t

∣∣∣
∣∣∣ρh − ρ̄

∣∣∣ |z| dx ds
≤ 2

∫ t

0

∥∥∥(μh
t − μ̄t)(s)

∥∥∥
H

∥∥∥(ρh − ρ̄)(s)
∥∥∥
L∞(Ω)

‖z(s)‖H ds

≤ C7

∥∥∥ρh − ρ̄
∥∥∥2

L∞(Q)

∫ t

0

∥∥∥(μh
t − μ̄t)(s)

∥∥∥2

H
ds +

∫ t

0
‖z(s)‖2H ds

≤
∫ t

0
‖z(s)‖2H ds + C8 ‖h‖4H1(0,T ;L2(Γ)) . (4.63)
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Finally, we invoke (3.17) and Hölder’s and Young’s inequalities, as well as the con-
tinuity of the embedding H1(Ω) ⊂ L4(Ω) , to obtain that

∫ t

0

∫
Ω

∣∣∣ρht − ρ̄t

∣∣∣
∣∣∣μh − μ̄

∣∣∣ |z| dx ds
≤ max

0≤s≤t
‖z(s)‖H

∫ t

0

∥∥∥(ρht − ρ̄t)(s)
∥∥∥
L4(Ω)

∥∥∥(μh − μ̄)(s)
∥∥∥
L4(Ω)

ds

≤ γ max
0≤s≤t

‖z(s)‖2H +
C9

γ

∫ t

0

∥∥∥(ρht − ρ̄t)(s)
∥∥∥2

V
ds

∫ t

0

∥∥∥(μh − μ̄)(s)
∥∥∥2

V
ds

≤ γ max
0≤s≤t

‖z(s)‖2H + C10 ‖h‖4H1(0,T ;L2(Γ)) . (4.64)

Combining the estimates (4.59)–(4.64), taking the maximum with respect to t ∈
[0, T ] , adjusting γ > 0 appropriately small, and invoking Gronwall’s lemma, we
arrive at the conclusion that (yh, zh) = (y, z) satisfies the inequality

‖yh‖2H1(0,T ;H)∩C0([0,T ];V ) + ‖zh‖2C0([0,T ];H)∩L2([0,T ];V )

≤ C11 ‖h‖4H1(0,T ;L2(Γ)) . (4.65)

Finally, testing (4.53) by −Δyh , and using (4.58), we find that also

‖yh‖2L2(0,T ;W ) ≤ C12 ‖h‖4H1(0,T ;L2(Γ)) . (4.66)

Therefore, the function g(r) := (C11 + C12) r4 has the requested properties. This
concludes the proof of the assertion. �

Corollary 4.9. Let the assumptions (A1)–(A8) be fulfilled, and let ū ∈ Uad be an
optimal control for the problem (CP) with associated state (ρ̄, μ̄) = S(ū) . Then, for
every v ∈ Uad ,∫ T

0

∫
Γ
β1 ū(v − ū) dσ dt +

∫
Ω
(ρ̄(T )− ρT ) ξ(T ) dx +

∫ T

0

∫
Ω
β2 (μ̄− μT ) η dx dt ≥ 0,

(4.67)
where (ξ, η) is the unique solution to the linearized system (4.7)–(4.10) associated
with h = v − ū .

Proof. Let v ∈ Uad be arbitrary and h = v− ū . Then ū+ λh ∈ Uad for 0 < λ ≤ 1 .
For any such λ , we have

0 ≤ J(ū + λh, S(ū + λh))− J(ū, S(ū))
λ

≤ J(ū + λh, S(ū + λh))− J(ū, S(ū + λh))
λ

+
J(ū, S(ū + λh))− J(ū, S(ū))

λ
.
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It follows immediately from the definition of the cost functional J that the first sum-
mand on the right-hand side of this inequality converges to

∫ T
0

∫
Γ β1 ū (v − ū) dσ dt

as λ↘ 0 . For the second summand, we obtain from Proposition 4.8 that

lim
λ↘0

J(ū, S(ū + λh))− J(ū, S(ū))
λ

=
∫

Ω
(ρ̄(x, T )− ρT (x)) ξ(x, T ) dx +

∫ T

0

∫
Ω
β2 (μ̄− μT ) η dx dt ,

whence the assertion follows. �

4.2.3. The optimality system. Let ū ∈ Uad be an optimal control for (CP) with
associated state (ρ̄, μ̄) = S(ū) . Then, for every v ∈ Uad , (4.67) holds. We now
aim to eliminate (ξ, η) by introducing the adjoint state variables. To this end, we
consider the adjoint system :

−(ε + 2ρ̄) qt − ρ̄t q −Δq = p + β2 (μ̄− μT ) a. e. in Q, (4.68)

∂q

∂n
= −α q a. e. in Σ, q(x, T ) = 0 for a. e. x ∈ Ω, (4.69)

−δpt −Δp + f ′′(ρ̄) p = μ̄ qt − μ̄t q in Q, (4.70)

∂p

∂n
= 0 on Σ, δ p(T ) = ρ̄(T )− ρT in Ω , (4.71)

which is a linear backward-in-time parabolic system for the adjoint state variables
p and q .
It must be expected that the adjoint state variables (p, q) be less regular than the
state variables (ρ̄, μ̄) . Indeed, we only have p(T ) ∈ L2(Ω) , and thus (4.70) and
(4.71) should be interpreted in the usual weak sense. That is, we look for a vector-
valued function p ∈ H1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) that, in addition to
the final time condition (4.71), satisfies

〈−δ pt(t), v〉V ∗,V +
∫

Ω
∇p(t) · ∇v dx +

∫
Ω
f ′′(ρ̄(t)) p(t) v dx

=
∫

Ω
(μ̄(t) qt(t)− μ̄t(t) q(t)) v dx , (4.72)

for every v ∈ V and almost every t ∈ (0, T ) . Notice that if q ∈ H1(0, T ;H) ∩
C0([0, T ];V ) , then it is easily seen that μ̄ qt − μ̄t q ∈ L3/2(Q) , so that the integral
on the right-hand side of (4.72) makes sense. On the other hand, if p has the
expected regularity then the solution to (4.68), (4.69) should belong to H1(0, T ;H)∩
C0([0, T ];V ) ∩ L2(0, T ;H2(Ω)) .
The following result is an analogue of Theorem 3.7 in [7].
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Theorem 4.10. Suppose that ū ∈ Uad is an optimal control for (CP) with associated
state (ρ̄, μ̄) = S(ū) . Then the adjoint system (4.68)–(4.71) has a unique weak solu-
tion (p, q) with p ∈ H1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) , q ∈ H1(0, T ;H) ∩
C0([0, T ];V ) ∩ L2(0, T ;H2(Ω)) ; moreover, for any v ∈ Uad , we have the inequality∫ T

0

∫
Γ
β1 ū (v − ū) dσ dt +

∫ T

0

∫
Γ
α q (v − ū) dσ dt ≥ 0 . (4.73)

Proof. The existence and uniqueness result for the adjoint state variables p and q
follows using the same line of arguments as in the proof of Proposition 3.6 in [7],
with only minor and straightforward changes that are due to the different boundary
condition for q . Now let v ∈ Uad be given. A standard calculation (which can be
left as an easy exercise to the reader), using the linearized system (4.7)–(4.10) with
h = v − ū , repeated integration by parts, and the well-known integration by parts
formula∫ T

0

(
〈vt(t), w(t)〉V ∗,V + 〈wt(t), v(t)〉V ∗,V

)
dt =

∫
Ω

(
v(T )w(T )− v(0)w(0)

)
dx

(which holds for all functions v, w ∈ H1(0, T ;V ∗)∩L2(0, T ;V ) ), yields the identity∫
Ω
(ρ̄(x, T )− ρT (x)) ξ(x, T ) dx +

∫ T

0

∫
Ω
β2(μ̄− μT )η dx dt

=
∫ T

0

∫
Γ
α q (v − ū) dσ dt . (4.74)

The variational inequality (4.73) is thus a direct consequence of Corollary 4.9. �
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