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Abstract. The goal of this paper is to describe the state of the art on the question
of global existence of solutions to reaction-diffusion systems for which two main
properties hold: on one hand, the positivity of the solutions is preserved for all
time; on the other hand, the total mass of the components is uniformly controlled
in time. This uniform control on the mass (or – in mathematical terms- on the
L1-norm of the solution) suggests that no blow up should occur in finite time. It
turns out that the situation is not so simple. This explains why so many partial
results in different directions are found in the literature on this topic, and why
also the general question of global existence is still open, while lots of systems
arise in applications with these two natural properties. We recall here the main
positive and negative results on global existence, together with many references,
a description of the still open problems and a few new results as well.
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1. Introduction: dissipation or control of mass, structure
(P)+(M)

Let us consider the elementary 2×2 system of ordinary differential equations (ODE)
where h : [0,+∞) → [0,+∞) is a given regular function and u, v : [0, T ) → IR are
the unknown functions:

(E)

⎧⎨
⎩

∂tu = −uh(v)
∂tv = uh(v)
u(0) = u0 ≥ 0, v(0) = v0 ≥ 0.

It is classical that a local solution exists and may be extended on a maximal interval
[0, T ∗). If we assume, h(0) ≥ 0, this solution is nonnegative. Moreover, adding the
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two equations and integrating lead to

∀t ≥ 0, u(t) + v(t) = u0 + v0.

Together with the nonnegativity, this implies that u(t), v(t) stay uniformly bounded
on [0, T ∗). It follows that T ∗ = +∞ and the solution is global in time.

Now, what happens when space diffusion occurs?

Let us consider for example the following 2 × 2 system of reaction-diffusion
equations where u = u(t, x), v = v(t, x), (t, x) ∈ [0,∞) × Ω are the unknown func-
tions:

(E)

⎧⎪⎪⎨
⎪⎪⎩

∂tu− d1Δu = −uh(v) on (0,∞)× Ω
∂tv − d2Δv = uh(v) on (0,∞)× Ω
u(0, ·) = u0(·) ≥ 0, v(0, ·) = v0(·) ≥ 0
∂u
∂n = ∂v

∂n = 0 on (0,∞)× ∂Ω.

(1.1)

Here, d1, d2 > 0, Ω ⊂ IRN is open, bounded and regular and h is as before.

As for the ODE, if u0, v0 ∈ L∞(Ω), local existence of a nonnegative classical
solution holds, and the solution may be extended on a maximal interval [0, T ∗) (see
Lemma 1.1). If the L∞-norm of the solution (u(t), v(t)) is itself uniformly bounded
on [0, T ∗), then T ∗ = +∞.

If d1 = d2 = d, then

∂t(u + v)− dΔ(u + v) = 0. (1.2)

In particular, we deduce by maximum principle that

‖u(t) + v(t)‖L∞(Ω) ≤ ‖u0 + v0‖L∞(Ω). (1.3)

Together with the nonnegativity, this implies that u(t) and v(t) stay uniformly
bounded in L∞(Ω) and therefore T ∗ = +∞. Thus, the situation is the same as
the O.D.E. case with respect to global existence.

Question: What happens when d1 
= d2 ? It is known that different diffusions
can cause the loss of stability properties of equilibrium solutions (see e.g. [65, 52]).
But, can different diffusions destroy global existence?

We will see later that the situation is then very different. However, as for the
O.D.E., we may add up the two equations:

∂t(u + v)−Δ(d1u + d2v) = 0.

Integrate this in space and time. Taking into account the boundary conditions
(namely

∫
Ω Δ(d1u + d2v) = 0), this leads to:∫

Ω
u(t) + v(t) =

∫
Ω
u0 + v0.

Again, together with the nonnegativity of u, v, this implies that

∀t ∈ [0, T ∗), ‖u(t)‖L1(Ω), ‖v(t)‖L1(Ω) ≤ ‖u0‖L1(Ω) + ‖v0‖L1(Ω).
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In other words, the total mass of the two components does not blow up, and u(t), v(t)
stay bounded in L1(Ω) uniformly in time. Whence another way to ask the global
existence question:

Question: how do L1-estimates on the solution, which are uniform in time, help
to provide global existence?

Going back to the first equation in system (1.1), and integrating in space and
time, give the following, where QT = (0, T )× Ω:∫

QT

uh(v) ≤
∫

Ω
u0.

This implies that the nonlinearity of (1.1) is a priori bounded in L1(QT ).
Whence another natural and interesting question:

Question: What can be said of a reaction-diffusion system whose nonlinear
reactive terms are bounded in L1(QT )?

We will address all the above questions in this paper. More generally, we will
review most of the main results on global existence in time for the family of m×m
reaction-diffusion systems satisfying the two main following properties:

– the nonnegativity of the solutions is preserved for all time
– the total mass of the components is a priori bounded on all finite intervals.

More precisely, let us introduce the general system⎧⎪⎪⎨
⎪⎪⎩
∀i = 1, . . . ,m,
∂tui − diΔui = fi(u1, . . . , um) on (0, T )× Ω,

αi
∂ui
∂n + (1− αi)ui = βi on (0, T )× ∂Ω,

ui(0, ·) = ui0,

(1.4)

where the fi : IRm → IR are C1 functions of u = (u1, . . . , um), and for all i =
1, . . . ,m, di ∈ (0,∞), αi ∈ [0, 1], βi ∈ C2([0, T ] × Ω), βi ≥ 0. We denote ΣT =
(0, T )× ∂Ω.

By classical solution to (1.4) on [0, T ), we mean that, at least⎧⎨
⎩

u ∈ C
(
[0, T );L1(Ω)m

) ∩ L∞([0, T − τ ]× Ω)m, ∀τ ∈ (0, T ),
∀k, l = 1, . . . , N, ∀p ∈ [1,∞), ∂tu, ∂xk

u, ∂xkxl
u ∈ Lp ((τ, T − τ)× Ω)m ,

and equations in (1.4) are satisfied a.e..
(1.5)

Note that this regularity of u implies that u, ∂xk
u have traces in Lp

loc(ΣT )m (see
e.g. [41]). Most of the time, due to more regularity of f , the solutions will be
regular enough so that derivatives may be understood in the usual sense (e.g.
u ∈ C2

(
(0, T )× Ω

)
if f is C2 itself).

Let us first recall the classical local existence result under the above assumptions
(see e.g. [29], [63], [4]):
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Lemma 1.1. Assume u0 ∈ L∞(Ω)m. Then, there exist T > 0 and a unique classical
solution of (1.4) on [0, T ). If T ∗ denotes the greatest of these T ’s, then[

sup
t∈[0,T ∗),1≤i≤m

‖ui(t)‖L∞(Ω) < +∞
]
⇒ [T ∗ = +∞]. (1.6)

If, moreover, the nonlinearity (fi)1≤i≤m is quasi-positive (see (1.7) below), then

[∀i = 1, . . . ,m, ui0 ≥ 0] ⇒ [∀i = 1, . . . ,m, ∀t ∈ [0, T ∗), ui(t) ≥ 0] .

Nonnegativity of the solutions is preserved if (and only if) the nonlinearity
f = (f1, . . . , fm) is quasi-positive which means that

(P) ∀r ∈ [0,+∞)m, ∀i = 1, . . . ,m, fi(r1, . . . , ri−1, 0, ri+1, . . . , rm) ≥ 0, (1.7)

where we denote r = (r1, · · · , rm). This will be assumed for all nonlinearities through-
out in this paper.

Remark. According to (1.6), in order to prove global existence of classical solutions
for system (1.4), it is sufficient to prove that, if T ∗ < +∞, then the solutions ui
are uniformly bounded on [0, T ∗). Thus, a priori L∞-bounds imply global existence.
As already noticed (see (1.2), (1.3)), it is the case if all the di’s are equal, and
global existence then holds for bounded initial data. The situation is quite more
complicated if the diffusion coefficients are different from each other and this will be
analyzed all along this paper.

Without any extra assumption on f , blows up generally occurs in finite time
(T ∗ < +∞). Here, we will assume that f satisfies a “mass-control structure”

(M) ∀r ∈ [0,+∞)m,
∑

1≤i≤m

fi(r) ≤ C[1 +
∑

1≤i≤m

ri]. (1.8)

Note that this was satisfied in example (1.1) with C = 0 and even with equality
instead of inequality. With “correct” boundary conditions, (1.8) implies that the total
mass of the solution is bounded on each interval. Indeed, let us set W =

∑
1≤i≤m ui.

Integrating the sum of the m equations of (1.4) leads to

∂t

∫
Ω
W (t)−

∫
∂Ω
∇[
∑
i

diui] · n ≤ C

∫
Ω
[1 + W (t)].

Assume for instance that: ∀i, αi ∈ (0, 1]. Then, using boundary conditions

−
∫
∂Ω
∇[
∑
i

diui] · n =
∫
∂Ω

∑
i

di
(1− αi)ui − βi

αi
≥ −

∫
∂Ω

∑
i

diβi
αi

:= −c.

Thus, we have the Gronwall’s inequality

∂t

∫
Ω
W (t) ≤ c + C

∫
Ω
1 + W (t),

which implies that, for each t in the interval of existence∫
Ω
W (t) ≤ etC

∫
Ω
W (0) + k(etC − 1), k =

(
c +

∫
Ω
C

)
/C. (1.9)
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It follows that the total mass
∫
Ω W (t) is bounded on any interval. Whence the

question: how does this L1-estimate help to provide global existence?

Instead of (M), we could assume that, for some a = (ai)1≤i≤m with ∀i, ai > 0

(M′) ∀r ∈ [0,+∞)m,
∑

1≤i≤m

aifi(r) ≤ C[1 +
∑

1≤i≤m

ri]. (1.10)

Obviously, (M’) may be reduced to (M), after multiplying each i-th equation of (1.4)
by ai and upon replacing ui by aiui. For simplicity, we will mainly use (M) in the
following, although examples may arise with (M’).

As shown above when αi > 0 for all i, conditions (P)+(M) [i.e. (1.7) + (1.8)]
imply for most boundary conditions that the total mass is controlled. However, one
has to be careful: if αi = 0, βi 
= 0 for some i and αi > 0 for others, then, L1-
estimates may fail (see Subsection 3.4). This explains why we will generally restrict
the values of αi, βi in the next sections (see (5.5), (5.6)).

Lots of systems come naturally with the two properties (P) and (M) (or (M’))
in applications. This is the purpose of the next section to give several examples of
this kind. Therefore, it is worth asking the question of global existence in time with
these only two properties. We will also consider systems, where not only the total
mass is bounded on any interval, but where even the nonlinearities are bounded in
L1(QT ) for all T < +∞ (as it is the case for the example (1.1) above).

If the nonlinearities fi are bounded in L1(QT ) for all T > 0 and if their growth
is less than |u|N+2

N as |u| → +∞, then by bootstrap arguments, it is classical to
show that they are actually bounded in L∞(QT ) (see e.g. [3]) and therefore the
solutions exist globally. Here, we are interested in the other situations, namely,
when the growth of the nonlinearities is not small, or, given a nonlinearity, when
the dimension is high enough so that we are not in the “bootstrap situation” just
mentioned. Note that, even for quadratic nonlinearities, the bootstrap argument is
not valid as soon as N ≥ 2.

This paper describes the state of the art and gives a survey of the wide literature
published in the last years on these global existence questions. Due to the increasing
need for modeling in biology, chemistry, environment problems, etc, they even have
gained a higher interest recently. Besides being a survey, this paper provides most
proofs of the results (except for those of Section 4), so that it is rather self-contained.
Some results are actually quite new, like the L2-compactness proved in Proposition
6.3 or the global existence result of Theorem 5.14. Some are stated in a more general
situation than those found in the literature like Theorems 5.5 and 5.9, or proved in
a new way like for Theorem 3.5. Many interesting questions are still unsolved and,
in the last section, we indicate several open problems. We give a rather long list of
references: it is not exhaustive but hopefully rich enough to track most connected
results.
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2. Some examples of reaction-diffusion systems with
properties (P)+(M)

Here, we give a few examples of reaction-diffusion systems found here and there
in the literature as models for very different applications and for which the two
properties (P)+(M) hold.
• The Brussellator. Let us start with the classical so-called “Brussellator” ap-

pearing in the modeling of chemical morphogenetic processes ([60, 61, 65]):⎧⎪⎪⎨
⎪⎪⎩

∂tu− d1Δu = −uv2 + b v
∂tv − d2Δv = uv2 − (b + 1) v + a
u|∂Ω = b/a, v|∂Ω = a,

a, b, d1, d2 > 0.

(2.1)

If we denote

f(u, v) = −uv2 + bv, g(u, v) = uv2 − (b + 1)v + a,

then for all u, v ≥ 0,

f(0, v) = b v ≥ 0, g(u, 0) = a ≥ 0, f(u, v) + g(u, v) ≤ a,

so that (P)+(M) holds. Global existence of classical solutions may be proved
in small dimension using bootstrap arguments (see [63]). More sophisticated
techniques are required in general, like those explained in the next section.

Very similar systems are also used in models of Glycolysis or in the so-
called Gray-Scott models (see [44] together with more general systems with
“telescoping” nonlinearities arising in chemical kinetics).

• Combustion models. Exothermic combustion in a gas may be modeled by a
system of the following type (see e.g. [30]){

∂tY − μΔY = −H(Y, T )
∂tT − λΔT = q H(Y, T ),

(2.2)

where Y is the concentration of a single reactant, T is the temperature and
H(0, T )=0, H(Y, 0)≥0. Moreover, if f(Y, T ) = −H(Y, T ), g(Y, T ) = qH(Y, T ),
we see that q f(Y, T ) + g(H,T ) = 0 so that (P)+(M) is satisfied for the system
in (q Y, T ). A typical function H is given by H(Y, T ) = Y meT . Similar equations
appear for different applications in [44, 53].

• Lotka-Volterra systems. A general class of Lotka-Volterra Systems may be writ-
ten (see for instance in [43], [24])

∀i = 1, . . . ,m, ∂tui − diΔui = eiui + ui
∑

1≤j≤m

pijuj , (2.3)

with ei, pij ∈ IR and various boundary conditions. Condition (P) is always
satisfied, and so is (M’) -see (1.10)- if for instance for some ai > 0 (see e.g. [43])

∀w ∈ Rm,
m∑

i,j=1

aipijwiwj ≤ 0,



Vol.78 (2010) Global Existence in Reaction-Diff usion Systems 423

• Quadratic chemical reactions. Many chemical reactions, when modeled through
the mass action law, lead to reaction-diffusion systems with the above (P)+(M)
structure. Let us first take a typical example that we will discuss later in this
paper. We consider the reversible reaction

A + B � C + D.

Then according to the mass action law, the evolution of the concentrations
a, b, c, d of A,B,C,D is governed by the following reaction-diffusion system:⎧⎪⎪⎨

⎪⎪⎩
∂ta− d1Δa = −k1a b + k2c d
∂tb− d2Δb = −k1a b + k2c d
∂tc− d3Δc = k1a b− k2c d
∂td− d4Δd = k1a b− k2c d.

(2.4)

with k1, k2 > 0. Our two conditions are obviously satisfied here. We may also
exploit that the entropy is decreasing : see the remark around (6.14) (this is
actually the case in reversible reactions).

• Superquadratic reaction-diffusion systems. We consider a general reversible
chemical reaction of the form

p1A1 + p2A2 + . . . + pmAm � q1A1 + q2A2 + . . . + qmAm, (2.5)

where pi, qi are nonnegative integers. According to the usual mass action ki-
netics and with classical diffusion operators, we model the evolution of the
concentrations ai of Ai by the following system of reaction-diffusion

∂tai − diΔai = (pi − qi)
(
k2Πm

j=1a
qj
j − k1Πm

j=1a
pj
j

)
, ∀i = 1, . . . ,m,

where di are positive diffusion coefficients. A classical conservation property
states that

∑
imipi =

∑
imiqi for some mi ∈ (0,∞), i = 1, . . . ,m. Denoting

by fi the nonlinearity in the i-th equation, this implies
∑m

i=1mi fi = 0, whence
the condition (M′). The quasipositivity (P) is satisfied as well.

• Another quadratic model. Another model for diffusive calcium dynamics with
quadratic terms may also be found in H.G. Othmer [53] (see also more comments
on it in [44]):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu1 = d1Δu1 + λ(γ0 + γ1u4)(1− u1)− p1u4
1

p42+u4
1

∂tu2 − d2Δu2 = −k1u2 + k′1u3
∂tu3 − d3Δu3 = −k′1u3 − k2u1u3 + k1u2 + k′2u4
∂tu4 − d4Δu4 = k2u1u3 + k′3u5 − k′2u4 − k3u1u4
∂tu5 − d5Δu5 = k3u1u4 − k′3u5.

(2.6)

• Electrodynamics. The following 6×6 system for the electro-deposition of nickel-
iron alloy is studied for instance in [1]: it offers a similar semi-linear structure,
but now coupled with extra terms: ∀i = 1, . . . , 5⎧⎨

⎩
∂twi − di(wi)xx + b(x)(wi)x − [wiΦx]x = Si(w)
S1 = S2 = 0, S3(w) = S4(w) = −S5(w)
−[Φ]xx =

∑5
i=1 ziwi, zi ∈ IR, +bdy cond.

(2.7)
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Here the functions Si are nonlinearities which preserve nonnegativity and their
structure implies (M). Two extra terms are present: a convection term b(x)(wi)x:
if b is a regular enough function, then, for the question of global existence, this
perturbation may essentially be treated as if b ≡ 0 and may be ’included’ in
the linear p.d.e. part. The second convection terms [wiΦx]x is different since
the regularity of the transport coefficient Φx depends itself on estimates on the
w′
is. Therefore, it is important to obtain a priori estimates on wi from the only

(P)+(M) structure.
Let us also refer to [17] for the study of a model with similar features which

is used in cardiac electrophysiology.

• Diffusion of pollutants in atmosphere. Another interesting example comes from
the modeling of pollutants transfer in atmosphere (here N = 3): this system of
20 equations is studied in [25] and, more recently in [59] (we refer to these two
papers for more references):{

∂tφi = di ∂
2
zzφi + ω · ∇φ + fi(φ) + gi, ∀i = 1, . . . , 20,

+ Bdy and initial conditions
(2.8)

Here the nonlinearities fi are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(φ) = −k1φ1 + k22φ19 + k25φ20 + k11φ13 + k9φ11φ2 + k3φ5φ2

+k2φ2φ4 − k23φ1φ4 − k14φ1φ6 + k12φ10φ2 − k10φ11φ1 − k24φ19φ1,
f2(φ) = k1φ1 + k21φ19 − k9φ11φ2 − k3φ5φ2 − k2φ2φ4 − k12φ10φ2

f3(φ) = k1φ1 + k17φ4 + k19φ16 + k22φ19 − k15φ3

f4(φ) = −k17φ4 + k15φ3 − k16φ4 − k2φ2φ4 − k23φ1φ4

f5(φ) = 2k4φ7 + k7φ9 + k13φ14 + k6φ7φ6 − k3φ5φ2 + k20φ17φ6

f6(φ) = 2k18φ16 − k8φ9φ6 − k6φ7φ6 + k3φ5φ2 − k20φ17φ6 − k14φ1φ6

f7(φ) = −k4φ7 − k5φ7 + k13φ14 − k6φ7φ6

f8(φ) = k4φ7 + k5φ7 + k7φ9 + k6φ7φ6

f9(φ) = −k7φ9 − k8φ9φ6

f10(φ) = k7φ9 + k9φ11φ2 − k12φ10φ2

f11(φ) = k11φ13 − k9φ11φ2 + k8φ9φ6 − k10φ11φ1

f12(φ) = k9φ11φ2

f13(φ) = −k11φ13 + k10φ11φ1

f14(φ) = −k13φ14 + k12φ10φ2

f15(φ) = k14φ1φ6

f16(φ) = −k19φ16 − k18φ16 + k16φ4

f17(φ) = −k20φ17φ6

f18(φ) = k20φ17φ6

f19(φ) = −k21φ19 − k22φ19 + k25φ20 + k23φ1φ4 − k24φ19φ1

f20(φ) = −k25φ20 + k24φ19φ1.

(2.9)

where the ki’s are positive real numbers. These nonlinearities may seem com-
plicated, but they are quadratic and, obviously satisfy (P)+(M). The main new
point in this system is that diffusion occurs only in the vertical direction. As
a consequence, many of the tools, which are based on the regularizing effects
of the diffusion, need to be revisited. Even the transport term may cause new
difficulties due to the lack of diffusion in two directions. However, the general
methods described in the next sections may be used to obtain some global
existence results for this degenerate system.

We could go on with more and more examples arising in applications with
(P)+(M). We refer for instance to the books [29, 63, 43, 22, 23, 52, 54].
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3. Existence of global classical solutions

3.1. A typical result on 2× 2 systems

Let us consider the following 2× 2 system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
tu− d1Δu = f(u, v)

∂tv − d2Δv = g(u, v)
u(0, ·) = u0(·) ≥ 0, v(0, ·) = v0(·) ≥ 0,
with either : ∂u∂n = β1,

∂v
∂n = β2 on (0,+∞)× ∂Ω,

or : u = β1, v = β2 on (0,+∞)× ∂Ω,

(3.1)

where d1, d2 ∈ (0,+∞), β1, β2 ∈ [0,+∞) and f, g : [0,+∞)2 → IR are C1.

For u0, v0 ∈ L∞(Ω) with u0, v0 ≥ 0, existence of classical nonnegative bounded
solutions holds on some maximal interval [0, T ∗) (see Lemma 1.1). Then, we have
the first following global existence result (see [31], [46]):

Theorem 3.1. Assume (P)+(M) holds for (3.1) (see (1.7), (1.8)). Assume moreover
that u0, v0 ∈ L∞(Ω), u0, v0 ≥ 0 and, for some U,C ≥ 0

∀u ≥ U, ∀v ≥ 0, f(u, v) ≤ C[1 + u + v], (3.2)

∃r ≥ 1; ∀u, v ≥ 0, |g(u, v)| ≤ C[1 + ur + vr]. (3.3)

Then, T ∗ = +∞.

Comments. Condition (3.3) means that the growth of g(u, v) as u, v → +∞ is at
most polynomial. The first condition (3.2) means that the first equation is “good”.
A typical case is for instance when f ≤ 0 in which case u is uniformly bounded on
the interval of existence by maximum principle. It is more generally the case when
f ≤ C(1 + u). Actually, in the statement of Theorem 3.1, we may replace (3.2) by
the a priori knowledge that u is uniformly bounded, no matter the reason of this
bound (see [31]). In this case, the second condition (3.3) may be replaced by the
weaker condition g(u, v) ≤ ϕ(u)(1+ vr) where ϕ : [0,∞) → [0,∞) is nondecreasing.
The general idea of this theorem is that, for systems with the structure (P)+(M), if
moreover one of u or v is uniformly bounded on [0, T ∗), then, so is the other; whence
global existence.

Before giving the main idea of the proof of this theorem, let us apply it to some
of the previous examples.

Application 1. Let us start with the very first example given in the introduction,
namely {

∂tu− d1Δu = −uh(v)
∂tv − d2Δv = uh(v),

(3.4)

with h ≥ 0 and homogeneous Neumann boundary conditions. Then, (3.2) is satisfied
with C = 0. By maximum principle we have

∀t ∈ [0, T ∗), ‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω).
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Now, it is not obvious that v is bounded. Theorem 3.1 claims that this is the case if
moreover h grows at most like a polynomial as v → +∞.

Open problem. If h grows faster than a polynomial, the problem is in general open.
Some positive results with h(v) = ev

γ
with γ < 1 or even with h(v) = ek v may

be found: see [28], [5], [30] and the comments in Subsection 3.4 and in Section 7.
But, nothing seems to be known for instance if h(v) = ev

2
. For this example, the

conjecture is that L∞(Ω)-blow up occurs in finite time (see [30] for some indication in
this direction), but some slight perturbations may lead to global existence as noticed
in [9] (see Problem 3 in Section 7). We also refer to Section 5 where existence of
global, but non necessarily bounded, weak solutions is proved.

Application 2. The Brusselator system in (2.1). According to Theorem 3.1, there
is global existence of classical solutions for this system in any dimension (this was
proved in [31]; see also [46]).

Application 3. If H ≥ 0 and grows at most like a polynomial in the combustion
model (2.2), then global existence of a classical solution holds.

Application 4. Let us consider the family of systems which are typical 2× 2 models
for our purpose: we choose the nonlinearities

f(u, v) = k1u
pvq − k2u

αvβ , g(u, v) = k3u
αvβ − k4u

pvq, (3.5)

with ki > 0 p, q, α, β ≥ 1. Then, (M’) holds when k1k3 ≤ k2k4. Indeed,

[k1k3 ≤ k2k4] ⇒ [∀k ∈ [k1k−1
4 , k2k

−1
3 ], f + kg ≤ 0]. (3.6)

Let us assume this condition. Then, global existence of classical solutions follows
from Theorem 3.1 if{

[β > q and βp− αq ≤ β − q ] or [β = q and p < α ]
Or [ p > α and βp− αq ≤ p− α ] or [ p = α and β < q ].

(3.7)

Indeed, let us assume for instance that β > q, βp− αq ≤ β − q. Then, we may write

f(u, v) = k2u
pvq[

k1
k2
− uα−pvβ−q].

On the set {(u, v) ∈ (0,∞)2;uα−pvβ−q ≥ k1/k2}, we have f ≤ 0. On the complement
K of this set, we write: ∀(u, v) ∈ K

up−1vq =
[
uα−pvβ−q

] q
β−q

u
p−1− (α−p)q

β−q ≤
[
k1
k2

] q
β−q

u
βp−αq
β−q

−1
.

By assumption, the exponent of u is nonpositive in the above last term: it follows
that

∀(u, v) ∈ K with u ≥ 1, f(u, v) ≤ k1u[up−1vq] ≤ k1u
[
k1k

−1
2
] q
β−q =: uC.

Thus, (3.2) is satisfied with U = 1 and C as defined just above.
Assume now β = q, p < α. Then, we write

f(u, v) = k2u
pvq[

k1
k2
− uα−p],
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and it is obvious that f ≤ 0 for u ≥ U = [k1k−1
2 ](α−p)−1

.
The second line of (3.7) is exactly the same condition as in the first line when

we exchange the roles of u and v.

Remark 3.2. Conditions of type (3.7) may be found in [39], the proof being quite
different (see Subsection 3.4). However, conditions (3.7) are weaker: for instance,
they allow f(u, v) = uv2 − u2v5/2 = −g(u, v) while those of [39] do not.

Note also that system (3.5) may be a model for the chemical reaction

αU + βV � pU + qV.

More precisely, the following is obtained for the concentrations u, v of U, V

f(u, v) = (α− p)[λ2u
pvq − λ1u

αvβ ], g(u, v) = (q − β)[λ1u
αvβ − λ2u

pvq],

where λ1, λ2 are the reaction constants, and α > p, q > β to get the same signs as
in (3.5). Here, k1k3 = k2k4 = (α− p)(q−β)λ1λ2, but (3.7) is not satisfied. Actually,
global existence of solutions (even weak) is open (see Section 7) in this limit case.

On the other hand, if k1k3 < k2k4 in (3.5), then global weak solutions will be
shown to exist in Section 5.

Open problems. A main extra assumption in Theorem 3.1 besides (P)+(M) is that
one of the equation is “good”. What happens in system (3.1) when none of the
equations is “good” (in the sense of (3.2))?; what happens when neither u nor v is a
priori bounded or at least bounded in some Lp-space for p large? A typical example
is obtained as a perturbation of the previous model example (3.4) (with h(v) = vβ

to keep the polynomial growth):{
∂tu− d1Δu = λupvq − uvβ

∂tv − d2Δv = −upvq + uvβ .
(3.8)

Note that here

f(u, v) + g(u, v) = (λ− 1)upvq ≤ 0 if λ ∈ [0, 1]. (3.9)

But, except for good values of the exponents, namely except if βp − q < p − 1 as
deduced from (3.7), neither u nor v is a priori controlled! One cannot conclude global
existence of classical solutions. The conjecture is that it is false in general (see the
counterexamples in Section 4 for similar polynomial nonlinearities). However, we
refer to Section 5 for global existence of weak solutions.

The situation is the same for systems like{
∂tu− d1Δu = −c(t, x)uαvβ

∂tv − d2Δv = c(t, x)uαvβ .
(3.10)

Here, if ∀(t, x), c(t, x) ≥ 0 or ∀(t, x), c(t, x) ≤ 0, then we may apply Theorem 3.1
(the dependence of f, g in t, x does not matter). But, the problem is open otherwise.
Nevertheless, we can say a little more as indicated in the following remark.

Remark 3.3. Localization of the result of Theorem 3.1: It is interesting to notice
that the L∞-estimates obtained to deduce global existence in Theorem 1 may be
localized. For instance in example (3.10), we may obtain local a priori L∞-estimates
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in the subregions Q1 where c > 0 and Q2 where c < 0. Indeed, on Q1, the first
equation is “good”, and u is obviously locally bounded: then, so is v by application
of a local version of the proof of Theorem 3.1 (see [64, 58, 32, 33]). The same remark
is valid for Q2 if we exchange the roles of u and v. Therefore, blow up may occur
only around the region where the sign of c(t, x) changes!

3.2. The main ingredient of the proof: an Lp-estimate obtained by duality

The main tool in the proof of Theorem 3.1 is contained in the following lemma.

Lemma 3.4. Let w, z be regular functions (in the sense of (1.5))satisfying

∂tw − d1Δw = ∂tz − d2Δz on QT , (3.11)

together with the same constant Neumann or Dirichlet boundary conditions for w, z
and with bounded initial data. Then, for all 1 < p < +∞, there exist C1, C2 such
that, for all t ∈ (0, T ]

C1‖w‖Lp(Qt) ≤ ‖z‖Lp(Qt) + 1 ≤ C2[‖w‖Lp(Qt) + 1].

More generally, if (3.11) is replaced by

∂tw − d1Δw + θ1w ≤ θ2∂tz + θ3Δz + θ4z + H on QT , (3.12)

where θi ∈ IR and H ∈ Lp(QT ), H ≥ 0, then there exists C1 such that, for all
t ∈ (0, T ]

C1‖w+‖Lp(Qt) ≤ ‖z‖Lp(Qt) + 1 +
∫ t

0
‖H(s)‖Lp(Ω)ds. (3.13)

This lemma is a consequence of the Lp-regularity theory for parabolic operators.
Indeed, very roughly speaking, we may rewrite (3.11) as w = A−1

d1
Ad2z where Adi =

∂t − diΔ. Thus, the question is the continuity of the operator A−1
d1

Ad2 from Lp(QT )
into itself. Reducing to zero boundary and initial data, the operator is linear and
the question is equivalent to the continuity of the dual operator from the dual space
Lq(QT ), q = p/(p − 1) into itself. This continuity holds for 1 < q < +∞ according
to the Lq-regularity theory.

Proof of Lemma 3.4. It is sufficient to prove (3.13). Let us do it in the Neumann
case with data β1, β2 (it is similar in the Dirichlet case). For t ∈ (0, T ], let φ be the
solution of the following dual problem where Θ ∈ C∞0 (Qt),Θ ≥ 0.

−[φt + d1Δφ] + θ1φ = Θ on Qt, φ(t) = 0,
∂φ

∂n
= 0 on Σt.

It satisfies φ ≥ 0 and the following estimates for all p ∈ (1,∞), q = p/(p − 1) and
all t ∈ [0, T ] (see [41]):

‖φt‖Lq(Qt) + ‖Δφ‖Lq(Qt) + sup
s∈[0,t]

‖φ(s)‖Lq(Ω) + ‖φ‖Lq(Σt) ≤ Cq,T ‖Θ‖Lq(Qt).

Multiplying the inequality (3.12) by φ ≥ 0 and integrating by parts on Qt give∫
Qt

wΘ≤
∫

Ω
φ(0)(w(0) − θ2z(0))−

∫
Σt

φ(d1β1 + θ3β2)+
∫
Qt

z(−θ2φt + θ3Δφ+ θ4φ)+Hφ.
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Using Hölder inequality and the above estimates on φ, we deduce with a constant
C depending on the data and on T∫

Qt

wΘ ≤ C

[
1 + ‖z‖Lp(Qt) +

∫ t

0
‖H(s)‖Lp(Ω)ds

]
‖Θ‖Lq(Qt).

Whence (3.13) by duality. �

Proof of Theorem 3.1. We denote by Ci’s various positive numbers depending only
on the data. We set z(t) = (u(t) − U)+,W = u + v. From the equation in u and
from (3.2), we have

∂tz − d1Δz ≤ sign+(z)f ≤ C(1 + W ), (3.14)

from which we deduce for all p ∈ (1,∞)

‖z(t)‖Lp(Ω) ≤ ‖z(0)‖Lp(Ω) + C1

∫ t

0
[1 + ‖W (s)‖Lp(Ω)]ds,

which also implies

‖u(t)‖Lp(Ω) ≤ ‖u0‖Lp(Ω) + C2 + C1

∫ t

0
‖W (s)‖Lp(Ω)]ds. (3.15)

Condition (M) implies

∂tv − d2Δv ≤ −(∂tu− d1Δu) + C(1 + u + v).

Using (P) and Lemma 3.4 with H = C, T = T ∗, we have

∀t ∈ [0, T ∗), ‖v‖Lp(Qt) ≤ C3[1 + ‖u‖Lp(Qt)],

which implies

‖W‖Lp(Qt) ≤ C4[1 + ‖u‖Lp(Qt)]. (3.16)

We use Hölder’s inequality and the p-th power of (3.16) to obtain[∫ t

0
‖W (s)‖Lp(Ω)ds

]p
≤ t(p−1)

∫
Qt

|W |p ≤ C5[1 + T ∗(p−1)
∫
Qt

|u|p].

Together with the p-th power of inequality (3.15), this gives

‖u(t)‖pLp(Ω) ≤ C6 + C7

∫ t

0
‖u(s)‖pLp(Ω)ds.

Then, we integrate this Gronwall’s inequality to deduce that u is bounded in Lp(QT ∗)
for all p < +∞. Going back to (3.16), it follows that W and therefore v are also
bounded in Lp(QT ∗) for all p < +∞.

Let us now deduce L∞-bounds. Since the growth of g is at most polynomial at
infinity, we obtain that g(u, v) is also bounded in Lp(QT ∗) for all p < +∞. Since v is
solution of the heat equation with right-hand side g, this implies that v is actually
bounded in L∞(QT ∗) (see e.g. [41]). Using also the equation (3.14) in z, we deduce
similarly that z is bounded in L∞(QT ∗), and so is u. These uniform bounds on u, v
imply T ∗ = +∞. �
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3.3. Extension to m×m systems

This Lp approach has been extended (see [49, 50, 24] and the references herein) to
m ×m systems with a so-called triangular structure, which means essentially that
f1, f1 + f2, f1 + f2 + f3, . . . are all bounded above by a linear function of the ui.

We may for instance state the following

Theorem 3.5. Let f ∈ C1([0,∞)m, IRm) with at most polynomial growth and satis-
fying the quasipositivity (P). Assume moreover that there exist C ≥ 0,b ∈ IRm and
a lower triangular invertible m×m matrix P with nonnegative entries such that

∀r ∈ [0,∞)m, Pf(r) ≤ [1 +
∑

1≤i≤m

ri]b (3.17)

where the usual order in IRm is used. Then, the system⎧⎪⎪⎨
⎪⎪⎩
∀i = 1, . . . ,m,
∂tui − diΔui = fi(u1, . . . , um) on (0, T )× Ω,

∀i, ∂ui
∂n = βi ≥ 0 (or ∀i, ui = βi ≥ 0) on (0, T )× ∂Ω,

ui(0, ·) = ui0 ∈ L∞(Ω), u0i ≥ 0,

(3.18)

has a global classical solution.

Proof. A proof may be found in [49, 50]. We may extend as well the “elementary”
proof of Theorem 3.1 as follows : we denote by C ≥ 0 any constant depending only
the data, including T . We treat the Neumann case (the Dirichlet case is similar) and
we set W =

∑
ui. By assumption

pii[∂t − diΔ](ui − zi) ≤
∑

j≤i−1

pij [∂t − djΔ]uj ,

where zi is the solution of

∂tzi − diΔzi = [1 + W ]bi/pii, zi(0) = 0,
∂zi
∂n

= 0.

By an obvious extension of Lemma 3.4, we have for all t ∈ (0, T ∗)

‖(ui − zi)+‖Lp(Qt) ≤ C[
∑

j≤i−1

‖uj‖Lp(Qt) + 1].

We deduce by induction on i that

∀i, ‖ui‖Lp(Qt) ≤ C[1 +
∑
j≤i

‖zj‖Lp(Qt)],

and therefore, summing over i and taking the pth-power

‖W‖pLp(Qt)
≤ C[1 +

∑
i

‖zi‖pLp(Qt)
]. (3.19)

Going back to the definition of zi, we have

∀t ∈ [0, T ∗), ‖zi(t)‖pLp(Ω) ≤ C[1 +
∫ t

0
‖W (s)‖pLp(Ω)ds] = C[1 + ‖W‖pLp(Qt)

], (3.20)
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which, combined with (3.19), gives∑
i

‖zi(t)‖pLp(Ω) ≤ C[1 +
∫ t

0

∑
i

‖zi(s)‖pLp(Ω)ds].

By integration of this Gronwall’s inequality, it implies that the zi’s are bounded in
Lp(QT ), and so is W by (3.19).

Next, we finish as in Theorem 3.1: as f has at most polynomial growth, all
right-hand sides of (3.18) are bounded in Lp(QT ∗) for all p < ∞, and this implies
that all ui’s are bounded in L∞(QT ∗). Whence T ∗ = +∞. �

Remark 3.6. The condition (3.17) may still be weakened by allowing a nonlinear
dependence in the upper bound of P f , namely

P f(r) ≤ b(1 +
∑

|ui|r), r < 1 + 2a/(N + 2),

where a ≥ 1 is such that an a priori bound on maxi ‖ui‖La(QT∗ ) is known. We refer
to [49, 50, 24] for results in this direction. We could as well adapt the above proof:
the linear estimate (3.20) of zi in terms of W should be replaced by an estimate
in terms on W r. Then, an adequate interpolation between La and Lp allows to
conclude. Note that the dependence in H in Lemma 3.4 could be improved by using
Sobolev embedding (by duality, we may estimate ‖φ‖Lr(QT ) for some r > q).

3.4. More remarks on global classical solutions

Use of Lyapunov functions. Global existence for specific 2×2 systems with the above
kind of structure has also been proved by using suitable Lyapunov functions. A first
result in this direction was obtained by Masuda [48] in the case

f(u, v) ≤ 0, g(u, v) ≤ −ϕ(u)f(u, v), g(u, v) ≤ ϕ(u)(v + vr), r ≥ 1.

It was extended by Haraux-Youkana [28] who could handle growth of type eαv
β

with α > 0 and β < 1 and in the case g = −f . This method could even reach
an exponential growth (that is β = 1), but, curiously, only with restrictions on the
size of ‖u0‖∞ (see [5]). This approach was recently coupled with a nice change of
function in [9]: they prove global existence for new specific systems in this family,
and with possible quite higher growth (see Problem 3 in Section 7). However, the
problem is still open for instance for

−f(u, v) = g(u, v) = uev
β
, β ≥ 1. (3.21)

(See however below for the case β = 1 in IRN ). Let us also mention the use of
Lyapunov functions in [39] to treat more elaborate polynomial systems like (3.5).

Exponential growth. The exponential growth is a limit to most methods for system
(3.21). In [30], it is proved that global existence holds in the case of IRN for problem
(3.21) with β = 1. The method is quite different from those already described: it
is based on a careful analysis of the heat kernel. We may also refer to [37, 38, 40]
for other results in this limit case. It is proved in [30] that their own method is
optimal and cannot absorb higher growth. However, no example of blow up is given.
Actually, the Lp-duality method described above could also be extended to those
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Orlicz spaces for which regularity results hold as for Lp-spaces. This has not been
done yet, but a rough analysis suggests that exponential growth should probably be
handled also, but not more. We refer to Section 7 for a more detailed discussion on
these open problems.

More results. A curious result may be found in the survey [46] for the 2× 2 system
with 0 ≤ g = −f and Ω = IRN : it says that, if the diffusion coefficients satisfy
d1 ≥ d2, then global existence holds. The proof is based on properties of the heat
kernel and it has been exploited and extended in [30]. A similar result for the same
system, but set on a bounded domain and with various boundary conditions, may
also be found in [36]: it is based on precise estimates for the Green function.

It is interesting to mention the global existence results obtained in any dimen-
sion for systems with (P)+(M) and with strictly sub-quadratic growth ([34, 35, 36,
19]). The quadratic case is also handled for some systems in dimension N ≤ 2 (see
[26, 20, 33]). Let us finally mention the case of coupled or cross-diffusions where a
few techniques have been developed to prove global existence of classical solutions
(see [15, 16, 40]).

Other boundary conditions. One must be careful with boundary conditions. Indeed,
it is a consequence of the results in [8] that blow up may occur in finite time for the
following system

⎧⎨
⎩

∂tu− d1Δu = −uvγ
∂tv − d2Δv = uvγ

u = 1, ∂v
∂n = 0 on ΣT ,

where γ > 2. Here, we check that
∫
Ω u(t) + v(t) is not bounded. This means that

this system does not actually belong to our class, whence the question: what are
the “acceptable” boundary conditions? A general rule for 2 × 2 systems is that
most techniques carry over to cases where boundary conditions are of the same kind
for the two equations. When they are of different kind (like Dirichlet/Neumann)
and moreover non homogeneous, then difficulties might occur. This explains the
comments we made on this point in the Introduction. We refer to [47] where this is
carefully analyzed.

Other diffusion operators. Most results of this paper are stated with simple diffusion
operators of the form −diΔ. This is mainly for simplicity, in order to concentrate on
the main difficulty due the fact that the diffusion operators involved in the various
equations are different from each other: this simple case turns out to be highly
significant of this difficulty. We emphasize that in several of the references that we
gave, general diffusion operators are considered. We refer, among other papers, to
the survey [46] where the Lp-technique is developed for general parabolic operators
and to [51] and its references where nonlinear diffusions are considered.
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4. The structure (P)+(M) does not keep from blowing up in
L∞ !

The results of the previous section may seem unsatisfactory, since, even for a 2× 2
polynomial system satisfying (P)+(M), a strong extra assumption is required to get
global classical solutions, namely (3.2). This leaves for instance open the question
of global existence in apparently “simple” systems like (3.8), (3.10).

It turns out that this restriction makes sense: indeed, in general, L∞(Ω)-blow
up may occur in finite time for polynomial 2 × 2 systems satisfying (P)+(M) as
proved in [56, 57] where the two following theorems may be found (B denotes the
open unit ball in IRN and QT = (0, T )×B):

Theorem 4.1. One can find C∞ functions f, g, with polynomial growth and satisfying
(P)+(M), together with d1, d2 > 0, u0, v0 ∈ C∞(B), β1, β2 ∈ C∞([0, T ]) and u, v
nonnegative classical solutions on (0, T ) of⎧⎪⎪⎨

⎪⎪⎩
∂tu− d1Δu = f(u, v)
∂tv − d2Δv = g(u, v)
u(0, ·) = u0(·) ≥ 0, v(0, ·) = v0(·) ≥ 0,
u = β1, v = β2 on (0, T )× ∂Ω

(4.1)

with T < +∞ and

lim
t→T

‖u(t)‖L∞(Ω) = lim
t→T

‖v(t)‖L∞(Ω) = +∞.

Theorem 4.2. One can find α, β > 1, d1, d2 > 0, u0, v0 ∈ C∞(B), β1, β2 ∈ C∞([0, T ]),
c1, c2 ∈ Ck(QT ) with k ≥ 0, c1(t, x) + c2(t, x) ≤ 0 and u, v nonnegative classical
solutions on (0, T ) of⎧⎪⎪⎨

⎪⎪⎩
∂tu− d1Δu = c1(t, x)uαvβ

∂tv − d2Δv = c2(t, x)uαvβ

u(0, ·) = u0(·) ≥ 0, v(0, ·) = v0(·) ≥ 0,
u = α1, v = α2 on (0, T )× ∂Ω

(4.2)

with T < +∞ and

lim
t→T

‖u(t)‖L∞(Ω) = lim
t→T

‖v(t)‖L∞(Ω) = +∞.

Remark 4.3. Theorems 4.1 and 4.2 provides blowing up solutions to systems of
the form (4.1) with f + g ≤ 0 or of the form (4.2) with c1 + c2 ≤ 0. These
(counter)examples are actually more surprising than expected since we even have

∃λ ∈ (0, 1); ∀μ ∈ [λ, 1], f + μg ≤ 0, c1 + μc2 ≤ 0.

We will see in next Section that this richer structure allows global existence of weak
solutions. In other words, the solutions constructed in the two above theorems blow
up at T ∗, but continue to live “in a weak sense”.
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Remark 4.4. About the proof of the two above theorems: the proof is obtained
by building explicitely the solutions u, v so that they are solutions of this kind of
systems and nevertheless blow up at time t. They are of the form

u(t, x) =
a(T − t) + b|x|2
(T − t + |x|2)γ , v(t, x) =

c(T − t) + d|x|2
(T − t + |x|2)γ ,

where a, b, c, d > 0, γ > 1. We see that blow up occurs in L∞(Ω) at time t = T .
Actually, the behavior of the solutions is to be seen as the behavior of w(t, x) =

1
(T ∗−t)2+|x|2 which is, for N > 4, weak solution of a “good” reaction-diffusion equation
of the form

∂tw −Δw = c(t, x)u2,

with c(t, x) bounded. Thus, this solution is no longer in L∞(Ω) at time T ∗, but
then comes back in L∞(Ω). It is even possible to write down similar weak solutions
which blow up in L∞(Ω) for infinitely many times: just replace (T ∗ − t)2 by (T ∗ −
t)4 sin

(
(T ∗ − t)−1

)
. This is sometimes called incomplete blow up in the literature

(see e. g. [62] for more comments in this direction).

Conclusion at this stage. When looking for global solution in time for reaction-
diffusion systems, it is more convenient to look for weak solutions that are allowed
to leave L∞(Ω). . . but continue to live. . .

5. Systems with nonlinearities bounded in L1: weak global
solutions

5.1. Introduction: an example

Recall the examples of the form{
∂tu− d1Δu = λupvq − uαvβ( = f(u, v) )
∂tv − d2Δv = −upvq + uαvβ( = g(u, v) ).

We noticed that

(M) f(u, v) + g(u, v) = (λ− 1)upvq ≤ 0 if λ ∈ [0, 1].

But, we also have

(Mλ) f(u, v) + λg(u, v) = (λ− 1)uαvβ ≤ 0,

which gives one more relation between f and g if λ ≤ 1. It turns out that (P) + (M)+
(Mλ) with λ 
= 1 imply that the nonlinearities f(u, v), g(u, v) are bounded in L1(QT )
for all T .

Let us state this result for the more general system⎧⎪⎪⎨
⎪⎪⎩

∂tu− d1Δu = f(u, v) on QT

∂tv − d2Δv = g(u, v) on QT

α0
∂u
∂n + (1− α0)u = α0

∂v
∂n + (1− α0)v = 0 on ΣT

u(0, ·) = u0(·) ≥ 0, v(0, ·) = v0(·) ≥ 0 .

(5.1)
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Proposition 5.1. Assume (P), α0 ∈ [0, 1], and ∃C ≥ 0, ∃λ ∈ [0,+∞), λ 
= 1 with

f + g ≤ C(1 + u + v) and f + λg ≤ C(1 + u + v). (5.2)

Then, if u, v are solutions of (5.1) on (0, T ),∫
QT

[|f(u, v))|+ |g(u, v)|] dt dx ≤M = M(data) < +∞.

Remark 5.2. Note that the assumptions of Proposition 5.1 imply

∀μ ∈ [λ, 1], f + μ g ≤ C(1 + u + v).

Proof of Proposition 5.1. We denote by C0 any constant depending only on the data
and on T . We know that, when α0 ∈ (0, 1] (see (1.9)) then, for all t ∈ [0, T ],∫
Ω u(t),

∫
Ω v(t) ≤ C0. This estimate can easily be extended to the case α0 = 0.

For μ = 1 and μ = λ, we have (no matter the value of α0 ∈ [0, 1]),

−
∫
∂Ω

d1
∂u

∂n
+ d2μ

∂v

∂n
≥ 0.

We deduce

∂t

∫
Ω
(u + μv)(t) +

∫
Ω
−[f(u, v) + μg(u, v)] ≤ 0. (5.3)

Now, we use −[f(u, v) + μg(u, v)] + C(1 + u + v) ≥ 0 in (5.3). After integration in
time on (0, T ), this leads to∫

Ω
(u + μv)(T ) +

∫
QT

h(u, v) ≤
∫

Ω
u0 + μv0 +

∫
QT

C(1 + u + v),

where
h(u, v) =

∣∣− [f(u, v) + μg(u, v)] + C(1 + u + v)
∣∣.

It follows that, for μ = 1 and for μ = λ 
= 1

‖f(u, v) + μg(u, v)‖L1(QT ) ≤ C0,

and therefore
‖f(u, v)‖L1(QT ) ≤ C0 and ‖g(u, v)‖L1(QT ) ≤ C0. �

Remark 5.3. Many systems come naturally with an extra structure which makes the
nonlinearities to be bounded in L1(QT ). Recall that it was the case for the coun-
terexamples built in the previous section: see Remark 4.3. Therefore, it is interesting
to ask the question:

What can be said of a system which preserves positivity and for which the
nonlinearities are bounded in L1(QT ) (without even assuming (M))?

A very general result in this direction may be found in [55]: we state it below
in Theorem 5.5 in a more general setting.
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5.2. Existence of global weak supersolutions for bounded L1-nonlinearities

We consider a general m×m system of type (1.4), namely⎧⎪⎪⎨
⎪⎪⎩
∀i = 1, . . . ,m,
∂tui − diΔui = fi(u1, . . . , um) on (0, T )× Ω,

αi
∂ui
∂n + (1− αi)ui = 0 on (0, T )× ∂Ω,

ui(0, ·) = ui0 ≥ 0,

(5.4)

where ∀i = 1, . . . ,m, di > 0, αi ∈ [0, 1]. As explained in the introduction (see also
Subsection 3.4), we will restrict the choice of the αi and of the corresponding family
of test functions to the following situations: either

∀i = 1, . . . ,m, αi ∈ (0, 1], D = {ψ ∈ C∞(QT );ψ ≥ 0, ψ(·, T ) = 0}. (5.5)

or (all Dirichlet conditions)

∀i = 1, . . . ,m, αi = 0, D = {ψ ∈ C∞(QT );ψ ≥ 0, ψ(·, T ) = 0, ψ = 0 on ΣT }. (5.6)

We choose homogeneous boundary conditions for simplicity; the nonhomogeneous
case can be reduced to this one after an adequate change of unknown function, since
we allow the fi’s to depend on (t, x): let us assume that, for all i = 1, . . . ,m⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fi : QT × [0,+∞)m → IR is measurable; fi(·, 0) ∈ L1(QT ),
∃K : QT × [0,+∞) → [0,+∞) with ∀M > 0,K(·,M) ∈ L1(QT ) and
a.e. (t, x) ∈ QT , ∀r, r̂ ∈ [0,+∞)m with |r|, |r̂| ≤M,
|fi(t, x, r)− fi(t, x, r̂)| ≤ K(t, x,M)|r − r̂|, and ∀r ∈ [0,+∞)m

fi(t, x, r1, . . . , ri−1, 0, ri+1, . . . , rm) ≥ 0 (quasi− positivity) (P).

(5.7)

Approximate problem: We consider approximations of this system, namely classical
solutions un = (un1 , . . . , u

n
m) of⎧⎪⎪⎨

⎪⎪⎩
∀i = 1, . . . ,m,
∂tu

n
i − diΔuni = fn

i (t, x, un1 , . . . , u
n
m) on QT ,

αi
∂ui
∂n + (1− αi)ui = 0 on ΣT ,

uni (0, ·) = uni0,

(5.8)

where the fn
i are essentially “truncations” of the fi’s. More precisely, we will assume

that the fn
i have the same properties (5.7) as the fi, that |fn

i | is uniformly bounded
for each n, and that, for all M > 0, εnM tends to zero in L1(QT ) and a.e. where

εnM (t, x) = sup
0≤|r|≤M,1≤i≤m

|fn
i (t, x, r)− fi(t, x, r)|. (5.9)

Since fn is uniformly bounded for fixed n, there exists a global classical solution un

to (5.8) (see (1.5)): this may be deduced from classical results as Lemma 1.1.

Remark 5.4. Note that property (5.9) is satisfied by fn
i = Tn ◦ fi where Tn : IR → IR is

the truncation defined as follows, where σn = mn

Tn(σ) = σ if σ ∈ (−σn, n), Tn(σ) = −σn if σ < −σn, Tn(σ) = n if σ > n. (5.10)

Indeed, in this case,
εnM ≤ sup

|r|≤M,1≤i≤m

χ[−σn<fi<n]|fi(t, x, r)|.
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Coupled with the following inequality coming from the Lipschitz property (5.7)

|r| ≤M ⇒ |fi(t, x, r)] ≤ |fi(t, x, 0)|+ K(t, x,M)M,

where fi(·, 0),K(·,M) ∈ L1(QT ), this implies that εnM → 0 in L1(QT ) and a.e..
Note also for future reference that, if f satisfies (P) (resp. (M)), then so does fn = Tn◦f ;

the choice of σn is made to keep (M) exactly.

Theorem 5.5. [55] Let un = (un1 , . . . , u
n
m) be a nonnegative solution to the approxi-

mate system (5.8) satisfying

sup
n≥1,1≤i≤m

∫
QT

|fn
i (un)| < +∞. (5.11)

Assume that, for i = 1, . . . ,m, uni0 tends to ui0 in L1(Ω). Then, up to a subsequence,
un converges in L1(QT ) and a.e. to a super-solution of system (5.4) which means{ ∀i = 1, . . . ,m, fi(u) ∈ L1(QT ),∇ui ∈ L1(QT ), and ∀ψ ∈ D,

− ∫Ω ψ(0)ui0 +
∫
QT

[−ψtui + di∇ψ∇ui] + β(αi)di
∫
ΣT

ψui ≥
∫
QT

ψfi(u), (5.12)

where ∀α ∈ (0, 1], β(α) = (1 − α)/α, β(0) = 0. Moreover, ui ∈ L1(0, T ;W 1,1
0 (Ω)) in

case (5.6).

5.3. Proof of the existence of weak supersolutions

We start with the following compactness lemma (see e.g. [7], or Appendix of [13];
for the compactness of the trace, we use the continuity of the trace operator from
from W 1,1(Ω) into L1(∂Ω)).

Lemma 5.6. Let d > 0, α ∈ [0, 1]. The mapping (w0,Θ) → w where w is the solution
of

wt − dΔw = Θ, α∂nw + (1− α)w = 0 on ∂Ω, w(0, ·) = w0, (5.13)

is compact from L1(Ω) × L1(QT ) into L1(QT ), and even into L1((0, T );W 1,1(Ω)),
and the trace mapping (w0,Θ) → w|ΣT

∈ L1(ΣT ) is also compact.

Starting the proof of Theorem 5.5. According to the a priori estimate (5.11) and to
Lemma 5.6, there exists u ∈ L1(QT )m with ∇u ∈ [L1(QT )N ]m such that, up to a
subsequence, one may assume that⎧⎪⎨

⎪⎩
un → u in L1(QT )m and a.e. in QT , ∇un → ∇u ∈ [L1(QT )N ]m,
un|ΣT

→ u|ΣT
in L1(ΣT ) and a.e. in ΣT

ui ∈ L1(0, T ;W 1,1
0 (Ω) in case (5.6) .

(5.14)

Thanks to the choice of the fn (convergence in L1 and a.e. to zero of εnM – see (5.9)-)
and thanks to the continuity of f(·, ·, r) with respect to r, we also have

fn(un) → f(u) a.e. in QT .

By Fatou’s Lemma ∫
QT

|fi(u)| ≤ lim inf
n→+∞

∫
QT

|fn
i (un)|,
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and, in particular, f(u) ∈ [L1(QT )]m. One would also need the convergence in
[L1(QT )]m of fn(un) in order to be able to pass to the limit in the equation! And
this is not true in general. We will prove however that we can keep at least one
inequality at the limit: this is the content of Theorem 5.5.

Lemma 5.7. Let w be a solution of (5.13). Then, for all k > 0

d

∫
[|w|≤k]

|∇w|2 ≤ k

[∫
QT

|Θ|+
∫

Ω
|w0|

]
. (5.15)

Proof. We may assume Θ is regular. The estimate (5.15) is easily obtained by mul-
tiplying the equation (5.13) in w by Tk(w) where Tk(r) is the projection of r onto
[−k, k]. We denote jk(r) =

∫ r
0 Tk(s)ds. We obtain after integration∫

Ω
jk(w(t)) +

∫
QT

d T ′
k(w)|∇w|2 + dβ(α)

∫
ΣT

Tk(w)w =
∫
QT

Tk(w)Θ +
∫

Ω
jk(w0).

We use the following estimates to deduce (5.15):

|Tk(w)| ≤ k, jk(w0) ≤ k

∫
Ω
|w0|, jk(w(t)) ≥ 0, β(α)

∫
ΣT

Tk(w)w ≥ 0. �

Continuing the proof of Theorem 5.5. Now, we fix η ∈ (0, 1) and for all i = 1, . . . ,m,
we denote

Un
i =

∑
j 	=i

unj , w
n
i = uni + ηUn

i , v
n
i,k = Tk(wn

i ).

Since we will have to differentiate twice Tk, we replace Tk by a C2-regularized version,
still denoted Tk so that on [0,∞)

0 ≤ T ′
k ≤ 1,−1 ≤ T ′′

k ≤ 0, ∀r ∈ [0, k − 1], Tk(r) = r, ∀r ≥ k, T ′
k(r) = 0.

A main point is to use the inequality satisfied by vn := vni,k. Thanks to the concavity
of Tk, we have in the sense of distributions:

−Δvn = −ΔTk(uni + ηUn
i ) ≥ −T ′

k(u
n
i + ηUn

i )[Δuni + ηΔUn
i ].

This implies
vnt − diΔvn ≥ Fn

i + ηSn
i ,

where
Fn
i = T ′

k(u
n
i + ηUn

i )[fn
i (un) + η

∑
j 	=i

fn
j (un)],

Sn
i = T ′

k(u
n
i + ηUn

i )
∑
j 	=i

(dj − di)Δunj .

We may write for ψ ∈ D:{
−∫Ωψ(0)vn(0) +

∫
QT

[−ψtv
n + di∇ψ∇vn]+di

∫
ΣT

ψT ′
k(w

n
i )V n

i

≥∫QT
ψ[Fn

i + ηSn
i ]

(5.16)

where V n
i = β(αi)uni + η

∑
j 	=i β(αj)unj (here we use the fact that we are in one of

the situations (5.5) or (5.6); note that β(αj) = 0 for all j in the second case (5.6)).
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We keep k and η fixed. We know that vn converges in L1(QT ) and a.e. to vi,k
where

vi,k = Tk(wi), wi = ui + ηUi, Ui =
∑
j 	=i

uj . (5.17)

Now the convergence of the nonlinearities holds only a.e. The point is that, since
T ′
k(r) = 0 for r > k then, Fn

i = 0 on the set [uni +ηUn
i > k]. But, on the complement

of this set, all unj are uniformly bounded:

uni ≤ k, ∀j 
= i, unj ≤ k/η. (5.18)

By the dominated convergence theorem, we may claim that, as n→∞
Fn
i → Fi,k := T ′

k(ui + ηUi)[fi(u) + η
∑
j 	=i

fj(u)] in L1(QT ). (5.19)

On the other hand, ∇vn converges in L1(QT ) and the trace of vn converges to
the trace of v in L1(ΣT ) so that V n

i converges in L1(ΣT ) to Vi = β(αi)ui +
η
∑

j 	=i β(uj)uj .
Thererefore, to pass to the limit as n→ +∞ in (5.16), we only need to control

the term Sn
i . This is the main point of the proof.

Lemma 5.8. There exists C depending on k, ψ and the data, but not on n, η (η ≤ 1)
such that ∣∣∣∣

∫
QT

ψSn
i

∣∣∣∣ ≤ Cη−
1
2 .

Proof. We have Sn
i = T ′

k(w
n
i )
∑

j 	=i(dj − di)Δunj and

−
∫
QT

ψT ′
k(w

n
i )Δunj =

∫
QT

∇unj [∇ψT ′
k(w

n
i ) + ψT ′′

k (wn
i )∇wn

i ] + β(αj)
∫

ΣT

ψT ′
k(w

n
i )unj .

We have the following bound where C denotes any constant independent of n, η, but
which may depend on k, ψ and the data:

|
∫

ΣT

ψT ′
k(w

n
i )unj | ≤ C,

∣∣∣∣
∫
QT

∇unj∇ψT ′
k(w

n
i )
∣∣∣∣ ≤ C,

∣∣∣∣
∫
QT

ψT ′′
k (wn

i )∇unj∇wn
i

∣∣∣∣ ≤ C

(∫
[wn

i ≤k]
|∇unj |2

)1/2(∫
[wn

i ≤k]
|∇wn

i |2
)1/2

.

On the set Ai := [wn
i ≤ k], we have the estimates (5.18). From Lemma 5.7 and

thanks to the main assumption (5.11), we have∫
Ai

|∇uni |2 ≤ C, ∀j 
= i,

∫
Ai

|∇unj |2 ≤ C η−1,

∫
Ai

|∇wn
i |2 ≤ C.

This implies that ∣∣∣∣
∫
QT

ψT ′′
k (wn

i )∇unj∇wn
i

∣∣∣∣ ≤ Cη−1/2.

The estimate of Lemma 5.8 follows. �
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End of the proof of Theorem 5.5. Passing to the limit as n → +∞ in (5.16) (η, k
being fixed), we obtain (see the notations in (5.17),(5.19) ){

−∫Ωψ(0)vi,k(0) +
∫
QT

[−ψtvi,k + di∇ψ∇vi,k] + di
∫
ΣT

ψT ′
k(wi)Vi

≥ ∫
QT

ψFi,k + ε(i, η, k, ψ),
(5.20)

where ε(i, η, k, ψ) ≥ −C(i, k, ψ)η1/2 so that lim infη→0 ε(i, η, k, ψ) ≥ 0. We now let
η decrease to zero, then k tend to +∞ to obtain the expected inequality (5.12) of
Theorem 5.5. �

5.4. Global existence of weak solutions for systems (P)+(M) and L1-a priori
estimates

From Theorem 5.5, we now deduce existence of global solutions for a (wide) sub-
family of systems with the structure (P)+(M). Let us consider the approximate
system where ui0 is replaced by uni0 = inf{ui0, n} and the nonlinearities fi by fn

i =
Tn ◦ fi where Tn is defined in Remark 5.4. Then, thanks to the uniform bound on
|fn

i |, for all n, there exists a global classical solution un of the approximate system
on [0, T ). And we have the following (see [55]):

Theorem 5.9. Let us consider system (5.4) together with (5.5) or (5.6), with (5.7)
and with u0 ∈ L1(Ω)m, u0 ≥ 0. Assume that the structure (P)+(M) holds together
with the following a priori estimate on the solution un just defined

sup
n≥1,1≤i≤m

∫
QT

|fn
i (un)| < +∞. (5.21)

Then, system (5.4) has a weak solution on (0, T ) (i.e. equality holds in (5.12)).

Proof of Theorem 5.9. By Theorem 5.5, up to a subsequence, the approximate so-
lution un converges to a weak supersolution. Let us prove that it is also a weak
subsolution. We use the notations of Theorem 5.5:

(un,∇un, un|ΣT
) → (u,∇u, u|ΣT

) in [L1(QT )]m × [L1(QT )N ]m × [L1(ΣT )]m

where fi(u) ∈ L1(QT ) and for all ψ ∈ D and all i = 1, . . . ,m

−
∫

Ω
ψ(0)ui0 +

∫
QT

[−ψtui + di∇ψ∇ui] + β(αi)di
∫

ΣT

ψui ≥
∫
QT

ψfi(u). (5.22)

We will see that the structure (M) provides the other inequality. We introduce the
notations:

Wn =
∑

1≤i≤m

uni , Z
n =

∑
1≤i≤m

diu
n
i , Vn =

∑
1≤i≤m

β(αi)diuni ,

W =
∑

1≤i≤m

ui, Z =
∑

1≤i≤m

diui, V =
∑
i

β(αi)diui.

Adding up the m equations of the approximate problem, we have

−
∫

Ω
ψ(0)Wn(0) +

∫
QT

[−ψtW
n +∇ψ∇Zn] +

∫
ΣT

ψV n =
∫
QT

ψ
∑

1≤i≤m

fn
i (un). (5.23)
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But
−

∑
1≤i≤m

fn
i (un) + C[1 + Wn] ≥ 0.

By a.e. convergence of all functions, by L1(QT )-convergence of Wn and by Fatou’s
Lemma, we have∫

QT

−ψ
∑

1≤i≤m

fi(u) ≤ lim inf
n→+∞

∫
QT

−ψ
∑

1≤i≤m

fn
i (un).

It follows that, at the limit, equation (5.23) gives the inequality

−
∫

Ω
ψ(0)W (0) +

∫
QT

[−ψtW +∇ψ∇Z] +
∫

ΣT

ψV ≤
∫
QT

ψ
∑

1≤i≤m

fi(u).

We deduce that all inequalities in (5.22) are actually equalities for all i = 1, . . . ,m;
in other words, u is a weak solution on (0, T ). �

We deduce for instance a global existence result for the 2× 2 system⎧⎪⎪⎨
⎪⎪⎩

∂tu− d1Δu = f(u, v) on Q∞
∂tv − d2Δv = g(u, v) on Q∞
α ∂u

∂n + (1− α)u = 0, α ∂v
∂n + (1− α)v = 0 on Σ∞

u(0, ·) = u0 ≥ 0, v(·, 0) = v0 ≥ 0,

(5.24)

where again f, g are C1 functions, d1, d2 > 0, α ∈ [0, 1].

Corollary 5.10. Let u0, v0 ∈ L1(Ω)+. Assume that f, g satisfy the quasi-positivity (P)
and, for some C ≥ 0 and some λ ∈ [0,+∞), λ 
= 1: ∀r, s ∈ [0,+∞)

(M)(f + g)(r, s) ≤ C[1 + r + s], (Mλ) (f + λg)(r, s) ≤ C[1 + r + s]. (5.25)

Then, there exists a global weak solution to system (5.24).

Proof of Corollary 5.10. We know (see Remark 5.4) that (fn, gn) = (Tn ◦ f, Tn ◦ g)
satisfies also (P)+(M). By Proposition 5.1, the a priori estimate (5.21) is satisfied.
We apply Theorem 5.9 together with a diagonal extraction process on a sequence
T p →∞ to conclude. �

Some applications of Corollary 5.10. This corollary applies to the system{
∂tu− d1Δu = −uα ev2
∂tv − d2Δv = uα ev

2
,

for which global existence of classical solutions is likely to fail (see Subsection 3.4).
The corollary also applies to the system{

∂tu− d1Δu = λupvq − uαvβ

∂tv − d2Δv = uαvβ − upvq,

with λ ∈ [0, 1) and more generally to all systems (3.5) as soon as k1k3 < k2k4. Indeed,
in this case, we have (see (3.6)) f + kg ≤ 0 for all k in the interval [k1k−1

4 , k2k
−1
3 ]

which contains more than two points. Then, we apply the corollary.



442 M. Pierre Vol.78 (2010)

It is also interesting to notice that Corollary 5.10 applies as well to the two
counterexamples mentioned in Theorems 4.1 and 4.2: to see this, we use Remark
4.3. Thus, they are examples where L∞-blow up does occur while global existence
of weak solutions holds.

Remark 5.11. We can extend Corollary 5.10 to m×m systems. The condition (5.25)
can then be replaced by the following: there exists an invertible m × m matrix P
with nonnegative entries and b ∈ IRm such that

∀r ∈ [0,∞)m, P f(r) ≤ b [1 +
∑
i

ri],

for the usual order in IRm. As in Proposition 5.1, we easily check that this condition
implies an a priori L1(QT ) estimate for f(u). Since it also implies condition (M’),
we may apply Theorem 5.9. Actually, a somehow stronger result is stated below in
Theorem 5.14.

5.5. Global existence for quadratic systems with (P)+(M)

An interesting and very general consequence of Theorem 5.9 and of next Section
is that global existence of weak solutions holds for all systems with the structure
(P)+(M) and whose nonlinearities are at most quadratic. Note that this includes
all the following systems mentioned in Section 2 (2.1, 2.3, 2.4, 2.6 and 2.8, 2.9 with
nondegenerate diffusion) .

Proposition 5.12. Let us consider system (5.4) with (5.5) or (5.6) and with (5.7).
We assume (P)+(M) and for some C ≥ 0

∀i = 1, . . . ,m, |fi(u)| ≤ C[1 +
∑

1≤i≤m

u2
i ]. (5.26)

Assume also u0 ∈ [L2(Ω)]m. Then, there exists a global weak solution to (5.4).

The main new idea for the proof of this proposition is that, strangely enough,
the structure (P)+(M) implies also an a priori L2(QT )-estimate on the solutions. If
the nonlinearities are at most quadratic, they are consequently bounded in L1(QT )
and we are in the situation of Theorem 5.9. The following proposition is proved in
next Section.

Proposition 5.13. Let us consider system (5.4) with (5.5) or (5.6) and with (5.7).
Assume (P)+(M). Let u be a nonnegative classical solution on (0, T ) of (5.4) with
u0 ∈ [L2(Ω)]m, u0 ≥ 0. Then, for some C depending on the data∫

QT

∑
1≤i≤m

u2
i (t, x) dt dx ≤ C.

Let us see how this proposition implies Proposition 5.12. This approach was
described in the Appendix of [21].

Proof of Proposition 5.12. Again, we truncate the initial data into un0 = inf{n, u0}
and we replace f by fn = Tn ◦ f as in Remark 5.4 so that fn satisfies the same
assumptions as f . By Proposition 5.13, the corresponding solution un is bounded
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in [L2(QT )]m. Thanks to the quadratic growth (5.26) of f , we deduce that fn(un)
satisfies (5.21). We may then apply Theorem 5.9. �

Actually, it is possible to prove a quite stronger result than Proposition 5.12.
Indeed, a main step in its proof is to deduce from the L2-bound on u that fi is
bounded in L1(QT ). But, this may be deduced for instance from the following weaker
unilateral version of (5.26):

∀i = 1, . . . ,m, ∀r ∈ [0,∞)m, fi(r) ≤ C[1 +
∑
i

r2
i ].

More generally, we can even state

Theorem 5.14. Let us consider system (5.4) with (5.5) or (5.6) and (5.7). We as-
sume that (P)+(M) holds and that there exist an invertible m ×m matrix P with
nonnegative entries and b ∈ IRm such that

∀r ∈ [0,∞)m, P f(r) ≤ b[1 +
∑

1≤i≤m

r2
i ]. (5.27)

Assume also u0 ∈ [L2(Ω)]m, u0 ≥ 0. Then, there exists a global weak solution to
(5.4).

Proof. The notations are the same as in the proof of Proposition 5.12. To keep the
condition (5.26) valid for fn, we slightly modify the definition of Tn given in Remark
5.4 as follows

σn = nmax{m,M}, M = max
i

m−1
i

∑
j

pij mi = min{pij ; pij > 0, j = 1, . . . ,m}.

It is sufficient to prove that fn
i (un) is bounded in L1(QT ) for all i, then we apply

Theorem 5.9. For this, using system (5.4) and the condition (5.27) which is also valid
for fn, we write for all i = 1, . . . ,m

∑
j

pij [∂tunj − djΔunj ] +

⎡
⎣∑

j

pijf
n
j (un)

⎤
⎦
−

≤
⎡
⎣∑

j

pijf
n
j (un)

⎤
⎦

+

≤ b+i [1 +
∑
i

(uni )2].

Using first the last inequality and uni bounded in L2(QT ), we first deduce that
the positive part of

∑
j pijf

n
j (un) is bounded in L1(QT ). Next, integrating the first

inequality, using the boundary conditions and pij ≥ 0, we deduce

∀i,
∫
QT

∣∣∣∣∣∣
∑
j

pijf
n
j (un)

∣∣∣∣∣∣ ≤ C.

If ‖ · ‖ denotes a norm in IRm and also the norm induced on the m×m matrices, it
follows∫

QT

‖fn(un)‖dtdx =
∫
QT

‖P−1Pfn(un)‖dtdx ≤ ‖P−1‖
∫
QT

‖Pfn(un)‖dtdx ≤ C.

Whence the expected estimate. �
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Remark 5.15. With Theorem 5.14, we may prove global existence in systems with
more than quadratic growth, like for instance

f1 = f2 = −f3 = u3
3 − u1u2. (5.28)

Indeed f1 + f2 + 2f3 = 0 and (5.27) is satisfied as follows:

f1 + f3 = 0, f2 + f3 = 0, f3 ≤ u1u2 ≤ u2
1 + u2

2.

Similarly, we can treat the systems modeling the chemical reactions (2.5) when∑
i pi ≤ 2 or

∑
j qj ≤ 2.

6. A surprising L2-estimate. . . and L2-compactness

As announced at the end of the previous section, it turns out that an L2-estimate is
hidden behind the “L1-type of structure” (P)+(M). This estimate was first noticed
in [56, 57] and then widely exploited in [21, 11, 13, 14, 10, 59]. Let us explain the
idea.

Let ui, i = 1, . . . ,m be the solution of system (5.4) (or of an approximate
version). We set W =

∑
i ui, Z =

∑
i diui. Assume for simplicity that

∑
i fi ≤ 0.

Then

Wt −ΔZ ≤ 0 or Wt −Δ(AW ) ≤ 0, (6.1)

where we set A = Z/W . The point is that, thanks to the nonnegativity of the ui,
we have

0 < min
i

di ≤ A ≤ max
i

di < +∞.

Therefore, the operator W → ∂tW−Δ(AW ) is parabolic. It is not of divergence form
and, moreover, no continuity may a priori be expected on A. But the parabolicity
is enough to imply the following estimate∫

QT

W 2 ≤ C

∫
Ω
W (0)2, C = C(min di,max di, T ).

Let us state this result in the following more general situation where Wt−ΔZ ≤ H
is satisfied in a weak sense.

Proposition 6.1. Let W0 ∈ L2(Ω),W,Z ∈ H1(QT ), H ∈ L2(QT ) such that for all
ψ ∈ C∞(QT ) with ψ ≥ 0, ψ(T ) = 0{ − ∫Ω ψ(0)W0 +

∫
QT
−ψtW +∇ψ∇Z ≤ ∫

QT
H ψ,

0 ≤W,Z, 0 < a = inf Z/W ≤ b = supZ/W < +∞.
(6.2)

Then, there exists C = C(a, b, T ) such that

‖W‖L2(QT ) ≤ C[‖W0‖L2(Ω) + ‖H‖L2QT )]. (6.3)

The same is valid when “ψ = 0 on ΣT” is also required in (6.2) if moreover Z = 0
on ΣT (case of Dirichlet boundary conditions).
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Proof. By density, (6.2) holds for all ψ ∈ H1(QT ) such that ψ ≥ 0 and ψ(T ) = 0.
We apply it with ψ(t, x) =

∫ T
t Z(s, x)ds. We note that∫

QT

∇Z · ∇
∫ T

t
Z(s)ds =

∫
QT

−1
2
∂t

∣∣∣∣
∫ T

t
∇Z(s)ds

∣∣∣∣
2

=
∫

Ω

1
2

∣∣∣∣
∫ T

0
∇Z(s)ds

∣∣∣∣
2

≥ 0.

Thus (6.2) implies (with C depending on T )

−
∫

Ω
W0

∫ T

0
Z(s)ds +

∫
QT

ZW ≤
∫
QT

H

∫ T

t
Z(s)ds ≤ C(

∫
QT

H2)1/2(
∫
QT

Z2)1/2.

But, using the second relation of (6.2), we obtain

a

∫
QT

W 2 ≤ b

[√
T

(∫
Ω
W 2

0

)1/2

+
(∫

QT

H2
)1/2

](∫
QT

W 2
)1/2

,

whence the estimate (6.3). The case of Dirichlet boundary condition is proved the
same way. �

Proof of Proposition 5.13. We set û(t) = e−Ctu(t) where C is the constant appearing
in the condition (M) (see (1.8)). We set W =

∑
i ûi, Z =

∑
i diûi. Summing all

equations
∂tûi − diΔûi = e−Ct[fi(u)− Cui],

we obtain
∂tW −ΔZ = e−Ct[

∑
i

fi(u)− C
∑
i

ui] ≤ Ce−Ct ≤ C,

which, together with the boundary conditions, implies for all ψ as in (6.2)

−
∫

Ω
ψ(0)W0 +

∫
QT

−ψtW +∇ψ∇Z +
∫

ΣT

ψV ≤ C

∫
QT

ψ,

where V =
∑

i diβ(αi)ûi ≥ 0. This implies that W,Z satisfy the first line of the
condition (6.2) with H ≡ C. It also satisfies the second line since

0 < min
i

di ≤ inf
∑

diûi∑
ûi

≤ Z

W
≤ sup

∑
diûi∑
ûi

≤ max
i

di < +∞. �

Remark 6.2. The L2-estimate of Proposition 5.13 is very robust and may be gener-
alized to quite more general diffusion operators (see e.g. [21, 59, 10]), and may even
allow some degeneracy in the diffusion coefficients (see e.g. [21]).

We gave here a “direct” proof of the L2-estimate. We can also obtain it by
duality, looking at the regularizing properties of the dual operator −∂t − AΔ. As
one can easily check, when H ≡ 0, inequality (6.3) is equivalent to the dual inequality
‖φ(0)‖L2(Ω) ≤ C‖Θ‖L2(QT ) for the solution φ of the dual problem

−[φt + AΔφ] = Θ ≥ 0, φ(T ) = 0 + boundary conditions. (6.4)

This dual inequality is easily obtained by multiplying the equation (6.4) by −Δφ
which gives, for instance with φ = 0 on ΣT , and after integration by parts of the
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first term: ∫
QT

−1
2
∂t|∇φ|2 + A(Δφ)2 =

∫
QT

−ΘΔφ. (6.5)

Recalling 0 < a ≤ A ≤ b < +∞ and using∫
QT

−ΘΔφ ≤ a

2

∫
QT

(Δφ)2 +
1
2a

∫
QT

Θ2, (6.6)

we obtain ∫
Ω
|∇φ(0)|2 + a

∫
QT

(Δφ)2 ≤ a−1
∫
QT

Θ2. (6.7)

This says that, not only φ(0) is bounded in L2(Ω), but it is even bounded in
H1

0 (Ω) so that the mapping Θ ∈ L2(QT ) → φ(0) ∈ L2(Ω) is not only continuous but
compact ! By duality, the original operator is also compact. More generally, we have
the following compactness result where we denote L = L2(Ω)× L2(QT ):

Proposition 6.3. Let 0 < a ≤ b < +∞, β ∈ [0,∞). For (W0, H) ∈ L, let Fa,b,W0,H

denote the family of functions W ∈ H1(QT ) such that for some Z ∈ H1(QT ), for
all ψ ∈ C∞(QT ), ψ ≥ 0, ψ(T ) = 0{ − ∫Ω ψ(0)W0 +

∫
QT
−ψtW +∇ψ∇Z + β

∫
ΣT

ψZ =
∫
QT

Hψ,

0 ≤W,Z; a ≤ Z/W ≤ b,
(6.8)

Then, for all bounded K ⊂ L, the family {Fa,b,W0,H ; (W0, H) ∈ K} is relatively com-
pact in L2(QT ). The same is valid when the test-functions ψ of (6.8) are restricted
to satisfy also ψ = 0 on ΣT and if moreover W = Z = 0 on ΣT .

Proof. Let A ∈ C(QT ) with a ≤ A ≤ b. For all Θ ∈ L2(QT ),Θ ≥ 0, let φ be the
solution of the dual problem{

φ ∈ C([0, T ], L2(Ω)), φ ≥ 0, φt,Δφ ∈ L2(QT ),
−φt −AΔφ = Θ, φ(T ) = 0, −∂φ

∂n = βφ on ΣT .
(6.9)

Existence of φ with these properties uses the continuity of A and may be found in
[41]. Let us prove that, for some C = C(a, b, T )

‖φ(0)‖H1(Ω) + ‖φt‖L2(QT ) + ‖Δφ‖L2(QT ) ≤ C‖Θ‖L2(QT ). (6.10)

Multiplying the equation in φ by −Δφ and integrating by parts the first term lead
to

−β
∫

ΣT

1
2
∂tφ

2 +
∫
QT

−1
2
∂t|∇φ|2 + A(Δφ)2 =

∫
QT

−ΘΔφ. (6.11)

With the same computations as in (6.6), (6.7), we deduce

β

∫
∂Ω

φ(0)2 +
∫

Ω
|∇φ(0)|2 + a

∫
QT

(Δφ)2 ≤ a−1
∫
QT

Θ2.

Going back to the equation in φ and using A ≤ b, we have also∫
QT

(φt)2 ≤ [b‖Δφ‖L2(QT ) + ‖Θ‖L2(QT )]
2 ≤ (1 +

b

a
)2
∫
QT

Θ2.
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Using φ(0) =
∫ 0
T φt, we deduce∫

Ω
φ(0)2 ≤ T

∫
QT

(φt)2 ≤ T (1 +
b

a
)2
∫
QT

Θ2.

The three last inequalities yield (6.10). The case of Dirichlet boundary conditions is
done in an even easier way (we use directly the computations (6.5), (6.6), (6.7)).

We denote

H = {(φ(0), φ) ∈ L;A ∈ C(QT ), a ≤ A ≤ b, ‖Θ‖L2(QT ) ≤ 1}.
The estimate (6.10) implies that H is relatively compact in L2(Ω) × L2(QT ). Let
us now go back to W,Z satisfying (6.8). If A = Z/W is continuous on QT , we may
solve (6.9) and we have exactly∫

QT

W Θ =
∫

Ω
φ(0)W0 +

∫
QT

φH.

Since, we did not assume A to be continuous, we may approximate A by Ap contin-
uous on QT and such that

a ≤ Ap ≤ b, Ap → A a.e.

We solve (6.9) with Ap instead of A and the solution φp satisfies∫
QT

W Θ =
∫

Ω
φp(0)W0 +

∫
QT

φpH +
∫
QT

W (Ap −A)Δφp. (6.12)

By compactness of H, up to a subsequence, (φp(0), φp) converges in L to some
(φ0, φ) ∈ H and we check that the last integral in (6.12) tends to 0 (using that Δφp

is bounded in L2(QT )) so that∫
QT

WΘ =
∫

φ0W0 +
∫
QT

φH. (6.13)

Now, let us take a sequence Wn, Zn satisfying (6.8) with data (W0n, H
n) ∈ K.

Let Gn : H → IR defined by

∀(φ0, φ) ∈ H, Gn(φ0, φ) =
∫

Ω
φ0W0n +

∫
QT

φHn.

The family (Gn) of (“linear”) continuous mappings from the compact H into IR
satisfies the hypotheses of Ascoli-Arzela’s Theorem: therefore, up to a subsequence,
me may assume that Gn converges uniformly to some continuous function on H.
Thus

lim
p,q→∞ sup

(φ0,φ)∈H
|Gp(φ0, φ)−Gq(φ0, φ)| = 0 .

We use

‖Wp −Wq‖L2(QT ) = sup
‖Θ‖L2(QT )≤1

∣∣∣∣
∫
QT

(Wp −Wq)Θ
∣∣∣∣ ,

and (6.13) to deduce

lim sup
p,q→∞

‖Wp −Wq‖L2(QT ) ≤ lim
p,q→∞ sup

(φ0,φ)∈H
|Gp(φ0, φ)−Gq(φ0, φ)| = 0.
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Whence the expected compactness. �

An application: a new proof of Proposition 5.12. As a corollary of the compactness
result of Proposition 6.3, we may give a proof of Proposition 5.12 which does not
use the general Theorems 5.5 and 5.9 on the existence of weak global supersolutions
and solutions. A similar proof is also given in [14], but the L2-compactness is proved
differently.

Proof. As before (see the previous proof of Proposition 5.12), we truncate the initial
data as uni0 = inf{n, u0i} for all i and we replace f by fn = Tn ◦ f which satisfy the
same assumptions as f . By Proposition 5.13, we know that the approximate solutions
are bounded in L2(QT ), so that the nonlinearities are bounded in L1(QT ). This
provides compactness of un in [L1(QT )]m and we may assume (up to a subsequence)
that un converges to u in L1(QT ) and a.e., and that fn(un) converges to f(u) a.e.
where f(u) ∈ L1(QT ). We will prove that the convergence of fn(un) holds in L1(QT ):
thanks to the pointwise estimate (5.26), it is sufficient to prove the compactness of
un in L2(QT ).

Setting, like in the proof of Proposition 5.12,

ûn(t) = e−Ctun(t), Wn =
∑
i

ûni , Z
n =

∑
i

diû
n
i ,

we have that

Wn
t −Δ(AnWn) ≤ e−Ct[

∑
i

fn
i (un)−

∑
i

uni ] ≤ C,

where An = Zn/Wn. By maximum principle, Wn ≤ wn where wn is the solution of

∂tw
n −Δ(Anwn) = C, wn(0) = Wn(0), −∂(Anwn)

∂n
= 0 on ΣT .

Note that here An is regular so that existence and comparison principle hold. But,
by Proposition 6.3, the sequence wn is compact in L2(QT ). Since we have 0 ≤ ûni ≤
Wn ≤ wn, and since ûn converges a.e., by the dominated convergence theorem, it
follows that each ûni converges in L2(QT ). Thanks to the pointwise estimate (5.26),
fn(un) converges strongly in L1(QT ) and we may pass to the limit in the approximate
system to obtain a solution. �

Remark 6.4. It seems that this kind of approach is insufficient to prove the stronger
result of Theorem 5.14: we still have the L2-convergence of un, but this is a priori
insufficient to control terms which would not be quadratic, like in example (5.28).

More applications of the L2-estimate. We already mentioned several places where
this L2-estimate has been used or generalized, even in the context of nonlinear dif-
fusions like in [10]. It has also been exploited in [21], [13] together with the entropy
inequality which is valid for most reversible systems like (2.4). This entropy inequal-
ity may be written as follows, where wi = ui lnui + 1− ui ≥ 0:∑

i

[∂t − diΔ]wi ≤ 0. (6.14)
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With adequate boundary conditions, it follows from Proposition 5.13 that wi is
bounded in L2(QT ). This implies that, not only u2

i is bounded in L1(QT ), but it is
locally integrable on QT . We may take advantage of this extra-property for a more
direct proof of global existence of weak solutions for reversible systems (as done in
[21]).

These L2-estimates are also the main ingredient to prove the convergence of
the solutions to the system modeling the reaction

A + B � C � P + Q

to those of the limit system
A + B � P + Q

when the decay of C into the products P and Q, or back to the educts A and B, is
extremely fast (see [11, 13, 14]).

One more curious estimate. Let us consider again the inequality Wt−ΔZ ≤ 0 which
has been used to deduce the L2-estimate. After integrating this inequality in time,
we deduce from nonnegativity of W (t)

−Δ
∫ t

0
Z(s) ds ≤W0.

If W0 ∈ L∞(Ω) (or W0 ∈ Lp(Ω), p > N/2), and with usual boundary conditions,
this implies the curious uniform L∞ a priori estimate

∀i = 1, . . . ,m, sup
t∈(0,T ∗),x∈Ω

∫ t

0
ui(s, x) ds < +∞.

This might be useful when studying the asymptotic behavior of global solutions.

7. Open problems

• Problem 1. A most challenging problem is to understand whether global solu-
tions exist for a system, even 2×2, for which the structure (P)+(M) holds, but
for which there is no obvious a priori L1(QT )-bound on the nonlinearities. Let
us indicate two simple examples of this situation:⎧⎨

⎩
∂tu− d1Δu = u3v2 − u2v3 on QT ,
∂tv − d2Δv = u2v3 − u3v2 on QT ,
+ initial and boundary conditions.

⎧⎨
⎩

∂tu− d1Δu = −c(t, x)u2v2 on QT ,
∂tv − d2Δv = c(t, x)u2v2 on QT ,
+ initial and boundary conditions,

when c(t, x) is not of constant sign. Here, it could well be that the nonlinear-
ities are not bounded in L1(QT ) in general. Therefore, even the definition of
weak solution is not obvious in this case. We feel that one should truncate the
nonlinearities and introduce some sort of renormalized solution: but, this is not
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available yet for this kind of systems where maximum principle is missing. A
direction could be to better understand the proof of Theorem 5.5: it heavily
involves truncation operators and the result looks like providing some sort of
maximum principle for the system.

The question is open also for the chemical systems (2.5) of Section 2 when
they are not quadratic, or not bounded above by a quadratic polynomial (see
Remark 5.15).

• Problem 2. What about uniqueness of weak solutions? Working with uniformly
bounded solutions is satisfactory, since they come with a uniqueness property
and the problem is well posed in this class. Unfortunately, as shown in Section
4, even for regular initial data, the solution may leave L∞(Ω) so that we must
give up with this confortable framework. But we do not know any more what
happens with uniqueness. The question is certainly delicate since it is known
that there is not uniqueness of weak solutions even for the simple equation:

ut −Δu = u3, u(0) = u0 ≥ 0, u = 0 on ∂Ω,

and even for C∞ initial data (see [6, 27]). The right question to ask is probably: is
there a way to select the “good” solution among the possible several ones? But,
is there a “good” solution? In the previous example, the smallest one, which is
uniformly bounded, seems to be the “good” one. In a system without maximum
principle, it is not clear. This question of uniqueness could be generalized to
some kind of adequate renormalized solution (’adequate’ actually requires that
uniqueness holds).

• Problem 3. Once we have proved global existence of weak solutions for a system,
it remains interesting to decide whether it is uniformy bounded (and therefore
classical) or not. Let us take for instance the quadratic system⎧⎪⎪⎨

⎪⎪⎩
∂ta− d1Δa = −a b + c d
∂tb− d2Δb = −a b + c d
∂tc− d3Δc = a b− c d
∂td− d4Δd = a b− c d,

(7.1)

for which global existence of weak solutions holds in any dimension. It is proved
that in dimensions N = 1, 2 and for bounded initial data, the solutions are
bounded (see [20, 26] and also [33] and its references). What happens in higher
dimensions. A result in this direction may be found in [26] where it is proved in
dimensions N = 3, 4 that the Hausdorff dimension of the possible set of blow up
in QT is at most (N2 − 4)/N . But, is blow up indeed possible? Same question
for {

∂tu− d1Δu = −uα ev2
∂tv − d2Δv = uα ev

2
.

Note that, as proved in [9], L∞-bounds hold for the slightly better system

f(u, v) = −uα(1 + v2)ev
2
, g(u, v) = uα ev

2
.
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• Problem 4. What happens for initial data in L1(Ω) only? The general existence
result of Theorem 5.9 is stated for L1-initial data. However, when applied for
instance to system (7.1), it requires that the initial data be in L2(Ω). What
happens for this system if they are only in L1(Ω), or even worse only bounded
measures? The same question is of interest for several other systems. It is actu-
ally very connected with the global existence question, since we need to extend
solutions after an L∞ blow up at time T ∗ in situations where merely an L1-
estimate holds on u(T ∗). See [12] for some results in this direction.

• Problem 5. What happens for degenerate diffusions? We saw that most of the
estimates were based on the regularizing effects of the diffusions. We loose them
in general when degeneracies appear, and it is the case in many applications of
interest: for instance, when nonlinear diffusions occur like in{

∂tu−Δum = f(u, v) on QT

∂tv −Δvp = g(u, v) on QT .

See some results in this direction in [42]. Even the case of linear diffusions is
of interest; see some examples in [21] or also system (2.8-2.9) (see [25, 59] for
some contributions).

• Problem 6. How far is it possible to extend the results recalled in this survey to
situations where the nonlinearities depend also on the gradient of the solutions,
like they do in several models? A 2× 2 model would be of the form{

∂tu− d1Δu = f(u, v,∇u,∇v)
∂tv − d2Δv = g(u, v,∇u,∇v),

together with conditions of the kind f + g ≤ 0. All questions about global
existence of classical, or of weak solutions, are of interest. See for instance
[2, 18] for some results in this direction and for more references.

• Problem 7. How do the known techniques extend to cross-diffusions, namely{
∂tu− d1Δu−∇ · (a1(u, v)∇u + a2(u, v)∇v) = f(u, v) on QT

∂tv − d2Δv −∇ · (b1(u, v)∇u + b2(u, v)∇v) = g(u, v) on QT ?

More and more pertinent models require these cross-diffusions. Conditions are
required to preserve positivity. Next, global existence remains a natural question
(see [40, 15, 16, 10]).

• Problem 8. Instead of having an L1-structure of type (M), namely f + g ≤ 0
or of type (M’): a f + b g ≤ 0 with a, b > 0, there are systems for which a more
general Lyapunov structure holds like

h′1(u)f(u, v) + h′2(v)g(u, v) ≤ 0,

where h1, h2 : [0,∞) → [0,∞) satisfy limr→∞ hi(r) = +∞. Global existence
would still hold for the associated O.D.E. But, what about the P.D.E. system,
even for convex hi?
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• Problem 9. We dealt in this paper with evolution problems governed by par-
abolic operators. But, the same type of questions may be asked for elliptic
systems. To progress, it may actually be a good idea to address them in this
context where the technicality is sometimes easier. For instance, we may look
at existence results for{

u−Δu− λux1x1 = f(u, v) + F on Ω
v −Δv = g(u, v) + G on Ω,

where F,G are regular nonnegative given functions on Ω and where f, g satisfy
(P)+(M). Here, when λ > 0 is large, the two diffusion operators are very
different from each other, like the two parabolic operators ∂t−d1Δ and ∂t−d2Δ
are when d1/d2 is away from 1. The difficulties are of the same kind. Some results
may be found in [45].
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