
Continuum Thermodynamics and
Phase-Field Models

Claudio Giorgi

Abstract. Phase transitions between two phases are modelled as space
regions where a phase-field changes smoothly. The two phases are sepa-
rated by a thin transition layer, the so-called diffuse interface. All ther-
modynamic quantities are allowed to vary inside this layer, including the
pressure and the mass density. A thermodynamic approach is developed
by allowing for the nonlocal character of the continuum. It is based on an
extra entropy flux which is proved to be non vanishing inside the transi-
tion layer, only. The phase-field is regarded as an internal variable and
the kinetic or evolution equation is viewed as a constitutive equation of
rate type. Necessary and sufficient restrictions placed by thermodynam-
ics are derived for the constitutive equations and, furthermore, a general
form of the evolution equation for the phase-field is obtained within the
schemes of both a non-conserved and a conserved phase-field. Based on
the thermodynamic restrictions, a phase-field model for the ice-water
transition is established which allows for superheating and undercool-
ing. A model ruling the liquid-vapor phase transition is also provided
which accounts for both temperature and pressure variations during the
evaporation process. The explicit expression of the Gibbs free enthalpy,
the Clausius-Clapeyron formula and the customary form of the vapor
pressure curve are recovered.
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1. A brief introduction to phase-field theories

The phase-field method is used as a theory and computational tool for
predictions of the evolution of arbitrarily shaped morphologies and com-
plex microstructures in materials science. In this framework, a lot of theo-
ries have been recently developed in order to model both phase transition
and phase separation phenomena which occur in many relevant processes
in physics and engineering and involve a large number of materials (see
[17, 34]). Even though such models are able to predict the evolution of phase
changes processes at the engineering level by means of efficient numerical
simulations, they do not explain the underlying physical phenomena. In
particular, phase-field modelling of crystalline interfaces has been guided
mainly by phenomenology and symmetry considerations, rather than mi-
croscopic physics. To date, it is neither clear how to interpret the phase-field
microscopically, nor how to derive the equation of microstructural evolu-
tion from atomic interactions [32]. In spite of this, the phase-field technique
is one of the fastest growing areas in computational materials science. The
goal of my contribution is to present the physical background of this method
and give a detailed thermodynamical derivation of the phase-field equa-
tions.

In the phase-field framework the interface between two phases (e.g.,
solid and liquid) is treated as a region of finite width having a gradual vari-
ation of different physical quantities, i.e. it gives rise to a diffuse interface
model. An auxiliary variable, the phase-field, is introduced. It may be either
a scalar-, vector- or tensor-valued function which distinguishes one phase
from the other, and interfaces are identified by the variation of the phase-
field. The use of diffuse interface models to describe phase transitions traces
back to van der Waals [35], Landau and Ginzburg [24], Cahn and Hilliard
[8]. At the origin, these theories were developed for modeling solidification
processes and based on a variational, stationary and isothermal approach.
The phase equilibrium states are obtained as minimizers of the free-energy
functional F by means of the central equation

δF/δϕ = 0

where δF/δϕ is the variational derivative of F with respect to the phase-
field ϕ, which is considered as a space dependent, coarse-grained, contin-
uous degree of freedom of the system (see, for instance, [6] and reference
therein). Later on, evolutionary and non isothermal models were proposed
by assuming that the phase variable kinetics is obtained as the relaxation
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law [1, 2, 25]

ϕ̇ = −b δF/δϕ

where b is a function of ϕ. It is often referred to as Ginzburg-Landau equa-
tion. If δF/δϕ is assumed to measure the distance of the system from
equilibrium, then −b δF/δϕ represents the generalized “elastic” force field
that tends to restore the equilibrium and governs the evolution of ϕ.

Once temperature is taken into account as an independent variable,
phase-field theories are required to be “thermodynamically consistent”.
That is to say, their evolution equations must obey the First and Sec-
ond Law of Thermodynamics. Such a requirement is the major difficulty in
the formulation of non isothermal models for temperature-induced phase
transformations. In the 1990s a number of models consistent with ther-
modynamics were proposed (see [30, 31, 3, 37]). In order to make their
model for a first order phase transition compatible with the Second Law,
Penrose and Fife rescaled the free energy functional F by the absolute tem-
perature. The same choice has been successfully employed in modeling a
lot of temperature-induced phase changes. For instance, in phase separa-
tions [3, 4] and in superconductivity [9]. A remarkable consequence of this
approach is that an entropy extra flux arises into the entropy inequality.
Subsequently, papers [5, 11, 12, 13, 14, 27] contribute to enlighten the con-
nection between the introduction of an entropy extra flux and the need to
rescale the free energy by temperature. In those papers the authors assume
the phase-field as an internal variable that accounts for nonlocal effects
and justify the entropy extra flux as a consequence of this non-locality. It is
worth noting that a close approach was early proposed by Maugin in [26].

A completely different strategy was devised by Fried and Gurtin (see,
for instance, [18, 19, 20]) and Frémond [17]. Even if in different contexts,
they developed the basic idea that phase changes occurring at the engineer-
ing level are produced by micro-forces and ruled by basic equations for the
corresponding microscopic motions. Some new variables, which are clearly
related to the microscopic motions and play the role of the phase-field, are
introduced. Then, in order to account for local microscopic interactions, the
expression of the power of interior forces is modified including some terms
which depend on the rates - and their gradients - of such new variables.
By means of this approach, in my opinion, a general picture of the subject
is out of reach. Indeed, for each different phase-change phenomenon, the
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microscopic nature of the new variables needs to be identified (as physi-
cal quantities that work at a macroscopic level) and their corresponding
internal power needs to be specified case by case.

1.1. Order parameter and phase-field

We consider here a general model for phase changes (i.e., transitions or sep-
arations) which is naturally derived in the framework of continuum thermo-
dynamics in order to account for non isothermal processes. Although the
same procedure can be performed even in the more general case when the
phase-field is either vector- or tensor-valued (see, for instance, [14, 15]), for
the sake of simplicity we shall assume here that the phase-field is scalar-
valued and only two phases of the same particle species can occur. Let
Ω ⊂ R

3 be a bounded, fixed domain in which the two phases may occur,
and ∂Ω be its smooth boundary, whose unit outward normal is denoted by
n. Let x and t be the position vector and time, respectively. At each point
x ∈ Ω there is a single particle of the given substance, which may occur
in two distinct forms, called phases, Each particle is allowed to change its
own phase even if it does not move.

To describe the phase transition at the macroscopic scale, it is nec-
essary to select a quantity, say χ, which differs in the two phases. Each
particle is labelled by a scalar value: χ = 0 for the less ordered phase,
χ = 1 for the most ordered one. Since Landau, such a quantity is called an
order parameter. Then, a phase transition may be described by a function

χ(x, t) : Ω × (0, T ) → {0, 1},
which is piecewise constant in Ω. In the simpler case, when a rigid body
is involved, a sharp (but regular) moving interface separates two regions
occupied by the different phases. In general conditions, however, a highly
uneven surface (with possibly fractal Hausdorff dimension) may arise and
evolve when nucleation occurs. Since the domain evolution in not known a-
priori, and the interface between them evolves in time, this approach leads
to a free-boundary moving problem where the main effort is to predict the
localization and the evolution of the phase interfaces. This is also labeled as
Stefan problem, and can be addressed from two (mathematically different)
points of view: the classical formulation, where the dynamics is governed
by the mean-curvature flow, and the weak formulation, where the problem
may be reduced to a variational inequality (see [36] and references therein).
Unfortunately, numerical simulations are very hard in this framework and
no application examples are quantitatively comparable to the analytical
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model or experimental results. Even in phase separation phenomena each
point x ∈ Ω is occupied by a single material particle of the given substance
occurring in two distinct forms, or phases, labelled by 0 and 1. Nevertheless,
during phase separation each material particle cannot change its phase; it
is only allowed to migrate from a geometrical point to another close to it.
As a consequence, the total measure (volume) of both phases is conserved.

In order to relax this computational difficulty, a thin interface limit ap-
proach, named phase-field modeling, has been recently adopted. The phase-
field model for solidification has been first formulated by Langer [25], then
extended to different transition phenomena (see, for instance, [6, 34] and
reference therein). This point of view can be physically motivated by tak-
ing into account the fine-length-scale effects, in that phase interfaces are
regarded as thin layers, rather than sharp surfaces, where a mixture of the
two phases occurs. This feature is captured if we introduce a scalar field
which is more regular than χ(x, t). In this point of view, a smooth scalar
function

ϕ(x, t) : Ω × [0, T ] → [0, 1],

called phase-field, is considered. Unlike the order parameter χ, the values
of ϕ range continuously the whole interval [0, 1] as x runs in Ω. The time
evolution of ϕ describes the phase-transition, in the sense that it takes the
same values as χ (namely, ϕ = 0 or ϕ = 1) in the bulk regions where the
phases are pure. This occurs outside a thin layer all around the sharp inter-
face. Across this layer, which is named diffuse interface, ϕ varies smoothly,
and inside ∇ϕ takes large but finite values. A specific contribution, which is
named interface energy and depends on the width ε of that layer, must be
added to the free energy expression. As proved in [23], phase-field models
for first-order phase transitions are more tractable from the numerical point
of view and in the limit ε → 0 they approach reasonably well free bound-
ary problems for melting and nucleation processes [29]. In phase-separation
phenomena, we assume the same description with the additional constraint
that the phase-field variable must be conserved. That is to say, its integral
on the whole domain Ω does not change with time. As a consequence, we
can state that the phase-field modeling entails a description at the meso-
scopic level of the phase-change phenomenon.

1.2. Internal and state variables

The models presented here are schematic and limited to some aspects of the
phenomenon which is involved. To this end, only few quantities are taken
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into account. These quantities, which include the phase-field, are called
state variables: they characterize the initial conditions we need to prescribe
in order to predict the evolution of the system. In the sequel, the set of all
the state variables will be denoted by Σ. As well known, phase transitions
are customarily considered as non-local phenomena. For instance, at the
macroscopic level, a transition layer looks like a sharp interface whose mo-
tion is governed by a mean-curvature flow equation (see, for instance, [36]).
In a mesoscopic model, however, non-local spatial effects can be taken into
account by assuming that Σ is composed by some “primary” unknown fields
(as well as density, temperature, velocity, ... , including the phase-field) and
by their gradients up to some order greater than one.

In this connection it is worth noting that across the diffuse interface
the quantity ϕ needlessly agree with the concentration of one phase (the
liquid phase, for instance, as in a scheme of fluid mixtures [27]). In the
regions where one pure phase appears, the mass density ρ, as well as all
other physical state variables, matches with the corresponding density of
the material. Across the diffuse interface, on the contrary, ρ is described by
an a-priori unknown function of ϕ, which results by a suitable superposition
of the densities of the pure phases (see Remark 3.3). Anyway, there is no
need to identify the phase-field ϕ with any microscopic physical quantity.
Accordingly, the point of view adopted here is the following: the phase-field
ϕ is an internal (or hidden) variable which varies across the diffuse interface
according to a kinetic law of the rate type, namely

ϕ̇ = Φ(Σ) , (1.1)

where the dependence of Φ on the first and second gradients of ϕ is non-
trivial. As apparent, this formulation is general enough to include the most
common scalar phase-field theories based on the Ginzburg-Landau pioneer-
ing work [24]. As depicted in §2, the choice of Φ as a function of Σ is sub-
mitted to restrictions due to the Second Law of Thermodynamics, as well as
any other constitutive law. However, some phase-change phenomena sug-
gest a more complex internal behavior and then they need a more elaborate
(i.e., vector- and tensor-valued) hidden variable (see, for instance, [14, 15]).

According to continuum thermodynamics, the state variables depend
on the equations which are involved: the balance laws and the constitutive
laws. We start by writing the balance equations of mass, linear momentum
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and energy in the eulerian form

ρ̇ + ρ∇ · v = 0

ρv̇ = ∇ · T + ρb

ρε̇ = T · D −∇ · q + ρr

(1.2)

where v is the velocity of the particle, θ the absolute temperature, ρ the
mass density. The sources b and r are given function of x, t and represent
the external body force and heat supply density, respectively. Here, we
denote by symA and skwA the symmetrical and skew part of a tensor A,
respectively. In particular, we define

L = ∇v = D + Ω, D = symL, Ω = skwL,

where ∇ = ∂x is the gradient operator. Moreover, we use the superposed
dot to denote the total time derivative, namely ḟ(x, t) = ∂tf(x, t)+v(x, t) ·
∇f(x, t). Finally, T is the Cauchy stress tensor, ε the internal energy den-
sity, q the heat flux vector. They are prescribed as functions of the state
variables by means of the constitutive laws

T (x, t) = T̂ (Σ(x, t)) , ε(x, t) = ε̂(Σ(x, t)) , q(x, t) = q̂(Σ(x, t)) . (1.3)

In order to take viscous effects into account, we suppose that T̂ is a sym-
metrical tensor satisfiying the constitutive equation

T̂ (Σ) = −p̂(Σ)I + Ŝ(Σ),

where p = p̂(Σ) denotes the pressure and I stands for the identity tensor.
Henceforth, we account for a generic material which behaves as a rigid

body in the solid phase, as a viscous fluid in the liquid phase, and a perfect
gas in the vapor phase. Accordingly, non-local spatial effects at a point x
are taken into account by assuming that Σ depends on the local values of
ρ, θ, ϕ, D and of their gradients up to some order greater than one. For
the sake of simplicity, we neglect third and higher order gradients and we
consider the set

Σ = (ρ, θ, ϕ, D,∇ρ,∇θ,∇ϕ,∇D,∇∇ρ,∇∇θ,∇∇ϕ).

The second-order approximation is needed at the least in order that (1.1)
entails the well-known Ginzburg-Landau equation.
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2. Thermodynamics of scalar phase changes

We first give a statement for the Second Law of Thermodynamics which is
compatible with the non-local character of the phenomena involved. Let η
be the entropy density and σ the entropy supply density.

Entropy Principle. For all fields ρ, θ, v, T , q, b, r which are compatible with
the balance laws (1.2) and the constitutive laws (1.3), the following integral
equality holds

d

dt

∫
Ω

ρ η dv = −
∫

∂Ω

q

θ
· n da +

∫
Ω

ρσdv, (2.1)

where σ = σ1 + σ2 satisfies the conditions

σ1 =
r

θ
, σ2 ≥ 0 , in Ω × R

+.

We stress that this statement of the Second Law has a non-local nature since
(2.1) is assumed to hold on the whole domain Ω, only (see, for instance,
[22, 28]). By applying the divergence theorem, we obtain∫

Ω
ρ η̇ dv = −

∫
Ω
∇ ·

(q

θ

)
dv +

∫
Ω

ρr

θ
dv +

∫
Ω

ρσ2dv.

This is equivalent to state the local entropy balance

ρη̇ + ∇ ·
(q

θ

)
− ρr

θ
− ρσ2 = −∇ · k,

where k = k(x, t) is a regular field, called entropy extra flux, such that∫
Ω
∇ · kdv =

∫
∂Ω

k · nda = 0.

As a consequence, inside Ω the entropy inequality (2.1) takes the form

ρη̇ ≥ −∇ ·
(q

θ
+ k

)
+

ρr

θ
, (2.2)

where the entropy flux vector is redefined up to the extra contribution k.
Henceforth, we assume that the entropy extra flux obeys the constitutive
law

k = k̂(Σ).



Vol. 77 (2009) Continuum Thermodynamics and Phase-Field Models 75

2.1. Thermodynamic restrictions and scalar phase-field evolution

We denote by ψ = ψ(Σ) the Helmholtz free energy density,

ψ̂(Σ) = ε̂(Σ) − θ η̂(Σ).

By differentiating this relation with respect to t and substituting (1.2)3 and
(2.2), we obtain the Clausius-Duhem inequality

−ρ(ψ̇ + ηθ̇) + T · D − 1
θ
q · ∇θ + θ∇ · k ≥ 0. (2.3)

If the entropy extra flux is assumed to vanish when no phase change occurs
(cf. [3]), then the following result holds (see also [11]).

Proposition 2.1 (see [5], Prop. 3.2). The constitutive functions ε̂, η̂, T̂ , q̂,
Φ, k̂ are compatible with the second law of Thermodynamics if

ψ̂ = ψ̂(ρ, θ, ϕ,∇ϕ), skw(∇ϕ ⊗ ∂∇ϕψ̂) = 0, (2.4)

p̂ = ρ2∂ρψ̂, η̂ = −∂θψ̂, (2.5)

k̂ =
1
θ
ρ ∂∇ϕψ̂ Φ, Φ ∂∇ϕψ̂ · n|∂Ω = 0 (2.6)

Then, letting ψ̃ = ψ̂/θ, the Clausius-Duhem inequality reduces to

1
θ2 q̂ ·∇θ+

[
∂ϕ

(
ρψ̃

)
−∇ · ∂∇ϕ

(
ρψ̃

)]
Φ−(Ŝ+ρ∇ϕ⊗∂∇ϕψ̂) ·D ≤ 0. (2.7)

By virtue of (2.6) it is apparent that the entropy extra flux is non-zero
only across the diffuse interface, where ∇ϕ �= 0, and vanishes when ϕ̇ = 0.
This means that in the pure phases the Clausius-Duhem inequality assumes
the standard form (see, for instance, [10])

−ρ(ψ̇ + ηθ̇) + T · D − 1
θ
q · ∇θ ≥ 0.

Remark 2.2. As well-known (see, for instance, [28]), in the scheme of binary
mixtures, the entropy extra flux is proportional to the relative velocity
between both constituents. But this is not the point of view of this paper,
since phases are not considered here as two distinct fluids. Accordingly,
as pointed out in [27], in modeling phase transitions where mixtures are
involved two terms occur into the entropy extra flux, one of which depends
on the relative velocity and the other looks like (2.6)1.
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In view of (2.7), it is quite natural to assume that

q̂ = −κ∇θ, Ŝ = ζD − ρ∇ϕ ⊗ ∂∇ϕψ̂, (2.8)

Φ = −α
[
∂ϕ

(
ρψ̃

)
−∇ · ∂∇ϕ

(
ρψ̃

)]
, (2.9)

where κ, α, ζ are nonnegative functions of Σ. In particular, if ζ = 0 the
fluid is named inviscid. In particular, equations (1.1) and (2.9) rule the
evolution of ϕ, so that the transition kinetics depends only on the rescaled
Helmholtz free energy density, namely

ϕ̇ = −α
[
∂ϕ

(
ρψ̃

)
−∇ · ∂∇ϕ

(
ρψ̃

)]
. (2.10)

In addition, (2.6)2 yields the natural boundary condition

∂∇ϕψ̂ · n|∂Ω = 0 (2.11)

Remark 2.3. Letting

δϕ

∫
Ω

Π dx = ∂ϕΠ −∇ · ∂∇ϕΠ,

where Π is some scalar state function such that ∂∇ϕΠ ·n|∂Ω = 0, then (1.1)
and (2.9) yield

ϕ̇ = −αδϕ

(∫
Ω

ρψ̂

θ
dx

)
= −αδϕF̃ ,

where F̃ is the rescaled (Helmholtz) free energy functional (cf. [4, 31]).
Then, the critical points of the functional F̃ , which satisfy δϕF̃ = 0, are
solutions of the stationary problem Φ(Σ) = 0. This result is in perfect
agreement with [4] (see also [6]).

2.2. A general phase-field evolution equation

The aim of this subsection is to perform a direct exploitation of the nonlo-
cal entropy inequality. This procedure emphasizes a double benefit. First,
the introduction of the entropy extra flux is avoided. Second, a more gen-
eral phase-field evolution equation is obtained, which is able to depict both
phase transition and phase separation phenomena. In my opinion, this sim-
ple derivation enlightens the origin of the most celebrated phase-field mod-
els and highlights their deep connections with continuum thermodynamics.

Starting from (2.1) and the Entropy Principle, we obtain the nonlocal
entropy inequality (cf. [22])∫

Ω
ρ η̇ dv ≤ −

∫
Ω
∇ ·

(q

θ

)
dv +

∫
Ω

ρr

θ
dv. (2.12)
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Now, accounting for the definition of ψ, the l.h.s. can be rewritten as∫
Ω

ρ η̇ dv =
∫

Ω

ρ

θ

(
ε̇ − ψ̇ − ηθ̇

)
dv,

and, by virtue of (1.2)3, the nonlocal entropy inequality (2.12) takes the
form ∫

Ω

1
θ

(
−ρ(ψ̇ + ηθ̇) + T · D − 1

θ
q · ∇θ

)
dv ≥ 0, (2.13)

which represents the nonlocal Clausius-Duhem inequality. Taking advantage
of the thermodynamic restrictions (2.5), it can be expressed in the following
form∫

Ω

1
θ

[
1
θ
q̂ · ∇θ − Ŝ · D

]
dv +

∫
∂Ω

ρ Φ ∂∇ϕψ̃ · n da

+
∫

Ω
Φ

[
ρ∂∇ϕψ̃ −∇ · (ρ∂∇ϕψ̃)

]
dv ≤ 0,

where ψ̃ = ψ̂/θ is the rescaled free energy density. In order to satisfy (2.13),
we assume the separate inequalities∫

Ω

1
θ

{
1
θ
q̂ · ∇θ − Ŝ · D

}
dv ≤ 0, (2.14)∫

Ω
Φ

[
ρ ∂∇ϕψ̃ −∇ · (ρ ∂∇ϕψ̃)

]
dv +

∫
∂Ω

ρ Φ ∂∇ϕψ̃ · n da ≤ 0.(2.15)

This is quite natural, in that (2.14) represents the classical (nonlocal) form
of the reduced inequality which holds true when no phase change occurs
(Φ ≡ 0). In particular, condition (2.14) can be locally satisfied if q̂ and Ŝ
obey the customary Fourier and Newton laws, namely (2.8).

Finally, we derive some expression of Φ and some boundary conditions
which ensure the validity of (2.15) in its general nonlocal form. Henceforth,
for ease in writing, we let

Ξ = ρ ∂ϕψ̃ −∇ · (ρ ∂∇ϕψ̃). (2.16)

Proposition 2.4. Inequality (2.15) is satisfied provided that Φ in (1.1) is
given by

Φ = ν∇ · [m∇(ν Ξ)] − αΞ, (2.17)

where ν, m, α are suitable functions of Σ such that m and α are nonnegative
for all values of Σ, and the following boundary conditions jointly hold

m∇(νΞ) · n|∂Ω = 0 , ∂∇ϕψ̃ · n|∂Ω = 0. (2.18)
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Proof. By replacing (2.17) for Φ into the first integral of inequality (2.15),
it follows∫

∂Ω
[ρ Φ ∂∇ϕψ̃ + m ν Ξ∇(ν Ξ)] · n da −

∫
Ω

m |∇(ν Ξ)|2dv −
∫

Ω
α Ξ2dv ≤ 0.

At this point, boundary conditions (2.18) lead to∫
Ω

m |∇(ν Ξ)|2dv +
∫

Ω
α Ξ2dv ≥ 0,

which is satisfied provided that m, α ≥ 0. �

In the general case, the phase-field evolution is ruled by the system⎧⎪⎪⎨⎪⎪⎩
ϕ̇ = ν∇ ·

{
m∇

[
ν

(
ρ ∂ϕψ̃ −∇ · (ρ ∂∇ϕψ̃)

)]} − α
[
ρ ∂ϕψ̃ −∇ · (ρ ∂∇ϕψ̃)

]
,

m∇
[
ν

(
ρ ∂ϕψ̃ −∇ · (ρ ∂∇ϕψ̃)

)] · n|∂Ω = 0,

∂∇ϕψ̃ · n|∂Ω = 0.

(2.19)
However, for special values of the arbitrary functions involved, we are able
to recover the kinetic equations of both the non conserved and the conserved
phase-field (see, for instance [6]).

Remark 2.5. If m = 0 and α > 0, then (2.17) provides Φ = −αΞ and we
recover from (1.1) and (2.18) the evolution system of the Allen-Cahn type,
namely (cf. (2.10), (2.11) and [1, 2]){

ϕ̇ = −α
[
ρ∂ϕψ̃ −∇ · (ρ∂∇ϕψ̃)

]
,

∂∇ϕψ̃ · n|∂Ω = 0.
(2.20)

On the other hand, if we let α = 0 and m > 0 we obtain the evolution
system for a phase-field of the Cahn-Hilliard type, namely⎧⎪⎨⎪⎩

ϕ̇ = ν ∇ · {m∇[ν (ρ ∂ϕψ̃ −∇ · (ρ ∂∇ϕψ̃))]},
∇[ν(ρ ∂ϕψ̃ −∇ · (ρ ∂∇ϕψ̃))] · n|∂Ω = 0,

∂∇ϕψ̃ · n|∂Ω = 0.

(2.21)

where m represents the mobility function and ν
[
ρ∂∇ϕψ̃ − ∇ · (ρ∂∇ϕψ̃)

]
stands for the chemical potential. If ν = ν0 is constant, in view of (2.18)1
we have

d

dt

∫
Ω

ϕdv =
∫

Ω
ϕ̇dv = ν0

∫
∂Ω

m∇(ν0 Ξ) · n da = 0.

and the phase-field is conserved.
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3. Scalar-valued phase-field models

In this section we consider a material (water, for instance) that in the
liquid phase looks like an inviscid fluid. That is, ζ vanishes in (2.8)2 and
its constitutive properties are expressed by choosing

Γ = (ρ, θ, ϕ,∇ρ,∇θ,∇ϕ, ∆ρ, ∆θ, ∆ϕ)

as the set of state variables. So far we know that, because of the thermody-
namic restriction (2.5)1, the free energy ψ depends on Γ only through ρ, θ, ϕ
and |∇ϕ|, but such dependence is arbitrary. For materials like as water, a
general class of scalar-valued phase-field models is obtained by assuming
that the free energy density ψ (per unit mass) have the additive form

ψ̂(ρ, θ, ϕ, |∇ϕ|) = ψ̂1(ρ, θ, ϕ) + ψ̂2(θ, ϕ) +
1
2

µ(θ, ϕ)|∇ϕ|2. (3.1)

The first term represents the stored mechanical energy. In connection with
solid-liquid and liquid-vapor transitions, its expression involves the pressure
function. The second addendum represents the stored thermal energy and
have to account for the thermodynamic condition

ε̂ = ψ̂ − θ ∂θψ̂. (3.2)

The last term accounts for the interface energy, which is proportional to
the width of the diffuse interface between two pure phases. The function
µ is assumed to be positive valued, since ψ must attain a minimum at
the homogeneous phases, i.e. when ∇ϕ = 0. In particular, if µ is assumed
to be constant, we recover the customary quadratic dependence on ∇ϕ
introduced by Cahn and Hilliard in [8] for isothermal processes (see also [6]).
On the other hand, under non isothermal conditions it is more convenient
to choose

µ(θ, ϕ) = µ0(ϕ)θ , µ0 > 0.

Indeed, in this case the internal energy ε̂ is independent of |∇ϕ| and (3.2)
reads

ε̂ = ψ̂1 − θ ∂θψ̂1 + ψ̂2 − θ ∂θψ̂2. (3.3)

According to all these assumptions, thermodynamic restrictions (2.5) and
(2.8)2 with ζ = 0 yield

η=−∂θψ̂1 − ∂θψ̂2 − 1
2

µ0|∇ϕ|2, p̂=ρ2∂ρψ̂1, T̂ =−p̂ I − µ0θρ∇ϕ ⊗∇ϕ,

(3.4)
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so that from (2.10) we have

ϕ̇ = −α

[
ρ

θ

(
∂ϕψ̂1 + ∂ϕψ̂2

)
+

1
2

ρ ∂ϕµ0|∇ϕ|2 −∇ · (ρµ0∇ϕ)
]

, (3.5)

along with the corresponding boundary condition ∇ϕ · n|∂Ω = 0. On the
other hand, the motion equation (1.2)2 reads

ρv̇ = −∇(ρ2∂ρψ̂1 + µ0θρ∇ϕ ⊗∇ϕ) + ρb , (3.6)

and the temperature evolution results from inserting the expression (3.3)
into the energy balance equation (1.2)3 and accounting for (3.4)2,3 and
(2.8)1, namely

ρ(ψ̂1 − θ ∂θψ̂1 + ψ̂2 − θ ∂θψ̂2)· = − ρ2∂ρψ̂1 ∇ · v − µ0θρ∇ϕ ⊗∇ϕ · D
+ ∇ · (κ∇θ) + ρr , (3.7)

3.1. Solid-liquid transition models

The literature on solid-liquid transition modelling through the phase-field
is mainly restricted to a constant mass density or a constant volume. This is
made apparent by constitutive properties which disregard the dependence
on the mass density ρ ([6] and [30], § 7). Of course, this is approximately
true for incompressible materials, as well as ice and water. Here, we consider
a more general situation and we let ρ depend on the position and time
variables. Hence, because of the continuity equation (1.2)1, we have to allow
for a velocity field with a nonzero divergence. Rather, in most cases phase
transitions occur at constant pressure. Then, we find it of interest to look
at the transitions at constant pressure and hence we account explicitly for
this constraint. Accordingly, the modelling deals with thermally-induced
solid-liquid transitions, namely transitions in which the order parameter
changes as a consequence of temperature variations around a temperature
value, θc, called critical or transition temperature.

In order to elaborate a general scheme where the constraint of constant
pressure pc is incorporated, we replace p̂ = pc into (3.4) and integrate the
result over (ρ, +∞). As a result we have

ψ̂1(ρ, θ, ϕ) = −pc

∫ ∞

ρ

1
r2 dr,

whence

pc = −ρψ̂1(ρ, θ, ϕ).
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Accordingly, at constant pressure pc we have

ρψ̂ = −pc + ρψ̂2(θ, ϕ) +
1
2

ρµ(θ, ϕ)|∇ϕ|2.
Well-established models of non-conserved first-order phase thansition can
be obtained by choosing appropriate functions for ψ̂2 and µ (see, for in-
stance, [11]). In addition, because of the constancy condition

p̂(ρ, θ, ϕ) = pc,

the dependence of ρ on ϕ and θ follows. In particular, we observe that
across the diffuse interface the temperature keeps constant at the critical
value θc, due to the absorption/release of the latent heat during the melt-
ing/solidification process. As a consequence, from the relation p̂(ρ, θc, ϕ) =
pc we obtain the mass density distribution across the transition layer,
namely ρ = ρ̃c(ϕ). Quite often the function ρ̃c is taken as linear, namely,
letting ϕ = −1 in the liquid phase and ϕ = 1 in the solid one,

ρ̃c(ϕ) =
1 − ϕ

2
ρ̃c(−1) +

1 + ϕ

2
ρ̃c(1).

where ρ̃c(−1) and ρ̃c(1) are the density of the liquid and solid phase, re-
spectively, at θ = θc and p = pc.

Remark 3.1. In [30], Penrose and Fife argue about the phase transitions at
constant pressure and conclude that every formula referring to the case of
constant pressure can be obtained by replacing the internal energy density
ε by the enthalpy ε+ p/ρ. Our result is consistent with their point of view,
in that the potential at constant pressure is the Gibbs free energy

F (θ, ϕ, |∇ϕ|) = ψ̂(ρ, θ, ϕ, |∇ϕ|) + pc/ρ = ψ̂2(θ, ϕ) +
1
2

µ(θ, ϕ)|∇ϕ|2.

In [11] the authors proposed F to take the form

F (θ, ϕ, |∇ϕ|) = θ
[
c(ϕ)ω(θ) + b(ϕ)u(θ) + G(ϕ) +

µ0

2
|∇ϕ|2

]
where ω and u are functions accounting for the critical temperature

ω(θ) = ln(θc/θ), u(θ) =
θc − θ

θ
,

and G has a double-well potential profile with two equal minima at ϕ = −1
and ϕ = 1, namely

G(ϕ) =
β

4
(1 − ϕ2)2, β > 0.
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On the other hand, b and c are fourth-degree polynomials in ϕ such that

b′(ϕ) = b0(ϕ + 1)2(ϕ − 1), c′(ϕ) = c0(ϕ + 1)(ϕ − 1)2.

In spatially-homogeneous phase transitions at θ = θc, F reduces to

F (θc, ϕ, 0) = θcG(ϕ),

which implies that both fluid and solid phases are stable, and hence ob-
servable, at the transition temperature θc. The corresponding entropy and
internal energy densities, S = ρη and E = ρε respectively, are then given
by

S(θ, ϕ,∇ϕ) = −c(ϕ)ω(θ) + λ(ϕ) − G(ϕ) − µ0

2
|∇ϕ|2

E(θ, ϕ) = c(ϕ)θ + b(ϕ)θc.

where λ(ϕ) = c(ϕ)+b(ϕ). Hence, E is independent on ∇ϕ and c(ϕ) = ∂θE,
which is then named specific heat function (per unit volume). The jump of
internal energy at θ = θc is given by

L := E(θc,−1) − E(θc, 1) = θc[λ(−1) − λ(1)]

and this is why λ(ϕ) is named the latent heat function (per unit volume).
For the sake of simplicity, we now investigate the free energy properties at
uniform configurations besides constant pressure. Therefore

F (θ, ϕ) := F (θ, ϕ, 0) = θ[c(ϕ)ω(θ) + b(ϕ)u(θ) + G(ϕ)],

∂ϕF (θ, ϕ) = θ[c′(ϕ)ω(θ) + b′(ϕ)u(θ) + βϕ(ϕ2 − 1)].

Such a free energy F accounts for a first-order solid-fluid transition provided
that (cf. [11] for details):

1) the specific heat is strictly positive and, moreover, the value in the solid
(phase) is greater than that in the fluid,

c(ϕ) > 0, ϕ ∈ [−1, 1], c(−1) < c(1); (3.8)

2) the total latent heat in the solid-fluid transition, L, is positive whence

λ(−1) > λ(1); (3.9)

3) the function F has relative minima at the pure phases ϕ = −1, 1, at any
temperature θ, since c′ and b′ vanish at ϕ = −1, 1. Owing to the occurrence
of solid and fluid phases, F assumes a strict global minimum at ϕ = −1
when θ > θc, and at ϕ = 1 when θ < θc.
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Figure 1. The free energy F at θ < θc (dashed), θ = θc

(continuous) and θc < θ < θ∗ (short-dashed).

Condition (3.8) is easily satisfied by letting c0 < 0, and (3.9) holds
provided that b0 − c0 > 0. Then, for formal convenience we let c0 = ξb0,
b0 > 0, 0 < ξ < 1, and hence

c(1) − c(−1) =
4
3
ξb0, λ(−1) − λ(1) =

4
3
(1 − ξ)b0.

Theorem 3.2 (see [11], Th. 3). Let b0 > β/2 and define θ∗ = 2θc/(2 − β/b0).
It is apparent that θ∗ > θc. Then, as θ ∈ (0, θ∗), the function F has two
local minima, at ϕ = −1 and ϕ = 1, such that

sign[F (θ,−1) − F (θ, 1)] = sign(θc − θ),

and a maximum at ϕ3 ∈ (−1, 1) such that signϕ3 = sign(θ − θc). Accord-
ingly, if θ < θc then the minimum at ϕ = 1 is lower than that at ϕ = −1,
and viceversa if θ > θc (see Fig. 1).

If θ < θc then ϕ = −1 is allowed only as a local minimum, so that the body
can remain in the liquid phase (undercooling effect), but a perturbation
forces the body to attain the global minimum at ϕ = 1, namely at the solid
phase. The opposite occurs as θc < θ < θ∗, which means the superheating
effect.

The phase-field evolution equation (3.5) then becomes

ϕ̇ = −α[∂ϕF/θ −∇ · (∂∇ϕF/θ)]

= −α[c′(ϕ)ω(θ) + b′(ϕ)u(θ) + βϕ(ϕ2 − 1) − µ0∆ϕ].

The model simplifies significantly if the specific heat c is regarded as con-
stant (see [11], §6.1).
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Finally, taking into account the expression of the internal energy E
and assuming the fluid to be inviscid (ζ = 0), a straightforward calculation
leads to the temperature evolution equation

ρ c(ϕ)θ̇+ρ [θcb
′(ϕ)+θ c′(ϕ)]ϕ̇ = −pc∇·v−ρµ0θ∇ϕ⊗∇ϕ·D+∇·(κ∇θ)+ρr.

3.2. Liquid-vapor transition models

This subsection is devoted to determine an explicit expression of the Helm-
holtz free energy density ψ which is able, by means of the kinetic equation
(3.5), to describe the liquid-vapor phase transition induced both by temper-
ature and by pressure variations. As before, we assume that the Helmholtz
free energy ψ takes the form (3.1). Nevertheless, here both density and
pressure are allowed to make change with respect to space and time. In
addition, the explicit expression of ψ̂1 and ψ̂2 will be deduced rather than
assumed, according to given constitutive equations for pressure and internal
energy.

Let ϕ = 0 represent the vapor phase and ϕ = 1 the liquid one. We de-
note by ρ0 and ρ1 the mass density of the vapor and the liquid, respectively,
and by v0, v1 the corresponding specific volumes. Accordingly, let ε0, p0 and
ε1, p1 be the internal energy and pressure in the vapor and in the liquid,
respectively. As is well known, both in the vapor and in the liquid phase
the constitutive equation for the internal energy density ε is a function of
the temperature θ, only. It is customary to assume that

ε̂0(θ) = c0θ, ε̂1(θ) = c1θ − L, (3.10)

where L is constant and strictly positive and the rates c0 and c1 denotes
the vapor and liquid specific heat at constant volume, respectively (c0 < c1
when water is concerned). At a given critical temperature θ∗, the latent
heat Lv absorbed/released during the evaporation/condensation process is
given by

Lv = ε0(θ∗) − ε1(θ∗) = [c0 − c1]θ∗ + L,

Of course, if c0 = c1, then Lv = L. On the other hand, it is quite reasonable
to suppose that the vapor behaves like a perfect gas, so that

p̂0v0 = kθ . (3.11)

This looks like a (constitutive) state equation: p0 = p̂0(ρ0, θ), where
p̂0(ρ0, θ) = kθ ρ0. By mimicking the Andrews density–pressure diagrams
at constant temperature, in the liquid phase we assume the constitutive
law

p̂1 = kθ[1 − ν̂(θ)]ρ1, (3.12)
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where ν̂ is a decreasing function such that ν̂(θ) ∈ [0, 1) and ν̂(θ) = 0,
θ ≥ ϑc. Indeed, as θ ≥ ϑc, the critical temperature, the vapor cannot be
liquefied at any pressure, and hence (3.11) reduces to (3.12).

Since we represent the phase change region as a thin layer rather than
a sharp interface, we have to connect the pure phase constitutive equations
for pressure and internal energy inside the layer. To this aim, we introduce
two functions of the phase-field ϕ in such a way that θ and p keep constant
(and hence continuous) across the transition layer, whereas ε and ρ have a
jump discontinuity. More precisely, we make the following

Assumption 3.1. The pressure and internal energy satisfies the constitutive
equations

p̂(ρ, θ, ϕ) = kρ θ[1 − ν̂(θ)g(ϕ)] (3.13)

ε̂(θ, ϕ) = c(ϕ)θ + Lf(ϕ) (3.14)

where f, g are smooth functions satisfying the conditions

g(0) = f(0) = 0 , g(1) = −f(1) = 1 . (3.15)

As expected, (3.10) and (3.11)-(3.12) follow from the evaluation of (3.13)
and (3.14) at ϕ = 0, 1. A lot of different expressions for f and g can be
found in the literature (see for instance [6, 23, 30]. Mostly, g is assumed to
be odd (linear or cubic), whereas the growth of f is even (typically of the
fourth order).

The assumption that both vapor and liquid obey constitutive equations
close to that of perfect gases and the required linearity of ε̂ with respect to θ
are somewhat restrictive. Indeed, our goal merely consists in establishing a
simple model which is consistent with the Clausius-Duhem inequality and,
at the same time, accounts for the usual energy-temperature picture and
Andrews density-pressure diagrams of phase transitions which are exhibited
in any textbook dealing with Thermodynamics (see Fig. 2 and Fig. 3).

Here and in the sequel, we suppose that θ � θc and, for sake of sim-
plicity, we let ν̂ = ν be constant. Moreover, since v1 � v0, we infer that ν
lies between 1/2 and 1. Furthermore, we let

c(ϕ) = cP − k[1 − νg(ϕ)] = cV + kνg(ϕ),

where cV and cP = cV + k are the specific heat at constant volume and
pressure in the vapor phase. Then, we have

c0 = c(0) = cV , c1 = c(1) = cV + kν > c0.
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Figure 2. The energy–temperature diagram at pressure p = p∗.
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Figure 3. The specific volume–pressure diagram at temper-
ature θ = θ∗.

Remark 3.3. Since during the transition both pressure and temperature
keep constant values, (p, θ) = (p∗, θ∗), the specific volume v in the transition
layer depends on the order parameter ϕ, only. In particular,

v(ϕ) = v1g(ϕ) + v0[1 − g(ϕ)],

which generalizes the usual linear relation v(ϕ) = v1ϕ + v0(1 − ϕ).

Taking advantage of Assumption 3.1 and constitutive restrictions (3.4),
we are able to recover the expression of ψ̂1 and ψ̂2 appearing into (3.1). A



Vol. 77 (2009) Continuum Thermodynamics and Phase-Field Models 87

straightforward calculation (see [5]) leads to

ψ̂1(ρ, θ, ϕ) = kθ[1 − νg(ϕ)] ln
p̂(ρ, θ, ϕ)

pc
.

which represents the pressure function P =
∫ p
pc

dξ/ρ(ξ). Here pc is a con-
stant value whose physical meaning will be clear in the sequel. On the other
hand, by exploiting (3.2) and (3.14) it follows that

ψ̂2 = c(ϕ)θ − cP θ ln θ + Lf(ϕ) = cP θ(1 − ln θ) − kθ[1 − νg(ϕ)] + Lf(ϕ) .

After substituting these expressions for ψ̂1 and ψ̂2 into (3.1), and assuming
in addition

µ(θ, ϕ) = µ0θ , µ0 > 0 ,

we obtain (see [5])

ψ̂(ρ, θ, ϕ, |∇ϕ|) = cP θ(1 − ln θ) + Lf(ϕ)

+ kθ[1 − νg(ϕ)]
(

ln
ρkθ[1 − νg(ϕ)]

pc
− 1

)
+

1
2
µ0θ|∇ϕ|2.

(3.16)

In particular, on account of the equality cP = cV −k and conditions (3.15),
we have

ψ(ρ, θ, 0,0) = cV θ(1 − ln θ) + kθ

(
ln ρ + ln

k

pc

)
,

which coincides with the Helmholtz free energy density for an ideal gas, up
to a constant addendum, and

ψ(ρ, θ, 1,0) = cP θ(1 − ln θ) − L + kθ(1 − ν)
(

ln
ρkθ(1 − ν)

pc
− 1

)
,

which essentially represents the Helmholtz free energy for the liquid phase.
According to this expression of the free energy, the evolution equation

(3.5) becomes (see [5], §7)

ϕ̇ = −β1[f ′(ϕ) + ug′(ϕ)] + β2∇ρ · ∇ϕ + β3∆ϕ, (3.17)

where β1(ρ, θ) = αρL/θ, β2 = αµ0, β3(ρ) = αµ0ρ and

u(p, θ) = −kνθ

L
ln

p

pc
. (3.18)
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Now, by exploiting (3.13) we give an homogeneous expression for this equa-
tion where only temperature and pressure, besides the phase-field, are al-
lowed to appear.

ϕ̇ = −β

[
L

θ
f ′(ϕ) − kν ln

p

pc
g′(ϕ)

]
+ µ0∇β · ∇ϕ + µ0β∆ϕ, (3.19)

where
β(p, θ, ϕ) =

αp

k θ[1 − νg(ϕ)]
.

Finally, in order to obtain the temperature evolution equation we con-
sider the expression of the internal energy assuming the fluid to be inviscid
(ζ = 0), namely

[cV + kνg(ϕ)]θ̇ + [Lf ′(ϕ) + kνθg′(ϕ)]ϕ̇

=
( − k θ[1 − νg(ϕ)]I − µ0∇ϕ ⊗∇ϕ

) · D + ∇ · (κ∇θ) + r.

3.2.1. Clausius-Clapeyron equation and vapor pressure curve. Since the
temperature and the pressure keep constant during the transition and
across the diffuse interface, we look for the expression of some energy poten-
tials which naturally depends on p and θ, rather than ρ and θ. To this aim,
we introduce the Gibbs free enthalpy Γ = Nψ + pV , where N denotes the
particle number and V = N/ρ is the volume. Its density γ, called chemical
potential, is then defined as

γ =
Γ
N

= ψ +
p

ρ
.

In view of (3.13) and (3.16), the expression of the chemical potential reads

γ̂(p, θ, ϕ,∇ϕ) = cP θ(1 − ln θ) + Lf(ϕ) + kθ[1 − νg(ϕ)] ln
p

pc
+

1
2
µ0θ|∇ϕ|2.

(3.20)
By virtue of this explicit expression, in [5] the Clausius-Clapeyron equation
has been derived along with the function p = π(θ), whose graph in the (θ, p)-
plane describe the vapor pressure curve. We summarize here that result by
restricting our attention to a uniform configuration, i.e. ∇ϕ = 0.

At each transition point (θ∗, π(θ∗)) on the vapor pressure curve, the
entropy of the vapor is greater than the entropy of the liquid, which is a
more ordered structure. Thus, the difference

η(ρ, θ∗, 0,0) − η(ρ, θ∗, 1,0) = −kν ln
π(θ∗)

pc
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will be positive and the transition pressure p∗ = π(θ∗) has to satisfy the
condition p∗ < pc. This means that the value pc is a physical upper bound
for the pressure p∗.

Theorem 3.4 (see [5], Th. 6.1). The vapor pressure curve is given by

p∗ = π(θ∗) = pc e−
L

kνθ∗ , (3.21)

according to most textbooks. Moreover, the Clausius-Clapeyron equation
holds, namely

dπ

dθ∗
=

Lρ0ρ1

θ∗(ρ1 − ρ0)
,

where ρ0 and ρ1 denote the density of the vapor and of the liquid, respec-
tively.

It is apparent that the vapor pressure curve is a monotone increasing
function and

lim
θ∗→+∞

π(θ∗) = pc .

Therefore, its inverse function, τ = π−1, exists and is given by

τ(p∗) = − L

kν(ln p∗ − ln pc)
.

Since we have assumed ν = const, in this approximate model the critical
temperature θc = τ(pc) (i.e. the temperature above which transition never
occurs) has not a finite value.

A much simpler model than (3.17) can be achieved if we perform a
simultaneous linearization with respect to θ and p in a neighbourhood of a
given transition point, namely (p∗, θ∗) with p∗ = π(θ∗) (see also [5, §7.3]).
In order to perform this approximation scheme we take advantage of the
explicit formula (3.21). To this end, we assume the following first-order
approximations

1
θ
≈ 1

θ∗
+

1
(θ∗)2

(θ∗ − θ), (3.22)

ln p ≈ ln p∗ +
1
p∗

(p − p∗). (3.23)

Accordingly, from the definition of u and (3.21) we obtain

u

θ
≈ −kν

L
(ln p∗ − ln pc) − kν

L

p − p∗

p∗
=

1
θ∗

− kν

L

p − p∗

p∗
.
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A substitution into (3.17)) leads to the linearized evolution equation

ϕ̇ = −αL

θ∗
ρ

[
θ∗ − θ

θ∗
f ′(ϕ) − kνθ∗

L

p∗ − p

p∗
g′(ϕ) + W ′(ϕ)

]
+ αµ0∇ρ · ∇ϕ + αµ0ρ∆ϕ.

In the sequel, we deduce the special form of this equation in connection
with particular transition processes. For instance, if we keep pressure and
mass density to be constant, p = p∗ and ρ = 1, then this equation reduces
to (3.24). On the other hand, if we suppose the temperature to be constant,
θ = θ∗, then we recover equation (3.25).

3.2.2. Special phase-transition processes. Now, we restrict our attention
to phase transitions induced by the temperature and assume that both
pressure and density keep constant values, for instance p = p∗ and ρ = 1.
Accordingly, θ∗ = τ(p∗) is the transition temperature at pressure p∗ and

u(p∗, θ) = −kνθ

L
ln

p∗

pc
=

θ

θ∗
.

Substitution for u into (3.17) yields the evolution equation

ϕ̇ = −αL

[(
1
θ
− 1

θ∗

)
f ′(ϕ) +

1
θ∗

W ′(ϕ)
]

+ αµ0∆ϕ, (3.24)

where W(ϕ) = f(ϕ) + g(ϕ). It is worth noting that the ”simpler model”
proposed in § 6.1 of [11] can be deduced in the present framework as a
particular case (see [5, §7.1]).

Finally, we derive a reduced model by means of some linearization
with respect to θ in a neighbourhood of θ∗. To this aim, we approximate
1/θ in the form (3.22) thus obtaining form (3.24) the linearized or standard
phase-field kinetics (cf. [7])

ϕ̇ = −αL

θ∗

[
θ∗ − θ

θ∗
f ′(ϕ) + W ′(ϕ)

]
+ αµ0ϕ.

When f = ϕ3(4 − 3ϕ) and W = 6ϕ2(ϕ − 1)2 the phase evolution is ruled
by

ϕ̇ = −12αL

(θ∗)2
ϕ(ϕ − 1)

[
θ ϕ + θ∗(ϕ − 1)

]
+ αµ0∆ϕ.

If we choose a different expression for f , for instance f(ϕ) = −3ϕ4 +8ϕ3 −
6ϕ2, we obtain

ϕ̇ = −12αL

(θ∗)2
ϕ(ϕ − 1) [(ϕ − 1)θ + θ∗ϕ] + λµ0ϕ,
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which coincides with [13, formula (22)].
Now we focus our attention on phase transition processes induced by

the pressure when the temperature is kept at the constant value θ∗. In this
case, p∗ = π(θ∗) will be called the transition pressure at temperature θ∗

and

u(p, θ∗) = −kνθ∗

L
ln

p

pc
=

ln p − ln pc

ln p∗ − ln pc
.

By substituting this expression into (3.19), we obtain

ϕ̇ = −β(ϕ, θ∗)p
[
f ′(ϕ) +

ln p − ln pc

ln p∗ − ln pc
g′(ϕ) +

µ0

L
∇ ln p · ∇ϕ +

µ0

L
∆ϕ

]
.

where β(ϕ, θ∗) = αL/k(θ∗)2[1 − νg(ϕ))]
In the literature few papers concern phase-field models which work

at constant temperature. Therefore, a comparison with previous classical
results is hard to perform. In order to simplify our model, we approximate
ln p in the neighbourhood of p∗ by means of (3.23) Accordingly, ∇ ln p ≈
∇p/p∗ and

u ≈ 1 + ξ∗(p − p∗), ξ∗ = 1/p∗(ln p∗ − ln pc).

If this is the case, the kinetic phase-field equation becomes

ϕ̇ = −β(ϕ, θ∗)p
[
ξ∗(p − p∗)g′(ϕ) + W ′(ϕ) +

µ0

Lp∗
∇p · ∇ϕ +

µ0

L
∆ϕ

]
.

(3.25)

4. Comparison with other models

We now investigate some approaches and models for first-order phase tran-
sitions appeared in the literature, taking a comparison with models of §3.
In all the model considered henceforth, however, the dependence on the
mass density ρ is disregarded or is regarded as a constant (cf. [30]).

4.1. Ginzburg-Landau theory for isothermal models

Following [6], an equilibrium state of the system is expected to be the
stationary solution of a functional F(ϕ). The phase-field ϕ(x) is the solution
of the Euler-Lagrange equation

δF
δϕ

(x) = 0, ∀x ∈ Ω.
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A nonzero value of δF/δϕ represents the departure from equilibrium. In
isothermal conditions, F is specialized as the (Ginzburg-Landau) functional

F(ϕ) =
∫

Ω

[
F (ϕ, θ) +

1
2
µ(ϕ, θ)|∇ϕ|2

]
dv, (4.1)

where µ is positive valued. The evolution equation for ϕ is then taken in
the form

ϕ̇ = −K(ϕ)
δF
δϕ

(ϕ)

where K is positive valued and the quantity −δF/δϕ is regarded as pro-
portional to the appropriate generalized thermodynamic force. Hence we
find that

ϕ̇ = K(ϕ)
[
∇ · [µ(ϕ)∇ϕ] − 1

2
µϕ(ϕ)|∇ϕ|2 − Fϕ(ϕ)

]
. (4.2)

Equation (4.2) is often referred to as Cahn-Allen equation. Time differen-
tiation of F(ϕ(t)) and use of the divergence theorem yield

d

dt
F(ϕ(t)) =

∫
Ω

δF
δϕ

ϕ̇ dv +
∫

∂Ω
µ ϕ̇∇ϕ · n da.

The boundary condition ∇ϕ · n = 0 at ∂Ω and (4.2) imply that

d

dt
F(ϕ(t)) = −

∫
Ω

K(ϕ)
[δF
δϕ

]2
dv ≤ 0

whence F(ϕ(t)) decays in time. The evolution equation (4.2) can be ob-
tained also in our scheme, as pointed out in Remark 3.1.

4.2. Cahn-Hilliard model for phase separation processes

A model for conserved dynamics, in which the integral of ϕ on Ω is constant
in time (see [6], p. 166), stems from the mass balance equation

ϕ̇ = −∇ · j
and the generalized Fick’s law

j = −K̂(ϕ)∇G

where K̂ is a positive parameter, which represents the diffusive mobility,
and G is the chemical potential. The vector j is viewed as the driving force
of the phase separation and G is defined by

G =
δF
δϕ

,
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where F has the form (4.1). In the simple case that µ and K̂ are constants
it follows that ϕ is governed by the Cahn-Hilliard equation

ϕ̇ = K̂∆(Fϕ − µ∆ϕ). (4.3)

Subject to the boundary conditions

n · ∇ϕ = 0, n · ∇δF
δϕ

= 0, at ∂Ω,

it follows that the integral of ϕ is conserved and again F(ϕ(t)) decays in
time. Also in this case, we obtain from (2.17) the Cahn-Hilliard equation
(4.3) as a special case.

4.3. Rescaled Ginzburg-Landau functional for non-isothermal models

Let θ be variable in space and time. According to [30] and [3], the Ginzburg-
Landau functional approach can be mantained by changing the integrand
through a multiplication by 1/θ (rescaling). In essence, for conserved phase
dynamics, this view is based on the definition of chemical potential G as

G

θ
=

δF̃
δϕ

where F̃ is the modified form of the Ginzburg-Landau functional,

F̃(ϕ, θ) =
∫

Ω
(F̃ (ϕ, θ) +

1
2θ

µ(ϕ, θ)|∇ϕ|2)dv

and F̃ = F/θ. Hence the thermodynamic force is assumed to be propor-
tional to −δF̃/δϕ, which corresponds to letting −∇(G/θ) be (proportional
to) the driving force. Again two forms of evolution equations are established
according as non-conserving or conserving dynamics is considered. In both
cases, a functional of the Ginburg-Landau type turns out to decay in time
and this feature is viewed as a proof of thermodynamic consistency of the
models.

The approaches based on the rescaled Ginzburg-Landau functional as-
sume that the variational derivative δF̃/δϕ is (the opposite of) the force
which causes the evolution of ϕ. In our approach, thermodynamic restric-
tions (2.5) forces ϕ̇ to be proportional to Ξ. This in turn shows that Ξ in-
volves the free energy times 1/θ as is assumed by Alt and Pawlow through
the rescaled free energy.

From a general point of view, if we let ρ = 1 and ψ̂1 + ψ̂2 = F then Alt
and Pawlow equations in [3] follow as a special case of (3.5). In particular,
if ϕ is conserved then letting g = G/θ and m = l11 we recover the equations
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of [4] for non-isothermal phase separation are recovered provided only l12 =
l21 = 0.

4.4. Penrose-Fife model

A model elaborated by Penrose and Fife is based essentially on the re-
laxation law. A first version [30], in 1990, involves the entropy potential
instead of the Ginzburg-Landau free energy. Consistent with what is ex-
pected from the second law of thermodynamics, they prove that the value
of the entropy functional cannot decrease along solution paths. Next [31],
with the purpose of establishing a systematic connection with the standard
phase-field model, they review the scheme by starting from a suitable choice
of the free energy functional. The Penrose-Fife model [31] is based on the
following assumptions.
1) At the transition temperature θ0, the free energy takes the form

ψ(θ0, ϕ) =
1
4
(ϕ2 − 1)2.

2) The energy density e depends on θ and ϕ in the form

e(θ, ϕ) = θ + (−aϕ2 + bϕ + c),

where a, b and c are constants. The parameter b represents the latent heat.
Thermodynamic consistency is then taken as the condition

e = F − θFθ = −θ2∂(F/θ)/∂θ.

Hence, by integration, it follows that

F (θ, ϕ) =
θ

4θ0
(ϕ2 − 1)2 + (1 − θ

θ0
)(−aϕ2 + bϕ + c) − θ

θ0
ln(θ/θ0).

The evolution equation for ϕ is then taken as a Cahn-Allen equation, in
the rescaled form,

ϕ̇ = K
[
− 1

θ
Fϕ + κ∆ϕ

]
.

Substitution for F gives

ϕ̇ = α1[ϕ − ϕ3 + (1 − θ0/θ)(b − 2aϕ)] + α2∆ϕ, (4.4)

and the energy balance equation is written in the form

θ̇ + (−2aϕ + b)ϕ̇ = −∇ · (α3(θ)∇(1/θ)), (4.5)

where α1, α2 and α3 are constants.
Two comments are in order. First, the internal and the free energies

are restricted to the so-called bulk terms and hence the dependence on ∇ϕ
is not included. Consistency with thermodynamics is then meant as the
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requirement that the entropy η be related to the free energy F by the
classical relation η = −Fθ. Hence the internal energy is assumed to be
quadratic in ϕ whereas F is derived by integration. Secondly, the evolution
equation for the order parameter is not framed within thermodynamics. It
is assumed in the form of a relaxation law through a rescaled Ginzburg-
Landau functional. However, we point out that (4.5) and (4.4) are a special
case of the model in §3.1.

4.5. Caginalp and Fix models

Langer [25], Fix [16] and Caginalp [7] elaborated the so-called standard
phase-field model which applies when the order parameter ϕ is not con-
served. The internal energy is allowed to depend linearly on the phase-field
ϕ and the scaled temperature deviation ϑ = (θ − θc)/θc so that the energy
balance equation is taken in the form

cϑ̇ − λϕ̇ = κ∆θ + r. (4.6)

By means of a relaxation law derived from a free energy at a fixed temper-
ature (in which phase interfaces are modelled as surfaces of discontinuity),
the phase-field evolution is written in the form

αϕ̇ = ∆ϕ − βϕ(ϕ2 − 1)2 − λϑ. (4.7)

As first observed by Penrose and Fife [31], equations (4.6) and (4.7)
can be derived by linearizing (4.5) and (4.4), respectively, relative to ϑ
and ∇ϕ and selecting appropriate functions K, α1, α2, α3 and F . There are
remarks about the loss of thermodynamic consistency in that, because of
linearization in the temperature around the transition temperature, the
right-hand side is no longer a variational derivative (see, for instance, [31]
and [6], p. 172).

4.6. Fried-Gurtin model

The approach of Fried and Gurtin [18, 19] models the evolution of ϕ by
a modified heat equation supplemented by a Ginzburg-Landau equation.
Both papers are based on a systematic application of balance equations,
as is the case in continuum mechanics. Macroscopic forces are disregarded
and the new key idea is that the evolution is governed by microforces, say
a microstress vector ξ and a scalar microforce π. In differential form, they
are assumed to satisfy the balance equation

∇ · ξ + π = 0. (4.8)
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The balance of energy is modified by adding the contribution of ϕ̇ξ · n as
the expenditure of power per unit area with normal n. Hence the balance
of energy is written as

ė = −∇ · q + ∇ · (ϕ̇ξ)

whereas the second law inequality is taken in the standard form

η̇ + ∇ · (q/θ) ≥ 0.

It is worth remarking that the energy balance involves an extra energy flux
ϕ̇ξ whereas the energy balance for the whole domain Ω holds in the classical
form by virtue of the boundary condition ϕ̇ξ · n = 0 at ∂Ω. Upon exploit-
ing the consequences of the entropy inequality, linearizing the constitutive
equation for π and disregarding coupling terms, so that

π = −ψϕ(ϕ,∇ϕ) − β(ϕ,∇ϕ, ϕ̇)ϕ̇, ξ = ψ∇ϕ

use of (4.8) yields (see (2.11) of [18])

β(ϕ,∇ϕ, ϕ̇)ϕ̇ = ∇ · ψ∇ϕ − ψϕ. (4.9)

The result (4.9) closely resembles our conclusion about the evolution
equation. The similarity is in the right-hand side being in the form of a
variational derivative. Apart from the occurrence of ρ, the quantity Ξ in-
volves the potential ψ/θ. The presence of the factor 1/θ is a consequence of
the second law of thermodynamics through the non-zero entropy extra flux
k. In our opinion, a material with internal structure, like the model with
the microforces ξ and π, should involve an entropy flux different from q/θ.

4.7. Frémond model

Frémond [17] establishes a scheme for the phase change by having recourse
to a principle of virtual power. He considers interior forces (through the
stress tensor T , the interior microscopic energy B, and the microscopic
energy flux vector H) and expresses the corresponding power Wint in Ω as

Wint(V , δ) = −
∫

Ω
T · Ddv −

∫
Ω
(Bδ + H · ∇δ)dv

where v, δ are the macroscopic and microscopic virtual velocities. Similarly,
he expresses the virtual power Wext of exterior forces including the power
of the (scalar) volume and surface exterior sources of microscopic work, A
and a. Also he let the virtual power of acceleration forces take the form

Wacc(V , δ) =
∫

Ω
ρv̇ · V dv +

∫
Ω

ρ0ϕ̈δ dv
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where ρ0 is (proportional to) the density of microscopic links. The principle
of virtual power, namely

Wacc(V , δ) = Wint(V , δ) + Wext(V , δ)

for any vector field V ans scalar field δ, produces the equation of motion
and the evolution equation

ρ0ϕ̈ −∇ · H = A − B in Ω, H · n = a in ∂Ω. (4.10)

Compatibility with thermodynamics is then satisfied by letting the interior
production of entropy be positive and the interior forces be defined by a
pseudo-potential of dissipation. Equation (4.10) shows a large degree of
arbitrariness in terms of the fields H, A, B. The arbitrariness is mainly
due to the principle of virtual power, which is not considered in standard
thermodynamic approaches. Also, the fact that (4.10) is a second order
equation for the order parameter is a consequence of the assumption on
Wacc. In the approach of Frémond, as well as in that of Fried and Gurtin,
the (nonlinear) evolution equation for the phase-field is not in a variational
form. Also, both approaches are based on a modification of the standard
energy balance.

5. Conclusions

This paper provides a description of non-isothermal phase transitions and
phase separations through a phase-field model. The approach is based on
a general evolution equation (2.19) for the phase-field ϕ which is viewed as
an internal variable. Owing to the intrinsic nonlocality of the phase-field
model, the constitutive equations involve, among others, a dependence on
the gradient ∇ϕ and on the Laplacian ∆ϕ. Accordingly, the thermodynamic
framework consists of the standard balance law of continuum physics (no
internal structure), but the second law is stated in the form of a modified
Clausius-Duhem inequality where an extra flux of entropy, k, occurs. Com-
patibility with thermodynamics is meant as the identical validity of the
second law along any admissible process.

In simple models of continuum physics the entropy extra flux vanishes.
Here, instead, we find that k is nonzero and that its occurrence is related
to the dependence of the free energy on ∇ϕ. This in turn is consistent with
the feature that nonlocal theories result in k �= 0. The constitutive equa-
tion (2.5)4 for k is also consistent with the observation, made in different
approaches (cf. [3, 30]), that the fluxes are linear in ϕ̇. The whole scheme
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is found to be compatible with thermodynamics, subject to appropriate re-
strictions on the constitutive relations and on the evolution equation. The
natural condition (2.5)4 makes the Clausius-Duhem inequality to hold and
shows that the phase-field evolution is driven by the quantity Φ in (2.9).
In addition, this makes it apparent why the approach through the rescaled
functional provides the correct equations in non-isothermal conditions.

The main novelty of this approach is that the phase-field (or order
parameter) is regarded as an internal variable and that the corresponding
evolution equation, governed by Φ, is deduced by means of thermodynamic
arguments. The scheme is quite general and works in the non-conserved
phase-field models as well as in the conserved ones. Applications are given to
the description of the solid-fluid and vapor-liquid transition in water, in con-
nection with both thermally-induced and pressure-induced phase changes.
The detailed form of the free energy and of the evolution equations for the
temperature and the phase-field variable are given. Some simplified models
are deduced for transitions at constant pressure, thus allowing for a variable
mass density, as well as for transitions at constant temperature.
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