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On the Multiplicity of Zeroes of
Polynomials with Quaternionic
Coefficients
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Abstract. Regular polynomials with quaternionic coefficients admit only
isolated zeroes and spherical zeroes. In this paper we prove a factor-
ization theorem for such polynomials. Specifically, we show that every
regular polynomial can be written as a product of degree one binomials
and special second degree polynomials with real coefficients. The degree
one binomials are determined (but not uniquely) by the knowledge of
the isolated zeroes of the original polynomial, while the second degree
factors are uniquely determined by the spherical zeroes. We also show
that the number of zeroes of a polynomial, counted with their multiplic-
ity as defined in this paper, equals the degree of the polynomial. While
some of these results are known in the general setting of an arbitrary
division ring, our proofs are based on the theory of regular functions of
a quaternionic variable, and as such they are elementary in nature and
offer explicit constructions in the quaternionic setting.

1. Introduction

Let H denote the skew field of real quaternions. Its elements are of the form
q = x0 + ix1 + jx2 + kx3 where the xl are real, and i, j, k, are imaginary
units (i.e. their square equals −1) such that ij = −ji = k, jk = −kj = i,
and ki = −ik = j. Note that if we denote by S the 2-dimensional sphere
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of imaginary units of H, i.e. S = {q ∈ H : q2 = −1}, then every non-
real quaternion q can be written in a unique way as q = x + yI, with
I ∈ S and x, y ∈ R, y > 0. We will refer to x = Re(q) as the real part
of q and y = Im(q) as the imaginary part of q. Quite recently, [2], [3], we
developed a new theory of regularity for functions of a quaternionic variable.
In those papers we begin the study of the structure of the zero-set of regular
functions, and in particular of regular polynomials, i.e. polynomials of the
form

f(q) =
n∑

i=0

qiai

with ai ∈ H. We prove that these are the only polynomials to satisfy the
regularity conditions, and therefore their behavior resembles very closely
that of holomorphic functions of a complex variable. In what follows, we
will simply say polynomials when referring to regular polynomials. Subse-
quent papers, [1], [4], deepened our understanding of the structure of such
polynomials. To begin with, we recall that the product of two regular func-
tions is not regular in general. So, for example, even the simple product
(q − α)(q − β) = q2 − αq − qβ + αβ is not regular when α is not real.
Thus, in accordance with the theory of polynomials over skew-fields, one
defines a different product (we will use the symbol ∗ to denote such a prod-
uct) which guarantees that the product of regular functions is regular. For
polynomials, for example, this product is defined as follows:

Definition 1.1. Let f(q) =
∑n

i=0 qiai and g(q) =
∑m

j=0 qjbj be two poly-
nomials. We define the regular product of f and g as the polynomial
f ∗ g(q) =

∑mn
k=0 qkck, where ck =

∑k
i=0 aibk−i for all k.

Remark 1.2. Note that this definition, see e.g. [5], has the effect that mul-
tiplication of polynomials is performed as if the coefficients were chosen in
a commutative field; as a consequence, the resulting polynomial is still a
regular polynomial with all the coefficients on the right of the powers.

To understand the flavor of this paper, we will begin by analyzing three
simple examples which, however, contain all the features which differenti-
ate the theory of polynomials in H from the standard theory of complex
polynomials.

Example 1.3. Consider the polynomial P1(q) = (q−α)∗(q−β) = q2−q(α+
β) + αβ, where α and β are non-real quaternions with Re(α) �= Re(β) or
|Im(α)| �= |Im(β)|. It is immediate to verify, by direct substitution, that α
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is a solution of P1(q) = 0, while β is not a root of the polynomial. In fact,
one can prove (see Theorem 1.6 below), that P1 has a second root given
by (β − α)β(β − α)−1. Thus, as one would expect, the polynomial has two
roots (and in fact only two roots), though they are not what one would
expect from a first look at the polynomial (this is a consequence of the fact
that the valuation is not a homomorphism of rings).

Example 1.4. Consider the polynomial P2(q) = (q − α) ∗ (q − α) = q2 −
q(2Re(α)) + |α|2. In this case α is called a spherical root, see [3], and it is
easy to verify that every point on the 2−sphere Sα = Re(α) + Im(α)S is a
root for P2. More precisely we will say that α is a generator of the spherical
root Sα.

Example 1.5. Consider now the polynomial P3(q) = (q − α) ∗ (q − β) =
q2 − q(α + β) + αβ, where α and β are non-real quaternions with β ∈ Sα,
and β �= α. In this case, as it is shown in [1], the only root of the polynomial
P3 is α.

We note that these three examples exhibit a behavior that is distinc-
tively different from the one we are used to in the complex case. To begin
with, even when the polynomial is factored as a ∗ product of monomials,
we cannot guarantee that each monomial contributes a zero. Even in the
case of P1, when in fact both monomials contribute a zero, the contribution
of the second monomial depends explicitly from the first monomial. This
is a direct consequence of Theorem 3.3 in [1], which we repeat here for the
sake of completeness (but see also [5] for this same statement in the case
of polynomials).

Theorem 1.6 (Zeroes of a regular product for power series). Let f, g be
given quaternionic power series with radii greater than R and let p ∈
B(0, R). Then f ∗ g(p) = 0 if and only if f(p) = 0 or f(p) �= 0 and
g(f(p)−1pf(p)) = 0.

The second fundamental difference, which was already clarified in The-
orem 5.1 of [3], is the fact that some polynomials admit spherical zeroes,
i.e. entire 2−spheres of the form x + yS for some real values x, y.

Finally, we come to the peculiarity described by Example 1.5. In this
case, the polynomial P3 is a polynomial of degree two, and therefore one
would expect either two solutions, or at least one solution with multiplicity
two. In some earlier works, [1], the multiplicity of a root α of a quaternionic
polynomial P (q) was defined (in analogy with what one does in the complex
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case) as the largest n for which P (q) can be written as P (q) = (q−α)∗(q−
α)∗ · · · ∗ (q−α)∗R(q) = (q−α)∗n ∗R(q), for some polynomial R(q). Under
this definition, it is therefore clear that Example 1.5 shows that the degree
of a polynomial can exceed the sum of the multiplicities of its roots, see [1].
This is not surprising since, as pointed out in [6], the problem of defining
a good notion of multiplicity for zeroes of quaternionic polynomials is a
rather complicated question.

In this paper, we tackle the problem of expressing a polynomial with-
out spherical zeroes as a ∗ product of monomials, and we analyze the re-
lationship between these monomials and the zeroes of the polynomial (the
addition of spherical roots does not alter significantly the problem). More
specifically, given a polynomial and its roots, we show how to construct a
factorization in monomials; conversely we will also show how to find the
roots of a polynomial if we have one of its factorizations (note that in the
complex case, this is clearly a trivial problem: not so in the quaternionic
case). These problems were only partially discussed in [1] and in [4]. In this
paper, we provide an explicit algorithm that produces the required factor-
ization. In the process, a new natural definition of multiplicity emerges, and
we will be able to show that the sum of the multiplicities of the zeroes of
a polynomial coincides with its degree. We note that some of these results
(specifically the factorization for general polynomials) are a consequence of
classical general results on division algebras due to Wedderburn (see [8]).
Nevertheless, our approach is different and interesting because it is elemen-
tary in nature, and based on our new theory of regular functions. Moreover,
the results we obtain are quite explicit, and at least in some cases (see for
example Proposition 2.5) offer a new perspective on how to deal with the
uniqueness of factorization, when such uniqueness is available.
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2. Factorization and multiplicity of roots

We begin this section by stating and proving our factorization theorem.
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Theorem 2.1. Let P (q) be a regular polynomial of degree m. Then there
exist p,m1, . . . ,mp ∈ N, and w1, . . . , wp ∈ H, generators of the spherical
roots of P , so that

P (q) = (q2−2qRe(w1)+ |w1|2)m1 · · · (q2−2qRe(wp)+ |wp|2)mpQ(q), (2.1)

where Re(wi) denotes the real part of wi and Q is a regular polynomial
with coefficients in H having only non-spherical zeroes. Moreover, if n =
m − 2(m1 + · · · + mp) there exist a constant c ∈ H, t distinct 2−spheres
S1 = x1 +y1S, . . . , St = xt +ytS, t integers n1, . . . , nt with n1+ · · ·+nt = n,
and (for any i = 1, . . . , t) ni quaternions αij ∈ Si, j = 1, . . . , ni, such that

Q(q) = [Π∗t
i=1Π

∗ni
j=1(q − αij)]c. (2.2)

Proof. The first part of the theorem, namely the decomposition (2.1), is
Theorem 3.4 in [4]. Thus we only have to prove the decomposition for the
quaternionic polynomial Q which has no spherical roots. We can assume Q
to be a monic polynomial. If not, there is a constant c, coefficient of the
highest degree term, and the process below must be preceded by multipli-
cation by c−1 and then followed by multiplication by c. By the fundamental
theorem of algebra for quaternionic polynomials, see [4], if deg(Q) = n > 0,
there is at least one root, say γ1. Let us add the root γ1 to the polynomial
Q(q); this can be accomplished by a simple multiplication and we can now
consider the new polynomial

Q̃(q) = Q(q) ∗ [q − Q(γ1)−1γ1Q(γ1)].

The fact that Q̃(γ1) = 0 is an immediate consequence of Theorem 1.6. We
now note that Q̃(q) has a spherical zero on Sγ1 because it has two roots
(γ1 and γ1) on that sphere (see [3]). Thus, by Theorem 3.4 in [4], one can
factor a spherical root

q2 − 2qRe(γ1) + |γ1|2,
and therefore obtain a new polynomial

Q11(q) = Q(q) ∗ q − Q(γ1)−1γ1Q(γ1)
q2 − 2qRe(γ1) + |γ1|2 .

We set δ11 = Q(γ1)−1γ1Q(γ1) and we note that δ11 ∈ Sγ1 . By repeating
this same procedure for Q11, if Q11(γ1) = 0, we obtain

Q12(q) = Q11(q) ∗ q − Q11(γ1)−1γ1Q11(γ1)
q2 − 2qRe(γ1) + |γ1|2 ,
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and we set δ12 = Q11(γ1)−1γ1Q11(γ1). We now continue for n1 steps, gener-
ating the quaternion δ1j at step j, until we finally obtain that Q1n1(γ1) �= 0.
If the degree of Q1n1 is still positive, we can find a new isolated root γ2 /∈ Sγ1

(since γ1 is an isolated root), and we repeat the process once again. Since at
each step we decrease the degree of the polynomial, the process necessarily
ends after a finite number of steps. We therefore obtain that

Q(q) ∗ Π∗t
i=1Π

∗ni
j=1

q − δij

q2 − 2qRe(γi) + |γi|2
is a constant c ∈ H. To conclude the proof we simply multiply this expres-
sion on the right by

Π∗t
i=1Π

∗ni
j=1(q − δt−i+1,ni−j+1).

This immediately gives the result with αij = δt−i+1,ni−j+1. �

Note that, unlike what happens in the complex case, the factorization
which we have just described is not unique. It strictly depends on the order
in which the points αij are taken. What is unique in the factorization is the
set of spheres, as well as the numbers nt. To illustrate this phenomenon,
we first recall a result from [1] (but see also [5]).

Theorem 2.2. Let f(q) = (q − a) ∗ (q − b) with a and b lying on different
2−spheres. Then f(q) = (q − b′) ∗ (q − a′) if and only if a′ = cac−1 and
b′ = cbc−1 for c = b − a �= 0.

Using this result, it is easy to show that the polynomial P (q) = (q−I)∗
(q−2J) can also be factored as P (q) = (q− 8I+6J

5 )∗ (q− 4J−3I
5 ). Note that

this different factorization still has one representative from the sphere S,
and one from the sphere 2S. This example also shows (as we would expect)
that the quaternions αij are not, in general, roots of the polynomial. In this
case, for example, I is a root, and so is 8I+6J

5 , while neither 2J nor 4J−3I
5

are roots of the polynomial P.

For the purpose of the next theorem, we apply our factorization result
to the polynomial Q in the previous theorem, and we reindex the quater-
nions αij which appear in its factorization in lexicographical order so to
have a single-index sequence βk for k = 1, . . . , n, so that the factorization
can now be written as

Q(q) = Π∗n
k=1(q − βk).

A repeated application of Theorem 2.2 immediately demonstrates the next
result.



Vol. 76 (2008) On the Multiplicity of Zeroes of Polynomials. . . 21

Theorem 2.3. Let Q(q) be a regular polynomial without spherical zeroes,
and let

Q(q) = Π∗n
k=1(q − βk)

be one of its factorizations. Then the roots of Q can be obtained from the
quaternions βk as follows: β1 is a root, β2 is not a root, but it yields the
root β

(1)
2 = (β2 − β1)β2(β2 − β1)−1. In general if we set, for r = 1, . . . , n

and j = 1, . . . , r − 1,

β(j)
r = (β(j−1)

r − βr−j)β(j−1)
r (β(j−1)

r − βr−j)−1

we obtain that the roots of Q are given by

β(r−1)
r = (β(r−2)

r − β1)β(r−2)
r (β(r−2)

r − β1)−1.

Our final result tells us how to build the factorization if we know
the roots of the polynomial. To do so, we need to introduce the notion of
multiplicity of roots. To explore attentively some aspects of the proof of
Theorem 2.1, which will lead us to the definition of multiplicity, we will
study in detail a few features of the simple polynomial with quaternionic
coefficients

P (q) = (q − α1) ∗ (q − α2) ∗ · · · ∗ (q − αm) (2.3)

where αi ∈ Sα1 for all i = 1, . . . ,m and where αi+1 �= αi for i = 1, . . . ,m−1.
To begin with, the following (surprising) technical lemma is needed.

Lemma 2.4. For any two quaternions α �= β belonging to a same sphere Sα,
we have

(β − α)β(β − α)−1 = α = (β − α)−1β(β − α) (2.4)

Proof. If β ∈ Sα, then β must be a zero of the polynomial

q2 − 2Re(α)q + |α|2 = q2 −αq −αq + αα = (q −α)[q − (q − α)−1α(q −α)],

which defines the sphere Sα. Thus

(β − α)[β − (β − α)−1α(β − α)] = 0

i.e.
(β − α)β(β − α)−1 = α.

Since the following equality holds

q2 − 2Re(α)q + |α|2 = q2 − qα− qᾱ+ αᾱ =
[
q − (q − α)ᾱ(q − α)−1

]
(q−α)

we also get [
β − (β − α)ᾱ(β − α)−1

]
(β − α) = 0
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and hence
(β − α)−1β(β − α) = ᾱ

which completes the proof. �
The polynomial (2.3) has several nice features, as the following state-

ments explain:

Proposition 2.5. The polynomial with quaternionic coefficients

P (q) = (q − α1) ∗ (q − α2) ∗ · · · ∗ (q − αm) (2.5)

where αi ∈ Sα1 for all i = 1, . . . ,m and where αi+1 �= αi for i = 1, . . . ,m−1,
has a unique root, equal to α1. Moreover the factorization (2.5) is the only
factorization of the polynomial P (q). Finally the following equality holds

P (q)∗ (q − [P (α1)−1]α1[P (α1)])
q2 − 2qRe(α1) + |α1|2 = (q−α1)∗(q−α2)∗· · ·∗(q−αm−1) (2.6)

Proof. We will prove the first two assertions by induction on the number
m of terms of the factorization. If we set f(q) = (q − α1) and g(q) =
(q − α2) ∗ · · · ∗ (q − αm), then Theorem 1.6 establishes that P (α1) = 0.
Theorem 1.6 establishes also that β �= α1 is a root of P (q) if and only if
f(β)−1βf(β) = (β −α1)−1β(β −α1) ∈ Sβ is a root of g(q), i.e., by Lemma
2.4, if and only if α1 is a root of g(q) = (q − α2) ∗ · · · ∗ (q − αm). Since we
have that α2 �= α1, the induction hypothesis leads to the conclusion that
no β �= α1 can be a root of P (q).
Suppose now that

P (q) = (q−α1)∗ (q −α2)∗ · · · ∗ (q−αm) = (q−α′
1)∗ (q −α′

2) · · · ∗ (q−α′
m)

are two factorizations of P (q). The fact that α1 is the only root of P (q)
implies that α′

1 = α1, which directly yields the equality

(q − α2) ∗ · · · ∗ (q − αm) = (q − α′
2) · · · ∗ (q − α′

m)

and, by the induction hypothesis, the uniqueness of the factorization fol-
lows.

To prove equality (2.6), notice at first that Theorem 1.6 and the fact
that α1 is the only root of P (q) imply that P (q)∗ (q− [P (α1)]−1α1[P (α1)])
has two roots on Sα1 , namely α1 and α1. The first assertion of this same
theorem now forces the equality [P (α1)]−1α1[P (α1)] = αm. Therefore

P (q)∗(q− [P (α1)]−1α1[P (α1)]) = (q−α1)∗(q−α2)∗· · ·∗(q−αm)∗(q−αm)

= (q − α1) ∗ (q − α2) ∗ · · · ∗ (q − αm−1)(q2 − 2qRe(αm) + |αm|2).
Since αm ∈ Sα1 , the last assertion of our statement follows. �
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The equality (2.6) means, roughly speaking, that we can “extract” m

times the root α1 from the polynomial P (q). This explains the meaning of
the following

Definition 2.6. Let P (q) be a polynomial with quaternionic coefficients. If
x+yS is a spherical root of P (q), its multiplicity is defined as two times the
largest integer m for which it is possible to factor (q2 − 2qx + (x2 + y2))m

from P (q). On the other hand, we say that α ∈ H has multiplicity k as
an (isolated) root for P (q) if, in the factorization (2.2), there are exactly k
quaternions αij which lie on the sphere Sα.

Note that in the case of isolated zeroes, this definition does not imply
that one can factor (q − α)∗j , and therefore this definition is essentially
different from the one suggested in [1].

Remark 2.7. Our definition of multiplicity for roots of a polynomial with
quaternionic coefficients reduces to the classical definition when applied to
the case of a complex polynomial. In fact the sphere of imaginary units
of C reduces to the set {i,−i}, and hence for any complex number α the
sphere Sα is the set {α,α}. Therefore, given a complex polynomial P (z),
a spherical root of P (z) consists of a couple {w,w} of roots of P (z). If,
according to Definition 2.6, the spherical root {w,w} of P (z) has mul-
tiplicity 2s and w has multiplicity r as an isolated root of P (z), then
w will have classical multiplicity s and w will have classical multiplic-
ity r + s. Notice that in the complex case the simple polynomial (2.5)
P (q) = (q−α1)∗(q−α2)∗· · · ∗(q−αm) (where αi ∈ Sα1 for all i = 1, . . . ,m
and where αi+1 �= αi for i = 1, . . . ,m − 1) reduces to the classical degree
m binomial (q − α1)m.

We end the paper with the announced result.

Theorem 2.8. The family of all regular polynomials with quaternionic coef-
ficients with assigned spherical roots x1 + y1S, . . . , xp + ypS with multiplici-
ties 2m1, . . . , 2mp, and assigned isolated roots γ1, . . . , γt with multiplicities
n1, . . . , nt consists of all polynomials P which can be written as

P (q) = [q2 − 2qx1 + (x2
1 + y2

1)]
m1 · · · [q2 − 2qxp + (x2

p + y2
p)]

mpQ(q)c (2.7)

with
Q(q) = Π∗t

i=1Π
∗ni
j=1(q − αij) = Π∗t

i=1Qi(q)

where c ∈ H is an arbitrary non-zero constant and where α11 = γ1, the
quaternions α1j are arbitrarily chosen in Sγ1 for j = 2, . . . , n1 in such a
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way that α1j+1 �= α1j (for j = 1, . . . , n1−1), and in general, for i = 2, . . . , t,

αi1 = [(Π∗(i−1)
k=1 Qk)(γi)]−1γi[(Π

∗(i−1)
k=1 Qk)(γi)]

while the remaining αij are arbitrarily chosen in Sγi , for j = 2, . . . , ni in
such a way that αij+1 �= αij (for j = 1, . . . , ni − 1)

Proof. The fact that every polynomial with the assigned roots can be rep-
resented in the form (2.7) is an immediate consequence of the proof of
Theorem 2.1. Conversely, the fact that if a polynomial can be written as
in (2.7) then it has the required zeroes and multiplicities, is an immediate
consequence of Theorem 1.6 and of Proposition 2.5. �
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