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Abstract. We discuss some recent results dealing with the existence of
bound states of the nonlinear Schrödinger-Poisson system{ −∆u + V (x)u + λK(x)φ(x)u = |u|p−1u,

−∆φ = K(x)u2,

as well as of the corresponding semiclassical limits. The proofs are based
upon Critical Point theory and Perturbation Methods.
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1. Introduction

In the last years there has been a great deal of work dealing with equations
arising in Quantum Mechanics studied by means of variational tools. In
this paper we will focus on the following class of systems on R

3, see [5],
{ −∆u + V (x)u + λK(x)φ(x)u = |u|p−1u,

−∆φ = K(x)u2.
(SP)

In (SP) the first equation is a nonlinear Schrödinger equation in which the
potential φ satisfies a nonlinear Poisson equation. For this reason, (SP) is
refereed to as a nonlinear Schrödinger-Poisson system.

Supported by M.U.R.S.T within the PRIN 2006 “Variational methods and nonlinear

differential equations”.
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Here and in the sequel 1 < p < 5, λ > 0 and we will assume that the
following conditions hold




V,K ∈ L∞(R3),
infR3 V (x) > 0,
K(x) ≥ 0.

(A)

The solutions (u, φ) will be searched in W 1,2(R3) ×D1,2(R3).
If K ≡ 0, (SP) becomes the nonlinear Schrödinger equation

−∆u + V (x)u = |u|p−1u, (NLS)

which has been broadly investigated, see e.g. the monograph [1] and ref-
erences therein. A natural strategy is to see which one, among the results
obtained on (NLS), can be extended to (SP).

First, in Section 3, we carry out this program by reporting some recent
results from [16] and [4], dealing with the existence of multiple solutions
of (SP) in the autonomous case, namely when, say, V (x) ≡ K(x) ≡ 1. We
shall see that for 2 < p < 5, (SP) possesses infinitely many pairs of radial
solutions, for all λ > 0. On the other hand, for 1 < p ≤ 2 the presence of
the Poisson equation modifies greatly the structure of the solution set of
(NLS) and (SP) has multiple solutions (but not infinitely many) for small
values of λ > 0, only.

The proofs are based on critical point theory, though not in a standard
manner. The main new difficulty which has to be overcome relies on the
fact that for 2 ≤ p < 3 the boundedness of the Palais-Smale sequences
cannot be proved directly, but requires an indirect approach, by means of
a suitable approximation procedure.

Section 4 deals with the semiclassical counterpart of (3.1), namely
{ −ε2∆u + V (x)u + K(x)φ(x)u = |u|p−1u,

−ε∆φ = K(x)u2.

The existence of spike-like solutions will be discussed, following the recent
paper [11]. The results extend the ones obtained for (NLS). Moreover, when
the potentials are radial, a general theorem dealing with semiclassical states
concentrating at a sphere can be proved. As a particular case, we find both
the results in [2] dealing with (NLS), i.e. when K ≡ 0, as well as the case
of Schrödinger-Poisson systems with V ≡ K ≡ 1, considered in [9, 17]. The
approach is based upon perturbation methods in critical point theory.
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Finally, in the last Section 5, we will prove some new results dealing
with the system{ −∆u + u + εK(x)φ(x)u = (1 + εh(x))|u|p−1u,

−∆φ = K(x)u2,

where ε is sufficiently small.
In the next Section we discuss the variational setting of (SP).

2. The variational setting

Hereafter, the Sobolev space E := W 1,2(R3) is endowed with the standard
norm

‖u‖2 =
∫

R3

(|∇u|2 + V (x)u2)dx,

and D1,2(R3) is the completion of C∞
0 (R3) with respect the Dirichlet norm

‖u‖2
D =

∫
R3

|∇u|2dx.

It is easy to reduce (SP) to a single equation with a non-local term. Actually,
since K is bounded and u ∈ Lq(R3) for all q ∈ [2, 6] then Ku2 ∈ L6/5(R3),
for all u ∈ E, and there holds (hereafter c, c1, c2 etc. denote positive con-
stants)

∫
R3

Ku2v dx ≤
(∫

R3

(Ku2)6/5dx

)5/6 (∫
R3

|v|6 dx

)1/6

≤ c

(∫
R3

(Ku2)6/5dx

)5/6

‖v‖D, ∀ v ∈ D1,2(R3).

Hence there exists a unique φ ∈ D1,2(R3) such that∫
R3

∇φ · ∇v dx =
∫

R3

Ku2v dx, ∀ v ∈ D1,2(R3). (2.1)

It follows that φ satisfies the Poisson equation

−∆φ = K(x)u2

and there holds

φ(x) =
∫

R3

K(y)u2(y)
|x − y| dy =

1
|x| ∗ Ku2.



260 A. Ambrosetti Vol. 76 (2008)

Moreover, φ ≥ 0 because K does and one has

‖φ‖D ≤ c1‖u‖2. (2.2)

Substituting φ in (SP), we are lead to the equation

−∆u+V (x)u+λK(x)
(

1
|x| ∗ Ku2

)
u = |u|p−1u, u ∈ W 1,2(R3). (2.3)

Remark 2.1. This equation with V and K positive constants arises, for
example, when one deals with the Hartree-Fock equation and makes a local
approximation of the exchange potential

∑
ui(x)

∫
R3

uiuj

|x − y|dy ≈ Q|u|p−1u.

In particular, the value p = 5/3 corresponds to the so called ”Slater cor-
rection”, which is frequently used in the Quantum Mechanics. See e.g.
[6, 14, 18].

We consider the functional Iλ : E 
→ R given by

Iλ(u) = 1
2‖u‖2 + λF (u) − 1

p + 1

∫
R3

|u|p+1dx

where

F (u) = 1
4

∫
R3

K(x)φ(x)u2(x)dx, φ(x) =
1
|x| ∗ Ku2.

Remark 2.2. Since K and φ are non-negative, then F (u) ≥ 0. Moreover,
the Hölder inequality, the Sobolev inequality ‖φξ‖L6 ≤ c1‖φξ‖D and (2.2)
imply

F (u) ≤ c2‖u‖2
L6/5‖φ‖L6 ≤ c3‖u‖4.

Therefore, Iλ is a well defined C1 functional and if u ∈ W 1,2(R3) is a critical
point of it, then the pair (u, φ), with φ = 1

|x| ∗ Ku2, is a classical solution
of (3.1).

3. The Autonomous Case

In this section we consider the system (3.1) when V and K are positive
constants, say V ≡ K ≡ 1. In such a case, we can look for radial solutions
working in the subspace Er of radial functions of E.
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Let us start by studying the geometry of Iλ. First of all, from the
fact that F (u) ≥ 0 (actually, F (u) > 0 in the present case) it follows
immediately that u = 0 is a strict local minimum of Iλ, ∀ p ∈ (1, 5), ∀λ ≥ 0.
Next, let us consider the behavior as ‖u‖ → ∞. Roughly, in the functional
Iλ there are two competing parts: the coercive functional F (u) and the
anti-coercive functional

∫ |u|p+1. As a consequence it follows that

• 1 < p < 2 =⇒ inf Iλ > −∞

• 3 < p < 5 =⇒ inf Iλ = −∞.

In order to handle the case in which 2 < p ≤ 3 let us consider the curve
t 
→ vt = t2u(t ·). Then

F (vt) = 1
4

∫
R3

∫
R3

v2
t (x)v2

t (y)
|x − y| dxdy = 1

4

∫
R3

∫
R3

t8u2(tx)u2(ty)
|x − y| dxdy

= 1
4

∫
R3

∫
R3

t3u2(x′)u2(y′)
|x′ − y′| dx′dy′ = t3F (u),

whence

Iλ(vt) =
t3

2

∫
R3

|∇u|2 +
t

2

∫
R3

u2 + λt3F (u) − t2p−1

p + 1

∫
R3

|u|p+1.

It follows that

• 2 < p ≤ 3 =⇒ inf Iλ = −∞.

If p = 2, we take the curve t 
→ avt = a t2u(t ·). Since F (vt) = 1
4 a4 t3F (u),

then

Iλ(avt) =
a2t3

2

∫
R3

|∇u|2 +
a2t

2

∫
R3

u2 + λa4t3F (u) − a3t3

3

∫
R3

|u|3.

Hence, taking a � 1 and λ ∼ 0 we get

• p = 2 and λ ∼ 0 =⇒ inf Iλ = −∞
Moreover, one could also show that

• p = 2 and λ ≥ 1
4 =⇒ inf Iλ = 0.

Let us now investigate the validity of the Palais-Smale condition (PS).
Since we are working in the radial space Er, (PS) holds provided the (PS)
sequences are bounded. This is easily verified if p ∈ (1, 2) ∪ [3, 5), while it
is not known if 2 ≤ p < 3.
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To overcome this problem, we extend an argument used in specific
cases in [19] and [13], see also [20].

Consider a Hilbert space E and Φµ : E → R a family of functionals in
the form

Φµ(u) = α(u) − µβ(u), µ > 0

where α ∈ C1 is coercive (that is, lim‖u‖→+∞ α(u) = +∞), β ∈ C1, β(u) ≥
0, and β, β′ map bounded sets into bounded sets.

Let F be a class of compact sets in E such that

(F .1). ∃K ⊂ E s.t. K ⊂ A ∀A ∈ F and supK Φµ(u) < cµ,
(F .2). For any homotopy η(t, x) such that η(t, x) = x for all x ∈ K,

there holds η(1, A) ∈ F , ∀ A ∈ F .

Setting
cµ := inf

A∈F
max
u∈A

Φµ(u),

it is easy to see that the map µ 
→ cµ is non-increasing and left-continuous.
Hence µ 
→ cµ is almost everywhere differentiable. Let J ⊂ (0,+∞) denote
the set of values of µ so that cµ is differentiable. The key point is the
following result.

Lemma 3.1. For any µ ∈ J there exists a bounded (PS) sequence at the
level cµ, that is, there exists a bounded sequence un ∈ E such that:

Φµ(un) → cµ, Φ′
µ(un) → 0.

Let us apply the preceding procedure in the case 2 < p < 3, taking
E = W 1,2

r (R3)

α(u) = αλ(u) = 1
2‖u‖2 + λF (u), β(u) =

1
p + 1

∫
R3

|u|p+1dx

and looking for the critical points of Iλ,µ = αλ(u) − µβ(u).
Let B the unit ball in E, S = ∂B. Since 2 < p < 3, from

Iλ,µ(t2ut) =
t3

2

∫
R3

|∇u|2dx+
t

2

∫
R3

u2dx+
λ t3

4
F (u)− µ t2p−1

p + 1

∫
R3

|u|p+1dx.

it follows that ∀ z ∈ S ∃! T = T (z) > 0 such that for µ = 1
2 there holds

Iλ, 1
2
(T 2zT ) = 0,

Iλ, 1
2
(t2zt) < 0, ∀ t > T (z),

Iλ, 1
2
(t2zt) > 0, ∀ t < T (z).
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For k ∈ N, let Ek be a k-dimensional subspaces such that Ek ⊂ Ek+1, set
Sk = S ∩ Ek and

Vk = {v ∈ E : v = t2zt, t ≥ 0, z ∈ Sk} ≈ Ek.

From the preceding considerations Tk := sup{T (z) : z ∈ Sk} < +∞ and
thus the set

Ak = {v ∈ E : v = t2zt, t ∈ [0, Tk], z ∈ Sk}
is compact (and symmetric). Furthermore, Tk ≥ T (z), ∀ z ∈ Sk implies

Iλ, 1
2
(v) ≤ 0, ∀ v ∈ ∂Ak.

Next, let us set

H = {g : E 
→ E odd homeomorphism s.t. g(v) = v, ∀ v ∈ ∂Ak, ∀ k ∈ N}
consider

Gk = {g(Ak) : g ∈ H}
and define

ck,µ = inf
A∈Gk

max{Iλ,µ(u) : u ∈ A}.
The class Gk can be taken as F , with K = ∂Ak. Actually,

Iλ,µ(v) ≤ Iλ, 1
2
(v) ≤ 0, ∀µ ∈ [12 , 1],∀ v ∈ ∂Ak.

Then Lemma 3.1 implies that for almost every µ ∈ [12 , 1] and all k ∈ N,
there is a bounded (PS) sequence for Iλ,µ at level ck,µ and this implies that
ck,µ are critical levels of Iλ,µ.

In order to find the Critical points of Iλ we take µn ↑ 1 and choose
un ∈ E such that Iλ,µn(un) = ck,µn , I ′λ,µn

(un) = 0, namely
∫

R3

[
1
2
|∇un|2 +

1
2
u2

n +
λ

4
φunu2

n − µn

p + 1
|un|p+1

]
dx = ck,µn (3.1)

and ∫
R3

[|∇un|2 + u2
n + λφunu2

n − µn|un|p+1
]
dx = 0. (3.2)

Moreover, we can take advantage from the fact that un is a sequence of
solutions of I ′λ,µn

(un) = 0. Actually, it has been shown in [8] that these un

satisfy the following Pohozaev type identity:∫
R3

[
1
2
|∇un|2 +

3
2
u2

n +
5λ
4

φunu2
n − 3µn

p + 1
|un|p+1

]
dx = 0. (3.3)
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Setting

An =
∫

R3

|∇un|2, Bn =
∫

R3

u2
n, Cn = λ

∫
R3

φunu2
n, Dn = µn

∫
R3

|un|p+1,

equations (3.1), (3.2), (3.3) become



1
2An + 1

2Bn + 1
4Cn − 1

p+1Dn = ck,µn ,

An + Bn + Cn − Dn = 0,
1
2An + 3

2Bn + 5
4Cn − 3

p+1Dn = 0.

Solving the above system, we get that

Bn =
(4 − 2p)An + ck,µn(5p − 7)

p − 1
.

Since ck,µn is bounded p > 2 and Bn > 0 then An ≤ c. Thus also Bn ≤ c
and hence ‖un‖2 = An + Bn is bounded.

Since we are working in the space of radial functions, we can now
conclude as usual: un → u, ck,µn → ck(= ck,1) and

Iλ(u) = ck, I ′λ(u) = 0.

Therefore, for every k ∈ N we have found a critical point uk of Iλ.
The final step consists in showing that cλ,k := Iλ(uk) → ∞ (let us point

out that we cannot carry out a ”Lusternik-Schnirelman” type argument).
For this we shall use a comparison argument. From

Iλ(u) ≥ I0(u), ∀u ∈ E,

it follows that cλ,k ≥ c0,k for all λ ≥ 0. Moreover, the arguments carried
out in [3] show that c0,k → ∞ and hence cλ,k → ∞.

The preceding arguments have been outlined for 2 < p < 3. The case
p ∈ [3, 5) can be handled in a more direct manner, by means of symmetric
versions of the mountain-pass theorem. When 1 < p < 2 a different ap-
proach is needed, to take into account the geometry of the corresponding
functionals. Finally, in the case p = 2 the geometry of Iλ is as for 1 < p < 2
while the lack of (PS) has to be overcome as for 2 < p < 3.

In conclusion we can state the following multiplicity results, proved in
[4], that extend previous theorems in [16].

Theorem 3.2. For any 2 < p < 5 and any λ > 0, Iλ has infinitely many
pairs of critical points ±uk, k ∈ N, such that Iλ(±uk) → +∞, as k → ∞.
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Theorem 3.3. If 1 < p < 2 then for any k ∈ N there exists Λk > 0 such that
for all λ ∈ (0,Λk), Iλ has at least k pairs of critical points ±uk,λ such that
Iλ(±uk,λ) > 0 and k pairs of critical points ±vk,λ such that Iλ(±vk,λ) < 0.
Moreover one has that Λk ≤ Λk−1 ≤ · · · ≤ Λ1 < 1

4 .

Theorem 3.4. If p = 2, for any k ∈ N there exists Λ′
k > 0 such that for

all λ ∈ (0,Λ′
k), Iλ has at least k pairs of critical points ±uk,λ such that

Iλ(±uk,λ) > 0. Moreover, Λ′
k ≤ Λ′

k−1 ≤ · · · ≤ Λ′
1 < 1

4 .

Remark 3.5. The preceding existence results are completed by pointing out
that for 1 < p ≤ 2 and λ ≥ 1

4 the only critical point of Iλ is u = 0.

Remark 3.6. It is clear that the same results hold if we consider (SP ) with
radial potentials V,K satisfying (A). Moreover, it is also possible to deal
with radial potentials which decay to zero at infinity in a suitable manner,
see [15].

Remark 3.7. If we use (3.2) and the Pohozaev identity (3.3), with p = 5
(critical exponent), µn ≡ 1 and un = u, we get, respectively,∫

R3

[|∇u|2 + u2 + λφuu2 − |u|6] dx = 0, (3.4)

and ∫
R3

[
1
2
|∇u|2 +

3
2
u2 +

5λ
4

φuu2 − 1
2
|u|6
]

dx = 0. (3.5)

From (3.4) we find∫
R3

|∇u|2dx = −
∫

R3

[
u2 + λφuu2 − |u|6] dx.

Substituting in (3.5) equation we deduce

4
∫

R3

u2dx = −3λ
∫

R3

φuu2dx.

Since λ ≥ 0 and φu ≥ 0, it follows that u = 0. This shows that in the case
of critical exponent, (SP ) has no non-trivial solution, for all λ ≥ 0, see [8].

4. Semiclassical states

An important feature of NLS equations as

−ε2∆u + V (x)u = |u|p−1u (4.1)
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is that there exist solutions concentrating at non-degenerate critical points
of the potential V . This kind of results can be extended, without any re-
striction on K, to systems like{ −ε2∆u + V (x)u + K(x)φu = |u|p−1u,

−∆φ = K(x)u2.
(SPε)

Theorem 4.1. [11] Let (A) holds and let x0 be a non-degenerate critical
point of V . Then (SPε) has for ε small, a solution uε such that

uε(x) ∼ Uλ

(
x − x0

ε

)
, λ2 = V (x0),

where Uλ is the positive radial solution of −∆u + λu = up, u ∈ W 1,2(R3).

On the other hand, the potential K plays a role when x0 is degenerate.
Suppose that ∃ an even integer k such that DjV (x0) = 0, ∀ j = 1, 2, ..., k−1
and DkV (x0)[ξ] =

∑
aiξ

k
i , with ai > 0 or < 0 for all i = 1, 2, 3. Further-

more, suppose that ∃ an even integer m such that DjK(x0) = 0, ∀ j =
1, 2, ...,m−1 and DmK(x0)[ξ] =

∑
biξ

m
i , with bi ≥ 0, (b1, b2, b3) �= (0, 0, 0).

Then the previous concentration result holds provided one makes suitable
assumptions on bi. Referring to [11] for complete results, we limit ourselves
to some specific examples:

• if k < 2m + 2, for all bi ≥ 0;
• if k = 2m + 2 and bi ≥ 0 are small;
• if k > 2m + 2 and (b1, b2, b3) = (1, δ, δ) with δ small.

Remark 4.2. If K ≡ 0 we recover the known results on (4.1). Moreover, if
V ≡ Const. > 0, concentration occurs, roughly, for almost every (b1, b2, b3).

When V is radial, solutions of (4.1) which concentrate at a sphere
of radius r = R has been proved in [2]. It is shown that for every non-
degenerate minimum or maximum of

M(r) = r2V θ(r), θ =
p + 3

2(p − 1)
,

there exists a radial solution of (4.1) with asymptotic profile

uε(r) ∼ Uλ

(
r − R

ε

)
, λ2 = V (R). (4.2)

In order to extend this result to Schrödiger-Poisson systems, let us the
system { −ε2∆u + V (|x|)u + K(|x|)φu = |u|p−1u,

−ε∆φ = K(|x|)u2,
(SP ′

ε)
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where V,K satisfy (A).

Theorem 4.3. [10] If R is a non-degenerate minimum or maximum of M =
r2V θ and K(R) = 0, then (SPε) has a radial solution uε concentrating at
the sphere of radius R, whose asymptotic profile is given by (4.2).

In particular, if K ≡ 0, we recover the result proved in [2].
If V ≡ K ≡ 1, solutions of (SPε) concentrating on the sphere of radius

R,

R = c
a

(1 + a)
5−p

2(p−1)

, a =
8(p − 1)
11 − 7p

, c =
∫

R3

U2dx,

has been established in [9, 17], provided 1 < p < 11
7 .

This turns out to be a specific case of the following result, proved
in [10], see also [12] for the necessary conditions. Referring to the afore-
mentioned papers for precise statements, let us give an idea of the results.
First of all, the radius R of the concentration is the possible solution of the
equation

a(r) = c rK(r)[V (r) + K(r)a(r)]γ , γ =
5 − p

2(p − 1)
, (�)

where

a(r) = − rV ′(r) + νV (r)
rK ′(r) + κK(r)

, ν =
4(p − 1)
p + 3

, κ =
7p − 11
2(p + 3)

.

Then, if some suitable non-degeneracy conditions are satisfied, then (SP ′
ε)

has a radial solution uε concentrating at r = R. Furthermore, the asymp-
totic profile of uε is given by

uε(r) ∼ Uλ

(
r − R

ε

)
, λ2 = V (R) + a(R)K(R).

The proof of this result relies on a perturbation approach which re-
quires the overcoming of several technical difficulties, and cannot be re-
ported here. Instead, we discuss a couple of specific cases, to illustrate the
nature of the results.

Example 1. If V ≡ K ≡ 1 the function a(r) becomes the constant a given
by

a = −ν

κ
=

8(p − 1)
11 − 7p

(> 0 ⇔ 1 < p <
11
7

).
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Then the equation (�) has always a solution given, for 1 < p < 11
7 , by

a = c r[1 + a]γ , i.e. R =
1
c

a

(1 + a)γ
.

Moreover, in this specific case, the non-degeneracy conditions are auto-
matically satisfied and we recover exactly the result found in [9, 16]. Let
us remark that the result sketched before is not confined to the case in
which V,K ≡ 1, but it can be clearly extended, for example, to potentials
V,K ≈ 1. Actually, if this is the case then the function a(r) ≈ a, (�) has
a solution close to the preceding R and the non-degeneracy conditions still
hold true.

Example 2. The purpose of this example is to show that there could be cases
in which there exist radial solutions of (SP ′

ε) concentrating at a sphere, even
if 11

7 ≤ p < 5.
Let us take p ≈ 5 and K ≡ 1, then

a(r) ∼ 2
3
(2V (r) + rV ′(r))

and (�) becomes
2V (r) + rV ′(r) = c r, c > 0.

If this equation has a solution r = R, the non-degeneracy conditions referred
to in the preceding discussion become merely

V ′′(R) �= 3c
R

+
6V (R)

R2
.

If this condition holds, then there exists a radial solution of (SP ′
ε) concen-

trating at r = R.

5. The Non-Autonomous Case: Perturbation Results

Here we consider the following Schrödinger-Poisson system{ −∆u + u + εK(x)φ(x)u = (1 + εh(x))|u|p−1u,
−∆φ = K(x)u2,

(SPε)

where ε > 0 is sufficiently small. We shall make the following assumptions
on K and h:

K > 0, K ∈ L2(R3), (K)

h ∈ L6/(5−p)(R3). (h)
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Remark 5.1. If K holds we still have that Ku2 ∈ L6/5(R3) for all u ∈
E and hence the discussion about the solvability of the Poisson equation
−∆φ = Ku2 carried out in Section 2, as well as the variational setting, can
be repeated without changes.

The corresponding Euler functional Iε is given by

Iε(u) = I0(u) + εF (u) − εG(u),

where

I0(u) = 1
2‖u‖2 − 1

p + 1

∫
R3

|u|p+1dx

and

G(u) =
1

p + 1

∫
R3

h(x)|u|p+1dx.

For ε = 0 the unperturbed functional I0 is translation invariant and has
the following 3D-manifold of critical points

Z = {Uξ(x) := U(x − ξ) : ξ ∈ R
3},

where U is the positive radially symmetric solution of

−∆u + u = up, u ∈ Er.

It is well known that Z is non-degenerate, in the sense that the KerI ′′0 (z)
coincides with the tangent space TzZ, for all z ∈ Z, cfr. [1, Lemma 4.1].
Then, according to the abstract Theorem 2.16 of [1], to find a critical point
of Iε, for ε � 1, it suffices to find a strict maximum or minimum of

Γ(ξ) = F (Uξ) − G(Uξ).

In order to study the behavior of Γ as |ξ| → ∞ we will use the integrability
conditions on K and h.

Lemma 5.2. Suppose that (K) and (h) hold. Then

lim
|ξ|→∞

Γ(ξ) = 0.

Proof. Let φξ be the solution of (2.1) with u = Uξ. Then

‖φξ‖2
D =

∫
R3

KU2
ξ φξdx.

Since U(x) ∼ e−|x| as |x| → ∞, and using the Hölder inequality,

‖φξ‖2
D ≤ ‖φξ‖L6

(∫
R3

K6/5U
12/5
ξ dx

)5/6

.
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This and ‖φξ‖L6 ≤ c1‖φξ‖D yield

‖φξ‖L6 ≤ c1

(∫
R3

K6/5U
12/5
ξ dx

)5/6

. (5.1)

Then

F (Uξ) = 1
4

∫
R3

K(x)φξ(x)U2
ξ (x)dx ≤ c2‖φξ‖L6

(∫
R3

K6/5U
12/5
ξ dx

)5/6

,

and (5.1) implies

F (Uξ) ≤ c3

(∫
R3

K6/5U
12/5
ξ dx

)5/3

. (5.2)

Next, let us show that
∫

R3 K6/5U
12/5
ξ dx → 0 as |ξ| → ∞. For R > 0, let us

first evaluate
∫
|x|>R

K6/5U
12/5
ξ dx ≤

(∫
|x|>R

K2dx

)3/5(∫
|x|>R

U6
ξ dx

)2/5

≤
(∫

|x|>R
K2dx

)3/5(∫
R3

U6
ξ dx

)2/5

≤ c4

(∫
|x|>R

K2dx

)3/5

.

Using (K) we infer that, for any δ > 0, there exists R > 0 such that∫
|x|>R

K6/5U
12/5
ξ dx ≤ δ. (5.3)

Next, one has

∫
|x|<R

K6/5U
12/5
ξ dx ≤

(∫
|x|<R

K2dx

)3/5(∫
|x|<R

U6
ξ dx

)2/5

≤ c5

(∫
|x+ξ|<R

U6dx

)2/5

.

Since U decays exponentially to zero as |x| → ∞, it follows that

lim
|ξ|→∞

∫
|x|<R

K6/5U
12/5
ξ dx = 0.
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This and (5.3) imply that
∫

R3 K6/5U
12/5
ξ dx → 0 as |ξ| → ∞, as claimed.

Finally, since F (u) > 0, see Remark 2.2, and using (5.2), we infer that
F (Uξ) → 0 as |ξ| → ∞.

Similarly, using (h), we find that for all δ > 0 there exists R > 0 such
that
∫
|x|>R

hUp+1
ξ dx ≤

(∫
|x|>R

h6/(5−p)dx

)(5−p)/6(∫
|x|>R

U6
ξ dx

)(p+1)/6

≤ c6

(∫
|x|>R

h6/(5−p)dx

)(5−p)/6

< δ.

Furthermore,

∫
|x|<R

hUp+1
ξ dx ≤

(∫
|x|<R

h6/(5−p)dx

)(5−p)/6(∫
|x+ξ|<R

U6dx

)(p+1)/6

≤ c7

(∫
|x+ξ|<R

U6dx

)(p+1)/6

= o(1), as |ξ| → ∞.

It follows that also G(Uξ) → 0 as |ξ| → ∞ and hence Γ(ξ) = F (Uξ) +
G(Uξ) → 0 as |ξ| → ∞ proving the lemma. �

Lemma 5.2 implies that Γ has a strict maximum or a strict minimum,
unless Γ(ξ) ≡ 0. The simplest way to rule out this possibility, is to require
that, say, Γ(0) �= 0. Since

Γ(0) = F (U) − G(U)

= 1
4

∫
R3

∫
R3

K(x)K(y)
U2(x)U2(y)

|x − y| dxdy − 1
p+1

∫
R3

h(x)Up+1(x)dx,

we get the following existence result

Theorem 5.3. Let (K) and (h) hold and suppose that

1
4

∫
R3

∫
R3

K(x)K(y)
U2(x)U2(y)

|x − y| dxdy �= 1
p+1

∫
R3

h(x)Up+1(x)dx. (5.4)

Then for all ε sufficiently small, (SPε) has at least one solution.

Proof. By the general theory, see [1, Theorem 2.16], it follows that any
strict maximum or minimum of Γ gives rise to a critical point of Iε and
hence to a solution of (SPε). �
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Corollary 5.4. Let (K) and (h) hold. If
∫

R3 h(x)Up+1(x)dx ≤ 0, then for
all ε sufficiently small, (SPε) has at least one solution.

Proof. It suffices to point out that K > 0 and
∫

R3 h(x)Up+1(x)dx ≤ 0
immediately imply that (5.4) holds. �

We conclude this section with a result in which we replace (5.4) with
an asymptotic assumption on the sign of h. Precisely, we will assume that

∃ρ > 0 : h(x) < 0, ∀ |x| ≥ ρ. (h′)

Theorem 5.5. Let 3 < p < 5, let (h) and (h′) hold and suppose that K is
continuous and satisfies (K). Then for all ε sufficiently small, (SPε) has
at least one solution.

Proof. As before, we need to consider

Γ(ξ) = F (Uξ) − G(Uξ).

Let us evaluate F (Uξ) and G(Uξ) separately.
Since K > 0, we get for any R > 0,

F (Uξ) = 1
4

∫
R3

∫
R3

K(x)K(y)
U2

ξ (x)U2
ξ (y)

|x − y| dxdy

≥ 1
4

∫
|x|<R

∫
|y|<R

K(x)K(y)
U2

ξ (x)U2
ξ (y)

|x − y| dxdy

≥ 1
4

∫
|x|<R

∫
|y|<R

K(x)K(y)
|x − y| dxdy · min

|x|<R
U4(x − ξ).

Since K is continuous and positive, there exists CR > 0 such that

F (Uξ) ≥ CR · α(ξ), (5.5)

where
α(ξ) =: min

|x|<R
U4(x − ξ) ∼ e−4|ξ|, as |ξ| → ∞.

Next, let h+(x) = max{h(x), 0}. Using (h′) we find∫
R3

h(x)Up+1
ξ (x)dx ≤

∫
|x|<ρ

h+(x)Up+1(x − ξ)dx ≤ cρ · β(ξ) (5.6)

where cρ ≥ 0 and

β(ξ) := max
|x|<ρ

Up+1(x − ξ) ∼ e−(p+1)|ξ|, as |ξ| → ∞.
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From (5.6) and (5.5) we infer

Γ(ξ) = F (Uξ) − G(Uξ) ≥ CR · α(ξ) − cρ · β(ξ).

Moreover,
α(ξ) − β(ξ) ∼ e−(p−3)|ξ|, as |ξ| → ∞.

Then, p > 3 and CR > 0 imply that Γ(ξ) > 0 provided |ξ| � 1. This shows
that Γ(ξ) �≡ 0 and the conclusion follows as before. �
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