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Phase Field Approach
to Multiphase Flow Modeling

Andrea G. Lamorgese, Dafne Molin and Roberto Mauri

Abstract. We review the phase field (otherwise called diffuse interface) model for
fluid flows, where all quantities, such as density and composition, are assumed
to vary continuously in space. This approach is the natural extension of van der
Waals’ theory of critical phenomena both for one-component, two-phase fluids
and for partially miscible liquid mixtures. The equations of motion are derived,
assuming a simple expression for the pairwise interaction potential. In particular,
we see that a non-equilibrium, reversible body force appears in the Navier-Stokes
equation, that is proportional to the gradient of the generalized chemical po-
tential. This, so called Korteweg, force is responsible for the convection that is
observed in otherwise quiescent systems during phase change. In addition, in bi-
nary mixtures, the diffusive flux is modeled using a Cahn-Hilliard constitutive
law with a composition-dependent diffusivity, showing that it reduces to Fick’s
law in the dilute limit case. Finally, the results of several numerical simulations
are described, modeling, in particular, a) mixing, b) spinodal decomposition, c)
nucleation, d) enhanced heat transport, e) liquid-vapor phase separation.
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1. Introduction

The theory of multiphase systems was developed at the beginning of the 19th cen-
tury by Young, Laplace and Gauss, assuming that different phases are separated by
an interface, that is a surface of zero thickness. In this approach, physical properties
such as density and concentration, may change discontinuously across the interface
and the magnitude of these jumps can be determined by imposing equilibrium con-
ditions at the interface. For example, imposing that the sum of all forces applied to
an infinitesimal curved interface vanish leads to the Young-Laplace equation, stating
that the difference in pressure between the two sides of the interface (where each
phase is assumed to be at equilibrium) equals the product of surface tension and
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curvature. Later, this approach was generalized by defining surface thermodynami-
cal properties, such as surface energy and entropy, and surface transport quantities,
such as surface viscosity and heat conductivity, thus formulating the thermodynam-
ics and transport phenomena of multiphase systems. At the end of the 19th century,
though, another approach was proposed by Rayleigh [49] and Van der Waals [59],
who assumed that interfaces have a non-zero thickness, i.e. they are “diffuse.” Ac-
tually, the basic idea was not new, as it dated back to Maxwell [37] and Gibbs [15],
Poisson [48] and Leibnitz [33] or even Lucretius [35], who wrote that “a body is
never wholly full nor void.” Concretely, in a seminal article published in 1893, Van
der Waals [59] used his equation of state to predict the thickness of the interface,
showing that it becomes infinite as the critical point is approached. Later, Korteweg
[25] continued this work and proposed an expression for the capillary stresses, which
are generally referred to as Korteweg stresses, showing that they reduce to surface
tension when the region where density changes from one to the other equilibrium
value collapses into a sharp interface (see [51] for a review of the molecular basis of
capillarity).

In the first half of the 20th century, van der Waals’ theory of critical phenomena
was generalized by Ginzburg and Landau [31], leading to a general theory of second-
order phase transition and thereby describing phenomena such as ferromagnetism,
superfluidity and superconductivity. Then, at mid 1900, Cahn & Hilliard [6] applied
van der Waals’ diffuse interface (D.I.) approach to binary mixtures and then used
it to describe nucleation and spinodal decomposition [3]. This approach was later
extended to model phase separation of polymer blends and alloys [11]. Finally, in
the mid 1970s, the D.I. approach was coupled to hydrodynamics, developing a set of
conservation equations, thanks to the work by, among others, Kawasaki [24], Siggia
[55], and Hohenberg & Halperin [20]. These latter authors referred to this approach
as “model H” and only later the name “diffuse interface model” was introduced.
Finally, recent developments in computing technology have stimulated a resurgence
of the D.I. approach, above all in the study of systems with complex morpholo-
gies and topological changes. A detailed discussion about D.I. theory coupled with
hydrodynamics can be found in Antanovskii [2], Lowengrub & Truskinovski [34],
Anderson et al. [1] and, more recently, in Onuki [34] and Thiele et al. [58]. In order
to better understand the basic idea underlying the D.I. theory, let us remind briefly
the classical approach to multiphase flow that is used in fluid mechanics. There,
the equations of conservation of mass, momentum, energy and chemical species are
written separately for each phase, assuming that temperature, pressure, density and
composition of each phase are equal to their equilibrium values. Accordingly, these
equations are supplemented by boundary conditions at the interface, namely [9],

‖τττ‖−+ · n = κσn− (I− nn) · ∇σ, ‖v‖−+ = 0, ‖T‖−+ = 0, (1.1)

with n denoting the normal at the interface, stating that the jump of the stress
tensor, τττ , at the interface is related to the the curvature κ, the surface tension σ
and its gradient, while the velocity v and the temperature T are continuous. Similar
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boundary conditions exist also for the transport of energy and mass,

‖Jq‖−+ · n = 0, ‖J(i)‖−+ · n = 0, ‖ρ(i)‖−+ = (K − 1)ρ(i)+, (1.2)

stating that standard (Fourier) heat flux, Jq, and the diffusive flux of any chemical
species i, J(i), are continuous across the interface (assuming no phase transition and
no surface reactions), while the concentration, ρ(i), can undergo a jump, depending
on a partition coefficient K, given by thermodynamics. Naturally, this results in
a free boundary problem, which means that one of the main problems of this ap-
proach is to determine the position of the interface. To that extent, many interface
tracking methods have been developed, which have proved very successful in a wide
range of situations. However, interface tracking breaks down whenever the interface
thickness is comparable to the length scale of the phenomenon that is being stud-
ied, such as a) in near-critical fluids or partially miscible mixtures, as the interface
thickness diverges at the critical point, and the morphology of the systems presents
self-intersecting free boundaries; b) near the contact line along a solid surface, in the
breakup/coalescence of liquid droplets and, in general, in microfluidics, as the related
physical processes act on length scales that are comparable to the interface thick-
ness. In front of these difficulties, the D.I. method offers an alternative approach.
Quantities that in the free boundary approach are localized in the interfacial surface,
here are assumed to be distributed within the interfacial volume. For example, sur-
face tension is the result of distributed stresses within the interfacial region, which
are often called capillary, or Korteweg, stresses. In general, the interphase bound-
aries are considered as mesoscopic structures, so that any material property varies
smoothly at macroscopic distances along the interface, while the gradients in the
normal direction are steep. Accordingly, the main characteristic of the D.I. method
is the use of an “order parameter” which undergoes a rapid but continuous variation
across the interphase boundary, while it varies smoothly in each bulk phase, where
it can even assume constant equilibrium values. For a single-component system, the
order parameter is the fluid density ρ, for a liquid binary mixture it is the molar (or
mass) fraction φ, while in other cases it can be any other parameter, not necessarily
with any physical meaning, that allows to reformulate free boundary problems. In
all these cases, the D.I. model must include a characteristic interface thickness, over
which the order parameter changes. In fact, in the asymptotic limit of vanishing
interfacial width, the diffuse interface model reduces to the classical free boundary
problem.

In this work, first, in Section 2 and 3, the diffuse interface model is formulated
for single-component fluids at equilibrium. Then, in Section 4, the equations of
motion are developed both for for single- and multi-component fluid mixtures, while
in Section 5, these results are applied to regular binary mixtures. Finally, after a
brief summary of all the equations of motion (Section 6), in Section 7, the results
of numerical simulations are presented for the case of regular liquid binary mixtures
and single-component van der Waals fluids.
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2. Equilibrium conditions for single-component fluids

2.1. The free energy and van der Waals’ equation

All thermodynamical properties can be determined from the Helmholtz free energy.
This, in turn, depends on the intermolecular forces which, in a dense fluid, are
a combination of weak and strong forces. Fortunately, strong interactions nearly
balance each other, so that the net forces acting on each molecule are weak and
long-range. In addition, the mean field approximation is assumed to be applicable,
meaning that molecular interactions are smeared out and can be replaced by the
action of a continuous effective medium [43]. Based on these assumptions, the case of
dense fluids can be treated as that of nearly ideal gases, so that, allowing for variable
density, the specific (per unit mass) Helmholtz free energy at constant temperature
T can be written as (see Landau & Lifshitz [31], Ch. 74):

f [ρ(x)] = fid +
1
2
kT

m2

∫ (
1− e−U(r)/kT

)
ρ(x + r) d3r, (2.1)

where k is Boltzmann’s constant, m is the mass of each molecule, U is the pair
interaction potential, which depends on the distance r = |r|, ρ is the mass density,
while the factor 1/2 compensates counting twice the interacting molecules. The first
term on the RHS,

fid =
kT

m
ln ρ, (2.2)

is the specific free energy of an ideal gas (where molecules do not interact). Now,
we assume that the interaction potential consists of a long-range attractive term,
decaying as r−6 (like in the Lennard-Jones potential), while the short-range term is
replaced by a hard-core repulsion [21], i.e.,

U(r) =

{
−U0(�/r)6 (r > d)
∞ (r < d)

(2.3)

where d is the nominal hard-core molecular diameter, � is a typical intermolecular
interaction distance, and the non-dimensional constant U0 represents the strength
of the intermolecular potential. When the density is uniform, Eq. (2.1) yields the
thermodynamic specific free energy, fTh,

fTh(T, ρ) = fid(T, ρ) + fex(T, ρ), (2.4)

where

fex(T, ρ) =
kT

m
ρB(T ) (2.5)

is the excess (i.e. the non ideal part) of the free energy, with

B(T ) =
1

2m

∫ ∞

0
(1− e−U(r)/kT )4πr2 dr (2.6)

denoting the first virial coefficient. This integral can be solved as

B(T ) =
2π
m

∫ d

0
r2dr +

2π
m

∫ ∞

d
(1− e

U0
kT

(�/r)6)r2 dr = c2 − m

kT
c1, (2.7)
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where

c1 =
2π
3

U0�
6

m2d3
and c2 =

2π
3

d3

m
(2.8)

are the pressure adding term and the excluded specific volume, respectively. Finally
we obtain:

fTh(ρ, T ) = fid +
kT

m
c2ρ− c1ρ ≈ kT

m
ln
(

ρ

1− c2ρ

)
− c1ρ, (2.9)

that is,

fTh(ρ, T ) = −kT

m
ln(v − c2)− c1

v
, (2.10)

where v = ρ−1 is the specific volume. At this point, applying the thermodynamic
equality (see [31], Ch. 76) P = −(∂f/∂v)N,T , we obtain the van der Waals’ equation
of state, (

P +
c1
v2

)
=

k

m

T

v − c2
. (2.11)

This equation of state could be considerably improved if the term T/(v − c2),
which is exact in 1D, is replaced by a more accurate representation of the pressure
for a hard-sphere fluid in 3D.

2.2. The critical point

In the P −T diagram, the vapor-liquid equilibrium curve stops at the critical point,
characterized by a critical temperature TC and a critical pressure PC . At higher
temperatures, T > TC , and pressures, P > PC , the differences between liquid and
vapor phases vanish altogether and we cannot even speak of two different phases.
In particular, as the critical point is approached, the difference between the specific
volume of the vapor phase and that of the liquid phase decreases, until it vanishes
at the critical point. Accordingly, near the critical point, since the specific volumes
of the two phases, v and v + δv , are near to each other, we can easily obtain:(

∂P

∂v

)
TC

= 0,
(
∂2P

∂v2

)
TC

= 0. (2.12)

Therefore, the critical point corresponds to a horizontal inflection point in the
P − v diagram, which means that, since P = −(∂fTh/∂v)T ,(

∂2fTh

∂v2

)
TC

= 0,
(
∂3fTh

∂v3

)
TC

= 0. (2.13)

Imposing that at the critical point the P − v curve have a horizontal inflection
point, we can determine the constant c1 e c2 in the van der Waals equation (the
same is true for any two-parameter cubic equation of state) in terms of the critical
constants TC and PC , finding (see [31], Ch. 84):

c1 =
9k
8m

TCvC =
27k2

64m2

T 2
C

PC
and c2 =

1
3
vC =

k

8m
TC

PC
. (2.14)
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Viceversa, the critical pressure, temperature and volume can be determined as
functions of c1 and c2 as follows:

PC =
1
27

c1
c22
, TC =

8m
27k

c1
c2
, vC = 3c2. (2.15)

Using these expressions, the van der Waals equation can be written in terms of
the reduced coordinates as:(

Pr +
3
v2r

)
(3vr − 1) = 8Tr, Pr =

P

PC
, vr =

v

vC
, Tr =

T

TC
. (2.16)

This equation represents a family of isotherms in the Pr − vr plane describing
the state of any substance, which is the basis of the law of corresponding states. As
expected, when Tr > 1 the isotherms are monotonically decreasing, in agreement
with the stability condition (∂P/∂v)T < 0, while when Tr < 1 each isotherm has a
maximum and a minimum point and between them we have an instability interval,
with (∂P/∂v)T > 0, corresponding to the two-phase region (see Figure 1).

Note that, considering that PCvC = (3k/8m)TC and substituting the expres-
sions for c1 and c2 in terms of the intermolecular potential, we obtain the following
relation: (

�

d

)2

=
3
2

(
kTC

U0

)1/3

. (2.17)

Figure 1. Phase diagram (P vs. v) of a single component fluid and
(−μTh vs. φ) of a binary mixture.
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2.3. Coexistence and spinodal curves

Let us consider a one-component system at equilibrium, whose pressure and tem-
perature are below their critical values, so that it is separated into two coexisting
phases, say α and β. According to the Gibbs phase rule, these two phases have the
same pressure and temperature and therefore, defining the Gibbs specific free en-
ergy gTh = fTh + Pv, with dgTh = −sdT + vdP , the corresponding equilibrium, or
saturation, pressure Psat at a given temperature can be easily determined from the
equilibrium condition, stating that at equilibrium the Gibbs specific free energies of
the two phases must be equal to each other. So we obtain:

gβTh − gαTh =
∫ e

b
dgTh = 0 =⇒

∫ e

b
v dP = [vP ]eb −

∫ e

b
P dv = 0, (2.18)

where P = P (v) represents an isotherm transformation. From a geometrical point
of view, this relation manifests the equality between the shaded area of Figure 1
(Maxwell’s rule), where the points b and e correspond to the equilibrium, or sat-
uration, points of the liquid and vapor phases at that temperature at equilibrium,
respectively, with specific volumes vαe and vβe . Conversely, the specific volumes of
the two phases at equilibrium could also be determined from the specific free energy
fTh, rewriting Eq. (2.16) in terms of reduced coordinates as

fTh

kTC/m
= −Tr ln(vC)− Tr ln

(
vr − 1

3

)
− 9

8vr
. (2.19)

Figure 2. Typical double-well curve of the free energy of a single
component fluid.

When Tr < 1 a typical curve of the free energy is represented in Figure 2. Now,
keeping Tr fixed and considering that the two phases at equilibrium have the same
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pressure, using the relation P = −(∂fTh/∂v)T , we obtain:

Pα = P β =⇒
(
∂fTh

∂v

)α

T

=
(
∂fTh

∂v

)β

T

, (2.20)

which, in Figure 2, represents the fact that the two equilibrium points have the same
tangent. From this relation we can determine the specific volumes of the two phases
at equilibrium, vαe and vβe . This relation can also be obtained considering that the
specific volumes of the two phases at equilibrium minimize the total free energy, i.e.,

FTh =
∫

ρfTh(ρ) d3x = min., (2.21)

where ρfTh is the free energy per unit volume,

ρfTh(ρ) =
kT

m
[ρ ln ρ + ρ2B(T )]. (2.22)

This minimization is carried out in Section 3.1. In Figure 1, besides the equilib-
rium curve, we have represented the, so called, spinodal curve, defined as the locus
of all points (like c and d) satisfying (∂P/∂v)T = 0. When the equilibrium and
spinodal points are plotted in a T − v diagram, we obtain the curves of Figure 3.
All points lying outside the region encompassing the equilibrium curve are stable
and represent homogeneous, single-phase systems; all points lying inside the region
within the bell-shaped spinodal curve are unstable and represent systems that will
separate into two phases (one liquid and another vapor, in this case); the region
sandwiched between the equilibrium and the spinodal curves represents metastable
systems, that is overheated liquid and undercooled vapor. The spinodal points can
be also determined using the relation (∂P/∂v)T = 0, obtaining:(

∂2fTh

∂v2

)
T

= 0, (2.23)

determining the spinodal specific volumes ṽαs and ṽβs .

3. The diffuse interface

3.1. The interfacial region

Suppose now that the density of the system is not constant. Accordingly, when
U0 � kT , Eq. (2.1) can be rewritten as

f(x) = fTh(x) + ΔfNL(x), (3.1)

where fTh is the specific free energy (2.2) corresponding to a system with constant
density, while

ΔfNL(x) =
1

2m2

∫
r>d

U(r)[ρ(x + r)− ρ(x)]d3r (3.2)

is a non-local specific free energy, due to density changes, typical of the diffuse inter-
face model. In fact, when there is an interface separating two phases at equilibrium,
this term corresponds to the interfacial energy. This result is a direct consequence
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Figure 3. Phase diagram (T − v) of a single component fluid and
(T − φ) of a binary mixture.

of the “exact” expression (2.1), showing that the free energy is non-local, that is
its value at any given point does not depend only on the density at that point, but
it depends also on the density at neighboring points. As stated by van der Waals
[59], “the error that we commit in assuming a dependence on the density only at
the point considered vanishes completely when the state of equilibrium is that of
a homogeneous distribution of the substance. If, however, the state of equilibrium
is one where there is a change of density throughout the vessel, as in a substance
under the action of gravity, then the error becomes general, however feeble it may
be.” Now, in (3.2) the density can be expanded as

ρ(x + r) = ρ(x) + r · ∇ρ +
1
2
rr : ∇∇ρ + . . . (3.3)

As we have tacitly assumed that the system is isotropic, we see that the con-
tribution of the linear term vanishes, so that, at leading order, we obtain [43]:

ΔfNL(x) = −1
2
K∇2ρ(x), (3.4)

with

K =
2π
3

U0�
6

m2d
=

9π
4

kTCd
5

m2
, (3.5)

where we have substituted Eqs. (2.3), (2.8) and (2.15). Note that, defining a non-
dimensional density, ρ̃ = d3ρ/m, the non-local free energy can be rewritten as

ΔfNL(x) = −1
2
kT

m
a2∇2ρ̃(x), (3.6)

where

a =

√
Km2

kTd3
=

√
9πTC

4T
d (3.7)
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is the characteristic length.

Comment. In the previous analysis, we have truncated the expansion (3.3)
after the second-order term, neglecting the next significant (i.e. the fourth-order)
term. That means assuming that ε = a2/λ2 � 1, where λ denotes the thickness of
the interfacial region. Now, although this assumption is satisfied near the critical
point, where λ diverges as T → TC [cf. Eq. (3.25)], far from the critical point,
ε is not too small. Consequently, one might conclude that a fully non-local theory
should be employed, which, however, leads to quite complicated governing equations,
as shown by Rohde [50]. Fortunately, comparing local and non-local approaches,
Frezzotti et al. [13] showed that the mean field approximation seems to capture,
even quantitatively, the main features of the process. The explanation of this result
is that, at a water-vapor or an oil-water interface, ε ≈ 0.1, so that we expect the
mean field approximation to be correct within a 10% error.

Now, the total free energy is the sum of the volume integral,∫
V
ρfd3x =

∫
V
ρ

(
fTh − 1

2
K∇2ρ

)
d3x, (3.8)

where ρf is the free energy per unit volume, and a surface contribution. In fact, at
the wall, the non-local free energy (3.2) becomes,

1
2m2

∮ {
ρs (x)

[∫
U (r) ρ (x + r) d3r

]}
d2x =

∮
fw (ρ (x)) d2x, (3.9)

where the integration is carried out on the surface. Here, ρs is the surface density
and fw is the wall free energy per unit surface, that we assume to be a function of
the fluid density at the wall only. Now, observing that, integrating by parts,∫

ρ(x)∇2ρ(x)d3x =
∮

n · (ρ∇ρ) d2x−
∫
|∇ρ(x)|2d3x, (3.10)

we see that the total free energy is the sum of a bulk and a surface free energy, i.e.,

F = Fb + Fw. (3.11)

Here, Fw is the wall free energy,

Fw =
∮ [

−1
2
Kn · (ρ∇ρ) + fw (ρ)

]
d2x, (3.12)

while Fb is the bulk free energy,

Fb =
∫

f̂(ρ,∇ρ, T ) d3x, (3.13)

with
f̂(ρ,∇ρ, T ) = ρfTh(ρ, T ) +

1
2
K(∇ρ)2 (3.14)

denoting the bulk free energy per unit volume, with fTh = (kT/m)[ln ρ + ρB(T )].
Now we want to see how the non local term of the free energy will affect the

chemical potential which, we remind, measures the free energy variation due to an
isothermal volume change. We know that at equilibrium, keeping the temperature
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T constant, the total free energy F will be minimized, subjected to the constraint
of mass conservation,

∫
ρd3x = M . Accordingly, introducing a Lagrange multiplier,

ρμ, the minimization condition is:

δ

∫ (
f̂ − ρμ

)
d3x + δ

∮ [
−1

2
Kn · (ρ∇ρ) + fw (ρ)

]
d2x = 0, (3.15)

for any arbitrary variation δρ of the density field. Now, consider that, for any function
h (ρ,∇ρ), we have:

δh =
∂h

∂ρ
δρ +

∂h

∂(∇iρ)
δ(∇iρ), with δ(∇iρ) = ∇i(δρ), (3.16)

and ∫
V

∂h

∂∇iρ
∇i(δρ)d3xdt =

∮
S
ni

∂h

∂∇iρ
δρd2x−

∫
V
∇i

(
∂h

∂∇iρ

)
δρd3x. (3.17)

Applying these two equalities to Eq. (3.15) we obtain:∫ [
∂f̂

∂ρ
−∇i

(
∂f̂

∂∇iρ

)
− μ

]
δρd3x +

∮
S
n ·

[
1
2
K∇ρ +

dfw
dρ

]
δρd3x = 0, (3.18)

where we have considered that δ (ρ∇ρ) = δρ∇ρ+ρ∇δρ and assumed that n·∇δρ = 0
at the boundary.

3.2. The generalized chemical potential

Choosing δρ = 0 at the boundary, Eq. (3.18) reduces to minimizing the bulk free
energy. So, predictably, we obtain the Euler-Lagrange equation:

μ =
∂f̂

∂ρ
−∇i

(
∂f̂

∂∇iρ

)
, (3.19)

that is,

μ =
δ(ρf)
δρ

=
d(ρfTh)

dρ
−K∇2ρ. (3.20)

Now, by definition, the first term on the RHS is the Gibbs free energy, which,
in a one-component system, coincides with the chemical potential, since,

μTh =
d(ρfTh)

dρ
= fTh + Pv, (3.21)

where P = −dfTh/dv (this is the slope of the tangent line represented in Figure 2).
Therefore, Eq. (3.19) can be rewritten as

μ(ρ,∇ρ) = μTh(ρ)−K∇2ρ, (3.22)

showing that at equilibrium, when ρ is non-uniform, it is μ, and not μTh, that remains
uniform. Note that the thermodynamic chemical potential, μTh, can be determined
from the solvability condition of Eq. (3.21), that is,

μTh =
ραfα

Th − ρβfβ
Th

ρα − ρβ
=

vαfβ
Th − vβfα

Th

vα − vβ
, (3.23)
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as can also be seen geometrically from Figure 2, stating that the chemical potential
equals the intercept of the tangent line on the v = 0 vertical axis. When two phases
are coexisting at equilibrium, separated by a planar interfacial region centered on
z = 0, Eq. (3.19) can be solved once the equilibrium free energy f is known, imposing
that, far from the interface region, the density is constant and equal to its equilibrium
value, so that the generalized chemical potential is equal to its thermodynamic
value (3.21). In particular, in the vicinity of the critical point, considering that the
chemical potential vanishes and expanding the free energy (2.19) as a power series
of ṽ = (v − vC)/vC and t̃ = (T − TC)/TC , with vC = 3c2 = 2πd3/m, we obtain at
leading order the following equation:

d2ṽ

dz̃2
− 6t̃ṽ − 3

2
ṽ3 = 0, (3.24)

where z̃ = z/λ is based on the characteristic length

λ =

√
1

8(−t̃)d. (3.25)

Equation (3.24) must be solved imposing that

ṽ(z̃ → ±∞) = ±ṽe = ±2
√
−t̃. (3.26)

The solution, due to van der Waals, is:

ṽ(z̃) = ṽe tanh z̃, (3.27)

showing that λ is a typical interfacial thickness. As expected, the interfacial thickness
diverges like (−t̃)−1/2 as we approach the critical point, while far from the critical
point it is of O(d). As shown in [36], this solution can be generalized to finite systems,
obtaining a family of Jacobi’s elliptic functions. Recently, [43] pointed out that
Eq. (3.24) is flawed, as some of the neglected terms diverge at the critical point.
In fact, Pismen showed that in the correct solution the specific volume tends to its
equilibrium value as |z̃|−3, instead of exponentially, as in the van der Waals solution.

3.3. The surface tension

In Section 3.1 we have seen that the total free energy is the sum of a thermodynam-
ical, constant density, part, and a non local contribution (3.4). When the system
is composed of two phases at equilibrium, separated by a plane interfacial region,
we may define the surface tension as the excess free energy per unit area stored in
this region. This quantity can be calculated by integrating the specific (i.e. per unit
volume) free energy from (3.4) along a coordinate z perpendicular to the interface:

σ =
1
2
K

∫ ∞

−∞

(
dρ

dz

)2

dz, (3.28)

where we have considered that the thermodynamic free energy density is the same
for the two phases and that, outside the interfacial region, the non-local free energy
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is identically zero as density is constant. We see that, near the critical point,

σ ≈ K
(Δρe)2

λ
≈ kTC

d2
(−t̃)3/2, (3.29)

where we have considered the specific volumes of the two phases at equilibrium,
Eq. (3.26), in addition to Eqs. (3.5) and (3.25). In fact, using the density profile
(3.27), Eq. (3.28) yields, for a van der Waals system:

σ = C
kTC

d2
(−t̃)3/2, (3.30)

with C = 33/2/(23/2π), where we have used Eq. (2.16). These results show that the
surface tension decreases as we approach criticality, until it vanishes at the critical
point. A more detailed numerical solution based on the solution of the van der Waals
equation can be found in [44]. Applying this approach, [59] showed that in a curved
interface region there arises a net force which is compensated by a pressure term,
thus obtaining the Young-Laplace equation. To see that, let us denote the position
of the interface by z = h(ξ), where ξ is the 2D vector in the tangent plane, and
assume that |∇ξh| � 1, where |∇ξh| is the 2D gradient [43]. Now, the free energy
increment due to the interface curvature can be written as:

ΔF = σ

∫ (√
1 + |∇ξh|2 − 1

)
d2ξ ≈ 1

2
σ

∫
|∇ξh|2d2ξ. (3.31)

This increment in the free energy induces an increment in the pressure,

ΔP = δΔF/δh = −σ∇2h = −κσ, (3.32)

where κ = ∇2h is the curvature of a weakly curved interface. Applying a rigorous
regular perturbation approach to Eq. (3.19), Pismen & Pomeau [44] derived both the
Young-Laplace equation (3.32) and the Gibbs-Thomson law, relating the equilibrium
temperature or pressure to the interfacial curvature.

3.4. The boundary conditions

As previously noted, the equilibrium state of an unconfined van der Waals fluid can
be determined using the generalized chemical potential in the bulk. In general, how-
ever, for confined systems surface wettability effects are present and must be taken
into account. In our D.I. approach such effects can be accounted for by introducing
the simplest additional surface contribution to the free energy functional, which is
based on the assumption that wettability is a local quantity, depending on the den-
sity of the two-phase fluid at the wall. Accordingly, choosing δρ = 0 in the bulk,
Eq. (3.18) reduces to minimizing the surface integral, and so we obtain the following
boundary condition [22]:

1
2
Kn · ∇ρ = −dfw

dρ
(ρ) , (3.33)

(with fw denoting the wall surface energy) expressing a diffusively controlled local
equilibrium at the wall. Now, assume the following linear dependence,

fw (φ) = σβ,w + (σα,w − σβ,w)φ, (3.34)
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with φ = (ρ−ρβ)/(ρα−ρβ) indicating the mass fraction of phase α while ρα and ρβ
denote the densities of the phases α and β at equilibrium. Therefore, and considering
that σ ∼= aρkT/m is the surface tension between the two fluid phases at equilibrium,
Eq. (3.33) can be rewritten as

σ an · ∇φ = −Δσw, (3.35)

where Δσw = σα,w − σβ,w expresses the affinity of the wall to phase β, as compared
to phase α. This condition is generally referred to as the Cahn boundary condi-
tion [4]. In the sharp interface limit, n · ∇φ = cos θ, where θ is the contact angle,
and therefore the Cahn boundary condition reduces to the Young-Laplace formula,
cos θ = −Δσw/σ. From here we see that, when σα,w = σβ,w or when σα,w and σβ,w
are both � σ, then θ = π/2; instead, when σα,w 
 σβ,w or σα,w � σβ,w, then θ = π

and θ = 0, respectively.

4. Equations of motion

4.1. Hamilton’s principle

In this Section, we confine ourselves to the study of reversible motions of a dissi-
pation-free fluid, where the effects of spatial inhomogeneities in the fluid density are
accounted for within the van der Waals mean field theory, neglecting all surface con-
tributions. The governing equations are obtained from Hamilton’s minimum action
principle:

S =
∫ t

0

∫
V
L(v, ρ,∇ρ)d3xdt = min., (4.1)

where
L(v, ρ,∇ρ) =

1
2
ρv2 − ρu(ρ,∇ρ) (4.2)

is the Lagrangian density of the system, with u denoting the internal energy per unit
mass. The minimization must be carried out with the constraints of conservation of
mass and entropy, i.e.,

ρ̇ ≡ dρ

dt
= −ρ∇ · v, ṡ = 0, (4.3)

where s is the specific entropy per unit mass, while
d

dt
=

∂

∂t
+ v · ∇ (4.4)

is the material, or Lagrangian, derivative. Accordingly, the relevant first variation
is:

δ

∫ t

0

∫
V

{
1
2
ρv2 − ρu + α [ρ̇ + ρ∇ · v] − βρṡ − ργγγ · ẋ0

}
d3xdt = 0, (4.5)

where the vector field x0 = x0(x, t) establishes the initial position of a fluid particle
which occupies the position x at time t. This form of Hamilton’s principle for the
compressible Euler equation was first presented by [19]. That treatment, however,
allowed only for irrotational flows since it neglected the additional constraint of
conservation of the identity of fluid particles, dx0/dt = 0. However, as noted by
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Serrin [54], this last constraint is necessary to describe the most general unsteady
motion of a compressible fluid.

The internal energy per unit mass in Eq. (4.2), consistent with the expression
(3.14) for the generalized Helmholtz free energy per unit volume in the bulk, can
be written as u = uTh + ΔuNL, where uTh = fTh + Ts is the thermodynamic free
energy per unit mass, while ΔuNL is the non-local component of the specific internal
energy (and of the free energy as well, since there is no non-local component of the
specific entropy), given by:

ΔuNL =
1
2
K

ρ
(∇ρ)2. (4.6)

The separate variations in ρ, v, s and x0 (subject to the constraints above) which
make the variational integral stationary lead to the following equations:

δv : v = ∇α + β∇s + γγγ · ∇x0, (4.7)

δρ :
dα

dt
=

v2

2
− ρ

(
∂uTh

∂ρ

)
s

− uTh + K∇2ρ, (4.8)

δs : − ρ

(
∂uTh

∂s

)
ρ

+ ρ
dβ

dt
= 0, (4.9)

δx0 :
dγγγ

dt
= 0. (4.10)

These relations can be shown to imply the Euler equation for a compressible, in-
homogeneous van der Waals fluid. In fact, from Eq. (4.7) one obtains the fluid
acceleration as ([54])

dv

dt
= −∇

(
v2

2

)
+∇dα

dt
+

dβ

dt
∇s, (4.11)

which can be rearranged to the form,

ρ
dv

dt
= −∇P + Kρ∇∇2ρ, (4.12)

where P = ρ2 (∂uTh/∂ρ) is the thermodynamic pressure. This derivation generalizes
that by Serrin [54], taking into account the effect of the non-local component of the
internal energy. As a result, in addition to the usual Euler equation, we obtain the
last term on the RHS of Eq. (4.12), which is a reversible, so-called Korteweg, body
force, driven by density gradients in the fluid. The same result can be obtained by
applying Noether’s theorem, as shown in [1].

As previously noted, Eq. (4.12) must be coupled to the continuity condition,

dρ

dt
+ ρ∇ · v = 0, (4.13)

and the specific entropy equation, which, for non-dissipative systems, includes only
the convective term, i.e.,

ρ
ds

dt
=

∂(ρs)
∂t

+∇ · (ρsv) = 0. (4.14)
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4.2. The Korteweg stresses

The equation of motion can also be written as:

ρ
dv

dt
= −∇P +∇ ·

{
K

[(
ρ∇2ρ +

1
2
|∇ρ|2

)
I−∇ρ⊗∇ρ

]}
, (4.15)

that is:
ρ
dvi
dt

+∇ip̃ = ∇jP
K
ji , (4.16)

where, taking into account the expressions (3.19)-(3.21) for the chemical potential
μ,

p̃ = P −K

[
ρ∇2ρ +

1
2

(∇ρ)2
]

= μρ− f̂ (4.17)

is a pressure term (again P = ρ2dfTh/dρ is the thermodynamic pressure) and with
PK
ij denoting the Korteweg stress tensor [25]

PK
ij = −K(∇iρ)(∇jρ) = − ∂f̂

∂(∇iρ)
∇jρ, (4.18)

where we have used the expression (3.13) for the free energy per unit volume, i.e.,
f̂ = ρfTh(ρ) + 1

2K(∇ρ)2. Note that the Korteweg stress and force depend only on
the non-local part of the free energy, even when it is not explicitly indicated.

The divergence of the Korteweg stresses in Eq. (4.16) can also be rewritten as:

∇jP
K
ji = −

[
∇j

(
∂f̂

∂∇jρ

)
∇iρ +

∂f̂

∂∇jρ
∇i∇jρ +

∂f̂

∂ρ
∇iρ− ∂f̂

∂ρ
∇iρ

]
, (4.19)

that is
∇ ·PK = μ∇ρ−∇f̂ , (4.20)

and therefore the momentum equation becomes

ρ
dv

dt
+∇p′ = μ∇ρ, (4.21)

where the pressure term has been redefined as

p′ = p̃ + f̂ = ρ
d

dρ
(ρfTh)−Kρ∇2ρ = μρ. (4.22)

Consequently, the momentum equation can be rearranged to the form:

ρ
dv

dt
= −ρ∇μ, (4.23)

and, considering that ρ∇μTh = ∇P , we find again Eq. (4.12), i.e.,

ρ
dv

dt
+∇P = ρFK ; FK = −∇ψ, (4.24)

with
ψ = μNL = −K∇2ρ, (4.25)

indicating that the non-local part of the generalized chemical potential, μNL, is a sort
of potential energy; in fact, we can include into FK also the contributions of any other
potential force. For example, since the body force due to gravity is Fg = −ρg∇z,



Vol.79 (2011) Phase Field Approach to Multiphase Flow Modeling 613

where g is the gravity acceleration term and z is the vertical coordinate, this force
can be accounted for by simply assuming in Eq. (4.24) that ψ = μNL + gz.

It is interesting to observe that in near-equilibrium systems the Korteweg force
is non-zero only in the narrow regions separating the different phases and therefore
it is not surprising that it can also be expressed as the divergence of a tensor, just
as it happens to surface forces.

Finally, we stress again that the Korteweg body force FK is non dissipative, as
it arises from the minimum action principle. Its expression in (4.24) is quite intuitive:
being proportional to the gradient of the chemical potential (with a minus sign), it
pushes the system towards thermodynamic equilibrium and is identically zero at
equilibrium. In addition, since this force is reversible, it does not enter explicitly
into the energy dissipation term.

4.3. Multicomponent systems and dissipative terms

In the case of a mixture composed of n species, defining the mass fraction of species
k, φ(k) = ρ(k)/ρ, as the ratio between the density (mass per unit volume) of species
k and the total density, we have:

n∑
k=1

ρ(k) = ρ,

n∑
k=1

φ(k) = 1. (4.26)

Now, the Korteweg force FK for a mixture becomes:

FK = −
n∑

k=1

φ(k)∇ψ(k), ψ(k) = μ
(k)
NL + gz, (4.27)

where ψ(k) is the sum of the non-local chemical potential of component k, μ(k)
NL, and

of the potential of any other conservative external force, such as gravity. Therefore,
since the Korteweg body force (4.27) has the general form of a potential force, we
can apply all the results of irreversible thermodynamics (see de Groot and Mazur
[10]). In particular, the rate of change of the mass of component k can be determined
applying a general conservation equation, in terms of the mass flux of component k,
J(k) = ρ(k)v(k), with v(k) denoting the velocity of species k, obtaining:

∂
(
ρφ(k)

)
∂t

+∇ ·
(
ρφ(k)v(k)

)
= 0, (k = 1, 2, . . . , n) (4.28)

where we have omitted the source term, indicating that the total mass of each species
is conserved, therefore assuming that no chemical reaction takes place within the
mixture. Generalization to reactive mixtures is straightforward [10]. Summing Eq.
(4.28) over all k’s we obtain the continuity equation, Eq. (4.13), with v indicating
the mass-averaged, or barycentric, velocity,

v =
1
ρ

n∑
k=1

ρ(k)v(k) =
n∑

k=1

φ(k)v(k). (4.29)

In particular, d/dt denotes the material derivative (4.4), expressed in terms of the
barycentric velocity.
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The balance equation of chemical species k can also be written as follows:

ρ
dφ(k)

dt
= −∇ · J(k), (k = 1, 2, . . . , n) (4.30)

where the diffusive mass flux

J(k) = ρφ(k)
(
v(k) − v

)
(4.31)

is defined in terms of the relative velocity of species k with respect to the barycentric
velocity.

In the same way, conservation of momentum and energy lead to the following
equations (see Eq. (19), (20) and (34) of Ch. II in [10]):

ρ
dv

dt
+∇ · Jv = ρFK , (4.32)

and

ρ
du

dt
+∇ · Jq = q̇, (4.33)

where Jv and Jq are diffusive momentum and heat fluxes, respectively, while q̇ is
the heat source, given by

q̇ = −Jv :∇v−
n∑

k=1

J(k) · ∇μ
(k)
NL, (4.34)

showing that the heat source, i.e the conversion of mechanical energy into heat,
is due to momentum and mass diffusion. The diffusive fluxes J(k), Jv and Jq are
determined through appropriate constitutive relations. To understand the form of
these equations, we consider the entropy production term (see Eq. (13) of Ch. IV in
[10]),

σ(S) = − 1
T
Js · ∇T −

n−1∑
k=1

1
T
J(k) ·

[
∇μ(kn)

]
T
− 1

T
J̃v:∇v, (4.35)

with μ(kn) = μ(k)−μ(n), where the subscript T indicates that the gradient is taken at
constant temperature, and we have considered that μNL is not an explicit function
of T . Here, Js is the entropy flux,

Js =
1
T

(
Jq −

n∑
k=1

J(k)h
(k)
Th

)
, (4.36)

where h
(k)
Th is the thermodynamic partial enthalpy of species k, while

J̃v = Jv − P I (4.37)

is a corrected momentum flux, in which the thermodynamic pressure term has been
subtracted. Note that, since μ = μTh +μNL, the diffusive flux in (4.35) is associated
with two forces, one being the diffusion driving force, ∇μTh, the other being the non-
local, out-of-equilibrium Korteweg force, ∇μNL which, as we saw, plays the role of a
potential external force. Then, applying the Onsager reciprocity relations, neglecting
all coupling terms (i.e. thermo-diffusion and Dufour effects), we see that, for regular,
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isotropic fluids, the heat flux, Jq, the momentum tensor, Jv, and the chemical species
diffusive flux, J(i), can be expressed through the following constitutive equations:

Jq = −k∇T +
n∑

k=1

J(k)h
(k)
Th, (4.38)

Jv = [P − λ (∇ · v)] I− η
(∇v +∇v+

)
, (4.39)

and

J(i) = −ρ
n−1∑

i �=k=1

L(ik)
[
∇μ(kn)

]
T
, (4.40)

where k and η denote thermal conductivity and shear viscosity, respectively, λ =
ζ − 2η/3, with ζ indicating the bulk viscosity while L(ik) denotes the diffusivity
of i into k; all these coefficients are local functions of temperature, pressure and
composition. Finally, note that, although the last term in (4.36) can be either positive
or negative, substituting the constitutive relation (4.38) into (4.36), we see that the
first term on the RHS of (4.35) is always positive, as it must be; the same happens
also when the coupling terms are taken into account.

The heat generation term and the internal energy flux in Eq. (4.33) can also be
written in the following form:

q̇ = −Jv :∇v− ρ
n∑

k=1

μ
(k)
NL

dφ(k)

dt
, (4.41)

and

Jq = −k∇T +
n∑

k=1

J(k)h(k), (4.42)

where h(k) = h
(k)
Th + μ

(k)
NL denotes the total partial enthalpy of species k, i.e. its

thermodynamic part plus its non local contribution.

5. Incompressible binary mixtures

Consider an incompressible binary mixture, where the continuity equation (4.13)
reduces to

∇ · v = 0. (5.1)

Accordingly, the pressure appearing in the momentum equation has no real
physical meaning, while the stress tensor reduces to

Jv = P I− η
(∇v +∇v+

)
, (5.2)

and the Korteweg force becomes:

FK = −φ∇μNL, (5.3)



616 A.G. Lamorgese, D. Molin and R. Mauri Vol.79 (2011)

where φ = φ(1) is the mass fraction of component 1, while μNL = μ
(1)
NL − μ

(2)
NL is the

generalized non-local chemical potential difference.1

In the internal energy equation (4.33) the heat generation term (4.41) becomes

q̇ = −Jv :∇v − ρμNL
dφ

dt
, (5.4)

while the internal energy flux (4.42) is expressed through the constitutive relation

Jq = −k∇T + Jφh. (5.5)

Here, μ = μ(1)−μ(2) and h = h(1)−h(2) are the total chemical potential and partial
enthalpy difference, respectively, while Jφ = J(1) is the diffusive flux of species 1,
where we have considered that J(2) = −J(1). In turn, the diffusive flux is expressed
through the constitutive relation (4.40):

Jφ = −ρL∗ [∇μ]T , (5.6)

where L∗ is an effective diffusivity term. We remind here that, as in the single
component case, the generalized chemical potential is the sum of the thermodynamic
chemical potential plus any other potential. In our case, that means adding the effect
of the non-local part of the free energy.

5.1. Regular incompressible binary mixtures

In the following, we will confine ourselves to the simplest case, when the two species
composing the binary mixture have the same mass density, ρ and the same molec-
ular weight, Mw = NAm, so that mass, molar and volume fractions coincide with
each other. Removing this assumption, although conceptually simple, involves in-
troducing several additional terms in the governing equations (see [10], Ch. X1, §2),
nevertheless without adding anything substantial to the model. This perfectly sym-
metric binary mixture can be considered as a very particular case of regular binary
solutions, that are mixtures such that, when we mix the two species at constant
temperature and pressure, a) the entropy change is equal to that of an ideal mix-
ture, and b) the volume remains unchanged (see [52], Ch. 7.6). Defining an excess
quantity as the difference between its value and that of an ideal gas, that means
that both the excess volume of mixing and the excess entropy of mixing are equal
to zero, i.e., vex = 0 and sex = 0.

The specific Gibbs free energy can be determined using the same procedure as
for single component systems. Consider a mixture composed of species 1 and species
2, with mass (and also molar and volume) fraction x(1) = φ and x(2) = 1 − φ and
let us first determine the specific free energy when the composition of the mixture
is uniform. Considering the definition of Gibbs free energy, g = f + P/ρ, starting
from Eq. (2.1) we obtain

gTh(φ) = gid(φ) + gex(φ). (5.7)

1The extra term that is obtained, ∇μ
(2)
NL, being the gradient of a scalar, can be absorbed into the

pressure term.
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Here, gid is the Gibbs free energy of an ideal mixture, that is a mixture where the
intermolecular potentials U (ij) between molecule i and molecule j are all the same,
i.e. U (11) = U (22) = U (12). Generalizing the expression of the free energy for a single
component fluid, kT

m ln ρ, we obtain:

gid =
kT

m
[x1 ln(x1ρ) + x2 ln(x2ρ)] ,

that is

gid =
kT

m
ln ρ + RT [φ log φ + (1− φ) log(1− φ)]. (5.8)

Note that for a pure fluid the density ρ is a variable, while for a regular binary
mixture the total density ρ can even be constant, since the variables are the molar
densities of the two components, x1ρ and x2ρ.

The second term in the RHS of Eq. (5.7), gex, is the so called excess, that is non
ideal, part of the free energy, and can be determined starting from the fundamental
expression (2.1) for the Helmholtz free energy and considering that:

gex = fex + Pvex. (5.9)

Applying Eqs. (2.5), (2.6) and (5.9) to a system with constant density ρ, i.e. with
vex = 0, we obtain gex = fex = kT

m ρB, where B is the virial coefficient:

B = x21B
(11) + 2x1x2B(12) + x22B

(22). (5.10)

Here, B(ij) characterizes the repulsive interaction between molecule i and molecule
j [see Eq. (2.6)],

B(ij) =
1

2m

∫ [
1− exp

(
−U (ij)(r)

kT

)]
d3r, (5.11)

where U (ij) is the pairwise interaction potential between molecules i and j. In partic-
ular, for symmetric solutions, U (11) = U (22) = U (12), so that B(11) = B(22) = B(12).
Accordingly, denoting x1 = φ, we obtain:

gex =
kT

m
ρB = 2ρ

kT

m
(B(12) −B(11))φ(1− φ),

that is

gex(T, P, φ) =
kT

m
Ψ(T, P )φ(1 − φ), (5.12)

where
Ψ(T, P ) = 2ρ(B(12) −B(11)) (5.13)

is the so called Margules coefficient [52]. In particular, for an ideal mixture, B(11) =
B(12) and therefore Ψ = 0. For a mixture composed of van der Waals fluids at
constant pressure, substituting the expression (2.7) for B and assuming that the
characteristic lengths d and � are the same for the two species, we obtain:

Ψ =
2mρ

kT
(c(11)1 − c

(12)
1 ) =

4π
3

ρ�6

kTmd3
(U (11)

0 − U
(12)
0 ), (5.14)
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where U
(11)
0 and U

(12)
0 characterize the strength of the potential between molecules

of the same species and that of different species, respectively. From this expression
we see that Ψ ∝ T−1, confirming that gex is independent of T . Note that when
Ψ > 0 the repulsive forces ∼= U

(12)
0 /d between unlike molecules are weaker than

those between like molecules, ∼= U
(11)
0 /d. As shown in [36], when the solution is not

symmetric, this approach is easily generalized by defining two Margules coefficients.

5.2. Coexistence and spinodal curve

The thermodynamic state of a one-component system is determined by fixing two
quantities, e.g. P and T . In incompressible binary mixtures, while pressure is ir-
relevant, we have an additional degree of freedom, i.e. the mass (or molar) frac-
tion of one of the two species, x(1). Now, associated with x(1) and x(2) we can
define the respective chemical potentials, μ

(1)
Th = ∂(MgTh/∂M

(1))M (2) and μ
(2)
Th =

∂(MgTh/∂M
(2))M (1) , where M (i) is the mass of species i and M = M (1) + M (2) is

the total mass. Considering that x(1) = 1−x(2), there is a relation between μ(1) and
μ(2), namely the Gibbs-Duhem relation [52], x(1)∇μ

(1)
Th = −x(2)∇μ

(2)
Th. This relation

can be easily obtained considering the definition of the specific Gibbs free energy,
gth,

gTh = uTh − Ts + Pv + x(1)μ
(1)
Th + x(2)μ

(2)
Th, (5.15)

where uTh is the specific (i.e. per unit mass) internal energy, and imposing that the
following equality is satisfied,

dgTh = −sdT + vdP + μThdφ, (5.16)

where μTh = μ
(1)
Th − μ

(2)
Th is the thermodynamic chemical potential difference. Note

that this last relation reveals that the chemical potential difference is the quantity
which is thermodynamically conjugated with the composition φ. This same result
can be obtained from the identities [52],

μ
(1)
Th(T, φ) = gTh(T, φ) +

(
dgTh

dφ

)
(1− φ), (5.17)

μ
(2)
Th(T, φ) = gTh(T, φ)−

(
dgTh

dφ

)
φ. (5.18)

In the previous Section, we saw that the free energy of a homogenous, regular,
symmetric binary mixture can be written as:

gTh = g1 +
kT

m
[φ log φ + (1− φ) log(1− φ) + Ψφ(1− φ)] . (5.19)

Therefore, we obtain:

μTh = μ
(1)
Th − μ

(2)
Th =

d(gTh)
dφ

=
kT

m

[
log

(
φ

1− φ

)
+ Ψ(1− 2φ)

]
, (5.20)

At constant temperature T (remind that the thermodynamic pressure P is irrelevant
in incompressible fluids), since Ψ is a known function of T , this equation gives the
dependence of the chemical potential difference on the composition, just like the
equation of state, e.g. van der Waals’ equation, gives the dependence of the pressure



Vol.79 (2011) Phase Field Approach to Multiphase Flow Modeling 619

on the specific volume. Clearly, μTh represents the tangent to the free energy curve
and it is the same for the two phases at equilibrium. Accordingly, this equation leads
to the determination of the equilibrium composition of the two coexisting phases, φα

e

and φβ
e . In particular, in our case, where we have considered symmetric mixtures,

the tangent is horizontal and therefore μTh = 0. Note that, as expected, in this
case φα

e = 1 − φβ
e . Now we can apply to binary mixtures the same considerations

about the critical point that we made in the previous Section on one-component
systems, simply replacing pressure and density (or specific volume) with chemical
potential difference μTh and composition φ, respectively. In particular, just like the
P − T single component phase diagram, the μTh − T liquid-liquid phase diagram
stops at the critical point, characterized by a critical temperature TC and a critical
chemical potential difference, μC = 0 (note that for symmetric mixtures μTh = 0
at any equilibrium state, while in general that is true only at the critical point). At
higher temperatures, T > TC , the differences between the two liquid phases vanish
altogether and the system is always in a single phase. In addition, as the critical
point is approached from below (i.e. with two coexisting phases), the difference
between the composition of the two phases decreases, until it vanishes altogether at
the critical point, where, as in Eq. (2.12), we have:(

∂μTh

∂φ

)
TC ,PC

= 0,
(
∂2μTh

∂φ2

)
TC ,PC

= 0. (5.21)

This indicates that the critical point corresponds to a horizontal inflection point
in the μTh − φ diagram (see Figure 1). Therefore, from Eq. (5.20) we see that
φα
C = φβ

C = 1/2, confirming that ΨC = 2. Therefore, considering that Ψ ∝ T−1, we
obtain:

Ψ =
2TC

T
. (5.22)

Now, let us consider a liquid binary mixture at equilibrium, whose temperature
is below its critical values, so that it is separated into two coexisting phases, α and
β. As a reversible α − β phase transition takes place at constant temperature and
chemical potential difference, it can be represented as a horizontal isotherm segment
in a μTh−φ diagram. Now, define a generalized potential [31, Ch. 85] as ΦTh = gTh−
μThφ, with dΦTh = −sdT − φdμTh and (∂ΦTh/∂μTh)T = −φ (again, remind that
pressure is irrelevant for incompressible mixtures). The chemical potential difference
μTh at a given temperature and pressure can be easily determined, considering that
at equilibrium the generalized potentials of the two phases must be equal to each
other, that is,

Φβ
Th − Φα

Th =
∫ e

b
dΦTh = 0 =⇒

∫ e

b
φdμTh = [μThφ]eb −

∫ e

b
μThdφ = 0, (5.23)

where we have considered that the phase transition is isothermal. From a geometrical
point of view, this relation manifests the equality between the shaded area of Figure
1 (Maxwell’s rule), where the points b and e correspond to the saturation points of
the two phases at that temperature, with compositions φα and φβ. Conversely, the
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Figure 4. Typical double-well curve of the free energy of a symmet-
ric binary mixture.

composition of the two coexisting phases at equilibrium can be determined consid-
ering that, at equilibrium, they have the same temperature and chemical potential
(so that the chemical potential difference μTh is identically zero), obtaining:

μα
Th = μβ

Th = 0 =⇒
(
∂gTh

∂φ

)α

T

=
(
∂gTh

∂φ

)β

T

=⇒ (φα
e , φ

β
e ), (5.24)

which, in Figure 4, represents the fact that the two equilibrium points have the same
tangent and this tangent is a horizontal line. When the mixture is not symmetric,
the gTh − φ curve is similar to the fTh − v curve of Figure 2. Consequently, in
this case, it is still true that μα

Th = μβ
Th, but, in general, they are not equal to

zero, i.e. the tangent to the Gibbs free energy curve is not horizontal. In Figure 1,
besides the equilibrium curve, we have represented the, so called, spinodal curve,
defined as the locus of all points (like c and d) satisfying (∂μTh/∂φ)T = 0. When the
equilibrium and spinodal points are plotted in a T −φ diagram, we obtain the curves
of Figure 3. All points lying outside the region encompassing the equilibrium curve
represent homogeneous, single-phase mixtures in a state of stable equilibrium, while
all points lying inside that region represent systems in a state of non equilibrium,
which tend to separate into two phases. However, all points lying in the region inside
the spinodal curve are unstable, that is any infinitesimal perturbation can trigger
the phase transition process, while all points sandwiched between the equilibrium
and the spinodal curves represent metastable systems, i.e. mixtures that need an
activation energy to phase separate. The spinodal points can be also determined
using the relation (∂μTh/∂φ)T = (∂2gTh/∂φ

2)T = 0, obtaining:(
∂2gTh

∂φ2

)
T

= 0 =⇒ (φα
s , φ

β
s ). (5.25)
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5.3. The diffuse interface

Suppose now that the composition of the system is not constant. Proceeding as for
single component systems, we have:

g(x) = gTh(x) + ΔgNL(x), (5.26)

where ΔgNL is a non-local specific free energy (see Cahn & Hilliard [5]),

ΔgNL =
kT

2m
a2(∇φ)2. (5.27)

Here, a is a characteristic length, roughly equal to the interface thickness at equi-
librium which, for a regular mixture, has the same value as that seen in Eq. (3.7),
i.e.,

a =

√
9πTC

4T
d, (5.28)

where d is the excluded volume length defined in (2.8). Now, following the same
procedure as in Section 3.3, observe that at the end of the phase segregation process,
a surface tension σ can be measured at the interface and from that, as shown by
[59], a can be determined as

a ≈ σMw

ρRT
, (5.29)

This relation can be easily derived considering that at equilibrium the surface tension
σ is equal to the integral of the Cahn-Hilliard free energy across the interface, i.e. σ ≈
ρΔgeqa, where Δgeq ≈ kT/m is a typical value of the change in the Cahn-Hilliard
specific free energy across the interface at equilibrium [59].

5.4. The generalized chemical potential

At equilibrium, the total free energy is minimized. As we saw in the previous Section,
the minimization can be carried out separately in the bulk and at the boundaries.
Accordingly, in the bulk we have:∫

V
g(φ,∇φ)d3x = min., with

∫
V
φ(x)d3x = const., (5.30)

where the constraint of mass conservation has been applied. Therefore, applying to
the system a virtual change in composition, δφ(x), we obtain the following Euler-
Lagrange equation,

μ =
δg

δφ
=

∂g

∂φ
−∇i

∂g

∂(∇iφ)
= μTh(φ)−∇i

∂g

∂(∇iφ)
, (5.31)

where μTh is the thermodynamic chemical potential difference. This equation defines
the generalized chemical potential difference, μ, and shows that μ, and not μTh,
is uniform at equilibrium. Finally, substituting Eqs. (5.20), (5.26) and (5.27) into
(5.31), we obtain:

μ(φ,∇φ) = μTh(φ)− kT

m
a2∇2φ. (5.32)

As for the boundary conditions, the same considerations of Section 3.4 can be applied
to binary mixtures as well.
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5.5. The diffusive mass flux

When the Cahn-Hilliard part of the free energy is neglected, the isothermal mass
flux of component 1 is proportional to the gradient of the chemical potential of
component 1 as (see Cussler [8], p. 180),

J(1) = −ρDx(1)
[
∇μ̃

(1)
Th

]
T
, (5.33)

where μ̃
(1)
Th = (m/kT )μ(1)

Th is a non-dimensional chemical potential, while D is the
molecular diffusivity, which is a function of temperature and pressure, but not of
composition. As we see below, the proportionality term (Dx(1)) in (5.33) has been
chosen so that in the ideal case we obtain Fick’s constitutive law. For symmet-
ric binary mixtures, substituting (5.19) into (5.17), we obtain the non-dimensional
chemical potential as:

μ̃
(1)
Th = g̃(1) + lnx(1) + Ψ

[
x(2)

]2
, (5.34)

so that (5.33) yields:

J(1) = −ρDx(1)

[
dμ̃

(1)
Th

dx(1)
∇x(1)

]
T

=⇒ J(1) = −ρD∗
[
∇x(1)

]
T
, (5.35)

where
D∗ = D

(
1− 2Ψx(1)x(2)

)
(5.36)

is the diffusion coefficient. Inverting the suffixes 1 and 2 in (5.35) and (5.36) we see
that a) the diffusivity of component 1 into 2 equals the diffusivity of component 2
into 1, as it should, and b) the flux of species 2 is opposite to the flux of species 1,
that is J(2) = −J(1), showing that these are really diffusive fluxes, with no convective
components.2 From Eq. (5.36) we see that, for ideal or dilute mixtures, i.e. when
either Ψ = 0, x(1) � 1 or x(2) � 1, we obtain that D∗ = D and therefore Eq. (5.35)
reduces to Fick’s law. In addition, when we plot D∗ as a function of x1 we see that
for Ψ > 2 there is a region of negative diffusion, as it corresponds to the region of
instability of the phase diagram. Going back to our notation, with x1 = φ, observe
that, denoting Jφ ≡ J(1) and considering that J(1) + J(2) = 0, the constitutive
relation (5.33) can also be written as

Jφ = −ρDφ(1− φ) [∇μ̃Th]T , (5.37)

where μTh = μ
(1)
Th − μ

(2)
Th, which coincides with (4.40), with L(12) = Dφ (1− φ).

Note that a Soret thermal diffusion term, accounting for the effect of temperature
gradients, could also be added to the mass flux constitutive relation, although it is
generally assumed to be negligible, as discussed in [58].

At this point, a natural extension of the constitutive relation (5.37) is to replace
the thermodynamic chemical potential with the generalized chemical potential, thus

2In general, applying the Gibbs-Duhem relation to (5.33), we see that it is always true that J(2) =

−J(1) (see [42]).
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obtaining Eq. (5.6) with L∗ = (Dm/kT )φ(1 − φ), i.e.,

Jφ = −ρDφ(1− φ) [∇μ̃]T . (5.38)

This is the constitutive equation that has been used in [36] and in all subsequent
works by Mauri and coworkers.

6. Summary of the equations of motion

6.1. The equations of motion for incompressible binary mixtures

In the case of incompressible regular binary mixtures, assuming that the fluid density
ρ and the molecular weight Mw are constant, the conservation equation for chemical
species, momentum and internal energy are [cf. Eqs. (4.30), (4.32) and (4.33)]:

dφ

dt
= −∇ · Jφ, (6.1)

ρ
dv

dt
= −∇ · Jv + ρFK , ∇ · v = 0, (6.2)

ρ
du

dt
= −∇ · Jq + q̇, (6.3)

where φ is the molar fraction of component 1, Jφ is the diffusion flux, v the average
local velocity of the fluid mixture (in our case, molar, mass and volume averages
all coincide), Jv the momentum flux tensor, FK is the Korteweg force, including
also any other external potential force, u the internal energy density, Jq and q̇ the
internal energy flux and the heat generation term, respectively.

In the conservation equation for the chemical species, the material diffusive
flux, Jφ, must be coupled to the chemical potential gradient through the constitutive
relation (5.38),

Jφ = −φ(1− φ)D [∇μ̃]T , (6.4)

where D is the molecular diffusivity, the subscript ”T” indicates constant tempera-
ture, and μ̃ is the non-dimensional generalized chemical potential difference between
the two species defined in (5.20), (5.31) and (5.32) as:

μ̃ =
δg̃

δφ
= log

(
φ

1− φ

)
+ Ψ(1− 2φ)− a2∇2φ, (6.5)

where g̃ is the non-dimensional free energy, including its non-local component [cf.
Eq. (5.26)], a is a characteristic microscopic length and Ψ is the Margules parameter
which describes the relative weight of enthalpic versus entropic forces. The single-
phase region of the phase diagram corresponds to values Ψ < 2, with Ψ = 2 at the
critical point, while, conversely, Ψ > 2 in the two-phase region. Accordingly, as Ψ is
inversely proportional to the temperature, we conclude that

Ψ =
2TC

T
. (6.6)
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The Navier-Stokes equation (6.2) must be supplemented by a constitutive equa-
tion for the stress tensor. For a Newtonian fluid, we have:

Jv = P I− η
[∇v + (∇v)+

]
, (6.7)

with η denoting the composition-dependent fluid viscosity, while I is the identity
dyadic and (∇v)+ is the transpose of ∇v.

Finally, concerning the energy equation, the specific internal energy u is related
to the temperature through the simple thermodynamic relation,

u = cT, (6.8)

where c is the specific heat, assumed to be a known function of the composition φ.
In addition, the heat generation term is [cf. Eq. (5.4)]

q̇ = −Jv :∇v − ρRT

Mw
μ̃NL

dφ

dt
, (6.9)

where μ̃NL = −a2∇2φ is the (non-dimensional) non-local part of the chemical po-
tential difference, while the internal energy flux can be written as [cf. Eq. (5.5)]

Jq = −k∇T +
ρRT

Mw
Jφh̃, (6.10)

where a Fourier constitutive relation for the heat flux has been assumed, with k

denoting the mixture heat conductivity, which is a known function of the composi-
tion φ. Here, h̃ is the total (thermodynamic plus non-local) non-dimensional partial
enthalpy difference, which can be determined considering that h = μ+Ts, obtaining:

h̃ = Ψ(1− 2φ)− a2∇2φ. (6.11)

The most important feature of this model is the presence in the governing
equations (6.2) of the non-equilibrium reversible body force, FK , which equals the
generalized gradient of the free energy and therefore it is driven by chemical potential
gradients within the mixture,

FK = −RT

Mw
φ∇μ̃NL. (6.12)

In particular, when the system presents well-defined phase interfaces, such as at the
late stages of phase separation, this body force reduces to the more conventional
surface tension, as shown by Jasnow & Viñals [23] and Jasmin [22]. Therefore, being
proportional to gradients of the chemical potential difference, which are identically
zero at local equilibrium, FK can be thought of as a non-equilibrium capillary force.
Since FK is driven by surface energy, it tends to minimize the energy stored at
the interface, resulting in a non-equilibrium attractive force between domains of the
same phase, therefore driving, say, drops of the α phase towards regions of the same
phase. Again, though, we should point out that in the presence of sharp interfaces
the results of this continuous model should be taken cum grano salis.

Finally, note that if other potential forces are present within the system, Fext =
−φ∇Vext, this potential can be simply added to μ̃NL in Eq. (6.12).
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In most of the our simulations concerning liquid binary mixtures, we have as-
sumed that the viscosity of the mixture is a constant, independent of φ and that
the Reynolds number is small. Accordingly, Eq. (6.2) reduces to the simpler Stokes
equation:

∇P = η∇2v + ρFK , ∇ · v = 0. (6.13)

The ratio between convective and diffusive mass fluxes defines the capillary
Peclet number, NPe = V a/D, where V is a characteristic velocity, which can be
estimated through (6.1) and (6.13), obtaining [61, 62]

NPe =
V a

D
≈ a2

D

ρ

η

RT

Mw
≈ σa

ηD
. (6.14)

Clearly, when NPe is small, the processes described by this model are always
diffusion-driven. However, that happens only for systems with very large viscosities
(e.g. polymer solutions), or in the vicinity of local equilibrium, when the body force
FK becomes negligibly small. Instead, low-viscosity liquid mixtures far from criti-
cality and in condition of non-equilibrium (i.e. either phase-separating or mixing),
are characterized by very large NPe, showing that convection dominates diffusion.
Although this approach has been developed for very idealized systems, it seems to
capture the main features of real mixtures.

6.2. The equations of motion for one-component fluids

Very similar results can be obtained for the equations of motion of one-component
systems subjected to conservative forces. As we saw in Section 2, in this case the
order parameter is the density ρ, which is different in the two phases. Therefore, the
mixture is not incompressible, even when each phase can be assumed to be incom-
pressible (think, for example, about a solid-liquid phase transition). Accordingly, the
mass conservation equation is the usual continuity equation for compressible fluids.
As van der Waals realized, the presence of the non-local term in the expression for
the free energy has consequences in the determination of the remaining governing
equations. As shown in [25], momentum conservation leads to a stress tensor where,
in addition to the usual viscous stresses, there appears another, so-called Korteweg,
stress,

PK = K

[
∇ρ⊗∇ρ− I

(
ρ∇2ρ +

1
2
|∇ρ|2

)]
. (6.15)

Note that only the first term is anisotropic; the rest, in effect, contributes to a
modification of the fluid pressure (which is obviously irrelevant in the incompressible
binary mixture case seen before). When substituted into the momentum conservation
balance, this term adds the so-called Korteweg force,

FK = −∇ ·PK = −ρ∇μNL, (6.16)

to the usual Navier-Stokes equation for fluids of non-uniform density [cf. Eq. (4.24)].
Therefore, being proportional to the gradient of the chemical potential (with a minus
sign), the Korteweg body force pushes the system towards thermodynamic equilib-
rium and is identically zero at equilibrium. In addition, since this force is reversible,
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it does not enter explicitly into the energy dissipation term. This process leads to the
governing equations of a viscous compressible, non-isothermal fluid flow [1, 2, 34]:

∂tρ +∇ · (ρv) = 0, (6.17)

∂t(ρv) +∇ · (ρv ⊗ v + Jv + PK) = ρg, (6.18)

∂t(ρu) +∇ · (ρev + Jq) + S : ∇v = 0, (6.19)

where u denotes the internal energy per unit mass and g is the gravity force/mass,
Jv includes the thermodynamic pressure and viscous stress tensors while Jq is the
heat flux:

Jv =
[
p +

(
2
3
η − κ

)
(∇ · v)

]
I− η(∇v +∇v+), (6.20)

Jq = −k∇T, (6.21)

with η and κ denoting the fluid and bulk viscosities, respectively, and k the thermal
conductivity, all known functions of density. These equations, coupled to the van
der Waals equation of state and appropriate boundary and initial conditions, yield
a well-posed problem.

7. Simulation results for incompressible binary mixtures

In this Section, we review both previously published and some new results on the
isothermal mixing and demixing process as well as on heat transfer enhancement
due to phase separation of incompressible regular binary mixtures.

Since at this stage we are interested in qualitative results, we restrict our analy-
sis to two-dimensional systems, so that the velocity v can be expressed in terms of a
stream function ψ, i.e. vx = ∂ψ/∂y and vy = −∂ψ/∂x. Consequently, the equations
of motion (6.1) and (6.13) become:

∂φ

∂t
= ∇ψ ×∇φ−∇ · Jφ, (7.1)

η∇4ψ =
(
ρRT

Mw

)
∇μ̃×∇φ, (7.2)

where
A×B = AxBy −AyBx. (7.3)

Since material transport here is diffusion-limited, the length scale of the process
is the microscopic length a. Therefore, using the scaling,

r̃ =
1
a
r, t̃ =

D

a2
t, ψ̃ =

1
DNPe

ψ, (7.4)

the equations of motion become [61, 62]:

∂φ/∂t̃ = NPe∇̃ψ̃ × ∇̃φ + ∇̃ ·
{
∇̃φ− φ(1 − φ)

[
2Ψ + ∇̃2

]
∇̃φ

}
, (7.5)

∇̃4ψ̃ = −∇̃∇̃2φ× ∇̃φ, (7.6)
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where NPe is the capillary Peclet number defined in (6.14). As noted by [26], Eq. (7.6)
can be seen as a “static” constraint on the stream function field ψ̃, i.e. ψ̃ = ψ̃(φ),
so that the ψ̃-dependence on the right hand side of (7.5) can be formally dropped.
Therefore, the Fourier-transformed system (7.5)-(7.6) can be written in the form

d

dt
(ek

2tφ̂k) = ek
2tF̂k, (7.7)

where φ̂k is the Fourier transform of φ, while the right-hand side represents the
Fourier transform, F̂k, of the nonlinear term of Eq. (7.5) multiplied by the integrating
factor ek

2t. Note that the integrating factor allows the exact treatment of the diffusive
term in Eq. (7.5). This system of differential equations can be time-integrated on
a square domain using either the finite difference scheme described in Vladimirova
et al. [63] or the ad hoc pseudo-spectral method described in Lamorgese & Mauri
[26, 27, 28]. In this latter case, the nonlinear term on the right hand side of Eq. (7.6)
would normally require five FFTs for its pseudospectral evaluation. However, using
the identity

∇φ×∇∇2φ = ∂2
xy(φ

2
x − φ2

y) + (∂2
y − ∂2

x)φxφy, (7.8)

its computation requires only four FFTs. As a result, it is easy to see that each time
step (e.g. assuming a simple Eulerian scheme) in (7.6) requires the evaluation of at
least thirteen FFTs.

7.1. Mixing of regular mixtures

In this Section we present the simulation results of the mixing process that a viscous
and macroscopically quiescent binary mixture undergoes when it is instantaneously
brought from the two- to the one-phase region of its phase diagram. In addition to
presenting some new data, we will also summarize the main results by Vladimirova
& Mauri [64] and Lamorgese & Mauri [28].

First, let us describe the mixing process between two fluids which are initially
quiescent and separated by a plane interface. In this case, the RHS of Eq. (7.6),
i.e. the Korteweg body force, is identically zero, so that v = 0 and therefore the
process does not depend on the capillary Peclet number, NPe. In fact, Eq. (7.5) (in
its dimensional form) is well approximated by the diffusion equation:

∂φ

∂t
= D∗

∂2φ

∂r21
, with D∗ = D[1− 2Ψφ̄(1− φ̄)], (7.9)

where φ̄ represents the mean value of φ, as the neglected terms play a role only at the
very beginning of the mixing process, when the interface is still sharp. As the results
of our simulations [28] are in perfect agreement with the similarity solution resulting
from Eq. (7.9), we may conclude that the mixing process of two fluids separated by
an initially plane sharp interface remains one-dimensional, does not depend on NPe

and is a purely diffusive process, with an effective diffusivity D∗ that depends on
the thermodynamic properties of the mixture, such as the Margules parameter. The
same result is obtained whenever the initial configuration is one-dimensional, as in
the case of an isolated drop.
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Figure 5. Evolution of eight identical drops with Ψ = 1.9 placed on
a straight line at nondimensional times t = 0.01, 0.02, 0.04, 0.1 with
NPe = 0 (top) vs. NPe = 103 (bottom).

When we simulate the mixing process of a collection of drops immersed in a
background field, it was shown [61] that, while a single drop remains still as it is
absorbed, two drops tend to attract each other and even coalesce, provided that
the capillary Peclet number is large enough and the drops are initially very close to
each other. This effect is further investigated in the simulations shown in Figure 5,
representing the evolution of eight identical spherical drops with radius 2a, that are
placed within a quiescent bulk fluid with Ψ = 1.9, at distance 2a from each other.
When NPe = 0, the drops do not move while they are reabsorbed by diffusion; on
the other hand, when NPe = 103 they rapidly coalesce and form a larger isolated
single drop. This larger drop, though, has to be eventually reabsorbed by diffusion
and, being larger than the original drops, will take approximately eight times as
long to disappear. This result is confirmed by simulating the mixing process of a
random distribution of 250 drops with radii between 5a and 20a, immersed in a
quiescent continuous bulk fluid with Ψ = 1.9. The results of these simulations can
be effectively represented in terms of the degree of mixing δm,

δm(t) =
〈|φ(r, t) − φav |2〉
〈|φ0(r)− φav |2〉 . (7.10)

This reveals that δm decays exponentially as δm = exp
(−103(Dt)/(a2τ)

)
, where τ

is a non-dimensional decay time, with τ = 0.8 when NPe = 0 and τ = 2.1 when
NPe = 104. In fact, in low-viscosity liquid systems, the Korteweg stresses initially
induce a strong material flux (i.e. much larger than that due to pure molecular
diffusion), thus enhancing coalescence and forming larger drops. At the end, however,
as the Korteweg stresses tend to vanish, these larger drops will dissolve by diffusion
only, so that the mixing process will be very slow. Therefore, we may conclude that,
contrary to common thinking, in the absence of any external agitation, mixing is
faster as the viscosity of the liquids increases.
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Incidentally, we note here that the movement of isolated drops during phase
transition has been observed experimentally by Molin et al. [39] and Poesio et al.
[45], in good agreement with the predictions by Vladimirova et al. [61].

7.2. Spinodal decomposition of regular mixtures

Figure 6. Phase separation patterns of four off-critical binary mix-
tures with mean composition φ0 = 0.45, Margules parameter Ψ = 2.1
and capillary Peclet numbers NPe = 0, 102, 103 and 104 at different
non-dimensional times Dt/a2.

In this Section we present the simulation results of Lamorgese & Mauri [26,
29] about the spinodal decomposition process that a viscous and macroscopically
quiescent binary mixture undergoes when it is instantaneously brought from the
one- to the two-phase region of its phase diagram, deep within the spinodal region.
In Figure 6 we show some typical patterns of the spinodal decomposition process of
slightly off-critical mixtures having uniform initial composition φ0 = 0.45 and for
different values of NPe, when they are instantaneously quenched well below their
critical temperature, i.e. with Ψ = 2.1. We chose this particular value of Ψ because
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that is the Margules parameter of the water-acetonitrile-toluene mixture at 20◦C
that we used in our own experimental work [17, 18, 53, 7, 46]. The first row of
images represents the results for NPe = 0, i.e. for the case when diffusion is the
only mechanism of mass transfer, showing that, soon after the first drops appear,
they coalesce into drop-like structures (in the critical case, we observe dendritic
structures, instead). The mean composition within (and without) these structures
changes rapidly, as at time t = 0.03 we already see two clearly distinguishable phases
with almost uniform concentrations equal to 0.59 and 0.41, while at equilibrium their
respective compositions are φα

eq = 0.685 and φβ
eq = 0.315. After this early stage, the

structures start to grow, increasing their thickness and reducing the total interface
area, while at the same time the composition within the domains approaches its
equilibrium value. This, however, is a slow process, driven only by diffusion, and at
time t = 0.1 the phase domains still have a drop-like geometry with a characteristic
size which is just about twice as large as its value at t = 0.01. In the following, we
will denote these slow-changing configurations as metastable states, referring to [60]
for further information on their evolution. For non-zero convection, these structures
thicken faster, but up to NPe ≈ 103 domain growth still follows the same pattern as
for NPe = 0: first, single-phase domains start to appear, separated from each other
by sharp interfaces, and only later these structures start to grow, with increasing
growth rate for larger NPe. When NPe > 103, however, phase separation occurs
simultaneously with the growth process. For example, when NPe = 104, we see
the formation of isolated drops of both phases, surrounded by the bulk of the fluid
mixture, which is still not separated. In addition, drops appear to move fast and
randomly while they grow, absorbing material from the bulk, colliding with each
other and coalescing, so that they grow much faster than when molecular diffusion
is the only transport mechanism. Clearly, since the motion of the interface is too
quick for the diffusion of concentration to establish a metastable state within the
microdomains, double, or multiple, phase separation is observed, in agreement with
previous numerical [23, 57, 62] and experimental [56, 18] results. As a quantitative
characterization of the influence of the convection parameter NPe on the average
phase composition within the phase domains, we defined the separation depth, s,
measuring the “distance” of the single-phase domains from their equilibrium state,
i.e.,

s =
〈

φ(r)− φ0

φeq(r)− φ0

〉
, (7.11)

where φ0 is the initial composition, and the bracket indicates volume and ensemble
average. Here, φeq is the composition of the two phases at equilibrium, i.e.,

φeq(r) =

{
φα
eq when φ(r) > φ0,

φβ
eq when φ(r) < φ0,

(7.12)

where, in our simulation, φα
eq = 0.685 and φβ

eq = 0.315.
When the separation depth s is plotted as a function of time, we see that phase

separation takes place in two different ways, depending on whether NPe < 103 or
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NPe > 103. For smaller NPe, single-phase domains develop very rapidly, until they
appear to be separated by sharp interfaces. From that point on, separation proceeds
much more slowly, as the concentration gradients within the single-phase domains
are very small, while the concentrations of the two phases across any interface change
only slowly in time, asymptotically approaching quasi-equilibrium with s = 1. On
the other hand, for NPe > 103, the growth of the separation depth is more grad-
ual, revealing that separation and growth occur simultaneously, although obviously,
at some later stage, sharp interfaces will eventually appear even in this case. In
fact, dimensional analysis [62] shows that local equilibrium is reached when drops
have reached 100μm sizes, when they start sedimenting. Consequently, the system
becomes gravity driven and rapidly separates before reaching the scaling regime
(i.e. when s = 1), so that local equilibrium is very rarely achieved for low-viscosity
liquid mixtures.

Next, we studied the rate of coarsening as reflected in the growth law for the
integral scale L,

L(t) =
1

φ2
rms

∑
k

〈| ˆ̃φk|2〉
|k| , (7.13)

where φ̃ = φ − φ0, φrms is the root-mean-squared value of φ, hats denote Fourier
transforms, while the brackets denote averaging over a shell in Fourier space at fixed
k = |k|. As shown in Lamorgese & Mauri [26], the typical drop size L(t) grows
linearly in time during the first stage of the process, i.e. until sharp interfaces are
formed, while during the last stage it grows like t1/3.

Note that the behavior of a phase-separating system depends as much on the
driving force FK as on NPe, as FK (which is a function of the separation depth) can
induce a strong convection only for systems with small viscosities (i.e. large NPe’s),
while for very viscous systems it has hardly any effect. Very similar results were
obtained by Vladimirova et al.[62], who used the same model but a very different
numerical scheme (i.e. finite difference instead of pseudo-spectral). As shown by
Lamorgese & Mauri [29], comparison between 2D and 3D results reveals that 2D
simulations capture, even quantitatively, the main features of the phenomenon.

7.3. Homogeneous nucleation of regular mixtures

In thermodynamics [52], an equilibrium state (i.e. one that does not change in time
while the system is isolated) is stable when it can be altered to a different state only
by perturbations that do leave net effects in the environment of the system, e.g. when
its temperature is changed. On the other hand, states of unstable and metastable
equilibrium are equilibrium states that may be changed to different states by means
of perturbations that leave no net effects on the environment. Depending on whether
such perturbations are infinitesimal or finite, the system is in a state of unstable or
metastable equilibrium, respectively. As we saw in Section 2, in the case of a partially
miscible binary mixture the boundary of the region of stable equilibrium defines the
miscibility curve in the temperature - mole fraction phase diagram T −φ at constant
pressure. In addition, as an unstable system will transform spontaneously to its more



632 A.G. Lamorgese, D. Molin and R. Mauri Vol.79 (2011)

stable state, [15] showed that in those conditions the molar Gibbs free energy g of the
binary mixture must be a concave function of φ, i.e. ∂2g(T, P )/∂φ2 < 0. In particu-
lar, the boundary of the unstable region is defined by the locus ∂2g(T, P )/∂φ2 = 0,
which is called the spinodal curve. Therefore, the points on the phase diagram com-
prised between the miscibility and the spinodal curves define the metastable region.
In his classical treatment on stability, Gibbs distinguished two types of perturba-
tions that can be applied to a homogeneous system: the first is small in intensity
but large in extent, as exemplified by a small composition fluctuation spread over a
large volume, while the second is large in intensity but small in extent, as it hap-
pens in a nucleation process. An unstable system is best studied assuming that it
is perturbed through a delocalized, infinitesimal fluctuation in composition. In this
case, in fact, the problem can be linearized, showing that the intensity of any mode
whose wavelength is larger than a critical value grows exponentially in time, with
the maximum growth corresponding to the typical length scale of the phase separa-
tion process. Now, at this point it would seem logical to study metastable systems
by perturbing them with delocalized, although finite, composition fluctuations, so
that their behavior could be easily compared with that of unstable systems. Instead,
Gibbs chose to use the other type of perturbation, which is large in intensity but
small in extent, assuming that a uniform droplet of the minority phase would appear
within the majority phase. In this way, using the concept of surface tension between
two phases at thermodynamic equilibrium that he had developed, Gibbs was able
to show that while, predictably, any nucleus, even an infinitesimal one, would grow
spontaneously when the mixture is unstable, metastable systems become unstable
only when the nucleus exceeds a critical size. Now, apart from the fact that, as Gibbs
himself recognized, it is not very reasonable to assume that a small nucleus could
be homogeneous, there is not a good reason today why we should study unstable
and metastable systems using different procedures. In fact, Lamorgese & Mauri [27]
studied non-stable binary mixtures, both unstable and metastable, by perturbing
them with delocalized random fluctuations. Although this idea is not new (see the
review article by Gunton [16] and references therein), they were the first to show
that, as the mixture composition approaches its value at the coexistence curve, the
intensity of the perturbation that is needed to trigger the instability grows expo-
nentially. In fact, using a pseudo-spectral method, they simulated the nucleation
process, showing that the metastability of the system can be characterized through
either a critical radius, as in Gibbs’ treatment, or the (finite) intensity of a white
noise superposed on the initial uniform concentration field; this critical intensity
grows exponentially as the mean composition of the mixture approaches its equilib-
rium value. In addition, they showed that, in general, the value of the critical radius
decreases as the number density of the nucleating drops becomes very large, so that
nuclei have the chance to coalesce and grow before being reabsorbed.

7.4. Effect of phase separation on heat transfer

The effect of temperature on phase separation has not been studied very carefully
so far, with the exception of spinodal decomposition of very viscous mixtures, where



Vol.79 (2011) Phase Field Approach to Multiphase Flow Modeling 633

convection can be neglected and, therefore, the temperature field is not coupled to
the velocity and concentration fields. In that case, Vladimirova et al. [60] showed
that, as expected, the mixture starts to separate within the region where the tem-
perature has crossed the miscibility curve. In addition, critical mixtures show a wall
effect, i.e. the dendrites tend to align along the temperature gradient, while in the
absence of temperature gradients they have random directions. The most interest-
ing case, though, is that of low-viscosity, regular mixtures, where the process is
convection-driven. In that case, considering that Ψ = 2Tc/T and a = â

√
Ψ, where â

is a constant independent of T , Eqs. (6.1), (6.2) and (6.3) become:

∂φ

∂t
= NPe∇̃ψ̃ × ∇̃φ + ∇̃ · {∇̃φ− φ(1 − φ)[Ψ(2 + ∇̃2)∇̃φ + (2φ − 1)∇̃Ψ]}, (7.14)

∇̃4ψ̃ = −∇̃(Ψ∇̃2φ)× ∇̃φ, (7.15)

∂Ψ
∂t

= −NPe∇̃ψ̃ × ∇̃Ψ + NLe[∇̃2Ψ− 2
Ψ

(∇̃Ψ)2], (7.16)

where we have used the scaling (7.4), with â replacing a and NLe denotes the Lewis
number, NLe = α/D. In Eq. (7.16) we have neglected the heat transport induced
by mass diffusion and the heat generation term of the general energy conservation
equation, assuming that the non-dimensional specific heat is very large, i.e., ĉ =
cMW /R
 1.

This case was studied by Molin & Mauri [38], showing how the temperature
field is coupled to the velocity field. In all cases, the mixture starts to phase separate
at the walls; then, as heat losses penetrate deeper within the domain, demixing takes
place everywhere, until, at steady state, the temperature of the mixture reaches its
equilibrium value. In addition, a) the mixture phase separates through the formation
of bicontinuous structures; b) in the presence of convection, i.e. when NPe = 102,
warm fluid tends to move towards the wall, thus enhancing heat transport.

The most obvious way to describe the heat transfer enhancement is through
the Nusselt number, which is defined as the ratio between the heat flux Jq at the
wall and the heat flux that one would have in the absence of convection, (Jq)NPe=0,
i.e.,

NNu = Jq/ (Jq)NPe=0 . (7.17)

Although NNu would seem to be a function of time, we saw that it actually
remains almost constant and therefore can be used effectively to characterize the
enhancement of heat transport due to phase transition. The most important result
of our simulation was to determine how such heat transport enhancement depends
on the characteristics of the process, namely the capillary Peclet and Lewis numbers,
the specific heat and the quenching depth. In particular, in Figure 7 we see that heat
transport increases monotonically with NPe until it reaches a plateau at NNu ≈ 2.0
when NPe ≈ 106. This result is in qualitative agreement with the experimental data
by Poesio et al. [47].
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Figure 7. The Nusselt number, NNu, as a function of the Peclet
number, NPe, when NLe = 1 and with no source term.

8. Spinodal decomposition of a van der Waals fluid

We discuss below the simulation results obtained by Lamorgese & Mauri [30] on
the isothermal liquid-vapor spinodal decomposition of a van der Waals fluid, occur-
ring after quenching it instantaneously from a single-phase equilibrium state to the
unsteady two-phase region of its phase diagram.

The governing equations (see Section 6.2) were made dimensionless based on
both a diffusive scaling, which is relevant only at the beginning of phase separation,
and an acoustic, or convective, scaling, which is relevant at the late stage of phase
separation. In particular, in the acoustic scaling, defining a reference speed of sound,
us = (RTC/MW )1/2, we set:

x̃ =
x

L
, t̃ =

ust

L
, ũ =

u

us
, NRe =

ρcusa

ηI
, (8.1)

ρ̃ =
ρ

ρC
, p̃ =

p

p∗C
, T̃ =

T

TC
. (8.2)

where ηI is the viscosity of the liquid phase, ρ̃, p̃ and T̃ are reduced density, pressure
and temperature, respectively, as ρC and TC are the critical density and temperature,
while p∗C = ρCRTC/MW is the critical pressure if the fluid were a perfect gas (R
and MW being the gas constant and the molecular weight). In addition, without
loss of generality, we assume that β = NAd

3ρC/MW = 1, where d and NA denote a
molecular diameter and the Avogadro number, respectively. Here, NRe is a capillary
Reynolds number, which plays a very similar role as the capillary Peclet number,
NPe, in the incompressible binary mixture case.
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In the governing equations, all external forces, and buoyancy in particular, were
assumed to be negligible, which amounts to assuming that the Bond number is very
small. In other words, drop and bubble sizes � are small compared to the capillary
length, i.e., ��√

σ/g (ρI − ρII) (with σ the surface tension, g the gravity field and
with I and II denoting the liquid and vapor phases at equilibrium).

The problem was discretized using a structured, staggered arrangement of the
conserved variables [40, 41], with spatial derivatives computed via sixth-order com-
pact finite differences [32]. Temporal advancement was effected via a third-order
Runge-Kutta scheme. The simulations were conducted at T̃ = 0.9, for different val-
ues of NRe, assuming an infinite expanse of fluid (modeled via periodic boundary
conditions). At this temperature, a representative vapor-liquid viscosity ratio was
chosen to be r = 10−3. Initially, we assumed quiescent conditions with a density
field being the sum of a Gaussian white noise superposed on a uniform constant
density ρ = ρ0. We chose values of ρ̃0 = 0.7, 1.042, 1.3 in the spinodal range, i.e.,
ρ̃0 ∈ [ρ̃IIs , ρ̃Is], where ρ̃Is = 1.39 and ρ̃IIs = 0.654 denote the liquid and vapor spinodal
densities at the given temperature. (For a van der Waals fluid these values are easily
found by solving the algebraic relation ρ̃(3 − ρ̃)2 = 4T̃ .) Specifically, ρ̃0 = 1.042 is
the critical density, while ρ̃0 = 0.7 and ρ̃0 = 1.3 correspond to the densities of the
vapor-rich and liquid-rich mixtures at equilibrium, respectively.

As expected, we observed [30] that the phase-ordering process after the critical
quench ρ̃0 = 1.042 is characterized by the formation of bicontinuous structures,
which subsequently grow and coalesce. For the off-critical quench, ρ̃0 = 1.3, instead,
as we see in Fig. 8, the phase separation pattern consists of a random collection of
rapidly coalescing nuclei of the minority phase, surrounded by the majority phase.
Only after the first spinodal pattern is formed (i.e. a bicontinuous pattern for the
critical quench, or a random collection of nuclei for the off-critical quench), do the
single-phase domains start to grow and coalesce, at an increasing rate for larger
capillary Reynolds number, NRe.

As a quantitative characterization of the influence of the convection parame-
ter NRe on the average phase composition of the two-phase fluid, we defined the
separation depth, s, through Eqs. (7.11)-(7.12), with the density ρ replacing the
concentration φ, measuring the “distance” of the single-phase domains from their
equilibrium state, i.e.,

s =
〈

ρ(xxx)− ρ0
ρeq(xxx)− ρ0

〉
, (8.3)

where ρ0 is the initial mean density, and the brackets indicate volume and ensemble
averaging. Here, ρeq denotes the steady-state density of the liquid phase, ρI , or of
the vapor phase, ρII , depending on the local density ρ(xxx).

Figure 9 shows the temporal evolution of the separation depth for NRe =
1, 10, 100, 1000. The solid curves in this figure were obtained from 2D simulations
on a 2562 grid, while the dotted lines are from 3D simulations on a 1283 grid, show-
ing remarkable quantitative agreement. Here, after a time delay, with no detectable
liquid-vapor phase separation, first the system reaches local equilibrium (with the
formation of nuclei having sharp interfaces), and then these nuclei start to grow,



636 A.G. Lamorgese, D. Molin and R. Mauri Vol.79 (2011)

Figure 8. Liquid-vapor spinodal decomposition of an off-critical van
der Waals fluid (with ρ̃0 = 1.3) at different non-dimensional times
(diffusive scaling) t̃ = 310−3, 10−2 and 5 10−2, with NRe = 1, 10, 102

and 103 from top to bottom.

even at large NRe. This is in contrast with phase separation in viscous liquid binary
mixtures, where for large NPe the two events occur simultaneously (cf. discussion
in Section 7.2), and in any case local equilibrium is reached only very late in the
process, well after the appearance of nuclei with sharp interfaces.

Next, we studied the rate of coarsening as reflected in the growth law for the
integral scale (7.13),

L(t) =
1

ρ2rms

∑
k

〈| ˆ̃ρk|2〉
|k| , (8.4)

where ρ̃ = ρ − 〈ρ〉, ρrms is the root-mean-squared value of ρ, hats denote Fourier
transforms, while the brackets denote averaging over a shell in Fourier space at fixed
k = |k|. As can be seen in Fig. 10, after an initial stage that strongly depends on
the initial conditions, then sharp interfaces are formed and domains stop growing,
concomitant to their composition rapidly reaching local equilibrium. At this point,
during the latest stage, growth is driven by inertial forces and is characterized by a
2
3 power-law behavior, in agreement with predictions based on simple dimensional
analysis [55, 14].
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9. Conclusions

The main message of this review article is that we need to include intermolecu-
lar interactions in the classical hydrodynamic theory whenever we are interested in
phenomena whose length scale is comparable to the interface thickness. This hap-
pens in the theory of contact line motion, the fluid mechanics of microdevices, as
well as in the mixing and demixing of partially miscible mixtures that have been
outlined here. In all these cases, the final objective is that of determining, through
a “correct” microscopic description, the appropriate boundary conditions of the
classical equations of fluid dynamics that are applicable to macroscopic domains.
The diffuse interface method, in particular, provides a sound theoretical basis for
studying mixing and de-mixing of fluid systems. Here, we have reviewed its basic
theoretical foundations for both pure fluids and binary mixtures, above all when
each component behaves like a van der Waals fluid. We saw that the basic difference
between the diffuse interface formulation and the classical approach is the presence
of a capillary, or Korteweg, stress tensor in the momentum balance, expressing the
tendency of the system to minimize its free energy. This extra stress gives rise to
a body force, which is proportional to the gradient of the chemical potential dif-
ference, inducing a convection that, during phase transition, is much larger than
that due to pure molecular diffusion. As it is identically zero at equilibrium, this
force can be thought of as a non-equilibrium capillary force, whose net effect is
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that of generating an attractive force between domains of the same phase. Accord-
ingly, coalescence is greatly enhanced in out-of-equilibrium, low viscosity mixtures,
when convection-induced fluxes become dominant over diffusion fluxes. This phe-
nomenon is observed during the mixing process of liquid binary mixtures, where,
however, once larger domains are formed, they must eventually dissolve by diffu-
sion and, therefore, the process turns out to be actually retarded as the viscosity of
the system decreases. Also, very interesting effects are observed when heat transfer
is considered, as the chemical potential gradient-induced convection arising during
phase transition greatly accelerates the transport of heat. Finally, we show that the
influence of this convection is most clearly manifested during phase separation. In
particular, when inertial forces are small, as in liquid binary mixtures, the typical
growth law for the domain size R changes from R ∝ t1/3, for very viscous systems,
where diffusion prevails, to R ∝ t, for convection-driven processes, as one can easily
obtain by imposing that capillary forces be balanced by viscous forces. In the case of
single-component, liquid-vapor phase separation, instead, we obtain a 2

3 power-law
behavior, as capillary forces are balanced by inertial forces. In addition, here first the
system reaches local equilibrium (with the formation of nuclei having sharp inter-
faces), and then these nuclei start to grow, while for viscous liquid binary mixtures
the two events occur simultaneously.
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These examples demonstrate that the phase field approach allows to describe,
even quantitatively, phenomena, such as drop coalescence and breaking, that cannot
be resolved using conventional two-phase flow models.
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