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A Survey of the Selberg Class of
L-Functions, Part I

Alberto Perelli

This is the first part of a survey of the axiomatic class of L-functions
introduced by Selberg [32]. Our aim is to give a rather complete overview
of the results, conjectures and problems which are related to the Selberg
class. Apart from very few exceptions, we do not give proofs of the results.
However, we provide very brief indications of the arguments, as well as mo-
tivations for conjectures and problems. While the conjectures are generally
expected to be difficult, the level of the problems is not at all homogeneous:
some of them should not be difficult, while others are probably very hard.

Of course, this survey benefited from the previous surveys by Kaczo-
rowski-Perelli [15] and Kaczorowski [11]. It is my pleasure to thank Jurek
Kaczorowski for his help and suggestions, and for a careful reading of the
manuscript. My sincere thanks go to Giuseppe Molteni as well, who went
through the manuscript and suggested several improvements. Further, I
wish to thank Alessandro Zaccagnini for pointing out several misprints.

The contents of the entire survey is as follows; part I contains the first
four sections.

1. Classical L-functions
2. What is an L-function?
3. Basic theory of the Selberg class
4. Invariants
5. Linear and non-linear twists
6. Degree 1 ≤ d < 2
7. Independence
8. Countability and rigidity
9. Polynomial Euler products
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10. Analytic complexity
11. Sums of coefficients
12. Miscellanea

1. Classical L-functions

The first example of a complex variable L-function is the famous Riemann
zeta function ζ(s), introduced by Riemann in 1859 and defined for s = σ+it
with σ > 1 by the absolutely convergent Dirichlet series

ζ(s) =
∞∑

n=1

1
ns
.

The Riemann zeta function was introduced to study the distribution of
prime numbers, and in particular to detect the asymptotic behaviour as
x→ ∞ of the prime numbers counting function

π(x) =
∑

p≤x

1.

The basic connection between ζ(s) and the primes is given by the Euler
product

ζ(s) =
∏

p

(
1 − 1

ps

)−1
σ > 1,

a simple but very interesting identity since the primes appear explicitly
only on the right hand side. Thanks to the Euler product, the relation
between ζ(s) and π(x) can be made explicit by a classical Fourier transform
argument, thus getting

π(x) log x ∼ 1
2πi

∫ 2+i∞

2−i∞
−ζ

′

ζ
(s)

xs

s
ds. (1.1)

Clearly, in order to deduce the asymptotic behaviour of π(x) from (1.1), we
need to know some analytic properties of − ζ′

ζ (s). In particular, we require

some information on the polar structure of − ζ′
ζ (s) or, equivalently, on the

distribution of poles and zeros of ζ(s).

The fundamental analytic properties of ζ(s) are as follows.

• ζ(s) has meromorphic continuation to the whole complex plane C and
its only singularity is a simple pole at s = 1.
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• Writing

Φ(s) = π−s/2Γ
(s

2

)
ζ(s)

(Γ(s) is the Euler Γ-function), ζ(s) satisfies the functional equation

Φ(s) = Φ(1 − s).

• ζ(s) has polynomial growth on vertical strips, that is

ζ(σ + it) = O(|t|c) |t| → ∞
uniformly for a ≤ σ ≤ b, where c = c(a, b).

• ζ(s) �= 0 for σ > 1 by the Euler product, and hence by the functional
equation the zeros of ζ(s) in the half-plane σ < 0 are simple and located
at the points s = −2,−4,−6, ...; such zeros are called the trivial zeros.
The other zeros of ζ(s) are called the non-trivial zeros, are located
inside the critical strip 0 ≤ σ ≤ 1 and are symmetric with respect to
the critical line σ = 1

2 and to the real axis.
• The non-trivial zeros counting function

N(T ) = �{ρ = β + iγ : ζ(ρ) = 0, 0 ≤ β ≤ 1, 0 ≤ γ ≤ T}
satisfies

N(T ) ∼ T log T
2π

.

• ζ(s) �= 0 on the line σ = 1. Moreover, ζ(s) has zero-free regions to the
left of σ = 1, the simplest being of the following form: ζ(σ + it) �= 0
for

σ > 1 − c

log(|t| + 2)
(1.2)

for some c > 0. Better zero-free regions are known at present, but all
are asymptotic to the line σ = 1 as |t| → ∞.

From the integral representation (1.1) and the above analytic proper-
ties we can deduce the famous Prime Number Theorem, proved indepen-
dently by Hadamard and de la Vallée-Poussin in 1896:

π(x) ∼ x

log x
.

Stronger forms of the Prime Number Theorem are known; for instance,
from the zero-free region (1.2) we can get

π(x) = li(x) +O
(
xe−c

√
log x

)
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for some c > 0, where

li(x) =
∫ x

2

dt
log t

is the logarithmic integral function. However, due to the shape of the known
zero-free regions, no error term of type O(xθ) with θ < 1 is available at
present.

The famous Riemann Hypothesis, probably the most important open
problem of contemporary mathematics, states that all non-trivial zeros lie
on the critical line. Hence the Riemann Hypothesis gives the best possible
zero-free region ζ(s) �= 0 for σ > 1

2 , from which the essentially best possible
form of the Prime Number Theorem

π(x) = li(x) +O(x1/2 log x)

follows.

We refer to the classical book of H.Davenport [5] for an excellent expo-
sition of the basic theory of the Riemann zeta function and its applications
to the distribution of primes. We also refer to Weil [37] for a beautiful
account of the prehistory of the zeta functions.

Since the appearance of the Riemann zeta function, many other L-
functions have been introduced in the theory of numbers, and in other
branches of mathematics as well. Here is a very synthetic list.

• The Dirichlet L-functions

L(s, χ) =
∞∑

n=1

χ(n)
ns

,

where χ is a character of the multiplicative group Z∗
q (the coprime residue

classes modulo a positive integer q), were introduced by Dirichlet in 1837,
hence about twenty years before Riemann’s work. However, Dirichlet dealt
with the L(s, χ)’s as real variable functions, and the basic complex variable
theory of the Dirichlet L-functions was established after Riemann’s funda-
mental paper. The analytic properties of the Dirichlet L-functions are quite
similar to those of the Riemann zeta function, and in fact ζ(s) is the spe-
cial case corresponding to the character (mod 1). The Dirichlet L-functions
were originally introduced to prove that the prime numbers are equidistrib-
uted in the arithmetic progressions a (mod q) with (a, q) = 1, for any fixed
modulus q. Clearly, the functions L(s, χ) are of arithmetic nature. We refer
to Davenport [5] for the basic theory of the Dirichlet L-functions.
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• The Hecke L-functions are defined for σ > 1 by

LK(s, χ) =
∑

I

χ(I)
N(I)s

,

where K is an algebraic number field, I runs over the non-zero ideals of
the ring of integers of K, N(I) denotes the norm of I and χ is a Hecke
character of finite or infinite order. The functions LK(s, χ) are a far reaching
generalization of the Dirichlet L-functions. In fact, when K = Q the Hecke
L-functions reduce to the Dirichlet L-functions. Moreover, when χ is trivial
the function LK(s, χ) reduces to the important special case of the Dedekind
zeta function

ζK(s) =
∑

I

1
N(I)s

.

The analytic behaviour of the Hecke L-functions is similar to the Dirichlet
L-functions, although the functional equation has a more complicated shape
and is definitely more difficult to prove.

A different type of L-functions associated with algebraic number fields
is provided by the Artin L-functions L(s,K/k, ρ). Here K/k is a Galois
extension of number fields with Galois group G, and ρ is a finite dimen-
sional representation of G. The Artin L-functions are defined for σ > 1
by certain Euler products, and their analytic properties are eventually de-
duced from the analytic properties of the Hecke L-functions. In fact, the
Artin reciprocity law states if K/k is abelian, then L(s,K/k, ρ) coincides
with a suitable Hecke L-function. Moreover, the Artin-Brauer theory of
group characters implies that every function L(s,K/k, ρ) is a product of
integer powers of abelian Artin L-functions. As a consequence, the Artin
L-functions can be expressed as products of integer powers of Hecke L-
functions, hence they have meromorphic continuation to C, possibly with
infinitely many poles. However, the famous Artin conjecture predicts that
every function L(s,K/k, ρ) is holomorphic on C, apart possibly for a pole
at s = 1. The other analytic properties of the Artin L-functions are similar
to those of the Hecke L-functions.

The Hecke and Artin L-functions, clearly of algebraic nature, provide
quite a lot of information on the structure of algebraic number fields. We
refer to Heilbronn [8] for the basic theory of Hecke and Artin L-functions.



24 A. Perelli Vol. 73 (2005)

• The Hecke L-functions associated with modular forms are defined for
σ sufficiently large by the Dirichlet series

Lf (s) =
∞∑

n=1

a(n)
ns

,

where f(z) is a holomorphic modular form and a(n) are its Fourier coeffi-
cients. Under suitable restrictions and normalizations, the functions Lf (s)
satisfy analytic properties similar to those of the Riemann zeta function. For
suitable choices of f(z) (the Eisenstein series), such normalized L-functions
give raise the Dedekind zeta functions of imaginary quadratic fields. There
is an interesting ”operation” between L-functions associated with modular
forms, namely the Rankin-Selberg convolution. Roughly speaking, given two
modular forms f(z) and g(z) with Fourier coefficients a(n) and b(n) respec-
tively, the Rankin-Selberg convolution is defined by the Dirichlet series

Lf×g(s) =
∞∑

n=1

a(n)b(n)
ns

.

Under suitable restrictions and normalizations, and modulo a certain ”fudge
factor”, the Rankin-Selberg convolution has analytic properties similar to
the Riemann zeta function. A similar, and in a way more fundamental,
”operation” is the m-symmetric product L-function of two modular forms.
In this case, the analytic properties are known at present only for small
values of the integer m. A related class of L-functions are the Maass L-
functions associated with non-holomorphic modular forms. The definition
of such functions is quite complicated, hence we skip it. We only remark
that the known analytic properties of the Maass L-functions are similar to
the Hecke L-functions, but the state of the art is more rudimentary in this
case.

Around the mid of the last century, a deep interpretation of the Hecke
and Maass L-functions in terms of representations was established. Roughly
speaking, such L-functions were associated with automorphic representa-
tions of GL(2) over the rational field. This theory then evolved into the
theory of automorphic L-functions, associated with automorphic represen-
tations of GL(n) over number fields. The theory of automorphic L-functions
is very deep both from technical and conceptual viewpoints, and is not fully
understood at present. For instance, analytic continuation and functional
equation of the automorphic L-functions have been established, and the
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above mentioned Rankin-Selberg convolution and m-symmetric power L-
functions are now interpreted as the L-functions associated with the tensor
product and the m-symmetric power of representations, respectively. How-
ever, many deep conjectures remain open, and in particular the amazing
Langlands program. The Langlands program is a very deep unifying pro-
gram which, roughly speaking, predicts that the L-functions of arithmetic,
algebraic and geometric (see below) nature are in fact members of the
class of automorphic L-functions. An important ”special case” of the Lang-
lands program in the Shimura-Taniyama conjecture, asserting that the L-
functions associated with elliptic curves correspond to suitable L-functions
associated with modular forms. Such a conjecture has been first proved in
important special cases by A.Wiles (see Wiles [38] and Taylor-Wiles [35]) as
a key step in the proof of Fermat Last Theorem, and then in full generality
by Wiles’ followers.

The nature of the above L-functions is of course automorphic, and we
refer to Hecke [7], Iwaniec [9] and Bump [2] for the basic theory of such
functions (see also the recent survey by Gelbart-Miller [6]). We conclude
the synthetic list of L-functions by remarking that L-functions of geometric
nature, i.e. attached to geometric objects like elliptic curves and varieties,
have been introduced as well, and we refer to Silverman [33] for an intro-
ductory presentation. Moreover, we refer to Chapter 5 of the recent book
by Iwaniec-Kowalski [10] for an excellent introduction to the classical L-
functions presented in this section.

Although the nature of the above L-functions is apparently different,
once suitably normalized they share the following important common prop-
erties (in some cases only conjecturally):

• ordinary Dirichlet series, absolutely convergent for σ > 1;
• meromorphic continuation to C, with at most a pole at s = 1;
• functional equation of Riemann type with multiple Γ factors, relating
s with 1 − s;

• coefficients are O(nε) for every ε > 0;
• Euler product.

We will see that there is probably a very deep unifying theory behind such
common properties which, in a sense, represents an analytic counterpart of
the Langlands program.
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2. What is an L-function?

The following two natural questions arise at this point:
• what is in general an L-function?
• are all L-functions already known?

Clearly, the second question depends on the first one. In a way, an answer
to the first question was given by Selberg [32], defining the Selberg class S
of L-functions. Writing f(s) = f(s) and assuming, as usual, that an empty
product equals 1, the Selberg class is axiomatically defined as follows: F ∈ S
if

(i) (ordinary Dirichlet series) F (s) =
∞∑

n=1
aF (n)n−s, absolutely conver-

gent for σ > 1;
(ii) (analytic continuation) there exists an integer m≥0 such that (s−1)m

· F (s) is an entire function of finite order;
(iii) (functional equation) F (s) satisfies a functional equation of type

Φ(s) = ωΦ(1 − s), where

Φ(s) = Qs
r∏

j=1

Γ(λjs+ µj)F (s) = γ(s)F (s),

say, with r ≥ 0, Q > 0, λj > 0, �µj ≥ 0 and |ω| = 1;
(iv) (Ramanujan conjecture) for every ε > 0, aF (n) 	 nε;

(v) (Euler product) logF (s) =
∞∑

n=1
bF (n)n−s, where bF (n) = 0 unless n =

pm with m ≥ 1, and bF (n) 	 nϑ for some ϑ < 1
2 .

Other axiomatic classes of L-functions have been proposed in the lit-
erature, see e.g. Piatetski-Shapiro [30] and Carletti-Monti Bragadin-Perelli
[3]; however, the axioms of the Selberg class appear to be more satisfactory.
Moreover, the problems raised by Selberg are definitely very interesting. As
we shall see, such problems are of a rather different nature with respect to
the classical problems on L-functions, in the sense that they deal with the
L-functions as a class.

Examples of members of S are the Riemann zeta function, the Dirichlet
L-functions, the Hecke L-functions associated with algebraic number fields
and, under suitable restrictions and normalizations, the Hecke L-functions
associated with holomorphic modular forms. The other L-functions listed
in Section 1 are also in S, provided certain classical conjectures hold. In
particular, the Artin L-functions belong to S if the Artin conjecture holds,
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while the automorphic L-functions are in S provided the Ramanujan con-
jecture holds true.

Here are few comments on the five axioms defining the Selberg class.
By axiom (i), the functions in S are ordinary Dirichlet series. This is an
important point since, as we shall see, the picture would change if general
Dirichlet series are allowed. We recall that the general Dirichlet series are
of the form ∞∑

n=1

a(n)
lsn

where ln is an increasing sequence of positive real numbers tending to ∞.
Restricting the frequences ln to be integers, as in axiom (i), carries some
arithmetical information.

Axiom (ii) allows s = 1 to be the only pole of functions in S, but most
probably the picture does not change much if finitely many poles on the
line σ = 1 are allowed.

The function γ(s) in axiom (iii) is called γ-factor, and its factors
Γ(λjs + µj) are the Γ-factors. The form of the γ-factor of a given F ∈ S
is clearly not unique. For instance, application of the Legendre duplica-
tion formula for the Γ-function changes its shape, as the following example
shows: (π

2

)−s/2
Γ

(s
4

)
Γ

(
s

4
+

1
2

)
ζ(s)

=
(π

2

)−(1−s)/2
Γ

(
1 − s

4

)
Γ

(
1 − s

4
+

1
2

)
ζ(1 − s).

In other words, writing λ = (λ1, ..., λr) and µ = (µ1, ..., µr), the data
(Q,λ,µ, ω) of F ∈ S are not uniquely defined by F (s). This gives rise
to the notion of invariant, i.e. an expression defined in terms of the data
of F (s) which is uniquely determined by F (s) itself. We will soon see an
important example of invariant.

Probably, axiom (iv) can be weakened to ”for every ε > 0 there exists
a positive integer M = M(ε) such that aF (n) 	 nε for (n,M) = 1”
without changing much the picture. The advantage of this form of axiom
(iv) rests on the fact that a similar bound can be proved for the coefficients
a−1

F (n) and bF (n). In other words, assuming this form of axiom (iv) and
denoting by c(n) any of the coefficients aF (n), a−1

F (n) and bF (n), one has
that for every ε > 0 there exists a positive integer M = M(ε) such that
c(n) 	 nε for (n,M) = 1, and c(n) 	 nϑ for some ϑ < 1

2 . Moreover, it is
interesting to note that axiom (iv) is crucial for the Riemann Hypothesis.
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In fact, Jurek Kaczorowski constructed the following simple example of L-
function satisfying axioms (i), (ii), (iii) and (v) but violating the Riemann
Hypothesis. Let χ be a primitive Dirichlet character with χ(−1) = −1 and
write G(s) = L(2s − 1/2, χ). G(s) is absolutely convergent for σ > 3/4,
satisfies a functional equation with λ = 1 and µ = 1/4, and has an Euler
product allowing the choice ϑ = 1/4. Taking 0 < δ < 1/4 and writing
F (s) = G(s − δ)G(s + δ), thanks to the above properties it is easy to see
that F (s) satisfies all axioms but the Ramanujan conjecture, and has no
zeros on the critical line for suitable choices of δ.

Axiom (v) implies in particular that the coefficients aF (n) are multi-
plicative. Hence the standard Euler product

F (s) =
∏

p

Fp(s) Fp(s) =
∞∑

m=0

aF (pm)p−ms

holds; Fp(s) is the p-Euler factor of F (s). Moreover, the seemingly harmless
condition ϑ < 1

2 has in fact a relevant role. For instance it implies that
Fp(s) �= 0 for σ > ϑ for every prime p, and this will be crucial at several
places. Moreover, if such a condition is relaxed and values of ϑ greater than
1
2 are allowed, then examples of functions satisfying axioms (i),...,(v) and
violating the Riemann Hypothesis are easily constructed. A simple example
is

f(s) = (1 − 2a−s)(1 − 2b−s) with a+ b = 1 and a > 1
2 .

Note that the five axioms of the Selberg class are not completely indepen-
dent (for example, axiom (v) implies that F (s) is an ordinary Dirichlet
series). We refer to Molteni [26] for further pathological examples arising if
parts of the axioms are dropped.

We finally remark that axioms (i), (ii) and (iii) are more of analytic
nature, while axioms (iv) and (v) are more of arithmetic nature. Therefore,
we define the extended Selberg class S� to be the class of the non identically
vanishing functions satisfying axioms (i), (ii) and (iii). Clearly, S� ⊃ S, and
we shall see that S� still carries some of the properties of S. We also remark
that many of the definitions involving S carry over in an obvious way to
the case of S�.

The standard analytic properties of the functions F ∈ S are easily
obtained by means of the classical arguments used to study the Riemann
zeta function. Let F ∈ S. We define the polar order mF of F (s) to be the
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least value of m in axiom (ii), and

dF = 2
r∑

j=1

λj

is the degree of F (s). It is easy to see that

dζ = 1, dL(·,χ) = 1, dζK
= [K : Q], dLK(·,χ) = [K : Q], dLf

= 2
(2.1)

and similarly for the other classical L-functions. The function Ψ(s) =
smF (1 − s)mF Φ(s) is an entire function of order 1, and the Lindelöf µ-
function µF (σ) satisfies µF (σ) = 0 for σ ≥ 1 and, by the functional equa-
tion, µF (σ) = dF (1

2 −σ) for σ ≤ 0. This shows in particular that the degree
in an invariant, and hence S can be partitioned as

S =
⋃

d≥0

Sd,

where
Sd = {F ∈ S : dF = d}.

From the Euler product we have that F (s) �= 0 for σ > 1, hence by
the functional equation we have the familiar notions of critical strip and
critical line, i.e. the strip 0 ≤ σ ≤ 1 and the line σ = 1

2 , respectively. The
zeros of F (s) located at the poles of the γ-factor γ(s), i.e. at ρ = −µj+k

λj

with k = 0, 1, 2, ... and j = 1, ..., r, are called the trivial zeros, and are the
only zeros of F (s) in the half plane σ < 0. The case ρ = 0, if present,
requires special attention in view of the possible pole of F (s) at s = 1. The
other zeros, located inside the critical strip, are called the non-trivial zeros.
We cannot a priori exclude the possibility that F (s) has a trivial and a
non-trivial zero at the same point, on the line σ = 0. Moreover, writing

NF (T ) = |{ρ = β + iγ : F (ρ) = 0, 0 ≤ β ≤ 1, 0 ≤ γ ≤ T}|,
the analog of the Riemann-von Mangoldt formula holds in the form

NF (T ) =
dF

2π
T log T + cFT +O(log T ),

where cF is a certain constant depending on F (s). This shows once again
that the degree dF is an invariant (as well as cF ).

For details and further discussions on the matters above we refer to Sel-
berg [32], Conrey-Ghosh [4], Murty [27] and the survey papers Kaczorowski-
Perelli [15] and Kaczorowski [11].
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Roughly speaking, the problems about the Selberg class are of two
types.

• Classical problems: these are the extension to S of the problems
about the classical L-functions, the most important being the Riemann
Hypothesis. In fact, Selberg [32] conjectured that the Riemann Hypothesis
holds for every function F ∈ S, i.e.

Conjecture 2.1 (GRH). Let F ∈ S. Then F (s) �= 0 for σ > 1
2 .

We remark at this point that the knowledge about the distribution of
zeros of the functions in S is definitely poorer than in the case of the classical
L-functions. For example, it is not yet known in general if F (1+ it) �= 0 for
every t ∈ R.

• Structural problems: these are the problems on the stucture of S as
a class. The classification of the functions in S, the independence properties
of the functions in S, the study of the invariants in S, the countability and
rigidity conjectures for S are important examples of structural problems.

In this survey we focus on the structural problems for the Selberg class.
Such problems, in part raised by Selberg himself, deal with L-functions from
a somewhat diffferent perspective with respect to the classical problems,
and their solution will eventually lead to a deeper understanding of the
nature of L-functions.

3. Basic theory of the Selberg class

We start with the classification of the functions in the classes S and S� with
degree smaller than 1, since such results are needed later in this section.
The basic result, Theorem 3.1 below, has apparently been proved first by
Richert [31] and then independently by Bochner [1] and Conrey-Ghosh [4].
Further proofs have been given by Molteni [23] and Kaczorowski-Perelli
[18], [21].

Theorem 3.1 ([31, 1, 4]). S�
d = ∅ for 0 < d < 1.

A key point in the proof of Theorem 3.1 (common to several of the
above proofs) is showing that the Dirichlet series of every function in S�

d

with 0 ≤ d < 1 is absolutely convergent over C. This contradicts µF (σ) > 0
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for σ ≤ 0, provided 0 < d < 1. For d = 0, the functional equation then
shows that

F (s) =
∑

n|qF

aF (n)
ns

(3.1)

with qF = Q2 ∈ N. Thus, in particular, the functions in S�
0 are Dirichlet

polynomials. For q ∈ N and |ω| = 1, let S�
0(q, ω) be the set of F ∈ S�

0 with
given ω and qF = q, and let

V �
0 (q, ω) = S�

0(q, ω) ∪ {0}.
Moreover, let d(n) denote the divisor function. The above simple argument
leads to

Theorem 3.2 ([14]). Let F ∈ S�
0. Then qF ∈ N and F (s) has the form (3.1).

Moreover, qF and ω are invariants, thus S�
0 is the disjoint union of the

subclasses S�
0(q, ω) with q ∈ N and |ω| = 1. Further, for any such q and ω,

V �
0 (q, ω) is a real vector space of dimension d(q).

We refer to Steuding [34] for a different characterization of the func-
tions F ∈ S�

0. Starting from (3.1), a simple argument based on the Euler
product further shows

Theorem 3.3 ([4]). S0 = {1}.

We already noticed that every function in the Selberg class has a stan-
dard Euler product, i.e. it can be expressed as a product of its p-Euler
factors. It may happen that two distinct functions F,G ∈ S have equal
p-Euler factors for certain primes p. Denote by EF,G the set of such primes.
The “exceptional set” EF,G can be pretty large, as the following example
shows. Let χ1 and χ2 be distinct primitive Dirichlet characters (mod q)
such that χ1(a) = χ2(a) for some a coprime to q. Then the corresponding
exceptional set contains the primes p ≡ a (mod q). Hence, in particular,
EF,G can have positive density.

On the other hand, a well known result in representation theory, called
the Strong Multiplicity One Theorem (see Piatetski-Shapiro [29]), implies
that if the p-Euler factors of two automorphic L-functions are equal for all
but finitely many primes, then the two L-functions are equal. The analog
of such a result for the Selberg class is called the multiplicity one property,
and has been proved by Murty-Murty [28].
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Theorem 3.4 ([28]). Let F,G ∈ S. If Fp(s) = Gp(s) for all but finitely many
primes p, then F (s) = G(s).

The proof amounts to the observation that by the functional equa-
tion F (s)/ G(s) is entire and non-vanishing, hence the result follows by
Hadamard’s theory. The same argument shows that the assumption Fp(s) =
Gp(s) can be replaced by the weaker requirement that aF (pm) = aG(pm)
for m = 1, 2. It would be desirable to remove the condition involving the
squares, as suggested by the following conjecture.

Conjecture 3.1 (strong multiplicity one). Let F,G ∈ S. If aF (p) = aG(p)
for all but finitely many primes p, then F (s) = G(s).

We will describe a rather sharp unconditional result in this direction
in Section 9.

Clearly, the classes S and S� are multiplicative semigroups and the
degree is additive, in the sense that dF1F2 = dF1 + dF2. Moreover, given an
entire F ∈ S� and θ ∈ R we define the shift Fθ(s) as Fθ(s) = F (s + iθ).
Clearly, Fθ ∈ S if F ∈ S, and the same holds for S�. Further, 1 is the only
constant function in S, and also the only invertible element of S. A func-
tion F ∈ S \ {1} is primitive if F (s) = F1(s)F2(s) with F1, F2 ∈ S implies
F1(s) = 1 or F2(s) = 1; in other words, primitive functions are the irre-
ducible elements of the semigroup S. In view of Theorems 3.1 and 3.3, every
function of degree < 2 is primitive, hence ζ(s) and the L(s, χ)’s with primi-
tive χ are primitive. Other examples of primitive functions are provided by a
suitable class of normalized L-functions associated with holomorphic mod-
ular forms. These are degree 2 functions, and the proof requires a deeper
knowledge of the structure of S1, see Section 6.

Primitive functions play an important role in the theory of the Selberg
class. As a first result, Theorems 3.1, 3.3 and a simple induction on the
degree give

Theorem 3.5 ([4, 27]). Every F ∈ S can be factored as a product of primitive
functions.

In other words, every F ∈ S has a factorization of type

F (s) =
k∏

j=1

Fj(s)ej (3.2)

with ej ∈ N and Fj(s) primitive and distinct. A related natural conjecture
is
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Conjecture 3.2 (unique factorization, UF). Factorization into primitive
functions is unique.

If the UF conjecture holds, then (3.2) is called the standard form of
F (s).

The Rankin-Selberg convolution method shows that the L-functions
associated with holomorphic modular forms satisfy a kind of orthogonality
relation. Precisely, under suitable normalizations and restrictions, the func-
tion Lf×g(s) defined in Section 1 has a simple pole at s = 1 if f(z) = g(z)
and is entire otherwise. A similar result holds in general for the irreducible
automorphic L-functions. Motivated by such properties, Selberg formulated
the following fundamental conjecture.

Conjecture 3.3 (Selberg orthonormality conjecture, SOC). Let F,G ∈ S be
primitive functions and δF,G = 1 if F (s) = G(s), δF,G = 0 otherwise. Then
as x→ ∞

∑

p≤x

aF (p)aG(p)
p

= (δF,G + o(1)) log log x.

In order to appreciate the depth of the Selberg orthonormality conjec-
ture, we list few simple but interesting consequences in Theorem 3.6 below.
We first recall the the Dedekind conjecture asserts that ζ(s) divides ζK(s)
for every algebraic number field K/Q. This is well known in the case of nor-
mal extensions by the Aramata-Brauer theorem (see [8]). Moreover, given
F ∈ S we define the real number nF , if it exists, by

∑

p≤x

|aF (p)|2
p

= (nF + o(1)) log log x. (3.3)

Further, we denote as usual by σa(F ) the abscissa of absolute convergence
of F ∈ S�. We have

Theorem 3.6 ([4, 27, 28]). Assume SOC and let ej be as in (3.2). Then

(i) the UF conjecture holds;
(ii) nF =

∑k
j=1 e

2
j , and hence F ∈ S is primitive if and only if nF = 1;

(iii) ζ(s) is the only primitive function in S with a pole at s = 1, and hence
the Dedekind conjecture holds;

(iv) F (1 + it) �= 0 for every t ∈ R, for every F ∈ S;
(v) the strong multiplicity one conjecture holds;
(vi) σa(F ) = 1 for every F ∈ S \ {1}.
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We already remarked that at present is not unconditionally known if
F (1 + it) �= 0, t ∈ R, for every F ∈ S. However, it is not surprising that
this follows from SOC. In fact, the standard proofs of the non-vanishing of
L-functions on the 1-line are based on the properties of the Rankin-Selberg
convolution. We also remark that under SOC (in fact, under UF) the usual
notions of coprimality and of greatest common divisor are easily defined in
S. From (ii) of Theorem 3.6 it is quite clear that in the case of any F,G ∈ S,
SOC becomes

∑

p≤x

aF (p)aG(p)
p

=
( l∑

j=1

fjgj + o(1)
)

log log x,

where

F (s) = H(s)
l∏

j=1

Fj(s)fj G(s) = K(s)
l∏

j=1

Fj(s)gj ,

the functions Fj(s) are primitive and distinct, and H(s), K(s) are coprime
and not divisible by the Fj(s)’s.

We remark here that the proof of the assertion on page 6 of Murty
[27] that UF implies the Dedekind conjecture (unfortunately reported as
Proposition 4.2 in Kaczorowski-Perelli [15]) appears to be incorrect. In fact
(using the notation in [27]) assuming only UF we do not see how to exclude,
for example, that ζK(s) is primitive and F (s) = ζ(s)H(s) with a primitive
H ∈ S vanishing at s = 1.

Another interesting consequence of SOC, based on the Artin-Brauer
theory and on Chebotarev density theorem, is

Theorem 3.7 ([27]). SOC implies the Artin conjecture.

We recall that the Artin conjecture states that the Artin L-functions
L(s, K/k, ρ) are entire if ρ is irreducible and non-trivial. Moreover, the
argument in the proof of Theorem 3.7 shows also that such functions are
primitive. It is interesting to note how a conjecture concerning an axiomatic
class of L-functions has a strong consequence on a classical conjecture. The
argument in the proof of Theorem 3.7, coupled with work of Arthur-Clozel
on solvable extensions, can be suitably adapted to show that SOC implies
the Langlands reciprocity conjecture for solvable extensions of Q, see Murty
[27].
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One may ask if primitivity can be characterized by the functional equa-
tion. Apparently this is not the case, as shown by an example in Molteni
[26] of a degree 2 functional equation with a non-primitive solution in S
(a Dedekind zeta function of a real quadratic field) and, assuming the
Takhtajan-Vinogradov conjecture on the dimension of the space of Maass
forms, a primitive solution as well. We state here a problem about the shifts
of primitive functions.

Problem 3.1. Show that Fθ(s) is primitive for all θ ∈ R if F ∈ S is primi-
tive.

There is an easy proof of this statement if axiom (ii) of the Selberg
class is weakened to allow a finite number of poles on the line σ = 1
(note that every function in such a larger class can be shifted). In fact,
suppose that F (s) is primitive, while Fθ(s) = F1(s)F2(s) is a non-trivial
factorization for some θ ∈ R. Then F (s) = Fθ(s−iθ) = F1(s−iθ)F2(s−iθ),
a contradiction. In the framework of the Selberg class S, the problem arises
from the situation, which we cannot a priori exclude, that Fθ(s) is entire
while F1(s) has a pole and F2(s) has a zero at s = 1. This situation is of
course impossible under SOC.

The Selberg orthonormality conjecture can be regarded as a rather
strong form of independence of the functions in S. The unique factorization
conjecture, which follows from SOC, is also an independence statement in
S. We may therefore ask if the simplest form of independence, namely the
linear independence, holds in S. We recall that a Dirichlet series D(s),
absolutely convergent in some right half-plane, is called p-finite if there
exists a positive integer M such that the coefficients c(n) of D(s) vanish
whenever n has a prime factor not dividing M . In this case, the arithmetic
function c(n) is called p-finite as well. We denote by F both the ring of
p-finite Dirichlet series and the ring of p-finite arithmetic functions; note
that F contains all Dirichlet polynomials.

Theorem 3.8 ([12]). Distinct functions in S are linearly independent over
F .

In particular, distinct functions of S are linearly independent over C.
We remark that Theorem 3.8 is basically a result on multiplicative arith-
metic functions. We call equivalent two multiplicative functions f(n) and
g(n) if f(pm) = g(pm) for all integer m ≥ 1 and all but finitely many primes
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p. The main step in the proof of Theorem 3.8 is showing that pairwise non-
equivalent multiplicative functions are linearly independent over F . This is
in fact an analogue of Artin’s well known result that distinct characters are
linearly independent, and the proof is similar. Theorem 3.8 follows then by
Theorem 3.4, which ensures that the coefficients of distinct functions in S
are pairwise non-equivalent multiplicative functions.

We remark that Theorem 3.8 is a special case of a more general re-
sult, see Kaczorowski-Molteni-Perelli [13]. In fact, its proof can be suitably
modified to show the linear independence of functions in a larger class,
including the derivatives of all orders and the inverses of the functions in
S. Moreover, such a class also contains the Artin and the automorphic L-
functions, which are not yet known to belong to S. See also Molteni [25]
for further results.

It is well known that the Prime Number Theorem is equivalent to
ζ(1 + it) �= 0 for t ∈ R. Although the non-vanishing on the 1-line is at
present a conditional result in the general setting of the Selberg class, the
analog of the above-mentioned equivalence can be proved unconditionally
in S. Let ΛF (n) be the generalized von Mangoldt function, defined by

−F
′

F
(s) =

∞∑

n=1

ΛF (n)n−s,

i.e. ΛF (n) = bF (n) log n, and let

ψF (x) =
∑

n≤x

ΛF (n).

It is expected that the prime number theorem (PNT) holds in the form

ψF (x) = mFx+ o(x)

for every F ∈ S, where mF is the polar order of F (s) defined in Section 2.
Writing

ψF×F (x) =
∑

n≤x

|ΛF (n)|2,

a simple consequence of axioms (iv) and (v) is that ψF×F (x) 	 x1+ε, and
hence the bound ψF (x) 	 x1+ε holds unconditionally.

Theorem 3.9 ([20]). Let F ∈ S. Then PNT holds if and only if F (1+it) �= 0
for every t ∈ R.
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The proof is based on a weak density estimate for the zeros of F (s)
close to the 1-line and on a simple almost periodicity argument. From The-
orems 3.6 and 3.9 we see that SOC implies PNT. However, the argument
in the proof of Theorem 3.9 allows to obtain a sharper result. To this end
we introduce the following much weaker version of SOC.

Conjecture 3.4 (normality conjecture, NC). Let F ∈ S \ {1}. Then (3.3)
holds with nF > 0, and nF ≤ 1 if F (s) is primitive.

We have

Theorem 3.10 ([20]). Assume NC and let F ∈ S. Then F (1 + it) �= 0 for
every t ∈ R.

In view of Theorems 3.9 and 3.10, NC implies PNT. We recall that
∑

p≤x

1
p
∼ log log x

is a weaker statement than the Prime Number Theorem, and an analogous
assertion holds for other classical L-functions as well. Hence, NC for a given
F ∈ S is, in general, weaker than PNT for the same function. Therefore,
Theorem 3.10 is a simple example of the philosophy that general properties
of a family of L-functions can be used to derive stronger consequences for
individual members of the family.

Now we turn to a discussion of the factorization problem in S�. In
order to extend the notion of primitive function to the class S�, we need to
know the invertible functions in S�. Clearly, the non-zero complex constants
belong to S�, and it is easy to see that these are the only invertible elements
of S�. Hence we say that a non-constant F ∈ S� is �-primitive if F (s) =
F1(s)F2(s) with F1, F2 ∈ S� implies that F1(s) or F2(s) is constant. The
problem of the factorization into primitive functions can therefore be raised
for S� as well. The analogous property for S depends on the following three
facts: the degree is additive, there are no functions with degree 0 < dF < 1
and S0 = {1}. The first two facts hold for S� as well, but S�

0 is definitely
more complicated than S0. Therefore, the proof of Theorem 3.5 does not
carry over to the case of S�. However, the argument can be suitably modified
to prove

Theorem 3.11 ([19]). Every F ∈ S� can be factored as a product of �-
primitive functions.
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The proof is based on the notion of almost-primitive function, that is
a function F ∈ S� such that F (s) = F1(s)F2(s) implies dF1 = 0 or dF2 = 0.
The main part of the proof of Theorem 3.11 is devoted to the following char-
acterization of almost-primitive functions: if F ∈ S� is almost-primitive,
then F (s) = P (s)G(s) with P (s) �-primitive and dG = 0. In turn, such a
characterization is based on a uniform estimate for the number of zeros
of the Dirichlet polynomials of S�

0. Theorem 3.11 follows then from the
above characterization by a double induction, first on the degree (giving
the factorization into almost-primitive functions) and then on the integer
qF in Theorem 3.2 (giving the factorization of the functions of S�

0 into �-
primitive functions). We will see in the next section that such an integer
qF is a special instance of the general notion of conductor in S�.

We remark that the analog of SOC does not hold for S�. Indeed, let
χ1, χ2 be two primitive Dirichlet characters with the same modulus and
parity, and let F (s) = L(s, χ1) + L(s, χ2) and G(s) = L(s, χ1). Thanks to
Theorems 3.1 and 3.2 and to the description of S�

1 in Section 6, in view of
Theorem 3.8 we have that F (s) and G(s) are �-primitive, but it is easily
checked that SOC does not hold for F (s) and G(s). In view of this, we
conclude the section with two problems.

Problem 3.2. Does UF hold for S�?

Problem 3.3. Is it true that a primitive F ∈ S is also �-primitive?

We conclude this section with a problem on the characterization of
divisibility in S. In view of the Hadamard product, a function in S is
essentially determined by its zeros. Denoting by ZF the set of zeros of
F ∈ S counted with multiplicity, we raise the following

Problem 3.4. Let F,G ∈ S. Show that F (s) divides G(s) in S if and only
if ZF ⊂ ZG.

We refer to Molteni [26] and [24] for closely related results.

4. Invariants

We already pointed out in Section 2 that, due to the application of suitable
identities satisfied by the Γ-function, the shape of the γ-factor γ(s) of F ∈
S� is not uniquely determined by F (s). We also remarked that this fact
gives rise to the notion of invariant, i.e. an expression defined in terms of
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the data of F (s) which is uniquely determined by F (s) itself. Moreover, we
already met an important invariant, namely the degree dF .

Although their shape may change considerably, γ-factors are essentially
uniquely determined as functions. In fact we have

Theorem 4.1 ([4]). Let γ(s) and γ′(s) be two γ-factors of F ∈ S�. Then
there exists a constant c0 = c0(γ, γ′) ∈ C such that γ(s) = c0γ

′(s).

The proof follows by Hadamard’s theory, observing that h(s) =
γ(s)/γ′(s) is entire and non-vanishing thanks to the functional equation.

In view of Theorem 4.1, in order to study the invariants we need to
detect the operations which transform a γ-factor γ(s) of a function F ∈
S� into another γ-factor of the same function. It turns out that such a
transformation can be performed by repeated applications to γ(s) of two
basic formulae in the theory of the Γ-function, namely the Legendre-Gauss
multiplication formula

Γ(s) = ms− 1
2 (2π)

1−m
2

m−1∏

k=0

Γ
(
s+ k

m

)
m = 2, 3, ... (4.1)

and the factorial formula

Γ(s+ 1) = sΓ(s).

We also need some definitions. Two positive real numbers α, β are Q-
equivalent if α/β ∈ Q. We denote by hF , the γ-class number, the number of
Q-equivalence classes arising from the λ-coefficients λ1, ..., λr of a γ-factor
of F ∈ S�. Moreover, we say that F (s) is reduced if it has a γ-factor with
0 ≤ �µj < 1 for j = 1, ..., r; such a γ-factor is also called reduced. It turns
out that hF is an invariant, and that F (s) is reduced if and only if all its
γ-factors are reduced, so these are reasonable definitions.

Recalling that c0 is the constant in Theorem 4.1 we have

Theorem 4.2 ([16]). Let γ(s) and γ′(s) be two γ-factors of F ∈ S�. Then
γ(s) can be transformed into c0γ

′(s) by repeated applications of the mul-
tiplication and factorial formulae. Moreover, the factorial formula can be
avoided if hF = 1 or if F (s) is reduced.

We refer to Section 4 of Vignéras [36], as well as to Serre’s appendix
there, for related results. It is clear that applications of the multiplication
formula to a γ-factor give rise to another γ-factor, and do not change the
Q-equivalence classes. Applications of the factorial formula are a bit more
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involved. Basically, such a formula is used to reduce a γ-factor, i.e. to write it
as the product of a reduced γ-factor, called the reduced part, times a product
of suitable linear factors. Such linear factors are then re-absorbed into the
Γ-factors by further applications of the factorial formula, provided suitable
consistency conditions hold. Although examples of non-reduced γ-factors
are easily produced, see for instance the case of L-functions associated with
holomorphic modular forms (suitably nomalized to meet the axioms of S),
according to the following conjecture we expect hF = 1 to be the general
case.

Conjecture 4.1 (γ-class number conjecture). Every F ∈ S� has hF = 1.

We will see in Section 6 motivations for this and for the following much
stronger conjecture.

Conjecture 4.2 (λ-conjecture). Every F ∈ S� has a γ-factor with λj = 1
2

for j = 1, ..., r.

Therefore, we expect that the factorial formula is not necessary in
the transformation of the γ-factors. However, at the present state of the
knowledge, we cannot in general avoid using it, and here is an example:

Γ(s)Γ
(√

2s+ 1
)

=

√
2
π

2sΓ
(s

2
+ 1

)
Γ

(
s+ 1

2

)
Γ

(√
2s

)
.

Note that there are two Q-equivalence classes, and that the pole at s = 0
comes, in the two sides of the identity, from Γ-factors belonging to different
classes. This is the typical situation requiring application of the factorial
formula. However, we expect that no F ∈ S� has such Γ-factors in its
functional equation.

In view of the identity γ(s) = c0γ
′(s) in Theorem 4.1, the proof of

Theorem 4.2 rests on a detailed analysis of the structure of the following
general Γ-identity

N∏

j=1

Γ(λjs+ µj) = easR(s)
M∏

j=1

Γ(λ′js+ µ′j), (4.2)

where a ∈ C and R(s) is a rational function. Clearly, R(s) arises from appli-
cations of the factorial formula. The structure of (4.2) is studied by means
of the analysis of the poles of both sides. This leads to a transformation
algorithm for γ-factors, which we briefly outline. Let γ(s) and γ′(s) be as
in Theorem 4.2. Then γ(s) is transformed into c0γ′(s) as follows.
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Step 1 (reducing). Apply the factorial formula to reduce γ(s) and
γ′(s).

Step 2 (grouping). Group the Γ-factors of the reduced parts and the
corresponding linear factors according to Q-equivalence classes. The Q-
equivalence classes arising from γ(s) and γ′(s) are the same, and identity
γ(s) = c0γ

′(s) induces suitable sub-identities of type (4.2) between the
pairs of groups with the same Q-equivalence class.

Step 3 (equating). Apply the multiplication formula to each pair of
groups, to obtain new pairs of groups with the property that all the Γ-
factors in the same pair of groups have the same λ-coefficient. In such
a situation, in each pair of groups the Γ-factors coming from γ(s) are a
permutation of those coming from γ′(s).

Step 4 (transforming). Perform on the Γ-factors coming from γ(s) the
inverse of the operations performed in steps 3, 2 and 1 on the Γ-factors
coming from γ′(s), thus transforming γ(s) into c0γ′(s).

A more combinatorial argument leading to a simple proof of Theorem
4.2 is provided by Wirsing [39].

The proof of Theorem 4.2 involves also the notion of exact covering
system, i.e. a family (M, lj ,mj), j = 1, ...,M, with the property that for
every integer n there exists a unique j such that n ≡ lj (mod mj). As a
byproduct of the arguments in the proof, we can get the following complete
description of all γ-factors of the Dirichlet L-functions. Of course, other
known L-functions can be treated analogously. Let χ (mod q) be a primitive
Dirichlet character. Then all γ-factors of L(s, χ) are of the form

Qs
M∏

j=1

Γ
(

s

2mj
+

2lj + a(χ)
2mj

)
,

where (M, lj ,mj) is any exact covering system,

Q =



 q

π

M∏

j=1

m
1/mj

j




1/2

and a(χ) = 1+χ(−1)
2 .

In order to give a characterization of the invariants by means of The-
orem 4.2, we need to give a more formal definition of invariant. An expres-
sion depending on the ”variables” (Q,λ,µ, ω) is called a parameter. An
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invariant is a parameter depending only on F (s) and not on the particular
choice of the data of F (s), for every F ∈ S�. In other words, a parameter
I(Q,λ,µ, ω) is an invariant if I(Q,λ,µ, ω) = I(Q′,λ′,µ′, ω′) for any pair
of data (Q,λ,µ, ω), (Q′,λ′,µ′, ω′) of F (s), for every F ∈ S�. Parameters
and invariants will sometimes be denoted by I(Q,λ,µ, ω). A generic in-
variant will be denoted by I, and when referred to a function F (s) will be
denoted by IF or I(F ). An invariant I is called numerical if IF ∈ C for
every F ∈ S�.

We say that a parameter is stable by multiplication formula if
I(Q,λ,µ, ω) = I(Q′,λ′,µ′, ω′), where (Q′,λ′,µ′, ω′) are the new data ob-
tained by application of the multiplication formula to a Γ-factor. Similarly
we say that a parameter is stable by factorial formula, although this case
is a bit more subtle since we always apply the factorial formula to a pair of
Γ-factors satisfying a consistency condition. In fact, by the factorial formula
we have

Γ(λs+ µ)Γ(λ′s+ µ′) =
λ

λ′

(
λ′s+

(µ− 1)λ′

λ

)
Γ(λs+ µ− 1)Γ(λ′s+ µ′),

and assuming the consistency condition

µ− 1
λ

=
µ′

λ′
(4.3)

we get

Γ(λs+ µ)Γ(λ′s+ µ′) =
λ

λ′
Γ(λs+ µ− 1)Γ(λ′s+ µ′ + 1). (4.4)

The above notions of stability will be clarified below, where we will list sev-
eral important examples of invariants. From Theorem 4.2 we immediately
obtain

Corollary 4.1 ([16]). A parameter is an invariant if and only if it is stable
by multiplication and factorial formulae.

Here is a short list of important invariants of S�, as well as some
remarks; see Kaczorowski-Perelli [16], [17].

• The H-invariants HF (n). For a non-negative integer n let

HF (n) = 2
r∑

j=1

Bn(µj)
λn−1

j

,
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where Bn(z) denotes the n-th Bernoulli polynomial. Since B0(z) = 1,
B1(z) = z − 1

2 , B2(z) = z2 − z + 1
6 , ..., we have for instance

HF (0) = 2
r∑

j=1

λj = dF (the degree)

HF (1) = 2
r∑

j=1

(µj − 1
2
) = ξF = ηF + iθF (the ξ-invariant).

We sketch the proof that the HF (n) are invariants, hence clarifying Corol-
lary 4.1. Let Γ(λs+µ) be one of the Γ-factors of F (s). After application of
the multiplication formula (4.1) to such a Γ-factor, we have to prove that

Bn(µ)
λn−1

=
m−1∑

j=0

Bn(µ+j
m )

( λ
m)n−1

n ≥ 0, m ≥ 1,

and this follows from the following identity for Bernoulli polynomials

Bn(z) = mn−1
m−1∑

j=0

Bn(
z + j

m
) n ≥ 0, m ≥ 1.

Therefore the HF (n) are stable by multiplication formula. In order to check
that the HF (n) are stable by factorial formula as well, let Γ(λs + µ) and
Γ(λ′s + µ′) be two Γ-factors of F (s) and apply the factorial formula as in
(4.4). Consequently, we have to prove that

Bn(µ)
λn−1

+
Bn(µ′)
λ′n−1

=
Bn(µ− 1)
λn−1

+
Bn(µ′ + 1)
λ′n−1

n ≥ 0,

and this follows from the identity

Bn(z + 1) = Bn(z) + nzn−1 n ≥ 0,

under the consistency condition (4.3). Hence the HF (n) are invariants by
Corollary 4.1. Note that the H-invariants are additive, i.e. HFG(n) =
HF (n) +HG(n).

We already saw in Section 2 the meaning of the degree dF in terms of
the function F (s). Note that the degree of the functions in (2.1) is always
an integer; in Section 6 we will state a fundamental conjecture about the
degree, namely the degree conjecture. Concerning the ξ-invariant ξF , its real
part ηF is called the parity of F (s), while its imaginary part θF is the shift,
not to be confused with the shift Fθ(s) introduced in Section 3. Observe
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that the shift θF is usually 0 for the classical L-functions (µj ∈ R in many
cases). Observe also that the Hecke L-functions LK(s, χ), with χ character
of infinite order, provide non-trivial examples of θF = 0, due to the fact
that χ is normalized. We refer again to Section 6 for the meaning of the
invariants ηF and θF , at least for degree 1 functions. For general n we raise
the following problem about H-invariants:

Problem 4.1. Give a meaning in terms of F (s) to every invariant HF (n),
n ≥ 2.

In Kaczorowski-Perelli [17] an asymptotic expansion of log γ(s) is given
that involves the HF (n). However, Problem 4.1 asks for a more explicit
meaning for such invariants, possibly without explicit reference to the func-
tional equation.

• The conductor qF . We already defined in the previous section the
conductor in the case of functions of degree 0, and we saw that it is an
integer and an invariant. In the general case of F ∈ S� we define

qF = (2π)dFQ2
r∏

j=1

λ
2λj

j .

As before, it is easy to show that the conductor is stable by multiplication
and factorial formulae, hence it is an invariant by Corollary 4.1. Moreover,
it is easy to check that

qζ = 1, qL(·,χ) = q, qζK
= |DK |, qLK(·,χ) = |DK |N(f), qLf

= N,

where q is the modulus of the primitive Dirichlet character χ, DK is the
discriminant ofK,N(f) is the norm of the conductor f of the primitive Hecke
character χ and N is the level of the holomorphic modular form f(z). Hence
the conductor qF appears to be the right extension to S� of the various
classical notions of conductor. Note that the conductor is multiplicative,
i.e. qFG = qF qG. Note also that the above functions belong to S, and their
conductor is an integer. In fact, we have

Conjecture 4.3 (conductor conjecture). Every F ∈ S has qF ∈ N.

Probably this conjecture does not hold for S�, and counterexamples
can possibly be found among the L-functions associated with the Hecke
groups G(λ).
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• The root number ω∗
F . The root number of F ∈ S� is defined by

ω∗
F = ωe−i π

2
(ηF +1)

(
qF

(2π)dF

)iθF /dF r∏

j=1

λ
−2i�µj

j .

Once again, it is easy to show that the root number is stable by multi-
plication and factorial formulae, hence it is an invariant by Corollary 4.1.
The root number ω∗

F comes out naturally in certain computations, and is
of course closely related to ω for the classical L-functions. Here are two
problems about ω∗

F .

Problem 4.2. What is the meaning of ω∗
F? Is ω∗

F the correct definition of
“root number”?

Problem 4.3. Is it true that ω∗
F is always an algebraic number for F ∈ S?

Problem 4.2 is related with the definition of ωF below. Moreover, Prob-
lem 4.3 has a negative answer in the case of S�, as we will see in Section
6.

A set {Ij}j∈J of numerical invariants is called a set of basic invariants

if the Ij characterize the functional equation of every F ∈ S�, in the sense
that if Ij(F ) = Ij(G) for all j ∈ J then F (s) and G(s) satisfy the same
functional equation, for any F,G ∈ S�. In principle, such a set should be
called a global set of basic invariants, since we will also deal with local

sets of basic invariants, characterizing the functional equation of a given
function F ∈ S�.

Theorem 4.3 ([17]). The H-invariants HF (n), n ≥ 0, the conductor qF and
the root number ω∗

F are a global set of basic invariants.

The proof is based on the fact that the function

KF (z) = 2z
r∑

j=1

ezµj/λj

ez/λj − 1
= −2z

∑

ρ

eρz, (4.5)

where the last sum is over the poles of a γ-factor of F ∈ S�, has the power
series expansion

KF (z) =
∞∑

n=0

HF (n)
n!

zn,

hence the γ-factors of F (s) and G(s) differ by a factor eas+b if the H-
invariants are equal. Assuming further that conductors and root numbers
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are equal, it is not difficult to show that F (s) and G(s) satisfy the same
functional equation.

Clearly, if we drop the condition that basic invariants are numerical
invariants, then finite global sets of basic invariants are easily detected,
for instance {KF (z), qF , ω∗

F}. However, Jurek Kaczorowski and Giuseppe
Molteni pointed out that there exist global sets of basic invariants formed by
a single numerical invariant. The argument is, roughly speaking, as follows.
The set of the functional equations of axiom (iii) (modulo the ”equivalent”
functional equations in the sense of Theorem 4.2) has the cardinality of
the continuum, and hence there exists an injective mapping φ from such
functional equations to R. Given F ∈ S�, define the numerical invariant IF
as the value of the mapping φ at the functional equation satisfied by F (s).
Clearly, such an invariant forms a global set of basic invariants. Of course,
the invariants coming from this argument are not explicit, but more explicit
versions can be obtained by refining the argument. However, such invariants
are quite artificial, while the invariants in Theorem 4.3 are definitely more
interesting.

Another problem related with invariants is determining an invariant

form of the functional equation, where all data are invariants. Clearly, such
an invariant form provides in particular a local set of basic invariants. We
deal with this problem by constructing a special (essentially) invariant form
of the functional equation, which we call the canonical functional equation.
The motivation comes from the fact that the λ-coefficients in the standard
functional equation of the classical L-functions are all equal to 1

2 (or easily
transformed to 1

2). Roughly speaking, the canonical functional equation
plays this role in the general case of S�.

To construct the canonical functional equation, we split the function
KF (z) in (4.5) into Q-equivalence classes as

KF (z) =
hF∑

j=1

Kj(z)

and define the canonical exponents Λj by

Λj = max{Λ ∈ R : (ez/Λ − 1)Kj(z) is entire}.
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The canonical exponents exist, are positive and distinct, and are invariants,
see Kaczorowski-Perelli [17]. Moreover, every F ∈ S� has a balanced γ-
factor, i.e. of the form

γ(s) = Qs
hF∏

j=1

∏

k

Γ(λjs+ µj,k)

with all ratios Λj/λj equal. Such ratios are positive integers, and their
minimum over all balanced γ-factors of F (s) is called the reduction index
lF , clearly an invariant; see [17]. Given positive integers Kj (j = 1, ..., hF )
and complex numbers µj,k with �µj.k ≥ 0 (j = 1, ..., hF , k = 1, ..., lFKj)
to be specified later, we write

QF =
(
qF (2π)−dF ldF

F

hF∏

j=1

Λ−2KjΛj

j

)1/2

ωF = ω∗
F e

i π
2
(ηF +1)

(
qF

(2π)dF

)−iθF /dF

l−iθF
F

hF∏

j=1

lF Kj∏

k=1

Λ2i�µj,k

j

γF (s) = Qs
F

hF∏

j=1

lF Kj∏

k=1

Γ
(

Λj

lF
s+ µj,k

)
.

(4.6)

Theorem 4.4 ([17]). Every F ∈ S� uniquely determines positive integers Kj

such that
γF (s)F (s) = ωFγF (1 − s)F (1 − s), (4.7)

where γF (s) and ωF are given by (4.6) and the µj,k’s are uniquely deter-
mined (mod Z) by F (s). Moreover, the µj,k’s are uniquely determined by
F (s) if hF = 1 or if F (s) is reduced, and lF = 1 in the latter case.

The functional equation in (4.7) is called the canonical functional equa-

tion, and in view of Conjecture 4.1 we expect that (4.7) is in invariant
form. The non-uniqueness of the µj,k when hF > 1 comes from possible
applications of the factorial formula to Γ-factors belonging to different Q-
equivalence classes. The proof of Theorem 4.4 is quite technical; we refer
to Kaczorowski-Perelli [17] for the proof and for an algorithm for the com-
putation of the canonical functional equation from a given one.

Assuming that hF = 1, a γ-factor is balanced if and only if all its λ-
coefficients are equal, hence by the definition of lF we have that the canon-
ical functional equation has the minimum number of Γ-factors among the
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γ-factors with all λ-coefficients equal. This clarifies somewhat the mean-
ing of the Λj and of lF in the case of balanced γ-factors: the Λj are the
”largest possible” λ-coefficients and lF somehow measures the ”reduction”
of γ-factors, attaining its minimum (lF = 1) in the reduced case.

The standard functional equation of ζ(s) and L(s, χ), χ primitive
Dirichlet character, coincides with the canonical one. This holds for the
L-functions Lf (s) as well. The canonical functional equation of ζK(s) is
obtained from the standard one by applying the Legendre duplication for-
mula to the Γ-factors with λ-coefficient equal to 1, in those cases where
both 1

2 and 1 are present as λ-coefficients. Note that all the classical L-
functions have a balanced γ-factor with λ-coefficient equal to 1

2 or 1. A
related problem is

Problem 4.4. Is it true that the canonical functional equation of the classical
L-functions has λ-coefficient always equal to 1

2 or 1?

In other words: is it true that all the balanced γ-factors of the classical
L-functions have λ-coefficient not larger than 1?

Coming to the local sets of basic invariants, with the notation in The-
orem 4.4 let

rF = lF

hF∑

j=1

Kj , gF = 22hF−1rF − 2hF + 1.

Using the function KF (z) in (4.5) and the canonical exponents, by Theo-
rems 4.3 and 4.4 we get

Theorem 4.5 ([17]).(i) A local set of basic invariants of F ∈S� is provided
by hF ,rF

qF , ω
∗
F and the HF (n) with n ≤ gF . (4.8)

(ii) Assuming the λ-conjecture, a local set of basic invariants of F ∈ S� is
provided by the invariants in (4.8) with gF replaced by dF .

As a consequence, we expect that qF , ω∗
F and the H-invariants with

n ≤ dF characterize the functional equation of F ∈ S�. In Section 6 we will
see that this is in fact the case for the degree 1 functions. We remark that
(ii) of Theorem 4.5 is best possible, in the sense that for every integer d ≥ 1
there exist F,G ∈ S�

d for which the invariants in (4.8) with gF replaced by
d − 1 are equal, but F (s) and G(s) satisfy different functional equations.
Examples are provided by suitable products of shifted Dirichlet L-functions,
see Kaczorowski-Perelli [17].
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A fundamental problem in the theory of the Selberg class is describing
the admissible values of the numerical invariants, that is the set of values
that numerical invariants attain at the functions of S and S�:

Problem 4.5. Given a numerical invariant I : S� → C, describe I(S) and
I(S�).

For some invariants there are good conjectures about admissible val-
ues, see for example Conjectures 4.1 and 4.3, Problem 4.3 and the degree
conjecture in Section 6.

We end this section by a first measure theoretic result on Problem 4.5;
more precise results of this type will be obtained in Section 6. We denote
by R+ and by C+ the positive real numbers and the complex numbers with
non-negative real part, and by T 1 the unit circle. A numerical invariant I
is called a continuous invariant if for every r ≥ 0 there exits a continuous
function

fr : R+ × (R+ × C+)r × T 1 → C

such that I(F ) = fr(Q,λ,µ, ω), where (Q,λ,µ, ω) are the data of F ∈ S�

(remember that λ and µ are r-dimensional vectors). Examples of contin-
uous numerical invariants are the H-invariants HF (n), the conductor qF
and the root number ω∗

F .

Theorem 4.6 ([22]). Let I be a continuous invariant. Then the sets �I(S),
�I(S), �I(S�) and �I(S�) are Lebesgue measurable.

Roughly speaking, the proof of Theorem 4.6 is based on the fact that
for a given continuous invariant I, the extended Selberg class S� can be
endowed with a suitable metric, thus becoming a metric space with good
properties.
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