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Abstract. We investigate Caffarelli–Kohn–Nirenberg-type inequalities for the
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1. Introduction

In this paper we study second order interpolation inequalities with weights being
powers of the distance from the origin, and involving functions defined on dilation
invariant domains. More precisely, for any regular domain Σ in the unit sphere S

n−1

we denote by CΣ the cone

CΣ := { rσ | r > 0 , σ ∈ Σ } . (1.1)

We are mainly interested in a class of inequalities of the form∫
CΣ

|x|α|Δu|2dx ≥ C

(∫
CΣ

|x|−β |u|qdx
)2/q

for any u ∈ C2
c (CΣ \ {0}), (1.2)

where q > 2 and α ∈ R are given parameters, and where C2
c (CΣ \ {0}) is the space

of functions in C2(CΣ) vanishing on ∂CΣ and in a neighborhood of 0 and of ∞. The
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best constant in (1.2) is given by

Sq(CΣ;α) := inf
u∈C2

c (CΣ\{0})
u �=0

∫
CΣ

|x|α|Δu|2dx(∫
CΣ

|x|−β |u|qdx
)2/q

. (1.3)

A simple rescaling argument shows that Sq(CΣ;α) vanishes unless β is such that

n− α

2
+

n− β

q
= n− 2. (1.4)

Therefore, from now on we will assume that (1.4) holds. We point out that condition
(1.4) defines the “weighted critical hyperbola” (case p = 2) introduced in [9] and
[17] in the context of solvability of Hardy–Henon-type elliptic systems in bounded
domains. See also [5] for related results on symmetry breaking.

If n ≥ 5, then the Sobolev embedding theorem implies that a necessary condi-
tion to have Sq(CΣ;α) > 0 is that q ≤ 2∗∗, where 2∗∗ is the critical Sobolev exponent:

2∗∗ =
2n

n− 4
.

Our goal is to estimate the best constant Sq(CΣ;α) under the above assumptions on
β and q. Moreover, we will study existence and qualitative properties of functions
achieving Sq(CΣ;α) on a suitable function space.

Let us notice that (1.2) can not be obtained by iterating the first order Caffarelli-
Kohn-Nirenberg inequalities in [4], see Remark 2.3. We quote [15], [23] and references
there-in, for a related interpolation inequality due to C.S. Lin.

If q = 2, then (1.4) gives β = α− 4 and (1.2) becomes∫
CΣ

|x|α|Δu|2dx ≥ C

∫
CΣ

|x|α−4|u|2dx for any u ∈ C2
c (CΣ \ {0}). (1.5)

A first version of this inequality has been introduced by F. Rellich in 1953 (see [19]
and [20]) in case CΣ = R

n \ {0} and α = 0. For general cones CΣ and parameters
α ∈ R we refer to [7], where it is proved that the best constant in (1.5) is exactly
the square of the distance of −γα from the Dirichlet spectrum Λ(Σ) of the Laplace-
Beltrami operator on Σ, where

γα =
(
n− 2

2

)2

−
(
α− 2

2

)2

. (1.6)

For instance, taking Σ = S
n−1 or Σ = half-sphere we have

S2(Rn \ {0};α) = min
k∈N∪{0}

|γα + k(n− 2 + k)|2

S2(Rn
+;α) = min

k∈N
|γα + k(n− 2 + k)|2 ,

where R
n
+ denotes any homogeneous half-space.

In our first theorem we show that Sq(CΣ, α) > 0 whenever the best constant in
the weighted Rellich inequality is positive.
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Theorem 1.1. Let α ∈ R and let Σ ⊆ S
n−1 be a domain of class C2. Let q > 2 be a

given exponent, and assume that q ≤ 2∗∗ if n ≥ 5. Then Sq(CΣ;α) > 0 if and only if
−γα /∈ Λ(Σ).

If −γα is not a Dirichlet eigenvalue on Σ, then we can define the Hilbert space
N 2(CΣ;α) as the completion of C2

c (CΣ \ {0}) with respect to the norm

‖u‖2,α =
(∫

CΣ
|x|α|Δu|2dx

)1/2

. (1.7)

If n ≥ 5 and α = 0, then N 2(Rn \ {0}; 0) = D2(Rn), see Remark 2.2. In general, it
holds that

Sq(CΣ;α) = inf
u∈N 2(CΣ;α)

u �=0

∫
CΣ

|x|α|Δu|2dx(∫
CΣ

|x|−β |u|qdx
)2/q

. (1.8)

In the rest of the paper we study the existence of extremals for Sq(CΣ;α) and
their qualitative properties.

When q = 2 it was shown in [7] that the best constant S2(CΣ;α) is never
attained in N 2(CΣ;α). Another remarkable case is Σ = S

n−1, n ≥ 5 and q = 2∗∗.
Then CΣ = R

n \ {0}, β = 0 and S2∗∗(Rn \ {0}; 0) equals the Sobolev constant

S∗∗ = inf
u∈D2(Rn)

u �=0

∫
Rn

|Δu|2dx(∫
Rn

|u|2∗∗dx
)2/2∗∗ . (1.9)

It is well known that the best constant S∗∗ is achieved by an explicitly known radially
symmetric and positive function, see for instance [22].

In the next results we study the attainability of Sq(CΣ;α). By standard ar-
guments, extremals for Sq(CΣ;α) are, up to a Lagrange multiplier, ground state
solutions of the equation

Δ(|x|αΔu) = |x|−β |u|q−2u in CΣ (1.10)

under Navier boundary conditions u = Δu = 0 on ∂CΣ, in case Σ is properly
contained in S

n−1.
Notice that the minimization problem (1.9) is noncompact, due to the action of

the group of dilations in R
n. However, when q is subcritical the infimum Sq(CΣ;α)

is always achieved:

Theorem 1.2. Let q > 2 be a given exponent such that q < 2∗∗ if n ≥ 5. Let Σ
be a domain in S

n−1 of class C2, with −γα /∈ Λ(Σ). Then Sq(CΣ;α) is achieved in
N 2(CΣ;α).

When n ≥ 5 and q = 2∗∗ it holds that S2∗∗(CΣ;α) ≤ S∗∗ for any cone CΣ and for
any admissible exponent α, see Proposition 2.4. In this case the group of translations
in R

n may produce lack of compactness and nonexistence phenomena. As usual, the
strict inequality guarantees the compactness of all minimizing sequences.
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Theorem 1.3. Let n ≥ 5 and let Σ be a domain in S
n−1 of class C2. Assume that

−γα /∈ Λ(Σ). If S2∗∗(CΣ;α) < S∗∗, then S2∗∗(CΣ;α) is achieved in N 2(CΣ;α).

The above stated theorems constitute the second order version of well known
results related to the classical Caffarelli-Kohn-Nirenberg inequalities [4] for first
order operators, see for instance [6], [8] and the references therein.

However, when we push further the study of minimization problems (1.8), some
relevant differences appear. Firstly we can show that in the case of critical exponent
the strict inequality S2∗∗(CΣ;α) < S∗∗ holds in the following cases.

Theorem 1.4. If n ≥ 6 and |α− 2| > 2, then S2∗∗(CΣ;α) < S∗∗ for every Σ ⊆ S
n−1.

If n = 5 and 2 < |α− 2| < √
13, then S2∗∗(R5 \ {0};α) < S∗∗.

The previous result is discussed separately for dimensions n ≥ 6 in Theorem
2.5, whereas for n = 5 is a special case of an estimate proved in Theorem 2.9.

The difference between the case n = 5 and n ≥ 6 seems to be not purely techi-
cal. There is indeed a deep connection between the validity of the strict inequality
S2∗∗(CΣ;α) < S∗∗ and the existence of ground state solutions for the following Dirich-
let problem: {

Δ2u + λΔu = |u|2∗∗−2u in B

u = |∇u| = 0 on ∂B.
(1.11)

Here B ⊂ R
n is the unit ball and λ is a given real parameter. As a by-product of

our computations we can prove a Brezis–Nirenberg-type result for problem (1.11) in
the spirit of the celebrated paper [3], see Appendix A. By adapting a terminology
which has been introduced by Pucci and Serrin in [18], we can assert that n = 5 is
the unique weakly critical dimension for problem (1.11).

When CΣ = R
n \{0} breaking symmetry can be observed as well. In particular,

from the results in Section 5 it follows that minimizers for Sq(CΣ;α) may be not ra-
dially symmetric. In Theorems 5.1 and 5.2 we show that breaking symmetry occurs,
for instance, when −γα is close to a Dirichlet eigenvalue on the sphere or when |α|
is large enough.

Even in correspondence of the critical exponent, breaking symmetry occurs:
for |α| large enough there exist minimizers both for S2∗∗(Rn \ {0};α) and for the
corresponding radial best constant Srad

2∗∗ (Rn;α), defined in (2.10), and the minimiz-
ers are different as S2∗∗(Rn \ {0};α) < Srad

2∗∗ (Rn;α). A similar breaking symmetry
phenomenon does not occur, for instance, in dealing with critical exponents in first-
order Caffarelli-Kohn-Nirenberg inequalities: in that case, the best constant is not
achieved, or all the minimizers are radially symmetric. We refer to [8], [11], [10] for
breaking symmetry in first order Caffarelli-Kohn-Nirenberg inequalities.

Another striking difference with respect to similar first order problems, is a
breaking positivity phenomenon. Indeed, in Section 4 we show that, in general, no
extremal for (1.8) has constant sign, see Theorem 4.1.
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In Section 6 we take Σ to be a proper domain in the sphere and we deal with
the infimum

SD
q (CΣ;α) := inf

u∈C2
c (CΣ)

u �=0

∫
CΣ

|x|α|Δu|2dx(∫
CΣ

|x|−β |u|qdx
)2/q

. (1.12)

Differently from the Navier case, it turns out that SD
q (CΣ;α) is always positive,

whenever Σ has compact closure in S
n−1, with no restriction on α. We also show ex-

istence of extremals (see Theorem 6.1) which give rise to solutions of (1.10) satisfying
Dirichlet boundary conditions u = |∇u| = 0 on ∂CΣ.

2. Inequalities

In this Section we prove Theorem 1.1 and some related results. We start by noticing
that

Sq(CΣ;α) = Sq(CΣ; 4 − α) and SD
q (CΣ;α) = SD

q (CΣ; 4 − α) . (2.1)

To check (2.1) use (as in [7], where q = 2 is assumed) the transform u �→ û given by

û(x) = |x|2−nu(|x|−2x).

The proof of Theorem 1.1 is based on the Emden-Fowler transform u �→ w = Tu,
defined by

u(x) = |x| 4−n−α
2 w

(
− log |x|, x

|x|
)
. (2.2)

Notice that T maps functions u : CΣ \ {0} → R into functions w on the cylinder

ZΣ := {(s, σ) ∈ R× S
n−1 | s ∈ R, σ ∈ Σ}.

In [7] it is noticed that for every u ∈ C2
c (CΣ \ {0}) one has w ∈ C2

c (ZΣ) and∫
CΣ

|x|−β |u|qdx =
∫
ZΣ

|w|qdsdσ (2.3)∫
CΣ

|x|α|Δu|2dx =
∫
ZΣ

(|Lαw|2 + |wss|2 + 2|∇σws|2 + 2γα|ws|2
)
dsdσ , (2.4)

where

Lαw = −Δσw + γαw , γα =
(
n− 2

2

)2

+
(
α− 2

2

)2

, (2.5)

and γα is defined in (1.6). For every γ ∈ R we introduce also the value

mN (Σ; γ) = inf
ϕ∈H2∩H1

0 (Σ)
ϕ �=0

∫
Σ
| − Δσϕ + γϕ|2dσ∫

Σ
ϕ2dσ

. (2.6)

The following facts hold (see Proposition 1.1 and Theorem 2.1 in [7]).
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Lemma 2.1. (i) For every γ ∈ R one has that mN (Σ; γ) = dist(−γ,Λ(Σ))2. More-
over ϕ ∈ H2 ∩ H1

0 (Σ) is a minimizer for mN (Σ; γ) if and only if ϕ is an
eigenfunction of −Δσ relative to the eigenvalue achieving the minimal distance
of −γ from Λ(Σ).

(ii) For every α ∈ R one has that S2(CΣ;α) = mN (Σ; γα) with γα given by (1.6).

2.1. Proof of Theorem 1.1
Assume that −γα ∈ Λ(Σ), and take a nontrivial ϕ ∈ H1

0 (Σ) in the kernel of the
operator Lα. Test the quotient in (1.3) with

u(x) = |x| 4−n−α
2 η(− log |x|)ϕ

(
x

|x|
)

,

where η ∈ C∞c (R), η �= 0 is an arbitrary function. Using (2.3)–(2.4) we readily get

Sq(CΣ;α) ≤ Cϕ

∫ ∞

−∞
|η′′|2ds +

∫ ∞

−∞
|η′|2ds(∫ ∞

−∞
|η|qds

)2/q
,

where the constant Cϕ > 0 does not depend on η. Thus Sq(CΣ;α) = 0, by a simple
rescaling argument.

Next, assume that −γα /∈ Λ(Σ). By the results in [7], it turns out that the space
H2 ∩H1

0 (ZΣ) has an equivalent norm given by

‖w‖2H2∩H1
0 (ZΣ;α)

=
∫
ZΣ

(|Lαw|2 + |wss|2 + 2|∇σws|2 + 2γα|ws|2
)
dsdσ.

Moreover, the operator T is an isomorphism between the spaces N 2(CΣ;α) and
H2 ∩H1

0 (ZΣ) and (2.3)–(2.4) hold for every u ∈ N 2(CΣ;α). In addition, thanks to
the Sobolev embedding theorem for H2(ZΣ) (see [1]) and by (2.3)–(2.4), we infer that
N 2(CΣ;α) is continuously embedded into Lq(CΣ; |x|−βdx), namely, Sq(CΣ;α) > 0. �

Remark 2.2. Let α ∈ R, q > 2 with q ≤ 2∗∗ if n ≥ 5, and β = n − q n−4+α
2 . If

n > 4 − α, then C2
c (R

n) ⊂ Lq(Rn; |x|−βdx) and

Sq(Rn \ {0};α) = inf
u∈C2

c (R
n)

u �=0

∫
Rn

|x|α|Δu|2dx(∫
Rn

|x|−β |u|qdx
)2/q

. (2.7)

Moreover if −γα �∈ Λ(Sn−1) and n > 4−α, then C2
c (R

n) is dense in N 2(Rn \{0};α).
These facts can be proved in a standard way.

Remark 2.3. C.S. Lin proved in [15] several interpolation inequalities involving
weighted Lp norms of the derivatives of functions u ∈ C∞c (Rn). In particular, in
case n ≥ 5 he proved that for any α ∈ R and for any q ∈ (2, 2∗∗], there exists CL > 0
such that

max
i,j=1,...,n

∫
Rn

|x|α|∂iju|2dx ≥ CL

(∫
Rn

|x|−β |u|qdx
)2/q
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for any u ∈ C2
c (R

n \ {0}), where β is given by (1.4). Clearly, the best constant CL

controls Sq(Rn \ {0};α) from above, but it always happens that

0 = Sq(Rn \ {0};α) < CL(α)

when −γα = k(n− 2 + k) for some positive integer k. More precisely, the functions

u �→ max
i,j=1,...,n

∫
Rn

|x|α|∂iju|2dx , u �→
∫
Rn

|x|α|Δu|2 dx

define two equivalent norms in C∞c (Rn) if and only if −γα /∈ Λ(Sn−1). Notice that the
present remark improves Lemma 3.1 in [23] (in case p = k = 2), where 4−n < α ≤ 0
is assumed.

2.2. Large and strict inequalities in the limiting case

In this subsection we take n ≥ 5 and q = 2∗∗. Let S2∗∗(CΣ;α), SD
2∗∗(CΣ;α) be the

infima defined in (1.3), (1.12) respectively. In particular,

SD
2∗∗(CΣ;α) = inf

u∈C2
c (CΣ)

u �=0

∫
CΣ

|x|α|Δu|2dx(∫
CΣ

|x| nα
n−4 |u|2∗∗dx

)2/2∗∗ .

Proposition 2.4. Let Σ be a domain in S
n−1 of class C2, n ≥ 5, and let α ∈ R. Then

S2∗∗(CΣ;α) ≤ SD
2∗∗(CΣ;α) ≤ S∗∗ ,

where S∗∗ is the Sobolev constant, given by (1.9).

Proof. The first inequality is trivial. To prove that SD
2∗∗(CΣ;α) ≤ S∗∗ we fix a point

x0 ∈ CΣ. For an arbitrary u ∈ C2
c (R

n), u �= 0 and for any integer h > 0 we put

uh(x) = u(h(x− x0)).

If h is large enough, then the support of uh is compactly contained in CΣ, and hence

SD
2∗∗(CΣ;α) ≤

∫
CΣ

|x|α|Δuh|2dx(∫
CΣ

|x| nα
n−4 |uh|2∗∗dx

)2/2∗∗

=

∫
Rn

∣∣∣y
h

+ x0

∣∣∣α |Δu|2dx(∫
Rn

∣∣∣y
h

+ x0

∣∣∣ nα
n−4 |u|2∗∗dx

)2/2∗∗

=

∫
Rn

|Δu|2dx(∫
Rn

|u|2∗∗dx
)2/2∗∗ + o(1)

as h → ∞. Since u was arbitrarily chosen, the conclusion follows. �
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As concerns the validity of the strict inequality SD
2∗∗(CΣ;α) < S∗∗ we have the

following result.

Theorem 2.5. If n ≥ 6 and |α− 2| > 2, then SD
2∗∗(CΣ;α) < S∗∗ for every Σ ⊂ S

n−1.

Proof. Let a = −α/2. We notice that |α − 2| > 2 is equivalent to say that Ca :=
a(a + 2)(n− 2)/n > 0. By Lemma B.1 in Appendix B, there exists Ta ∈ (0, 1) such
that for 0 < t ≤ Ta and for every radial mapping u ∈ C2

c (B), where B is the unit
open ball in R

n, one has∫
|tx + e|−2a |Δ (|tx + e|au)|2 ≤

∫
|Δu|2 − Cat

2

∫
|∇u|2. (2.8)

Fix a point e ∈ Σ. Let t0 > 0 be such that e+ t0B ⊂ CΣ and put t = 1
2 min{t0, Ta}.

By Lemma A.2 in Appendix A, there exists a radially symmetric function u ∈ C2
c (B)

such that ∫
|Δu|2 − Cat

2

∫
|∇u|2 < S∗∗

(∫
|u|2∗∗

)2/2∗∗

. (2.9)

Define

v(x) = |x|−α
2 u

(
x− e

t

)
and notice that v ∈ C2

c (CΣ) verifies∫
|x| nα

n−4 |v|2∗∗ = tn
∫

|u|2∗∗ ,∫
|x|α|Δv|2 = tn−4

∫
|tx + e|−2a |Δ (|tx + e|au)|2 .

Then, by (2.8) and (2.9)

S2∗∗(CΣ;α) ≤

∫
|x|α|Δv|2(∫

|x| nα
n−4 |v|2∗∗

)2/2∗∗ =

∫
|tx + e|−2a |Δ (|tx + e|au)|2(∫

|u|2∗∗
)2/2∗∗

≤

∫
|Δu|2 − Cat

2

∫
|∇u|2(∫

|u|2∗∗
)2/2∗∗ < S∗∗.

�

In dimension n = 5 we have a partial result on the whole space.

Theorem 2.6. If 2 < |α− 2| < √
13, then S2∗∗(R5 \ {0};α) < S∗∗.

Theorem 2.6 is a special case of an estimate which will be proved in the next
subsection (see Theorem 2.9).
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2.3. Radially symmetric functions

For any α ∈ R and q ≥ 2 we define

Srad
q (Rn;α) := inf

u∈C2
c (R

n\{0})
u �=0, u=u(|x|)

∫
Rn

|x|α|Δu|2dx(∫
Rn

|x|−β |u|qdx
)2/q

(2.10)

where β = n − q n−4+α
2 . Notice that there is no upper bound on q even in large

dimensions. Arguing as for (2.1), one can easily check that

Srad
q (Rn;α) = Srad

q (Rn; 4 − α) .

In case q = 2, it was proved in [7] that

Srad
2 (Rn;α) = γ2α =

(n− 4 + α)2(n− α)2

16
. (2.11)

In particular, if α �= 4 − n and α �= n, then Srad
2 (Rn;α) > 0, and we can suitably

define a Hilbert space of radially symmetric functions N 2
rad(R

n;α) endowed with the
norm (1.7).

The next theorem provides a second order Caffarelli–Kohn–Nirenberg-type in-
equality for radially symmetric maps. We only need to assume γα �= 0. In particular,
q can be supercritical and −γα might be a Dirichlet eigenvalue on the sphere.

Theorem 2.7. Let q > 2 be a given exponent. Then Srad
q (Rn;α) > 0 if and only if

α �∈ {4 − n, n}.
Proof. To any radial function u ∈ C2

c (R
n \ {0}) we associate a function w ∈ C2

c (R)
via the Emden-Fowler transform defined in (2.2). Thus

u(x) = |x| 4−n−α
2 w(− log |x|) (2.12)∫

Rn

|x|−β |u|qdx = ωn

∫ ∞

−∞
|w|qds∫

Rn

|x|α|Δu|2dx = ωn

∫ ∞

−∞

(|w′′|2 + 2γα|w′|2 + γ2α|w|2
)
ds

where ωn is the measure of S
n−1, γα is defined in (1.6) and γα in (2.5) (compare

with (2.3) and (2.4)). In particular, Srad
q (Rn;α) = ω

(q−2)/q
n μq(α), where

μq(α) = inf
w∈C2

c (R)
w �=0

∫ ∞

−∞

(|w′′|2 + 2γα|w′|2 + γ2α|w|2
)
ds(∫ ∞

−∞
|w|qds

)2/q
.

If γα = 0, then clearly μq(α) = 0, via rescaling. Conversely, notice that α /∈ {4−n, n}
if and only if γα �= 0 and in this case the space H2(R) admits as an equivalent norm

‖w‖2α =
∫ ∞

−∞

(|w′′|2 + 2γα|w′|2 + γ2α|w|2
)
ds. (2.13)
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Thus μq(α) > 0 since H2(R) ↪→ Lq(R) by Sobolev embedding theorem, and hence
Srad
q (Rn;α) > 0. �

We conclude this section with an existence result.

Theorem 2.8. Let q > 2 be a given exponent, and assume that α �∈ {4− n, n}. Then
Srad
q (Rn;α) is achieved in N 2

rad(R
n;α).

Proof. Since γα �= 0, then the Emden-Fowler transform induces an isometry between
N 2

rad(R
n;α) and the Sobolev space H2(R), endowed with the equivalent norm in

(2.13). It is standard to show the existence of some w ∈ H2(R) such that ‖w‖Lq = 1
and ‖w‖2α = μq(α) (see [21]). Then the corresponding function u defined by (2.12)
belongs to N 2

rad(R
n;α) and achieves Srad

q (Rn;α). �

2.4. Estimates on Srad
q (Rn;α)

In this subsection we provide some estimates on the infima Srad
q (Rn;α). We start

with the limiting case n ≥ 5 and q = 2∗∗.

Theorem 2.9. If n ≥ 5 and

2 < |α− 2| <
√

4 + 2
(n− 2)2(n− 4)

n− 3
, (2.14)

then Srad
2∗∗ (Rn;α) < S∗∗.

Proof. Set a = −α/2. Let U ∈ D2(Rn) be the radial mapping defined by

U(x) =
(
1 + |x|2) 4−n

2 . (2.15)

Our aim is to test Srad
q (Rn;−2a) with |x|aU . In order to simplify notations we put

J =
∫

|x|−2|∇U |2 , I =
∫

|x|−4|U |2 .
We compute∫

|x|−2a|Δ(|x|aU)|2 =
∫

|ΔU |2 + 4a2 J + a2(n− 2 + a)2 I

+ 4a2(n− 2 + a)
∫

|x|−4U(x · ∇U)

+ 4a
∫

|x|−2(x · ∇U)ΔU + 2a(n− 2 + a)
∫

|x|−2UΔU.

Since U is radial, then∫
|x|−4U(x · ∇U) = −n− 4

2
I ,

∫
|x|−2(x · ∇U)ΔU =

n

2
J∫

|x|−2UΔU = − J − (n− 4) I.

We infer that∫
|x|−2a|Δ(|x|aU)|2 =

∫
|ΔU |2 + 2a(a + 2) J − a(a + 2)(n− 2 + a)(n− 4 − a) I.
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Integrating by parts twice we get

J =
(n− 2)(n− 4)2

4(n− 3)
I,

that leads to∫
|x|−2a|Δ(|x|aU)|2 =

∫
|ΔU |2 + a(a + 2)

[
a2 + 2a− (n− 2)2(n− 4)

2(n− 3)

]
I.

Since U achieves the best Sobolev constant S∗∗ (see [22]), we have∫
|ΔU |2 = S∗∗

(∫
|U |2∗∗

)2/2∗∗

, (2.16)

and then

Srad
2∗∗ (Rn;α) ≤ S∗∗ + Ca(a + 2)

[
a2 + 2a− (n− 2)2(n− 4)

2(n− 3)

]
I,

where C > 0 is a power of the L2∗∗ norm of U . Since

a(a + 2)
[
a2 + 2a− (n− 2)2(n− 4)

2(n− 3)

]
< 0

if and only if (2.14) holds, the conclusion follows. �

Our next goal is to provide the asymptotic behavior of Srad
q (Rn;α) as |α| → ∞.

We first point out a useful lemma.

Lemma 2.10. Let q ≥ 2 and α, α̃ ∈ R \ {4 − n} be given. Then

Srad
q (Rn;α) = |τ(α, α̃)|3+ 2

q inf
u∈C2

c (R
n\{0})

u=u(|x|), u�=0

∫
Rn

|x|α̃|Δu|2 − g(α, α̃)
∫
Rn

|x|α̃−2|∇u|2(∫
Rn

|x|−βα̃ |u|q
)2/q

,

where

τ(α, α̃) :=
n− 4 + α

n− 4 + α̃
,

g(α, α̃) := (n− 2)
(α̃− α)[α̃α− 2(α̃ + α) − n(n− 4)]

(n− 4 + α)2
.

(2.17)

Proof. Fix u ∈ C∞c (Rn \ {0}) radially symmetric, put τ = τ(α, α̃) and define

ũ(r) = u(r1/τ ) . (2.18)

Direct computation leads to∫
Rn

|x|−βα |u|q = |τ |−1
∫
Rn

|x|−βα̃ |ũ|q (2.19)∫
Rn

|x|α|Δu|2 = |τ |3
∫
Rn

|x|α̃ ∣∣Δũ− (1 − τ−1)(n− 2)|x|−2x · ∇ũ
∣∣2 dx

= |τ |3
[∫

Rn

|x|α̃|Δũ|2 − g(α, α̃)
∫
Rn

|x|α̃−2|∇ũ|2
]
. (2.20)
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The conclusion readily follows. �

Notice that g ≡ 0 in the two-dimensional case. Therefore the following imme-
diate corollary holds.

Corollary 2.11. Assume n = 2 and fix q ≥ 2. Then for any α �= 2 the ratio

Srad
q (R2;α)

|α− 2|3+ 2
q

is a constant, independent on α.

Next assume n ≥ 3. We will say that α, α̃ are conjugate if

(α− 2)(α̃− 2) = (n− 2)2. (2.21)

Notice that α = n and α̃ = 4 − n are self-conjugate. If α, α̃ �= 4 − n are conjugate,
then g(α, α̃) = 0 and

|τ(α, α̃)| =
∣∣∣∣n− 2
α̃− 2

∣∣∣∣ =
∣∣∣∣α− 2
n− 2

∣∣∣∣ . (2.22)

In this case
Srad
q (Rn;α) = |τ(α, α̃)|3+ 2

qSrad
q (Rn; α̃). (2.23)

Corollary 2.12. Assume n ≥ 3 and fix q ≥ 2. Then

lim
|α|→∞

Srad
q (Rn;α)

|α− 2|3+ 2
q

=
Srad
q (Rn; 2)

(n− 2)3+
2
q

.

Proof. For any α �= 4−n we let α̃ to be its conjugate exponent. When |α| → ∞, then
α̃ → 2 by (2.21), and hence Srad

q (Rn; α̃) → Srad
q (Rn; 2) (use the continuity Lemma

B.3 in Appendix B.1). Then the conclusion follows from (2.22)–(2.23). �

3. Existence

In this Section we prove Theorems 1.2 and 1.3. We will always assume:⎧⎪⎨⎪⎩
Σ ⊆ S

n−1 is of class C2 and −γα /∈ Λ(Σ)
q > 2 and q ≤ 2∗∗ if n ≥ 5

β = n− q
n− 4 + α

2
.

In particular, Sq(CΣ;α) > 0 by Theorem 1.1. We need the following result.

Lemma 3.1. Let (uh) ⊂ N 2(CΣ;α) be a minimizing sequence for Sq(CΣ;α). If uh⇀u
weakly in N 2(CΣ;α) and u �= 0, then u is a minimizer for Sq(CΣ;α) and uh → u
strongly in N 2(CΣ;α).

The proof is standard. One can adapt to our situation a well known argument
(see, e.g., [21], Chapt. 1, Sect. 4).
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3.1. ε-compactness

To prove the existence results stated in the introduction we need an ε-compactness
criterion for sequences of approximating solutions to (1.10). We start by pointing
out an immediate consequence of Rellich Theorem.

Lemma 3.2. Let A be a domain with compact closure in R
n \ {0}. Then N 2(CΣ;α)

is compactly embedded into H1(CΣ ∩A).

In the next result we let N−2(CΣ;α) to be the topological dual space of
N 2(CΣ;α) and we use Theorem 1.1 to fix a small number ε0 > 0 such that

ε
q−2
q

0 < Sq(CΣ;α) . (3.1)

Proposition 3.3. Let uh ∈ N 2(CΣ;α), fh ∈ N−2(CΣ;α) be given sequences, such that
fh → 0 in N−2(CΣ;α), uh⇀ 0 weakly in N 2(CΣ;α) and moreover

Δ (|x|αΔuh) = |x|−β |uh|q−2uh + fh (3.2)∫
CΣ∩BR

|x|−β |uh|q dx ≤ ε0 (3.3)

for some R > 0, where ε0 > 0 satisfies (3.1). Then∫
CΣ∩BR′

|x|−β |uh|q dx → 0 for any R′ ∈ (0, R).

Proof. Fix R′ ∈ (0, R) and take a cut-off function ϕ ∈ C∞c (BR) such that ϕ ≡ 1 on
BR′ . Notice that∫

CΣ
|x|αΔuhΔ(ϕ2uh) dx =

∫
CΣ

|x|α|Δ(ϕuh)|2 dx + o(1)

by Lemma 3.2, as ϕ and its derivatives have compact supports in R
n\{0}. Therefore,

using φ2uh as a test function in (3.2) and using Hölder inequality we get∫
CΣ

|x|α |Δ(ϕuh)|2 dx =
∫
CΣ

|x|−β |uh|q−2|(ϕuh)|2 dx + o(1)

≤
(∫

CΣ
|x|−β |uh|q dx

) q−2
q

(∫
CΣ

|x|−β |ϕuh|q dx

) 2
q

+ o(1).

The left hand side in the above inequality can be bounded from below by using the
definition of Sq(CΣ;α). Thus, from (3.3) we infer(∫

CΣ
|x|−β |ϕuh|q dx

) 2
q

Sq(CΣ;α) ≤ ε
q−2
q

0

(∫
CΣ

|x|−β |ϕuh|q dx

) 2
q

.

The conclusion readily follows from (3.1), since ϕ ≡ 1 on BR′ . �
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3.2. Proof of Theorem 1.2

Using Ekeland’s variational principle (see [21] Chapt. 1, Sect. 5) we can find a
minimizing sequence uh ∈ N 2(CΣ;α), such that (3.2) holds for a sequence fh → 0
in N−2(CΣ;α) and such that∫

CΣ
|x|α|Δuh|2 dx =

∫
CΣ

|x|−β |uh|q dx + o(1) = Sq(CΣ;α)
q

q−2 + o(1).

Since uh is bounded in N−2(CΣ;α), we can assume that uh⇀u weakly in N 2(CΣ;α).
Up to a rescaling, we can also assume that∫

CΣ∩B2

|x|−β |uh|q dx =
1
2
Sq(CΣ;α)

q
q−2 . (3.4)

We claim that u �= 0. Indeed, if uh⇀ 0, then∫
CΣ∩B1

|x|−β |uh|q dx = o(1)

by Proposition 3.3. On the other hand,∫
CΣ∩{1<|x|<2}

|x|−β |uh|q dx = o(1)

by Lemma 3.2 and by Rellich Theorem, contradicting (3.4). Thus the minimizing
sequence uh converges weakly to a non trivial limit. Then we can apply Lemma 3.1
to conclude. �

3.3. Proof of Theorem 1.3

We put here S(α) = S2∗∗(CΣ;α) to simplify notations. We select a minimizing se-
quence uh as in the proof of Theorem 1.2. In particular there exists a sequence
fh → 0 in N−2(CΣ;α) such that uh satisfies

Δ (|x|αΔuh) = |x| nα
n−4 |uh|2∗∗−2uh + fh (3.5)∫

CΣ
|x|α|Δuh|2 dx =

∫
CΣ

|x| nα
n−4 |uh|2∗∗ dx + o(1) = S(α)

n
4 + o(1) (3.6)∫

CΣ∩B2

|x| nα
n−4 |uh|2∗∗ dx =

1
2
S(α)

n
4 . (3.7)

As before, we have to prove that uh cannot converge weakly to 0. By contradiction,
assume that uh⇀ 0 weakly in N 2(CΣ;α). Then we can argue as in the proof of
Theorem 1.2 to get ∫

CΣ∩B1

|x| nα
n−4 |uh|2∗∗ dx = o(1)

and hence ∫
CΣ∩{1<|x|<2}

|x| nα
n−4 |uh|2∗∗ dx =

1
2
S(α)

n
4 + o(1) (3.8)
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by (3.7). Now we take a cut-off function ϕ ∈ C∞c (Rn\{0}) such that ϕ ≡ 1 on B2\B1

and we use ϕ2uh as test function in (3.5). Using Lemma 3.2, Hölder inequality and
(3.6) we have∫

CΣ
|x|α|Δ(ϕuh)|2 dx ≤ S(α)

(∫
CΣ

|x| nα
n−4 |ϕuh|2∗∗ dx

)n−4
n

+ o(1).

Let us define

Fh = Δ(|x|α/2ϕuh) − |x|α/2Δ(ϕuh).

Using Lemma 3.2 and Rellich Theorem one plainly gets that Fh → 0 strongly in
L2(Rn). Thus, by Sobolev inequality,∫

CΣ
|x|α|Δ(ϕuh)|2 dx =

∫
CΣ

|Δ(|x|α2 ϕuh)|2 dx + o(1)

≥ S∗∗
(∫

CΣ

∣∣∣|x|α2 ϕuh∣∣∣2∗∗ dx

)n−4
n

+ o(1).

Putting together these informations we conclude that

S∗∗
(∫

CΣ
|x| nα

n−4 |ϕuh|2∗∗ dx

)n−4
n

≤ S(α)
(∫

CΣ
|x| nα

n−4 |ϕuh|2∗∗ dx

)n−4
n

+ o(1).

Thus

o(1) =
∫
CΣ

|x| nα
n−4 |ϕuh|2∗∗ dx ≥

∫
CΣ∩{1<|x|<2}

|x| nα
n−4 |ϕuh|2∗∗ dx,

as 0 < S(α) < S∗∗ by assumption and ϕ ≡ 1 on the annulus B2 \ B1. Since this
conclusion contradicts (3.8), we infer that the weak limit of the minimizing sequence
uh cannot vanish. Then we can apply Lemma 3.1 to conclude. �

From Theorems 1.3, 2.5 and 2.9 we infer the next existence result.

Theorem 3.4. Let n ≥ 5 and let Σ be a domain in S
n−1 of class C2. Assume that

−γα /∈ Λ(Σ). The best constant S2∗∗(CΣ;α) is achieved if one of the following condi-
tions holds:

(i) n ≥ 6 and |α− 2| > 2
(ii) n = 5, Σ = S

4 and 2 < |α− 2| < √
13.

Remark 3.5. Assume Σ = S
n−1 and n ≥ 6. By Proposition 2.4 it results that

S2∗∗(Rn \ {0};α) ≤ S∗∗, while Srad
2∗∗ (Rn;α) diverges as |α| → ∞. Thus, for |α| large

enough, extremals for S2∗∗(Rn \ {0};α) do exist, but none of them is radially sym-
metric. This breaking symmetry phenomenon is definitively new with respect to
the Caffarelli-Kohn-Nirenberg first order inequalities. Breaking symmetry will be
studied in more detail in Section 5.
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4. Breaking positivity

In this section we illustrate a surprising phenomenon that is completely new with
respect to similar first order problems. Namely, we show that all functions achieving
the best constant Sq(CΣ;α) might be forced to change sign. In particular, extremal
functions for Sq(CΣ;α) cannot be positive if q is close to 2 and

−γα >
λ1 + λ2

2
, (4.1)

where λ1 and λ2 are the two first eigenvalues of −Δσ in H1
0 (Σ). To this goal we

introduce the infima

S+
q (CΣ;α) = inf

u∈C2(CΣ\{0})
u≥0, u �≡0

∫
CΣ

|x|α|Δu|2dx(∫
CΣ

|x|−βuqdx
)2/q

.

Let us state the main result of this section.

Theorem 4.1. Assume (4.1). Then there exists qα > 2 such that

Sq(CΣ;α) < S+
q (CΣ;α)

for all q ∈ [2, qα). In particular, if q ∈ (2, qα), extremal functions for Sq(CΣ;α)
cannot be positive.

Proof. In order to prove Theorem 4.1 we will use once more the Emden-Fowler
transform T already introduced in (2.2).
Besides the infimum mN (Σ; γ) in (2.6), we define also

m+
N (Σ; γ) = inf

ϕ∈H2∩H1
0 (Σ)

ϕ≥0, ϕ �≡0

∫
Σ
| − Δσϕ + γϕ|2dσ∫

Σ
ϕ2dσ

.

The following facts hold:

(i) S+
2 (CΣ;α) = m+

N (Σ; γα).
(ii) If −γ ≤ λ1+λ2

2 , then m+
N (Σ; γ) = mN (Σ; γ).

(iii) If −γ > λ1+λ2
2 , then m+

N (Σ; γ) > mN (Σ; γ). In particular m+
N (Σ; γ) > 0 for all

γ ∈ R, γ �= λ1.

Theorem 4.1 is an immediate consequence of (i)–(iii) and of the continuity Lemma
B.2 in Appendix B.1. Claim (i) easily follows from the computations in Section 2
on the Emden-Fowler transform. To prove (ii), notice that if −γ ≤ λ1+λ2

2 , then
dist(−γ,Λ(Σ)) = |γ + λ1|. Thus, by (i) in Lemma 2.1, mN (Σ; γ) is achieved by an
eigenfunction ϕ1 corresponding to λ1. Since one can take ϕ1 ≥ 0, it follows that
m+

N (Σ; γ) ≤ mN (Σ; γ). The opposite inequality is trivial.
Now we check (iii). Assume that m+

N (Σ; γ) ≤ mN (Σ; γ). Then equality holds.
By a standard argument one can plainly check that m+

N (Σ; γ) is attained, namely
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there exists ϕ ∈ H2 ∩H1
0 (Σ) such that∫

Σ
| − Δσϕ + γϕ|2dσ = m+

N (Σ; γ) ,
∫
Σ
ϕ2dσ = 1 , ϕ ≥ 0 .

Then ϕ is an extremal for mN (Σ; γ), too. By (i), ϕ is an eigenfunction of −Δσ. Since
ϕ ≥ 0, it must be −Δσϕ = λ1ϕ and, again by (i), dist(−γ,Λ(Σ)) = |γ + λ1|, that
is, −γ ≤ λ1+λ2

2 . Theorem 4.1 is completely proved. �

Specializing Theorem 4.1 to the case Σ = S
n−1, when λ1 = 0 and λ2 = n − 1,

we immediately obtain the next result.

Corollary 4.2. Assume that

|α− 2| >
√

(n− 1)2 + 1.

Then there exists qα > 2 such that Sq(Rn\{0};α) < S+
q (Rn\{0};α) for all q ∈ [2, qα).

In particular, if q ∈ (2, qα), extremal functions for Sq(Rn\{0};α) cannot be positive.

5. Breaking symmetry

In this section we discuss some conditions for breaking symmetry. We use the the
constants Sq(Rn \ {0};α) and Srad

q (Rn;α) already defined in (2.7) and (2.10), re-
spectively.

As a first condition, we have that if −γα is close enough to the spectrum
Λ(Sn−1), then breaking symmetry occurs.

Theorem 5.1. For every q > 2 and for every k ∈ N there exists δ > 0 such that if

0 < |γα + k(n− 2 + k)| < δ,

then Sq(Rn \ {0};α) < Srad
q (Rn;α).

Proof. Fix k ∈ N, let λ = k(n − 2 + k) and α0 be such that −γα0 = λ. Since
λ ∈ Λ(Sn−1), by Theorem 1.1 it turns out that Sq(Rn \ {0};α0) = 0. In general, if
α → α0, then

Sq(Rn \ {0};α0) ≥ lim sup
α→α0

Sq(Rn \ {0};α)

(see Remark B.4). Hence we have that Sq(Rn \ {0};α) → 0 as α → α0. We also
have Srad

q (Rn;α) → Srad
q (Rn;α0) as α → α0 by Lemma B.3, and Srad

q (Rn;α0) > 0
by Theorem 2.7. Hence the conclusion follows. �

As a second condition, we show that if |α| is large, then again breaking sym-
metry occurs. More precisely we have the following result.

Theorem 5.2. Let q > 2, q ≤ 2∗∗ when n ≥ 5, and let α ∈ R. If

|γα| > n− 1
q − 2

(
1 +

√
q − 1

)
, (5.1)

then Sq(Rn \ {0};α) < Srad
q (Rn;α).
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Proof. Assume that Sq(Rn \ {0};α) = Srad
q (Rn;α) for some α ∈ R such that γα �= 0.

We claim that in this case

|γα| ≤ n− 1
q − 2

(
1 +

√
q − 1

)
. (5.2)

We start by noticing that Srad
q (Rn;α) > 0 by Theorem 2.7. Thus also Sq(Rn \

{0};α) > 0, and hence −γα does not belong to the spectrum of the Laplace-Beltrami
operator on S

n−1, by Theorem 1.1. In particular, the Hilbert space N 2(Rn \ {0};α)
is well defined. We introduce the following functionals on N 2(Rn \ {0};α) \ {0}:

A(u) :=
∫

|x|α|Δu|2 , B(u) :=
(∫

|x|−β |u|q
)2/q

, R(u) :=
A(u)
B(u)

.

Let u be the radially symmetric solution to the minimization problem (2.10) given
by Theorem 2.7. Thus u achieves also Sq(Rn \ {0};α), that is, u minimizes the
functional R(u) on N 2(Rn \ {0};α) \ {0}. In particular,

R′(u) · v = 0 , R′′(u)[v, v] ≥ 0 for any v ∈ N 2(Rn \ {0};α). (5.3)

In order to simplify notation we can assume that B(u) = 1. Then by direct compu-
tations based on (5.3) one gets

B′′(u)[v, v]
(∫

|x|α|Δu|2
)

≤ A′′(u)[v, v] = 2
∫

|x|α|Δv|2 (5.4)

B′′(u)[v, v] = 2(2 − q)
(∫

|x|−β |u|q−2uv
)2

+ 2(q − 1)
∫

|x|−β |u|q−2|v|2.

Now we choose the test function v, that is, v(rσ) = u(r)ϕ(σ), where ϕ ∈ H1(Sn−1)
is an eigenfunction of the Laplace-Beltrami operator on the sphere, relatively to the
first positive eigenvalue and normalized with respect to the L2 norm. Hence

−Δσϕ = (n− 1)ϕ ,

∫
Sn−1

ϕdσ = 0 ,

∫
Sn−1

|ϕ|2 dσ = ωn (5.5)

where ωn denotes the measure of Sn−1. Since ϕ has zero mean value, then

B′′(u)[uϕ, uϕ] = 2(q − 1)
∫

|x|−β |u|q = 2(q − 1).

Then, taking into account that Δv = (Δu)ϕ+|x|−2uΔσϕ and using (5.5) we compute∫
|x|α|Δ(uϕ)|2 =

∫
|x|α|(Δu− (n− 1)|x|−2u)|2

=
∫

|x|α|Δu|2 + (n− 1)2
∫

|x|α−4|u|2

−2(n− 1)
∫

|x|α−2uΔu

≤
∫

|x|α|Δu|2 + (n− 1)2
∫

|x|α−4|u|2

+2(n− 1)
(∫

|x|α−4|u|2
)1/2 (∫

|x|α|Δu|2
)1/2
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by the Cauchy-Schwarz inequality. Thus from (5.4) we get

(q − 2)
∫

|x|α|Δu|2 ≤ (n− 1)2
∫

|x|α−4|u|2

+2(n− 1)
(∫

|x|α−4|u|2
)1/2(∫

|x|α|Δu|2
)1/2

.

Thus (q − 2)ξ2 ≤ (n− 1)2 + 2(n− 1)ξ, where

ξ :=

⎛⎜⎜⎝
∫

|x|α|Δu|2∫
|x|α−4|u|2

⎞⎟⎟⎠
1/2

≥ |γα|

by (2.11). Inequality (5.2) readily follows via elementary calculus. �

Remark 5.3. Assume n ≤ 4 and fix any α /∈ {4 − n, n}. If q > 2 is large enough,
then breaking symmetry occurs, that is, Sq(Rn \ {0};α) < Srad

q (Rn;α).

6. Dirichlet boundary conditions

In this section we assume that Σ is a domain of class C2 with compact closure in
S
n−1. In particular, ∂CΣ \ {0} is not empty. Our aim is to study study minimization

problems of the form (1.12). First of all we recall that

inf
u∈C2

c (CΣ)
u �=0

∫
CΣ

|x|α|Δu|2dx∫
CΣ

|x|α−4|u|2dx
> 0 , (6.1)

see [7], whatever α ∈ R is. Thus we can define the Hilbert space D2(CΣ;α) as the
completion of C2

c (CΣ) with respect to the norm defined in (1.7). In particular, if
q > 2, q ≤ 2∗∗ if n ≥ 5, by density we have that

SD
q (CΣ;α) = inf

u∈D2(CΣ;α)
u �=0

∫
CΣ

|x|α|Δu|2dx(∫
CΣ

|x|−β |u|qdx
)2/q

. (6.2)

Our main results about the existence of minimizers for problems (6.2) are sum-
marized in the next theorem.

Theorem 6.1. Let α ∈ R and let Σ be a domain of class C2 properly contained in
S
n−1. Let q > 2, and q ≤ 2∗∗ if n ≥ 5. Then SD

q (CΣ;α) > 0 and moreover:

(i) If n ≤ 4 or q < 2∗∗, then SD
q (CΣ;α) is achieved in D2(CΣ;α).

(ii) As n ≥ 5, if SD
2∗∗(CΣ;α) < S∗∗, then SD

2∗∗(CΣ;α) is achieved in D2(CΣ;α).
(iii) If n ≥ 6, then SD

2∗∗(CΣ;α) < S∗∗.
(iv) If SD

q (CΣ;α) is attained, then SN
q (CΣ;α) < SD

q (CΣ;α).



676 P. Caldiroli and R. Musina  Vol.79 (2011)

Proof. Parts (i)–(iii) can be proved by repeating the same argument developed in
Sections 2 and 3. As far as concerns (iv), we point out that the large inequality
SN
q (CΣ;α) ≤ SD

q (CΣ;α) always holds true. Moreover, if u ∈ D2(CΣ;α) is a minimizer
for SD

q (CΣ;α) and equality holds, u would be a solution of

Δ(|x|αΔu) = λ|x|−β |u|q−2u in CΣ
for some λ > 0 and it would satisfy both Neumann and Dirichlet boundary condi-
tions. Hence it would be u = 0, which is impossible. �

Appendix A. Remarks on a Brezis–Nirenberg-type problem

In this section we deal with the Dirichlet problem⎧⎪⎨⎪⎩
Δ2u + λΔu = |u|2∗∗−2u in B

u = u(|x|) , u �= 0
u = |∇u| = 0 on ∂B

(A.1)

where λ ∈ R is a given parameter and B is the unit ball in R
n, n ≥ 5. Since a

detailed analysis of problem (A.1) would lead us far from our purposes, we limit
ourself to investigate those features of problem (A.1) that have some relevance with
the questions under investigation in the present paper.

We point out that the fourth order differential equation in (A.1) contains a
leading term with critical growth and a linear term involving the Laplacian. In the
spirit of the result by Brezis-Nirenberg [3], this last term provides a perturbation
of a dilation invariant problem which allows us to recover compactness, when the
parameter λ stays in a suitably restricted range.

We start our analysis by pointing out a non-existence result.

Theorem A.1. If λ ≤ 0, then problem (A.1) has no solution. If n = 5 and λ ≤ 21/8,
then problem (A.1) has no solution.

Proof. For λ = 0 the result is already known, see for instance [12] or [13]. If λ �= 0,
the proof is based on a Pohozaev identity that has to be coupled with a Hardy-type
inequality in the lowest dimensional case.

Let u be a solution of (A.1). We put r = |x| and we denote by ur the radial
derivatives of u, namely ur = r−1x · ∇u. Testing (A.1) with 2rur − u one infers
the following Pohozaev identity (use for instance the computations in [13], pagg.
250–252):

2λ
∫
B
|∇u|2 = ωn

∫
∂B

|Δu|2(x · ν) = ωn|urr(1)|2, (A.2)

where ωn is the measure of Sn−1. Thus λ > 0.
Now we assume n = 5. We will prove below that

5
∫
B
r2|Δu|2 − 6

∫
B
|∇u|2 − 2λ

∫
B
|∇u|2 = −λ

∫
B
r2|∇u|2 − 7

5

∫
B
r2|u|10. (A.3)
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From (A.3) and using Lemma B.6 with α = 2 we get

0 > 5
∫
B
r2|Δu|2 − 6

∫
B
|∇u|2 − 2λ

∫
B
|∇u|2 ≥

(
21
4

− 2λ
)∫

B
|∇u|2,

that implies λ > 21/8 and concludes the proof.
It remains to check (A.3). If η and ϕ are radial and smooth enough, then∫

B
ϕηr = ω4ϕ(1)η(1) −

∫
B

(ϕr + 4r−1ϕ)η ,

2
∫
B
ηurΔu =

∫
B

(4r−1η − ηr)|∇u|2.
(A.4)

Next we notice that

uΔu =
1
2
Δ(u2) − |∇u|2 , urr = Δu− 4r−1ur , (Δu)r = Δur − 4r−2ur,

and we test (A.1) with r3ur. Using integration by parts, (A.4) and (A.2) we get∫
B

(Δ2u) (r3ur) = −ω4|urr(1)|2 +
∫
B

(Δu)(r3Δur + urΔ(r3) + 6r2urr)

= −2λ
∫
B
|∇u|2 +

∫
B
r3(Δu)(Δu)r + 6

∫
B
r2|Δu|2

− 18
∫
B
rurΔu

= −λ

∫
B
|∇u|2 +

5
2

∫
B
r2|Δu|2 − 3

∫
B
|∇u|2.

We compute also

λ

∫
B

Δu(r3ur) =
λ

2

∫
B
r2|∇u|2 ,∫

B
u9(r3ur) =

1
10

∫
B
r3

(|u|10)
r

= − 7
10

∫
B
r2|u|10 .

Thus, from (A.1) we readily get (A.3). �

A natural approach for studying (A.1) consists in looking for minimizers for

S∗∗λ := inf
u∈H2

0,rad(B)

u �=0

∫
B
|Δu|2dx− λ

∫
B
|∇u|2dx(∫

B
|u|2∗∗dx

)2/2∗∗ . (A.5)

Clearly, the infimum S∗∗λ is positive provided that λ < λ2,1, where

λ2,1 := inf
u∈H2

0,rad(B)

u �=0

∫
B
|Δu|2dx∫

B
|∇u|2dx

≥ n2

4

by Lemma B.6 in Appendix B.1. Moreover, minimizers for S∗∗λ give rise to solutions
to problem (A.1). Arguing for instance as in Proposition 2.4 one can check that



678 P. Caldiroli and R. Musina  Vol.79 (2011)

S∗∗λ ≤ S∗∗ for any λ ∈ R. In particular, by monotonicity, it turns out that S∗∗λ = S∗∗

and is not attained if λ ≤ 0, accordingly with Theorem A.1. As in [3] or [16], a crucial
point in finding an existence result for the minimization problem (A.5) consists in
giving sufficient conditions for the validity of the strict inequality S∗∗λ < S∗∗. First of
all we notice that S∗∗λ < S∗∗ provided that λ is close enough to λ2,1. Notice indeed
that for any λ > 0 it results

S∗∗λ ≤ inf
u∈H2

0,rad(B)

u≥0 , u �=0

∫
B
|Δu|2dx− λλ−11

∫
B
|u|2dx(∫

B
|u|2∗∗dx

)2/2∗∗ ,

where λ1 is the Poincaré constant of the unit ball in R
n. Then one concludes by

using known results for problem{
Δ2u− λu = |u|2∗∗−2u in B

u = |∇u| = 0 on ∂B

(see for instance [12] or [13]). The same argument shows that S∗∗λ < S∗∗ if n ≥ 8. The
next lemma, that was crucially used in Section 2.2, covers also the case n ∈ {6, 7}
and shows that n = 5 is the only critical dimension for problem (A.1).

Lemma A.2. Let B be the unit ball in R
n and λ > 0. If n ≥ 6, then there exists a

nonnegative radially symmetric function u ∈ C∞c (B) such that∫
B
|Δu|2dx− λ

∫
B
|∇u|2dx(∫

B
|u|2∗∗dx

)2/2∗∗ < S∗∗.

Proof. Let U be the non-negative radial mapping defined in (2.15) and let ξ ∈
C∞c (B) be a radial function with 0 ≤ ξ ≤ 1 and ξ(x) = 1 as |x| ≤ 1

2 . Define

uε(x) = ε
4−n
2 ξ(x)U(ε−1x).

Hence uε ∈ C2
c (B) and∫

|Δuε|2 =
∫

|ΔU |2 +O(εn−4) and
∫

u2
∗∗

ε =
∫

U2∗∗ +O(εn) as ε → 0 (A.6)

(see, e.g., [12]). Thanks to (2.16) and (A.6) we have that∫
|Δuε|2 =

(
S∗∗ + O(εn−4)

)(∫
U2∗∗

)2/2∗∗

as ε → 0. (A.7)

If n ≥ 7, then U ∈ D1,2(Rn) and one can easily check that∫
|∇uε|2 = ε2

∫
|∇U |2 + o(ε2) as ε → 0.
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Therefore

S∗∗λ − S∗∗

ε2
≤ 1

ε2

⎡⎢⎢⎢⎣
∫

|Δuε|2(∫
u2

∗∗
ε

)2/2∗∗ − S∗∗

⎤⎥⎥⎥⎦− λ

∫
|∇U |2(∫

U2∗∗
)2/2∗∗ + o(1) as ε → 0

and then S∗∗λ < S∗∗, because of (A.7). If n = 6, then

1
ε2

∫
|∇uε|2 ≥

∫
B 1

2ε

|∇U |2 = C

∫ 1
2ε

0

rn−1

(1 + r2)n−2
dr ≥ C| log ε|

for some constant C > 0. Then

S∗∗λ − S∗∗

ε2
≤ 1

ε2

⎡⎢⎢⎢⎣
∫

|Δuε|2(∫
u2

∗∗
ε

)2/2∗∗ − S∗∗

⎤⎥⎥⎥⎦− λ

ε−2
∫

|∇uε|2(∫
u2

∗∗
ε

)2/2∗∗

≤ O(1) − λ
C| log ε|(∫
u2

∗∗
ε

)2/2∗∗ .

Hence also in this case we can conclude that S∗∗λ < S∗∗. �

We conclude this section with an existence result, whose proof can be obtained
by using the above remarks and standard arguments.

Theorem A.3. Let B be the unit ball in R
n and 0 < λ < λ2,1.

(i) If n ≥ 6, then problem (A.1) admits a ground state solution, i.e., a function
u ∈ H2

0 (B) solving (A.1) and minimizing S∗∗λ .
(ii) If n = 5, then there exists λ∗ ∈ (0, λ2,1) such that S∗∗λ is not achieved if λ < λ∗

and achieved if λ∗ < λ < λ2,1.

Appendix B. Auxiliary results and open problems

This Appendix contains some technical results used in the previous sections. In
particular we prove of some estimates that were used in the proof of Theorem 2.5
and a couple of continuity lemmas. Finally we write a list of open problems.

Lemma B.1. Let a ∈ R and e ∈ S
n−1. Then there exists a constant Ka > 0 such that

for every radial mapping u ∈ C2
c (B) and for every t ∈ [0, 1] one has∫

|tx + e|−2a |Δ (|tx + e|au)|2 ≤
∫

|Δu|2 − 2Cat
2

∫
|∇u|2 + Kat

3

∫
|∇u|2

where Ca = a(a + 2)(n− 2)/n.
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Proof. One computes

Δ (|tx + e|au)

= |tx + e|a−2 [|tx + e|2Δu + 2at∇u · (tx + e) + a(n− 2 + a)t2u
]

and then∫
|tx + e|−2a |Δ (|tx + e|au)|2

=
∫

|Δu|2 + 4at
∫

|tx + e|−2(∇u · (tx + e))Δu︸ ︷︷ ︸
I1

+ 4a2t2
∫

|tx + e|−4|∇u · (tx + e)|2︸ ︷︷ ︸
I2

+2a(n− 2 + a)t2
∫

|tx + e|−2uΔu︸ ︷︷ ︸
I3

+ 4a2(n− 2 + a)t3
∫

|tx + e|−4u(∇u · (tx + e))︸ ︷︷ ︸
I4

+ a2(n− 2 + a)2t4
∫

|tx + e|−4|u|2︸ ︷︷ ︸
I5

.

Since u is radial one has that

∫
|∇u · e|2 =

∫
(e · x)2

|x|2 |∇u|2 =
1
n

∫
|∇u|2∫

e · x
|x|2 |∇u|2 =

∫
(x · ∇u)(e · ∇u) = 0.

(B.1)

For future convenience we also point out that since

∇|tx + e|−2 = −2t|tx + e|−4(e + x)

1 − |tx + e|−2 = t|tx + e|−2(2x · e + t|x|2) (B.2)

and since |tx + e| ≥ 1 − t for x ∈ B, we have the following estimates:

|tx + e|−4 ≤ C ,
∣∣∇|tx + e|−2∣∣ ≤ Ct ,

∣∣1 − |tx + e|−2∣∣ ≤ Ct (B.3)

for all x ∈ B and for every t ≥ 0 small enough.



Vol.79 (2011) Caff arelli–Kohn–Nirenberg-type Inequalities 681

Estimate of I1. Firstly we integrate by parts, obtaining that

I1 =
∫

|tx + e|−2(∇u · (tx + e))Δu = −
∫

∇ (|tx + e|−2(tx + e) · ∇u
) · ∇u

= 2t2
∫

|tx + e|−4 [(x · ∇u)2 + (e · ∇u)(x · ∇u)
]

+ 2t
∫

|tx + e|−4 [(e · ∇u)2 + (e · ∇u)(x · ∇u)
]

+
n− 2

2
t

∫
|tx + e|−2|∇u|2 − t4

∫
|tx + e|−4 (e · x + |x|2) |∇u|2

−
∫

|tx + e|−2
[
e · x
|x| urrur +

e · ∇u

|x| ur − e · x
|x|2 u

2
r

]
where, as in the proof of Theorem A.1, ur and urr denote the first and second radial
derivatives of u, respectively. Then we use the fact that u is radial, in particular the
identity e · ∇u = e·x

|x| ur, and (B.1), getting that

I1 =
n− 1

2

∫
|tx + e|−2 e · x|x|2 |∇u|2︸ ︷︷ ︸

J1

+
(n

2
− 1

)
t

∫
|tx + e|−2|∇u|2︸ ︷︷ ︸

J2

+ t

∫
|tx + e|−4

[
e · x +

(e · x)2

|x|2
]
|∇u|2︸ ︷︷ ︸

J3

+ t2
∫

|tx + e|−4 [e · x + |x|2] |∇u|2︸ ︷︷ ︸
J4

.

We need to compute the terms of I1 of order 0 and 1 in t. Therefore, in view of (B.1)
and (B.2), we can write

J1 =
∫ [|tx + e|−2 − 1

] e · x
|x|2 |∇u|2

= −t2
∫

|tx + e|−2(e · x)|∇u|2 − 2t
∫

|tx + e|−2 (e · x)2

|x|2 |∇u|2.

Next, using again (B.1) and (B.2), we estimate∫
|tx + e|−2 (e · x)2

|x|2 |∇u|2

=
∫

|tx + e|−2
[
(e · x)2

|x|2 − 1
]
|∇u|2 +

∫
(e · x)2

|x|2 |∇u|2

= −t

∫
|tx + e|−2 [2e · x + t|x|2] (e · x)2

|x|2 |∇u|2 +
1
n

∫
|∇u|2.

Hence, by (B.3),

J1 ≤ −2t
n

∫
|∇u|2 + Ct2

∫
|∇u|2.
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Then, using (B.3) too, we estimate

J2 =
∫

|∇u|2 +
∫ [|tx + e|−2 − 1

] |∇u|2 ≤
∫

|∇u|2 + Ct

∫
|∇u|2.

Moreover, again by (B.1), (B.2) and (B.3), we have

J3 =
∫ [|tx + e|−4 − 1

] [
e · x +

(e · x)2

|x|2
]
|∇u|2 +

∫ [
e · x +

(e · x)2

|x|2
]
|∇u|2

= −t

∫
|tx + e|−2 [|tx + e|−2 + 1

] [
e · x +

(e · x)2

|x|2
] [

2e · x + t|x|2] |∇u|2

+
1
n

∫
|∇u|2 ≤ 1

n

∫
|∇u|2 + Ct

∫
|∇u|2

and
J4 ≤ C

∫
|∇u|2.

In conclusion

I1 ≤
(

2
n

+
n

2
− 2

)
t

∫
|∇u|2 + Ct2

∫
|∇u|2

for t ≥ 0 small enough.

Estimate of I2. Thanks to (B.1) and (B.3), we have

I2 =
∫

|tx + e|−4|∇u · (tx + e)|2

≤ (1 − t)−4
[
t2

∫
|x · ∇u|2 + 2t

∫
(x · ∇u)(e · ∇u) +

∫
|e · ∇u|2

]
≤ Ct

∫
|∇u|2 +

1
n

∫
|∇u|2

for t ≥ 0 small enough.

Estimate of I3. Firstly we integrate by parts, then we use Cauchy-Schwarz and
Poincaré inequalities and the estimates (B.3) getting that

I3 =
∫

|tx + e|−2uΔu = −
∫

∇ (|tx + e|−2u) · ∇u

= 2t
∫

|tx + e|−4u (x + e) · ∇u +
∫ (

1 − |tx + e|−2) |∇u|2 −
∫

|∇u|2

≤ 4t(1 − t)−4
∫

|u| |∇u| + Ct

∫
|∇u|2 −

∫
|∇u|2

≤ Ct

∫
|∇u|2 −

∫
|∇u|2

for t ≥ 0 small enough.

Estimate of I4. Using Cauchy-Schwarz and Poincaré inequalities we have that

I4 =
∫

|tx + e|−4u(∇u · (tx + e)) ≤ (1 − t)−4
∫

|u| |∇u| ≤ C

∫
|∇u|2

for t ≥ 0 small enough.
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Estimate of I5. Thanks to the Poincaré inequality we have

I5 =
∫

|tx + e|−4|u|2 ≤ (1 − t)−4
∫

|u|2 ≤ C

∫
|∇u|2

for t ≥ 0 small enough.

The conclusion easily follows from the previous estimates of I1,...,I5. �

B.1. Continuity lemmas

Here we discuss the following two auxiliary results.

Lemma B.2. If q → 2+, then Sq(CΣ;α) → S2(CΣ;α) and S+
q (CΣ;α) → S+

2 (CΣ;α).

Lemma B.3. If α → α0, then Srad
q (Rn;α) → Srad

q (Rn;α0).

Let us point out the following general fact.

Remark B.4. Let X be a nonempty set, let I be an interval in R and let F : X×I →
[0,+∞) be a given mapping. For every a ∈ I set S(a) = infu∈X F (u, a). If F is
continuous with respect to the parameter a ∈ I, then S(a) ≥ lim supS(ak) when
ak → a. This fact can be proved in an elementary way.

In view of Remark B.4, in order to prove Lemmas B.2 and B.3 we need to show
just the lower semicontinuity inequalities.

Proof of Lemma B.2. It is a consequence of Remark B.4 and of the following general
result.

Lemma B.5. Let Ω be a domain in R
n and let μ be a positive measure on Ω. Let

X be a space of measurable functions from Ω into R, endowed with some norm
‖ · ‖. Assume that X is continuously embedded into Lp(μ) for all p in some compact
interval I ⊂ [1,∞). Then the mapping

p �→ S(p) := inf
u∈X
u �=0

‖u‖
|u|p where |u|p =

(∫
Ω
|u|p dμ

) 1
p

and p ∈ I

is lower semicontinuous in I, i.e., if (pk) ⊂ I and pk → p, then S(p) ≤ lim inf S(pk).

Proof. Let I = [p0, p1]. By Hölder’s inequality, for every u ∈ X and θ ∈ [0, 1] one
has that

|u|pθpθ ≤ |u|(1−θ)p0p0 |u|θp1p1

where pθ = θp1 + (1 − θ)p0. This readily implies that

S(pθ)pθ ≥ S(p0)(1−θ)p0S(p1)θp1 . (B.4)

Setting f(p) = p logS(p), (B.4) reads

(1 − θ)f(p0) + θf(p1) ≤ f(θp1 + (1 − θ)p0)
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namely f is concave in [p0, p1]. This implies that f is continuous in (p0, p1) and lower
semicontinuous in [p0, p1]. Clearly the same holds for S(p), too. �

Proof of Lemma B.3. It is trivial if n = 2, by Corollary 2.11. Thus assume n ≥ 3.
If α0 ∈ {n, 4 − n}, then Srad

q (Rn;α0) = 0 (see Theorem 2.7) and the result is a
consequence of Remark B.4. If α0 ∈ R\{n, 4−n}, then the proof of Lemma B.3 can
be accomplished according to the following argument. First of all let us introduce
the infimum

μrad
2,1 (Rn;α) := inf

u∈C2
c (R

n\{0})
u=u(|x|), u �=0

∫
Rn

|x|α|Δu|2 dx∫
Rn

|x|α−2|∇u|2 dx
.

Lemma B.6. There results μrad
2,1 (Rn;α) =

(
n− α

2

)2

.

Proof. Proceeding as in the proof of Theorem 2.7, by means of the Emden-Fowler
transform we have that

μrad
2,1 (Rn;α) −

(
n− α

2

)2

= inf
w∈C2

c (R)
w �=0

∫ ∞

−∞
|w′′|2ds +

[
2γα −

(
n− α

2

)2
]∫ ∞

−∞
|w′|2ds∫ ∞

−∞
|w′|2ds +

(
n− 4 + α

2

)2 ∫ ∞

−∞
|w|2ds

where γα is defined in (2.5). We notice that

2γα −
(
n− α

2

)2

=
(
n− 4 + α

2

)2

and we conclude by a standard scaling argument. �

Lemma B.7. If α, α̃ ∈ R \ {n, 4 − n}, then[
1 − 4|g(α, α̃)|

(n− α̃)2

]
Srad
q (α̃) ≤ |τ(α̃, α)|3+ 2

qSrad
q (α) ≤

[
1 +

4|g(α, α̃)|
(n− α)2

]
Srad
q (α̃) (B.5)

where τ(α̃, α) and g(α, α̃) are defined in (2.17).

Proof. As in the proof of Lemma 2.10, for every u ∈ C∞c (Rn\{0}) radially symmetric
let ũ ∈ C∞c (Rn \ {0}) be the radial function defined by means of the transformation
(2.18). Thanks to the identities (2.19)–(2.20) and using the definition of μrad

2,1 (Rn;α)
and Lemma B.6, the conclusion readily follows. �
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Completion of the proof of Lemma B.3. Let α0 ∈ R \ {n, 4 − n} and αk → α0. We
can apply Lemma B.7 and, since τ(α0, αk) → 1 and g(αk, α0) → 0, the conclusion
follows from (B.5). �

B.2. Remarks and open problems

The arguments in Section 3 can be used to get existence results of minimizers for

Sq,λ(CΣ;α) = inf
u∈N 2

λ(CΣ;α)
u �=0

∫
CΣ

|x|α|Δu|2dx− λ

∫
CΣ

|x|α−4|u|2dx(∫
CΣ

|x|−β |u|qdx
)2/q

.

Here α is any real parameter, q > 2 and q ≤ 2∗∗ if n ≥ 5, λ < dist (−γα,Λ(Σ))2

(compare with [7]), and N 2
λ (CΣ;α) is a suitably defined function space. We refer to

the forthcoming paper [2] for the case α = 0 and Σ = S
n−1.

The approach in Section 3 can be plainly applied also to prove existence re-
sults for extremals of Lin’s inequality in [15] and for more general dilation-invariant
inequalities.

The present paper raises several open questions. We list few of them.

i) It might be interesting to generalize the results of this paper when |Δu|2 is
replaced by |Δu|p with p > 1. Some partial results can be found in [23].

ii) Our results about breaking positivity and breaking symmetry hold only for
some restricted ranges of α and/or q. Is it possible to give a sharper description of the
region of parameters α, q where breaking positivity/symmetry occur? In particular,
is it true that breaking positivity occurs for any α large enough?

iii) Is it true that for n ≥ 3 and α ∈ (4−n, n) extremals for Sq(Rn \ {0};α) are
radially symmetric and/or positive?

iv) Let Σ be properly contained in S
n−1, and take n ≥ 5, α = 0. Then

0 < S2∗∗(CΣ; 0) ≤ SD
2∗∗(CΣ; 0) = S∗∗ .

Is it true that S2∗∗(CΣ; 0) = S∗∗? This question is related to [14].

v) When n ≥ 6 we showed that S2∗∗(CΣ;α) < S∗∗ if |α − 2| > 2. Indeed we
suspect that if α ∈ (0, 4), then S2∗∗(CΣ;α) = S∗∗ and is not achieved.
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