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Abstract
We study complex solvmanifolds�\G with holomorphically trivial canonical bundle.
We show that the trivializing section of this bundle can be either invariant or non-
invariant by the action ofG. First we characterize the existence of invariant trivializing
sections in terms of the Koszul 1-form ψ canonically associated to (g, J ), where g
is the Lie algebra of G, and we use this characterization to produce new examples
of complex solvmanifolds with trivial canonical bundle. Moreover, we provide an
algebraic obstruction, also in terms of ψ , for a complex solvmanifold to have trivial
(or more generally holomorphically torsion) canonical bundle. Finally, we exhibit
a compact hypercomplex solvmanifold (M4n, {J1, J2, J3}) such that the canonical
bundle of (M, Jα) is trivial only for α = 1, so that M is not an SL(n, H)-manifold.
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1 Introduction

Given a complex manifold (M, J ) with dimC M = n, its canonical bundle KM is
defined as the n-th exterior power of its holomorphic cotangent bundle, and it is a
holomorphic line bundle over M . This line bundle is holomorphically trivial when
there exists a nowhere vanishing (n, 0)-form which is holomorphic (or equivalently,
closed). Complex manifolds with holomorphically trivial canonical bundle are impor-
tant in differential geometry and other fields. For instance, compact Kähler manifolds
M with global Riemannian holonomy contained in SU(n), have holomorphically triv-
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ial canonical bundle. More generally, any Calabi-Yau manifold (i.e., a compact Kähler
manifold M with c1(M) = 0 in H2(M, R)) has holomorphically torsion canoni-
cal bundle, that is, K⊗k

M is trivial for some k ∈ N. In theoretical physics, complex
manifolds with holomorphically trivial canonical bundle appear in the study of the
Hull-Strominger system. Indeed, in dimension 6, the solutions of this system occur
in compact complex manifolds M endowed with a special Hermitian metric (not nec-
essarily Kähler) and with trivial KM . According to Tosatti [42], compact complex
manifolds with holomorphically torsion canonical bundle have vanishing first Bott-
Chern class, cBC1 = 0, and therefore they are examples of non-Kahler Calabi-Yau
manifolds.

A large family of compact complex manifolds with trivial canonical bundle is
given by nilmanifolds �\G equipped with an invariant complex structure. Indeed,
it was shown in Barberis et al. [7] that the simply connected nilpotent Lie group G
admits a nonzero left invariant holomorphic (n, 0)-form σ (with dimR G = 2n), by
using a distinguished basis of left invariant (1, 0)-forms provided by Salamon in [39].
Since σ is left invariant, it induces an invariant trivializing section of K�\G for any
lattice � ⊂ G.

The next natural step is to study solvmanifolds �\G equipped with invariant com-
plex structures (or complex solvmanifolds, for short). In this case, it is known that
several different phenomena can occur. For instance:

• There are complex solvmanifoldswhich admit an invariant section of the canonical
bundle, just as in the case of nilmanifolds. A classification of the Lie algebras
associated to such solvmanifolds in dimension 6 is given in Fino et al. [14].

• There are 4-dimensional complex solvmanifolds which do not have trivial canon-
ical bundle. Indeed, Inoue surfaces are complex solvmanifolds (see for instance
[23]) with non trivial canonical bundle, since the only compact complex surfaces
with trivial canonical bundle are complex tori, K3 surfaces and primary Kodaira
surfaces.

In this article we exhibit a different phenomenon concerning the canonical bundle
of complex solvmanifolds. Indeed, in the next example we show that there exists a
4-dimensional complex solvmanifold (�\G, J )with trivial canonical bundle such that
the trivializing section is not induced by a left invariant holomorphic (2, 0)-form on
G. This provides a counterexample to [14, Proposition 2.1].

Example 1.1 Let H3 denote the 3-dimensional Heisenberg group, which is considered
as R

3 equipped with the product

(x, y, z) · (x ′, y′, z′) = (x + x ′, y + y′, z + z′ + 1

2
(xy′ − yx ′)).

Let us consider now the semidirect productG = R�ϕ H3, where ϕ : R → Aut(H3) ⊂
GL(3, R) is given by

ϕ(t) =
⎡
⎣
cos t − sin t 0
sin t cos t 0
0 0 1

⎤
⎦ .
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The Lie algebra g associated toG has a basis {e0, . . . , e3} of left invariant vector fields
such that

[e1, e2] = e3, [e0, e1] = e2, [e0, e2] = −e1;
equivalently, the dual basis of 1-forms {e0, . . . , e3} satisfies

de0 = 0, de1 = e0 ∧ e2, de2 = −e0 ∧ e1, de3 = −e1 ∧ e2.

G admits a left invariant complex structure J given by Je0 = e3, Je1 = e2. A
left invariant smooth section of the canonical bundle of (G, J ) is the (2, 0)-form
σ = (e0 + ie3) ∧ (e1 + ie2). Thus, using the notation e jk··· = e j ∧ ek ∧ · · · , we have
that dσ = −ie023 − e013 �= 0. Therefore, σ is not closed, and hence not holomorphic.
However, if t denotes the coordinate on the R-factor we have that dt = e0 and then
the (2, 0)-form τ := ei t σ is holomorphic, since dτ = 0.

The Lie group G admits the lattice � = {(2πk,m, n,
p
2 ) | k,m, n, p ∈ Z}; note

that � is nilpotent and τ is �-invariant since ei(t+2πk) = ei t . Therefore τ induces a
nowhere vanishing closed (2, 0)-form τ̃ on the solvmanifold (�\G, J ) and thus this
solvmanifold has trivial canonical bundle. We point out that (�\G, J ) is a primary
Kodaira surface since it is biholomorphic to (�\(R × H3), J̃ ), where J̃ is induced by
a left invariant complex structure on R × H3, and noticing that � is a lattice in both
G and R × H3.

The previous example is the main motivation for this article. It shows that when
studying the triviality of the canonical bundle of complex solvmanifolds we need to
deal with the problem in two instances. First, given a complex solvmanifold M =
(�\G, J ) we have to determine if M admits a trivializing section induced by a left
invariant one on the Lie group so that KM is trivial. If this is not the case, then we must
look for more general trivializing sections. Just as we did in Example 1.1, we multiply
a left invariant smooth section σ of K(G,J ) (which always exists) by a smooth function
so as to get a holomorphic trivializing section of K(G,J ). If this function is invariant
by � we obtain a trivializing section of K(�\G,J ), which is therefore is trivial. In this
article we exhibit several examples of this situation.

Our main interest is to study complex solvmanifolds but whenever possible we
prove results for compact quotients of general simply connected Lie groups equipped
with left invariant complex structures.

First, in §3, given a (not necessarily solvable) Lie group G endowed with a left
invariant complex structure J , we tackle the problem of the existence of an invariant
trivializing section of K(G,J ). We show in Theorem 3.2 that such a section exists if
and only if the Koszul 1-form ψ on the Lie algebra g = Lie(G) vanishes, where ψ

is defined by ψ(x) = Tr(J ad x) − Tr ad(J x), x ∈ g. Applying this characterization
we obtain new examples of complex solvmanifolds with trivial canonical bundle: for
instance, when the complex structure is abelian (Corollary 3.6). In addition, we show
that if (�\G, J ) admits an invariant trivializing section of some power of K(�\G,J )

then K(�\G,J ) itself admits an invariant trivializing section.
In §4 we prove first that two trivializing sections of the canonical bundle of a Lie

groupG equippedwith a left invariant complex structure differ by a nowhere vanishing
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holomorphic function on G (Lemma 4.1). This implies that the trivializing sections of
the canonical bundle of a compact complex manifold �\G are either all invariant or
all non invariant (Corollary 4.2). Then we prove that any simply connected solvable
Lie group G equipped with a left invariant complex structure J has trivial canonical
bundle (Theorem 4.6).

In §5, our goal is to give new examples of complex solvmanifolds with trivial
canonical bundle, in cases where there are no invariant sections. We first provide an
algebraic obstruction in terms of the Koszul 1-form ψ , which holds for any Lie group
G with a left invariant complex structure. Indeed, we show in Theorem 5.3 that if
a compact complex manifold �\G has trivial (or more generally holomorphically
torsion) canonical bundle then ψ vanishes on the commutator ideal [g, g] where g =
Lie(G). We use this condition to reobtain the known fact that compact semisimple Lie
groups with a left invariant complex structure do not have holomorphically torsion
canonical bundle (Proposition 5.8). This obstruction also provides us with a helpful
insight to find an explicit trivializing section of the canonical bundle of some complex
solvmanifolds (Proposition 5.10). We also apply this construction in order to exhibit
some new examples.

In the last section we consider a Lie group G equipped with a left invariant hyper-
complex structure {J1, J2, J3} and we study the triviality of the canonical bundle of
the complex manifolds (G, Jα), α = 1, 2, 3. First we prove in Theorem 6.1 that if
{J1, J2, J3} is a left invariant hypercomplex structure on G and if (G, Jα) admits a
left invariant trivializing section of its canonical bundle for some α = 1, 2, 3, then the
canonical bundle of (G, Jβ) is trivial for all β = 1, 2, 3, and the same happens for any
hypercomplex compact quotient �\G. Next we show that this does not necessarily
hold for hypercomplex solvmanifolds if the trivializing section of (�\G, Jα) is not
invariant. Indeed, in Example 6.3 we exhibit 8-dimensional hypercomplex solvman-
ifolds (�\G, {J1, J2, J3}) such that (�\G, J1) has trivial canonical bundle but the
canonical bundles of (�\G, J2) and (�\G, J3) are both non trivial. These examples
are not SL(2, H)-manifolds hence they provide a negative answer to a question by
Verbitsky in [44].

2 Preliminaries

An almost complex structure on a differentiable manifold M is an automorphism J
of the tangent bundle T M satisfying J 2 = − I, where I is the identity endomorphism
of T M . Note that the existence of an almost complex structure on M forces the
dimension of M to be even, say dimR M = 2n. The almost complex structure J is
called integrable when it satisfies the condition NJ ≡ 0, where NJ is the Nijenhuis
tensor given by:

NJ (X ,Y ) = [X ,Y ] + J ([J X ,Y ] + [X , JY ]) − [J X , JY ], (1)

for X ,Y vector fields on M . An integrable almost complex structure is called simply a
complex structure onM . According to thewell-knownNewlander-Nirenberg theorem,
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a complex structure on M is equivalent to the existence of a holomorphic atlas on M ,
so that (M, J ) can be considered as a complex manifold of complex dimension n.

If (M, J ) is a complex manifold with dimC M = n its canonical bundle is defined
as

KM =
∧n

T ∗
M ,

where T ∗
M is the holomorphic cotangent bundle of M . This is a holomorphic line

bundle on M , and it is holomorphically trivial if and only if there exists a nowhere
vanishing holomorphic (n, 0)-form defined on M . In this article, by trivial canonical
bundle we will always mean holomorphically trivial canonical bundle.

Note that if σ is a (n, 0)-form on M then σ is holomorphic if and only if it is closed,
since dσ = ∂σ + ∂σ and ∂σ is a (n + 1, 0)-form, thus ∂σ = 0.

We observe first that the existence of a trivializing section of the canonical bundle
has some topological consequences on a compact complex manifold.

Proposition 2.1 Let (M, J ) be a compact complex manifold with trivial canonical
bundle and dimR M = 2n. Then the n-th Betti number bn(M) satisfies bn(M) ≥ 2.

Proof We follow the lines of [14, Proposition 2.5]. Let τ be a nowhere vanishing
holomorphic (n, 0)-form on M , therefore τ ∧ τ̄ is a nonzero multiple of a real vol-
ume form on M . Let us decompose it as τ = τ1 + iτ2. Since τ is closed, we
have that dτ1 = 0 = dτ2. Therefore, they define de Rham cohomology classes
[τ1], [τ2] ∈ Hn

dR(M, R). These two classes are linearly independent. Indeed, if we
assume otherwise then there exist a, b ∈ Rwith a2+b2 �= 0 such that aτ1+bτ2 = dη

for some (n − 1)-form η. We have two cases, according to the parity of n.
(i) Case n odd: in this case we have

0 �= τ ∧ τ̄ = (τ1 ∧ τ1 + τ2 ∧ τ2) + i(−τ1 ∧ τ2 + τ2 ∧ τ1) = −2i(τ1 ∧ τ2).

We compute next

d(η ∧ (−bτ1 + aτ2)) = (aτ1 + bτ2) ∧ (−bτ1 + aτ2) = (a2 + b2)(τ1 ∧ τ2).

Integrating over M we obtain, due to Stokes’ theorem, 0 = (a2 + b2)
∫
M

τ1 ∧ τ2,

which is a contradiction.
(ii) Case n even: in this case we have

0 �= τ ∧ τ̄ = (τ1 ∧ τ1 + τ2 ∧ τ2) + i(−τ1 ∧ τ2 + τ2 ∧ τ1) = τ1 ∧ τ1 + τ2 ∧ τ2.

It follows from 0 = τ ∧ τ that τ1 ∧ τ1 = τ2 ∧ τ2 and τ1 ∧ τ2 = 0. In particular,
0 �= τ ∧ τ̄ = 2τ1 ∧ τ1. We compute next

d(η ∧ (aτ1 + bτ2)) = (aτ1 + bτ2) ∧ (aτ1 + bτ2) = (a2 + b2)τ1 ∧ τ1.

Again, integrating over M we obtain a contradiction.
Therefore we obtain that bn(M) ≥ 2.
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Other important holomorphic line bundles over the complex manifold (M, J ) are
given by the tensor powers of the canonical bundle:

K⊗k
M = KM ⊗ · · · ⊗ KM (k times).

Following [42],wewill say that a complexmanifold (M, J ) is holomorphically torsion
if K⊗k

M is holomorphically trivial for some k ≥ 1. The triviality of this holomorphic
bundle can be understood as follows.

For any complex manifold M the Dolbeault operator ∂̄ can be extended to a differ-
ential operator ∂̄k : �(K⊗k

M ) → �((T ∗M)0,1 ⊗ K⊗k
M ), where �(·) denotes the space

of smooth sections. Indeed, since
∧n,1

(M) ∼= (T ∗M)0,1⊗KM we define recursively:
∂̄1 = ∂̄ and for k ≥ 2,

∂̄k(σ ⊗ s) = ∂̄σ ⊗ s + σ ⊗ ∂̄k−1s,

where σ ∈ �(KM ) and s ∈ �(K⊗k−1
M ). This differential operator satisfies the Leibniz

rule ∂̄k( f s) = ∂̄ f ⊗ s + f ∂̄ks for any f ∈ C∞(M, C) and s ∈ �(K⊗k
M ).

Theholomorphic bundle K⊗k
M is trivial if andonly if there exists a nowhere vanishing

section s ∈ �(K⊗k
M ) such that ∂̄ks = 0.

AHermitian structure on a smoothmanifoldM is a pair (J , g)of a complex structure
J and a Riemannian metric g compatible with J , that is, g(J X , JY ) = g(X ,Y ) for
all vector fields X ,Y on M , or equivalently, g(J X ,Y ) = −g(X , JY ).

2.1 Solvmanifolds

A discrete subgroup � of a Lie group G is called a lattice if the quotient �\G has
finite volume. According to Milnor [30], if such a lattice exists then the Lie group
must be unimodular, that is, it carries a bi-invariant Haar measure. This is equivalent,
when G is connected, to Tr(ad x) = 0 for all x ∈ g = Lie(G) (in this case, g is called
unimodular as well). When �\G is compact the lattice � is said to be uniform. It is
well known that when G is solvable then any lattice is uniform [38, Theorem 3.1].

Assume that G is simply connected and � is a uniform lattice in G. The quotient
�\G is called a solvmanifold ifG is solvable and a nilmanifold ifG is nilpotent, and it
follows that π1(�\G) ∼= �. Furthermore, the diffeomorphism class of solvmanifolds
is determined by the isomorphism class of the corresponding lattices, as the following
result shows:

Theorem 2.2 [32] If �1 and �2 are lattices in simply connected solvable Lie groups
G1 and G2, respectively, and �1 is isomorphic to �2, then �1\G1 is diffeomorphic to
�2\G2.

Note that in any fixed dimension only countably many non-isomorphic simply
connected Lie groups admit lattices, according to Milovanov [31] (for the solvable
case) and Witte [45] (for the general case).

Let G be a simply connected solvable Lie group, and N the nilradical of G (i.e.,
the connected closed Lie subgroup of G whose Lie algebra is the nilradical n of g).
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Moreover, [G,G] is the connected closed Lie subgroup with Lie algebra [g, g]. As
G is solvable, [G,G] ⊂ N so G/N is abelian, and from the long exact sequence of
homotopy groups associated to the fibration N → G → G/N it follows that G/N
is simply connected. Therefore G/N ∼= R

k for some k ∈ N and G satisfies the short
exact sequence

1 → N → G → R
k → 1.

G is called splittable if this sequence splits, that is, there is a right inverse homo-
morphism of the projection G → R

k . This condition is equivalent to the existence
of a homomorphism φ : R

k → Aut(N ) such that G is isomorphic to the semidirect
product R

k
�φ N .

Following [46], a lattice � of a splittable solvable Lie group R
k
�φ N will be called

splittable if it can be written as � = �1�φ �2 where �1 ⊂ R
k and �2 ⊂ N are lattices

of R
k and N respectively. Also in Yamada [46] there is a criterion to determine the

existence of splittable lattices in splittable solvable simply connected Lie groups.

Theorem 2.3 [46] Let G = R
k

�φ N be a simply connected splittable solvable Lie
group, where N is the nilradical of G. If there exist a rational basisB = {X1, . . . , Xn}
of n and a basis {t1, . . . , tk} of R

k such that the coordinate matrix of d(φ(t j ))1N in
the basis B is an integer unimodular matrix for all 1 ≤ j ≤ k then G has a splittable
lattice of the form � = spanZ{t1, . . . , tk} �φ expN (spanZ{X1, . . . , Xn}).

When k = 1 the simply connected solvable splittable Lie group G = R �φ N is
called almost nilpotent. In this case, every lattice is splittable due to Bock [9]. If N
is abelian, i.e. N = R

n , then G (and its corresponding Lie algebra) is called almost
abelian.

In the examples in the forthcoming sections, we will begin with a Lie algebra
g = R

k
�ϕ n. In order to apply Theorem 2.3 we need to determine the associated

simply connected Lie group G. Let N denote the simply connected nilpotent Lie
group with Lie algebra n. Since exp : n → N is a diffeomorphism, we may assume
that the underlying manifold of N is n itself with the group law x · y = Z(x, y),
where Z(x, y) is the polynomial map given by the Baker-Campbell-Hausdorff for-
mula: exp(x) exp(y) = exp(Z(x, y)). Therefore, with this assumption, we have that
exp : n → N is simply the identity map on n and moreover, Aut(n) = Aut(N ).

Let {t1, . . . , tk} be a basis ofR
k and denote Bj = ϕ(t j ) ∈ Der(n). Then, exp(Bj ) ∈

Aut(N ) and using [9, Theorem 4.2] we have that G = R
k

�φ N , where φ : R
k →

Aut(N ) is the Lie group homomorphism given by

φ

⎛
⎝

k∑
j=1

x j t j

⎞
⎠ = exp(x1B1 + · · · + xk Bk) = exp(x1B1) exp(x2B2) · · · exp(xk Bk).

Here exp denotes the matrix exponential after identification of n ∼= R
dim n choosing a

basis of n.
Note that, in the notation of Theorem 2.3, we have that d(φ(t j ))1N = exp(Bj ) =

exp(ϕ(t j )). Hence, in order to find lattices we need a basis {t1, . . . , tk} such that
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[exp(ϕ(t j ))]B is an integer unimodular matrix in the rational basis B of n, for all
1 ≤ j ≤ k.

We move on now to consider invariant geometric structures on solvmanifolds.
Let G be a connected Lie group with Lie algebra g. A complex structure J on G

is said to be left invariant if left translations by elements of G are holomorphic maps.
In this case J is determined by the value at the identity of G. Thus, a left invariant
complex structure on G amounts to a complex structure on its Lie algebra g, that is, a
real linear transformation J of g satisfying J 2 = − I and NJ (x, y) = 0 for all x, y in
g, with NJ defined as in (1). A Riemannian metric g on G is called left invariant when
left translations are isometries. Such a metric g is determined by its value ge = 〈· , · 〉
at the identity e of G, that is, 〈· , · 〉 is a positive definite inner product on TeG = g. A
Hermitian structure (J , g) on G is left invariant when both J and g are left invariant.
The corresponding pair (J , 〈· , · 〉) is called a Hermitian structure on g.

We observe that left invariant geometric structures defined on G induce naturally
geometric structures on �\G, with � a lattice in G, which are called invariant. For
instance, a left invariant complex structure (respectively, Riemannian metric) on G
induces a unique complex structure (respectively, Riemannnian metric) on �\G such
that the canonical projectionG → �\G is a local biholomorphism (respectively, local
isometry). In this article, a solvmanifold equipped with an invariant complex structure
will be called simply a complex solvmanifold.

3 Complex Solvmanifolds with Trivial Canonical Bundle Via Invariant
Sections

In this section we deal with the existence of nowhere vanishing left invariant closed
(n, 0)-forms on 2n-dimensional Lie groups equipped with a left invariant complex
structure, equivalently we study the existence of nonzero closed (n, 0)-forms on the
corresponding Lie algebras.

First we characterize the existence of such a form in algebraic terms. In order to do
so, we need the following notion which will play a crucial role throughout the article:

Definition 3.1 Given a Lie algebra g equipped with a complex structure J , the Koszul
1-form ψ ∈ g∗ is defined as:

ψ(x) = Tr(J ad x) − Tr ad(J x), x ∈ g. (2)

This formwas introduced byKoszul in [27] (see also [19]) in the context ofG-invariant
complex structures on homogeneous spacesG/H (comparewith θ1 in [43, Proposition
4.1]).

Theorem 3.2 Let g be a 2n-dimensional Lie algebra with an almost complex structure
J . Let σ ∈ ∧n,0g∗ be a nonzero (n, 0)-form on g. Then dσ = 0 if and only if J is
integrable and ψ ≡ 0.

Proof Let {u1, . . . , un, v1, . . . , vn} be a J -adapted basis of g, that is, Ju j = v j for all
j . Since dimC

∧n,0g∗ = 1, we may assume that σ = (u1 + iv1) ∧ · · · ∧ (un + ivn).
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The Lie brackets of g can be written in terms of the basis above by

[u j , uk] =
n∑

�=1

a�
jku� +

n∑
�=1

b�
jkv�,

[u j , vk] =
n∑

�=1

c�
jku� +

n∑
�=1

d�
jkv�,

[v j , vk] =
n∑

�=1

e�
jku� +

n∑
�=1

f �
jkv�,

with a�
k j = −a�

jk , b
�
k j = −b�

jk , e
�
k j = −e�

jk and f �
k j = − f �

jk . Accordingly, for
1 ≤ � ≤ n we have

du� = −
n∑

j,k=1

(
1
2a

�
jk u

jk + c�
jk u

j ∧ vk + 1
2e

�
jk v jk

)
,

dv� = −
n∑

j,k=1

(
1
2b

�
jk u

jk + d�
jk u

j ∧ vk + 1
2 f �

jk v jk
)

.

Let us set γ j := u j + iv j for all j , so that σ = γ1 ∧ · · · ∧ γn . Next we compute
dγ� in terms of γ j and γ̄ j . First we note that 2u j = (γ j + γ̄ j ) and 2v j = −i(γ j − γ̄ j )

imply that

4u jk = (γ j + γ̄ j ) ∧ (γk + γ̄k) = γ jk + γ j̄ k + γ j k̄ + γ j̄ k̄

4u j ∧ vk = −i(γ j + γ̄ j ) ∧ (γk − γ̄k) = −i(γ jk + γ j̄ k − γ j k̄ − γ j̄ k̄)

4v jk = −(γ j − γ̄ j ) ∧ (γk − γ̄k) = −(γ jk − γ j̄ k − γ j k̄ + γ j̄ k̄)

Using these identities it follows that

dγ� = −
n∑

j,k=1

1
2 (a

�
jk + ib�

jk)u
jk + (c�

jk + id�
jk)u

j ∧ vk + 1
2 (e

�
jk + i f �

jk)v
jk (3)

= − 1
4

n∑
j,k=1

((
1
2a

�
jk + d�

jk − 1
2e

�
jk + i

(
1
2b

�
jk − c�

jk − 1
2 f �

jk

))
γ jk

+
(
1
2a

�
jk + d�

jk + 1
2e

�
jk + i

(
1
2b

�
jk − c�

jk + 1
2 f �

jk

))
γ j̄ k

+
(
1
2a

�
jk − d�

jk + 1
2e

�
jk + i

(
1
2b

�
jk + c�

jk + 1
2 f �

jk

))
γ j k̄

+
(
1
2a

�
jk − d�

jk − 1
2e

�
jk + i

(
1
2b

�
jk + c�

jk − 1
2 f �

jk

))
γ j̄ k̄

)
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We use the previous expression in order to compute dσ , where we use the unconven-

tional but shorter notation
σ

γl
= γ1 ∧ · · · ∧ γ�−1 ∧ γ�+1 ∧ · · · ∧ γn :

dσ =
n∑

�=1

(−1)�+1 γ1 ∧ · · · ∧ γ�−1 ∧ dγ� ∧ γ�+1 ∧ · · · ∧ γn

= − 1
4

∑
j,�

(
1
2a

�
j� + d�

j� + 1
2 e

�
j� + i

(
1
2b

�
j� − c�

j� + 1
2 f �

j�

))
γ̄ j ∧ σ

+ 1
4

∑
k,�

(
1
2a

�
�k − d�

�k + 1
2 e

�
�k + i

(
1
2b

�
�k + c�

�k + 1
2 f �

�k

))
γ̄k ∧ σ

+ 1
4

n∑
j,k,�=1

(−1)�
(
1
2a

�
jk − d�

jk − 1
2 e

�
jk + i

(
1
2b

�
jk + c�

jk − 1
2 f �

jk

))
γ̄ j ∧ γ̄k ∧ σ

γ�

= 1
4

∑
j,�

(a�
� j − (d�

j� + d�
� j ) + e�

� j ) + i(b�
� j + (c�

� j + c�
j�) + f �

� j ))γ̄ j ∧ σ

+ 1
4

∑
j<k

∑
�

((a�
jk + (−d�

jk + d�
k j ) − e�

jk) + i(b�
jk + (c�

jk − c�
k j ) − f �

jk))γ̄ j ∧ γ̄k ∧ σ

γ�

.

Since {γ̄ j ∧ σ | 1 ≤ j ≤ n} ∪ {γ̄ j ∧ γ̄k ∧ σ
γ�

| j < k, 1 ≤ � ≤ n} is linearly
independent, we see that dσ = 0 if and only if

n∑
�=1

a�
� j − d�

j� − d�
� j + e�

� j = 0,
n∑

�=1

b�
� j + c�

� j + c�
j� + f �

� j = 0, 1 ≤ j ≤ n, (4)

e�
jk = a�

jk − d�
jk + d�

k j , f �
jk = b�

jk + c�
jk − c�

k j , j < k, 1 ≤ � ≤ n. (5)

On the other hand, it is well known that the integrability of J is equivalent to

d(
∧1,0

g∗
C
) ⊆

∧2,0
g∗
C

⊕
∧1,1

g∗
C
,

where gC denotes the complexification of g and the bidegrees are induced by J .
Therefore, J is integrable if and only if the coefficient of γ̄ j ∧ γ̄k in dγ� vanishes

for all j, k, �. It follows from (3) that this happens if and only if

e�
jk = a�

jk − d�
jk + d�

k j , f �
jk = b�

jk + c�
jk − c�

k j , j < k, 1 ≤ � ≤ n,

which is exactly (5).
Next, using the inner product 〈·, ·〉 on g defined by decreeing the basis {u1, . . . , un,

v1, . . . , vn} orthonormal we have that

Tr(J ad u j ) =
n∑

�=1

(b�
� j + c�

j�), Tr(J ad v j ) =
n∑

�=1

(d�
� j − e�

� j ),

−Tr ad v j =
n∑

�=1

(c�
� j + f �

� j ), Tr ad u j =
n∑

�=1

(a�
j� + d�

j�).
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Hence, (4) can be written as, for 1 ≤ j ≤ n,

−Tr ad u j − Tr(J ad v j ) = 0, −Tr ad v j + Tr(J ad u j ) = 0.

Then (4) is equivalent to ψ(u j ) = ψ(v j ) = 0. Thus, dσ = 0 if and only if J is
integrable and ψ ≡ 0. ��

In the unimodular case we obtain the following characterization.

Corollary 3.3 Let g be a 2n-dimensional unimodular Lie algebra with a complex struc-
ture J . Then g admits a closed non-vanishing (n, 0)-form if and only if Tr(J ad x) = 0
for all x ∈ g.

Remark 3.4 It follows from the proof of Theorem 3.2 that if J is integrable then1

dσ = 1
4

∑
j,�

(a�
� j − d�

j� − d�
� j + e�

� j ) + i(b�
� j + c�

� j + c�
j� + f �

� j ) γ̄ j ∧ σ

= 1
4

∑
j

(−Tr(ad u j ) − Tr(J ad v j )) + i(Tr(J ad u j ) − Tr(ad v j ))
)

γ̄ j ∧ σ

= 1
4

∑
j

(−ψ(v j ) + iψ(u j )) γ̄ j ∧ σ.

When g is unimodular and J is integrable, the vanishing of the Koszul 1-form
ψ can also be understood in terms of the complexification gC of g as the following
proposition shows. Recall that gC = g1,0⊕g0,1, where g1,0 (respectively, g0,1) is the i-
eigenspace (respectively, (−i)-eigenspace) of the C-linear extension JC : gC → gC,
and they are given by

g1,0 = {x − i J x | x ∈ g}, g0,1 = {x + i J x | x ∈ g}.
Both g1,0 and g0,1 are Lie subalgebras of gC due to the integrability of J .

Proposition 3.5 Let (g, J ) be a 2n-dimensional unimodular Lie algebra equippedwith
a complex structure. Then (g, J ) has a nonzero closed (n, 0)-form if and only if g1,0

(or g0,1) is unimodular.

Proof We will show the equivalence only for g1,0. The computations for g0,1 are
completely analogous. Given a Hermitian inner product 〈· , · 〉 on g, it can be extended
to a complex inner product on gC satisfying 〈a + ib, c + id〉 = 〈a, c〉 + 〈b, d〉 −
i(〈a, d〉−〈b, c〉). Thus, if {e j }2nj=1 is an orthonormal basis of g such that Je2 j−1 = e2 j
then { 1√

2
(e2 j−1 − ie2 j )}nj=1 is an orthonormal basis of g1,0.

Now, consider x − i J x ∈ g1,0. We can decompose ad(x − i J x) with respect to the
decomposition gC = g1,0 ⊕ g0,1 as

ad(x − i J x) = Ax ∗
0 Bx

.

1 Cf. [22, Lemma 3]
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Next we compute

Tr Ax = 1
2

n∑
j=1

〈[x − i J x, e2 j−1 − ie2 j ], e2 j−1 − ie2 j 〉

= 1

2

n∑
j=1

〈[x, e2 j−1] − [J x, e2 j ] − i([x, e2 j ] + [J x, e2 j−1]), e2 j−1 − ie2 j 〉

= 1
2 (Tr ad x − i Tr ad(J x) − Tr(J ad(J x)) − i Tr(J ad x))

= 1
2 (Tr ad x − Tr(J ad(J x)) − i

2 (Tr ad(J x) + Tr(J ad x)).

Therefore, Tr ad(x − i J x) = 0 on g1,0 if and only if Tr(J ad x) = −Tr ad(J x) on
g. In particular, as g is unimodular, it follows that g1,0 is unimodular if and only if
Tr(J ad x) = 0, and the statement follows from Corollary 3.3. ��

There are many known examples of complex compact quotients �\G of a simply
connected Lie group G by a discrete subgroup � admitting an invariant trivializing
section of the canonical bundle. For instance:

• when G is a complex Lie group, that is, the complex structure J : g → g satisfies
J ad x = ad(J x) for all x ∈ g (such a complex structure is called bi-invariant)
since (G, J ) is complex parallelizable,

• when G is nilpotent [7],
• some complex almost abelian solvmanifolds [15].

All these examples are easily recovered using Theorem 3.2.
We consider next a special family of left invariant complex structures on Lie groups.

If an almost complex structure J on a Lie algebra g satisfies [J x, J y] = [x, y] for all
x, y ∈ g then it is immediate to verify that J is integrable. Such a complex structure is
called abelian. They were introduced in Barberis et al. [6] and they have proved very
useful in different contexts in differential and complex geometry. Abelian complex
structures can only occur on 2-step solvable Lie algebras (see for instance [2]).

In the next result we show the existence of a left invariant trivializing section of
the canonical bundle of a unimodular Lie group equipped with an abelian complex
structure. As usual we state the result at the Lie algebra level.

Corollary 3.6 A 2n-dimensional Lie algebrag equippedwith an abelian complex struc-
ture J has a nonzero closed (n, 0)-form if and only if g is unimodular. In particular,
any complex solvmanifold equipped with an abelian complex structure has trivial
canonical bundle.

Proof The fact that J is abelian is equivalent to [x, J y] = −[J x, y] for all x, y ∈
g. Hence, ad(x)J = − ad(J x), which implies Tr(ad(x)J ) = −Tr(ad(J x)). This
identity together with the condition Tr(ad(x)J ) = Tr(ad(J x)), which comes from
ψ ≡ 0, and the fact that J is an isomorphism imply the result. ��
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In dimension 6, there is only one unimodular non-nilpotent Lie algebra admitting
an abelian complex structure (see [1]). It is the Lie algebra s determined by a basis
{ei }6i=1 and Lie brackets

[e1, e6] = −e1, [e2, e5] = e1, [e1, e5] = −e2, [e2, e6] = −e2,

[e3, e6] = e3, [e4, e5] = −e3, [e3, e5] = e4, [e4, e6] = e4.

This Lie algebra appears as g8 in Fino et al. [14] and as s(−1,0) in Andrada et al. [1];
it is the real Lie algebra underlying the complex parallelizable Nakamura manifold
[33] (see also [4]). It has an infinite number of non-equivalent2 complex structures
admitting a nonzero holomorphic (3, 0)-form but only one of them is abelian (see
[14, Proposition 3.7]), namely: Je1 = e2, Je3 = e4 and Je5 = e6. It was proven in
Yamada [46] that its corresponding simply connected Lie group S admits a lattice. We
show next that this example can be generalized to any dimension of the form 4n + 2.

Example 3.7 For n ≥ 1, let sn = R
2

� R
4n be the (4n + 2)-dimensional unimodular

Lie algebra with basis { f1, f2, e1, e2, . . . , e4n} and Lie brackets given by3

A := ad f1|R4n =
([

0 −1
1 0

]
⊕
[

0 1
−1 0

])⊕n

, B := ad f2|R4n = diag(1, 1,−1,−1)⊕n .

Note that s1 coincides with the Lie algebra s above.
It is easy to verify that the almost complex structure J given by J f1 = f2 and

Je2 j−1 = e2 j for all 1 ≤ j ≤ 2n is abelian. It follows from Corollary 3.6 that sn
admits a nonzero closed (n, 0)-form. We show next that the corresponding simply

connected Lie group Sn admits lattices. For m ∈ N, m ≥ 3, let tm = log(m+√
m2−4
2 ).

Then
exp(π A) = − I4n, exp(tm B) = diag(etm , etm , e−tm , e−tm )⊕n .

Using that etm + e−tm = m, it is easily seen that there exists P ∈ GL(4n, R) such
that P−1 exp(tm B)P = [

0 −1
1 m

]⊕2n
, and it is clear that P−1(− I4n)P = − I4n , so the

matrices exp(π A) and exp(tm B) are simultaneously conjugate to integer unimodular
matrices. According to Theorem 2.3, since any basis of R

4n is rational, the subgroup
�n
m := (πZ ⊕ tmZ) � PZ

4 is a lattice of Sn . The complex solvmanifold (�n
m\Sn, J )

has trivial canonical bundle for any m.

Remark 3.8 The Lie algebra sn also carries a bi-invariant complex structure J̃ given
by

J̃ f1 = − f2, J̃ e2 j−1 = e2 j , 1 ≤ j ≤ 2n,

so that the solvmanifold (�\Sn, J̃ ) is complex parallelizable for any lattice � ⊂ G,
generalizing in this way the complex parallelizable Nakamura manifold.

2 Two complex structures J1, J2 on a Lie algebra g are said to be equivalent if there exists a Lie algebra
isomorphism ϕ : g → g such that ϕ ◦ J1 = J2 ◦ ϕ.
3 Throughout the articlewe use A⊕B to denote the block-diagonalmatrix

[
A
B

]
. This naturally generalizes

to the sum of n square matrices.
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3.1 Examples in Almost Nilpotent Solvmanifolds

In this subsection we exhibit some examples of complex almost nilpotent solvmani-
folds admitting invariant trivializing sections of the canonical bundle. In particular we
show how to use Theorem 2.3 in the case of a non-abelian nilradical.

The examples we provide are considered in Fino and Paradiso [16], where they
characterize two types of Hermitian structures on almost nilpotent Lie algebras whose
nilradical has one-dimensional commutator ideal, that is, n = h2�+1 ⊕ R

h with l, h ∈
N, where h2�+1 is a Heisenberg Lie algebra. Recall that h2�+1 = span{e1, . . . , e2�+1}
with e1 central and [e j , e�+ j ] = e1 for 2 ≤ j ≤ � + 1.

Example 3.9 Let gn = Re4n+2 �B h4n+1 where B =
⎡
⎣
0
I2n

− I2n

⎤
⎦ in the ordered

basis {e1, . . . , e4n+1}. According to [16, Proposition 2.4], the complex structure J on
gn defined by Je1 = e4n+2 and Je2k = e2k+1, 1 ≤ k ≤ 2n, is integrable. Moreover,
it is easily verified that the associated Koszul form vanishes so that (gn, J ) admits
a nonzero closed (2n + 1, 0)-form. For any m ∈ N, m ≥ 3, the associated simply

connected Lie group Gn admits a lattice �n
m . Indeed, for tm = log(m+√

m2−4
2 ), let

Pm =
⎡
⎢⎣
1 0 0
0 I2n αm I2n

0 1
α−1
m −αm

I2n
α−1
m

α−1
m −αm

I2n

⎤
⎥⎦ , where αm = exp(tm).

Then P−1
m exp(tm B)Pm =

⎡
⎣
1 0 0
0 02n − I2n
0 I2n m I2n

⎤
⎦. Thus, if we set f j = Pme j , 1 ≤ j ≤

4n + 1, then we have that [ f j , fk] = [e j , ek], 1 ≤ j, k ≤ 4n + 1, hence { f j }4n+1
j=1

is a rational basis of h4n+1 in which the matrix of exp(tm B) is an integer unimodular
matrix. It follows fromTheorem2.3 that�n

m = tmZ⊕expH4n+1(spanZ{ f1, . . . , f4n+1})
is a lattice of Gm . All the complex solvmanifolds (�n

m\Gm, J ) have trivial canonical
bundle.

Example 3.10 For a1, . . . , an ∈ R define g := g(a1, . . . , an) = Re2n+2 �B h2n+1
where

B =
⎡
⎣
0
0 −X
X 0

⎤
⎦ , X = diag(a1, . . . , an),

in the ordered basis {e1, . . . , e4n+1}. The complex structure J defined by Je1 = e2n+2
and Je2k = e2k+1, 1 ≤ k ≤ n is integrable, again due to [16, Proposition 2.4]. It is easy
to verify that the Koszul form vanishes if and only if

∑n
j=1 a j = 0, and in this case

(g, J ) has a nonzero closed (n + 1, 0)-form. The simply connected Lie group G :=
G(a1, . . . , an) admits a lattice for some values of the parameters a1, . . . , an . Indeed,
for any n ∈ N one can choose a1, . . . , an ∈ {2π, π, π

2 }+2πZ with a1+· · ·+an = 0,
and then {e j }2n+1

j=1 is a rational basis of h2n+1 in which exp B is a unimodular integer
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matrix, so by Theorem 2.3 the Lie group G admits a lattice � := �(a1, . . . , an). Then
(�\G, J ) has trivial canonical bundle.

3.2 Holomorphically Torsion Canonical Bundle

Here we consider the case when some power of the canonical bundle of a compact
complex quotient (�\G, J ) is trivialized by an invariant holomorphic section. We
obtain that actually the canonical bundle is itself trivial by an invariant holomorphic
section.

Proposition 3.11 Let (G, J )bea2n-dimensional Lie group equippedwith a left invari-
ant complex structure. If K⊗k

(G,J ) admits a nonzero invariant holomorphic section for
some k ∈ N then K(G,J ) admits a nonzero invariant holomorphic section. That is,
(G, J ) has trivial canonical bundle. The same happens for any quotient �\G where
� is a uniform lattice of G.

Proof We can work at the Lie algebra level since we are dealing with invariant objects.
Let σ be a generator of

∧n,0g∗, where g = Lie(G). Then, σ⊗k := σ ⊗ · · · ⊗ σ (k
times) is a generator of (

∧n,0g∗)⊗k , which we may assume holomorphic since this
space is 1-dimensional. Recall fromRemark 3.4 that dσ = β∧σ for some (0, 1)-form
β, which in terms of the extended Dolbeault operator ∂̄ from §2 can be expressed as
∂̄σ = β ⊗ σ . Next we compute

0 = ∂̄σ⊗k =
k∑
j=1

σ ⊗ · · · ⊗ ∂̄σ︸︷︷︸
j-th place

⊗ · · · ⊗ σ =
k∑
j=1

β ⊗ σ⊗k = kβ ⊗ σ⊗k .

Therefore, β = 0 and this implies ∂̄σ = 0. Hence, σ is holomorphic and the proof
follows. ��

4 Triviality of the Canonical Bundle of Solvable Lie Groups with Left
Invariant Complex Structures

The main goal in this section is to show that any simply connected solvable Lie group
equippedwith a left invariant complex structure has trivial canonical bundle. In general
the trivializing holomorphic section will not be left invariant.

Any nowhere vanishing section of the canonical bundle of a 2n-dimensional Lie
group G equipped with a left invariant complex structure J can be written as τ = f σ ,
where σ is a nonzero left invariant (n, 0)-form and f : G → C

× = C\{0} is a smooth
function. If τ is closed we cannot expect uniqueness of the function f in general (in
the non-compact setting) as the following result shows.

Lemma 4.1 Let G be a 2n-dimensional Lie group equipped with a left invariant com-
plex structure J , and let σ denote a nonzero left invariant (n, 0)-form on G. Assume
that τ1 := f1σ is closed, for some smooth function f1 : G → C

×. If f2 : G → C
×
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is another smooth function on G then τ2 := f2σ is closed if and only if f2
f1

is a
holomorphic function on G.

In particular, if G is compact then f2 = c f1 for some c ∈ C
×.

Proof Assume first that H := f2
f1
is holomorphic. Then:

∂τ2 = ∂((H f1)σ ) = ∂(H f1) ∧ σ + (H f1) ∂σ = H(∂ f1) ∧ σ + (H f1) ∂σ

= H(∂ f1 ∧ σ + f1 ∂σ) = H ∂( f1σ) = 0.

Therefore τ2 is holomorphic and hence closed.
Conversely, assume now that τ2 is closed. From dτ1 = 0 and dτ2 = 0 we obtain

d f1 ∧ σ + f1 dσ = 0, d f2 ∧ σ + f2 dσ = 0.

From these equations we obtain readily that

d

(
f2
f1

)
∧ σ = 0. (6)

Let us consider a basis {γ1, . . . , γn} of left invariant (1, 0)-forms on G, hence we may
assume σ = γ1 ∧ · · · ∧ γn . If we write

d

(
f2
f1

)
=

n∑
j=1

(a jγ j + b jγ j )

for some a j , b j ∈ C, then (6) becomes

0 =
n∑
j=1

(a jγ j + b jγ j ) ∧ σ =
n∑
j=1

b jγ j ∧ σ

which implies b j = 0 for j = 1, . . . , n since {γ j ∧ σ } j=1 is a linearly independent

set. This means that d
(

f2
f1

)
is a (1, 0)-form, and this is equivalent to ∂

(
f2
f1

)
= 0, that

is, f2
f1
is holomorphic. ��

Corollary 4.2 With notation as in Lemma 4.1, if σ is a nonzero invariant (n, 0)-form on
�\G and f : �\G → C

× is a smooth function such that τ := f σ is closed then f is
unique up to a nonzero constant. In particular, nowhere vanishing closed (n, 0)-forms
τ on (�\G, J ) are either all invariant or all non-invariant.

Now we proceed to prove the main theorem of the section. We begin with a series
of preliminary results. Recall that in a solvable Lie algebra g its nilradical n(g) is given
by n(g) = {x ∈ g | ad x is nilpotent}.



On the Canonical Bundle of Complex Solvmanifolds...

Lemma 4.3 Let g be a solvable Lie algebra equipped with a complex structure J , and
denote n(g) its nilradical. If h = Kerψ , where ψ is the Koszul 1-form on (g, J ) then

n(g) ∩ Jn(g) ⊆ h ∩ Jh.

Proof Let x ∈ n(g) ∩ Jn(g). Since J x ∈ n(g) then ad(J x) is nilpotent and thus
Tr ad(J x) = 0. As a consequence we only need to prove that Tr(J ad x) = 0. It
follows that

x − i J x ∈ n(g) ⊕ in(g) = n(g)C = n(gC),

so that ad(x − i J x) is a nilpotent endomorphism of gC. We can write

ad(x − i J x) =
[
Ax ∗
0 Bx

]
,

in a certain basis of gC adapted to the decomposition gC = g1,0 ⊕ g0,1. Since this
operator is nilpotent, we have that both matrices Ax and Bx are nilpotent, so that
Tr Ax = Tr Bx = 0. Now we compute

JC ad(x − i J x) =
[
i Ax ∗
0 −i Bx

]
.

Therefore,

0 = Tr(JC ad(x − i J x)) = Tr(J ad(x)) − i Tr(J ad(J x)),

so that
Tr(J ad(x)) = Tr(J ad(J x)) = 0,

that is, x ∈ h ∩ Jh. ��
The following technical lemmawill provide a particular basis of (1, 0)-formswhich

will be useful in the proof of the main result of this section.

Lemma 4.4 Let g be a 2n-dimensional solvable Lie algebra equipped with a complex
structure J . Then there exists a basis {γ1, . . . , γn} of (1, 0)-forms, with γk = uk + ivk ,
and an index 1 ≤ s ≤ n such that:

(i) u j is closed for 1 ≤ j ≤ s, and
(ii) u j , v j ∈ [g, g] ∩ J [g, g] for j > s,

where {u1, v1, . . . , un, vn} denotes the dual basis of {u1, v1, . . . , un, vn}.
Proof Consider the commutator ideal g′ = [g, g] and let u be a complementary sub-
space to g′ ∩ Jg′ in g′, that is

g′ = (g′ ∩ Jg′) ⊕ u.
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Moreover, we have that g′ ∩ Ju = {0}. Indeed, if v ∈ g′ ∩ Ju, this implies that
v ∈ g′ ∩ Jg′ since u ⊂ g′. Hence, Jv ∈ u ∩ (g′ ∩ Jg′), which implies Jv = 0 and
thus v = 0.

Therefore we can decompose g as

g = (g′ ∩ Jg′) ⊕ u ⊕ Ju ⊕ v,

where v is a complementary subspace to g′ ⊕ Ju in g, which can be chosen J -
invariant. As g is solvable, g′ is a proper subspace of g, so Ju ⊕ v �= {0}. The fact
that the subspaces v, u ⊕ Ju and g′ ∩ Jg′ are J -invariant allows us to take bases
{x1, . . . , xr , x̃1, . . . , x̃r } of v, {y1, . . . , ym, ỹ1, . . . , ỹm} of u⊕ Ju (with yk ∈ Ju, ỹk ∈
u) and {z1, . . . , z�, z̃1, . . . , z̃�} of g′ ∩ Jg′ such that J xk = x̃k , J yk = ỹk , J zk = z̃k
and r + m + � = n. Then, we can take the ordered basis of (1, 0)-forms

{γ1, . . . , γs , . . . , γn} = {x1+ i x̃1, . . . , xr + i x̃r , y1+ i ỹ1, . . . , ym + i ỹm , z1+ i z̃1, . . . , z� + i z̃�},

with s := r + m < n and {x1, x̃1, . . . , y1, ỹ1, . . . , z1, z̃1, . . .} is the basis of g∗
dual to the basis {x1, x̃1, . . . , y1, ỹ1, . . . , z1, z̃1, . . .}. Let us rename u j = Re γ j and
v j = Im γ j . For 1 ≤ j ≤ s we have that u j belongs to the annihilator of g′ so u j is
closed, and for j > s we have that u j , v j ∈ g′ ∩ Jg′. ��
Remark 4.5 It follows from the proof of Lemma 4.4 that s = n if and only if g =
g′ ⊕ Jg′. In this case the complex structure J is abelian. Indeed, the more general
condition g′ ∩ Jg′ = {0} implies that J is abelian, which can be easily verified from
NJ = 0.

Theorem 4.6 Any 2n-dimensional simply connected solvable Lie group G equipped
with a left invariant complex structure J admits a nonzero closed (n, 0)-form τ . In
particular, the canonical bundle of (G, J ) is trivial.

Proof Let g be the Lie algebra ofG and take the basis {γ1, . . . , γn}with γk = uk+ivk ,
as in Lemma4.4. Consider now the (n, 0)-form σ given by σ = γ1∧· · ·∧γn . If dσ = 0
we may simply choose τ = σ . On the other hand, if dσ �= 0 it follows from Remark
3.4 that

dσ = 1

4

n∑
j=1

(−ψ(v j ) + iψ(u j )) γ̄ j ∧ σ, (7)

Let us callC j = −ψ(v j )+ iψ(u j ). We show first thatC j = 0 when j > s. Indeed, in
this case u j , v j ∈ g′ ∩ Jg′. As g′ ∩ Jg′ ⊂ n(g) ∩ Jn(g) since g is solvable, it follows
from Lemma 4.3 that ψ(u j ) = ψ(v j ) = 0 so C j = 0 for j > s. Therefore we can
write

dσ = 1

4

s∑
j=1

C j γ̄ j ∧ σ = 1

4

s∑
j=1

(C j γ̄ j ∧ σ + C j γ j ∧ σ︸ ︷︷ ︸
=0

) = 1

2

s∑
j=1

C ju
j ∧ σ.

Hence, the form α = 1
2

∑s
j=1 C ju j satisfies dσ = α ∧σ and dα = 0 by the choice of

the basis {γ1, . . . , γn}. Since G is simply connected the left invariant 1-form α on G
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is exact so that there exists a smooth function f : G → C satisfying α = d f . Finally,
we consider the (n, 0)-form τ := e− f σ and we compute

dτ = e− f (−α ∧ σ + dσ) = 0,

which says that τ is a nowhere vanishing closed (n, 0)-form on G. ��
Remark 4.7 The closed (n, 0)-form τ from Theorem 4.6 can be written as τ = Fσ ,
where F : G → C

× is a Lie group homomorphism. Indeed, with the notation in
the proof of Theorem 4.6, replacing f by f − f (1G) we still have that α = d f is
left invariant and f (1G) = 0, where 1G denotes the identity element. This implies
that f : G → C is an additive homomorphism. Hence, F := e− f : G → C

× is a
multiplicative homomorphism.

Remark 4.8 There are Lie groups with a left invariant complex structure which do not
have trivial canonical bundle. For instance, the Hopf manifold S

1 × S
3 ∼= S

1 ×SU(2)
carries a left invariant complex structure, and this compact complex surface has non-
trivial canonical bundle.

Remark 4.9 It was conjectured by Hasegawa in [24] that all simply connected uni-
modular solvable Lie groups with left invariant complex structure are Stein manifolds
(that is, they are biholomorphic to a closed complex submanifold of some C

N ). If this
conjecture were true, then the canonical bundle of any of these pairs (G, J ) would
be holomorphically trivial according to the Oka-Grauert principle ([21]), since the
canonical bundle of any such Lie group is always smoothly trivial via a left invariant
section. Thus, Theorem 4.6 provides evidence in the direction of this conjecture.

5 An Algebraic Obstruction for the Triviality of the Canonical Bundle

In this section we will consider compact complex manifolds obtained as quotients of a
Lie group by a uniform lattice. We provide an algebraic obstruction for the canonical
bundle to be holomorphically trivial (or more generally, holomorphically torsion), in
terms of the Koszul 1-form ψ . Namely, ψ has to vanish on the commutator ideal of
the associated Lie algebra. We will do this by exploiting the relation of ψ with the
Chern-Ricci form of any invariant Hermitian metric on the quotient.

Let us recall the definition of the Chern-Ricci form. Let (M, J , g) be a 2n-
dimensional Hermitian manifold, and let ω = g(J ·, ·) be the fundamental 2-form
associated to (M, J , g). The Chern connection is the unique connection ∇C on M
which is Hermitian (i.e. ∇C J = 0, ∇Cg = 0) and the (1, 1)-component T 1,1 of
its torsion tensor vanishes. In terms of the Levi-Civita connection ∇ of g, the Chern
connection is expressed as

g(∇C
X Y , Z) = g(∇XY , Z) − 1

2dω(J X ,Y , Z), X ,Y , Z ∈ X(M).
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The Chern-Ricci form ρ = ρ(J , g) is defined by

ρ(X ,Y ) = − 1
2 Tr(J ◦ RC (X ,Y )) =

n∑
i=1

g(RC (X ,Y )ei , Jei ),

where RC (X ,Y ) = [∇C
X ,∇C

Y ] − ∇C
[X ,Y ] is the curvature tensor associated to ∇C and

{ei , Jei }ni=1 is a local orthonormal frame for g. It is well known that ρ is a closed real
(1, 1)-form on M .

Consider now any left invariant almost Hermitian structure (J , g) on a simply
connected Lie group G, not necessary solvable, with Lie algebra g. In [43] it is proved
that

ρ(x, y) = 1
2 (Tr(J ad[x, y]) − Tr ad(J [x, y])), x, y ∈ g. (8)

Remarkably, this Chern-Ricci form does not depend on the Hermitian metric. We
observe from (8) that 2ρ = −dψ , thus implying that if ψ vanishes then ρ = 0, for
any Hermitian metric g. As a consequence we have:

Proposition 5.1 If there exists a nonzero left invariant holomorphic (n, 0)-form on G
then for any left invariant Hermitian metric g on G, the induced Hermitian structure
(J , g) on �\G has vanishing Chern-Ricci form. In particular, the restricted Chern
holonomy of (J , g) on �\G is contained in SU(n).

Proof Weonly have to justify the last statement, and this follows from [42, Proposition
1.1]. ��

Thus, if ρ �= 0 (that is, ψ([g, g]) �= 0) then there is no invariant trivializing section
of the canonical bundle of (�\G, J ). We show next that the condition ρ �= 0 is also
sufficient to prove that the canonical bundle is not holomorphically trivial. In fact,
we will prove a stronger result, namely that if ρ �= 0 then the canonical bundle of
(�\G, J ) is not holomorphically torsion.

Following ideas from [18, Proposition 5.1], our result will be proved using Belgun’s
symmetrization, which we state below.

Lemma 5.2 ([8, Theorem 7], [13, Theorem 2.1]) Let M = �\G be a compact quotient
of a simply connected Lie group by a uniform lattice � with an invariant complex
structure J . Let ν denote the bi-invariant volume form on G given in [30, Lemma 6.2]
and such that

∫
M ν = 1. Identifying left invariant forms on M with linear forms over

g∗ via left translations, consider the Belgun symmetrization map defined by:

μ : �∗(M) →
∧∗

g∗, μ(α)(X1, . . . , Xk) =
∫
M

αm(X1|m, . . . , Xk |m)νm,

for X1, . . . , Xk ∈ X(M). Then:

(i) μ( f ) ∈ R for any f ∈ C∞(�\G, R),
(ii) μ(α) = α if α ∈∧∗g∗;
(iii) μ(Jα) = Jμ(α), where Jα(·, . . . , ·) = α(J−1·, . . . , J−1·);
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(iv) μ(dα) = d(μ(α)).

Extending this map C-linearly to C-valued differential forms on M, we also have:

(v) μ(∂α) = ∂(μ(α)) and μ(∂α) = ∂(μ(α)).

Theorem 5.3 If the canonical bundle of (�\G, J ) is trivial (or, more generally, holo-
morphically torsion) then Tr(J ad([x, y])) = 0 for all x, y ∈ g = Lie(G), that is
ψ([g, g]) = 0.

Proof According to [42, Proposition 1.1] ifM is a compact complexmanifold and KM

is holomorphically torsion then given any Hermitian metric g on M , the associated
Chern-Ricci form ρ satisfies ρ = i∂∂̄F , for some F ∈ C∞(M, R).

Now, assume that the canonical bundle of (�\G, J ) is holomorphically torsion and
consider a Hermitian metric g on �\G induced by a left invariant one on G. Then its
associated Chern-Ricci form ρ satisfies ρ = i∂∂̄F , for some F ∈ C∞(�\G, R). We
consider next the symmetrization μ(ρ) of ρ. It follows from Lemma 5.2(v) that

μ(ρ) = i∂∂̄μ(F) = 0,

sinceμ(F) is constant. As ρ is left invariant we obtain ρ = μ(ρ) and therefore ρ = 0.
Since at the Lie algebra level we have that ρ(x, y) = Tr(J ad([x, y])) for x, y ∈ g,
the proof is complete. ��
Remark 5.4 Proposition 1.1 in Tosatti [42] predicts the existence of aHermitianmetric
with ρ = 0 on any compact complexmanifold with holomorphically torsion canonical
bundle. It follows from the proof of Theorem 5.3 that in the case of a complex compact
quotient �\G any invariant Hermitian metric has ρ = 0. Using again [42, Proposition
1.1], we obtain that these invariant Hermitian metrics have restricted Chern holonomy
contained in SU(n), where 2n is the real dimension of the manifold.

Remark 5.5 If ρ = 0 then the canonical bundle of the complex solvmanifold is not
necessarily trivial. Indeed, consider the Lie group G from Example 1.1 equipped with
the left invariant complex structure J given therein. It is easy to see that ψ(e0) = −2
and ψ(e j ) = 0 for 1 ≤ j ≤ 3, so that ψ([g, g]) = 0. However, G admits a lattice
�′ = {(πk,m, n,

p
2 ) | k,m, n, p ∈ Z} such that (�′\G, J ) is a secondary Kodaira

surface (see [23]) and hence, has non-trivial canonical bundle. Note that τ ⊗ τ , where
τ = ei t σ , is a trivializing section of K⊗2

(�′\G,J )
, and thus the canonical bundle is

holomorphically torsion.

We exhibit next a 6-dimensional example of this phenomenon.

Example 5.6 For p ∈ R, let gp = Re6 �Ap R
5, where the matrix Ap is given in the

basis {e1, . . . , e5} of R
5 by:

Ap =

⎡
⎢⎢⎢⎢⎣

−p −1
1 −p

p 2
−2 p

0

⎤
⎥⎥⎥⎥⎦

.



A. Andrada and A. Tolcachier

Equip gp with the complex structure Je1 = e2, Je3 = e4 and Je5 = e6. Then an
easy calculation shows that ψ(e j ) = 0 for 1 ≤ j ≤ 5 and ψ(e6) = 2. It follows from
Theorem 3.2 that this Lie algebra does not admit any nonzero closed (3, 0)-form.

For some values of p ∈ R, the associated simply connected Lie group Gp admits
lattices, according to Console and Macrí [12] (the Lie algebra gp corresponds to the

Lie group denoted by Gp,−p,2
5.17 × R there). Moreover, it was shown, using techniques

by Console and Fino in [11], that for certain values of p some lattices � in Gp satisfy
b3(�\Gp) = 0 (see [12, Table 7.1]); for instance, for any m ∈ N take p = sm

π
, where

sm = log
(
m+√

m2+4
2

)
. Then, exp(π Ap) = diag(− e−sm ,− e−sm , esm , esm , 1) is con-

jugate to the integer unimodular matrix Em =
[
0 1
1 m

]⊕2

⊕ (1). According to Theorem

2.3 theLie groupGp admits a lattice�m = πZ�PZ
5, where P−1 exp(π Ap)P = Em .

Since b3(�m\Gp) = 0, it follows from Proposition 2.1 that the canonical bundle of
(�m\Gp, J ) is not holomorphically trivial. However, this complex solvmanifold has
holomorphically torsion canonical bundle. Indeed, if σ is a nonzero left invariant
(3, 0)-form on Gp then τ ⊗ τ , where τ = ei t σ , induces a trivializing section of
K⊗2

�m\Gp
since e2i t = (ei t )2 is π -periodic.

Example 5.7 There are examples of complex solvmanifolds whose canonical bundle
is not holomorphically torsion (and in particular not holomorphically trivial). Such
examples are given byOeljeklaus-Tomamanifolds, introduced in [35]. These complex
manifolds were constructed from certain number fields, but later Kasuya showed in
[26] that they are complex solvmanifolds.

As another illustration of the obstruction from Theorem 5.3, we deal in the next
result with the case of compact semisimple Lie groups.We recall Samelson’s construc-
tion of a complex structure on a compact semisimple even-dimensional Lie algebra g
[40].

Let h be a maximal abelian subalgebra of g. Then we have the root space decom-
position of gC with respect to hC

gC = hC ⊕
∑
α∈�

gα,

where � is the finite subset of nonzero elements in (hC)∗ called roots, and

gα = {x ∈ gC | [h, x] = α(h)x ∀h ∈ hC}

are the one-dimensional root subspaces. Since h is even-dimensional, one can choose
a skew-symmetric endomorphism J0 of h with respect to the Killing form such that
J 20 = − Ih. Samelson defines a complex structure on g by considering a positive
system �+ of roots, which is a set �+ ⊂ � satisfying

�+∩(−�+) = ∅, �+∪(−�+) = �, α, β ∈ �+, α+β ∈ � ⇒ α+β ∈ �+.
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Setting
m = h1,0 ⊕

∑
α∈�+

gα,

where h1,0 is the eigenspace of JC0 of eigenvalue i , it follows that m is a complex Lie
subalgebra of gC which induces a complex structure J on g such that g1,0 = m, that is,
m is the eigenspace of JCwith eigenvalue i . This complex structure is skew-symmetric
with respect to the Killing form on g.

Conversely, Pittie proved in [37] that any left invariant complex structure on G is
obtained in this way.

In the next result we use Theorem 5.3 in order to show that the canonical bun-
dle of a compact Lie group equipped with a left invariant complex structure is not
holomorphically torsion.

Proposition 5.8 The canonical bundle of a 2n-dimensional compact semisimple Lie
group equipped with a left invariant complex structure is not holomorphically torsion.

Proof We use the notation from the paragraphs above: G is the compact Lie group,
g its Lie algebra and J : g → g is the complex structure obtained by Samelson’s
construction.

Since [g, g] = g, according to Theorem 5.3 it is sufficient to show that Tr(J ad x) �=
0 for some x ∈ g, or equivalently, Tr(JC ad x) �= 0 for some x ∈ gC.

Recall that g1,0 = h1,0 ⊕ ∑
α∈�+ gα and g0,1 = h0,1 ⊕ ∑

α∈�+ g−α . Let xα

be a generator of gα for any α ∈ �. If {h1, . . . , hr } is a basis of h1,0, then B =
{h1, . . . , hr }∪{xα | α ∈ �+} is a basis of g1,0 andB = {h1, . . . , hr }∪{x−α | α ∈ �+}
is a basis of g0,1.

Consider now h ∈ h1,0 ⊂ g1,0. Then, with respect to the basis B∪B of g, we have:

ad h =
[
Ah ∗
0 Bh

]
and JC ad h =

[
i Ah ∗
0 −i Bh

]
.

More precisely, since h1,0 is an abelian subalgebra and [h, xα] = α(h)xα , the matrices
Ah and Bh are given by:

Ah =

⎡
⎢⎢⎢⎣

0r
α1(h)

. . .

αs(h)

⎤
⎥⎥⎥⎦ and Bh =

⎡
⎢⎢⎢⎣

0r
−α1(h)

. . .

−αs(h)

⎤
⎥⎥⎥⎦ ,

where s = |�+|. Hence,

Tr(JC ad h) = 2i
s∑

j=1

α j (h) = 2i
∑

α∈�+
α(h).

It is known that
∑

α∈�+ α �= 0. Indeed, there is � ⊂ �+, whose elements are known
as simple roots, such that� is a basis of (hC)∗ and eachα ∈ �+ is a linear combination
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of the simple roots with non-negative integer coefficients. Therefore, if
∑

α∈�+ α = 0
then every α ∈ �+ would be zero, which is impossible.

As a consequence, we can choose h ∈ h1,0 such that Tr(JC ad h) �= 0. ��
Remark 5.9 Assume that G is a non-compact semisimple Lie group equipped with a
left invariant complex structure J . It follows from [10] that G has a uniform lattice
�. Again, since G is semisimple (so that g = Lie(G) satisfies [g, g] = g), it follows
from Theorem 3.2 and Theorem 5.3 that the canonical bundle of the compact complex
manifold (�\G, J ) is either trivial via an invariant section (when ψ = 0) or it is not
holomorphically torsion (when ψ �= 0), where ψ is the Koszul 1-form on (g, J ).

Some recent results concerning non-compact semisimple Lie groups are the fol-
lowing:

• In [18] it was proved that any non-compact real simple Lie group G of inner type
and even dimension carries a left invariant complex structure J . Moreover, if� is a
lattice in G then the canonical bundle of (�\G, J ) is not holomorphically torsion.

• In [36] it was proved that a 6-dimensional unimodular non-solvable Lie algebra
admits a complex structure with a nonzero closed (3, 0)-form if and only if it is
isomorphic to so(3, 1). It follows that�\SO(3, 1) carries a complex structure with
trivial canonical bundle (via an invariant section) for any lattice �.
As a generalization, we observe that if g is a semisimple complex Lie algebra then
its “realification” gR admits a bi-invariant complex structure J . If GR denotes
the simply connected Lie group associated to gR then the pair (GR, J ) admits
a left invariant trivializing section of its canonical bundle, since it is complex
parallelizable. Therefore, any compact quotient (�\GR, J ) has trivial canonical
bundle.

5.1 More Examples of Complex Solvmanifolds with Trivial Canonical Bundle

We look for examples of complex solvmanifolds (�\G, J ) with trivial canonical
bundle when there are no invariant trivializing sections. Due to Theorem 5.3 we need
ψ �≡ 0 butψ([g, g]) = 0.We shownext that inmany caseswe obtain such a trivializing
section.

Proposition 5.10 Let (G, J ) be a 2n-dimensional simply connected solvable unimod-
ular Lie group with a left invariant complex structure. Let h denote the kernel of ψ

and assume that ψ([g, g]) ≡ 0, so that g = Re0 � h and consequently G = R � H,
where H is the unique connected normal subgroup of G such that Lie(H) = h. Then
the (n, 0)-form τ = exp(− i

2 Tr(J ad e0)t)σ is closed, where t is the coordinate of R

and σ is a left invariant (n, 0)-form.

Proof By using a Hermitian inner product on g we can choose e1 ∈ h ∩ (h ∩ Jh)⊥,
so that h = Re1 ⊕ (h ∩ Jh). Set next e0 := −Je1 ∈ h⊥, hence g = Re0 � h. Let
{u j , v j }n−1

j=1 be a basis of h ∩ Jh such that Ju j = v j , 1 ≤ j ≤ n − 1.

Define the (n, 0)-form σ on g by σ = (e0 + ie1) ∧ γ1 ∧ · · · ∧ γn−1, where γ j =
u j + iv j and {e0, e1, ui , vi }n−1

i=1 is the dual basis of {e0, e1, ui , vi }n−1
i=1 . In this basis,
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Remark 3.4 implies that

dσ = i
4 Tr(J ad e0) (e0 − ie1) ∧ (e0 + ie1) ∧ γ1 ∧ · · · ∧ γn−1

= − 1
2 Tr(J ad e0)e

01 ∧ γ1 ∧ · · · ∧ γn−1.

By the definition of the product on G = R � H it follows that if we consider the
dual basis {e0, e1, ui , vi }n−1

i=1 as left invariant 1-forms on G (which is diffeomorphic
to R

2n), then dt = e0. Let us consider the (n, 0)-form given by τ = eiλt σ , where
λ = − 1

2 Tr(J ad e0). We compute

dτ = eiλt
(
iλ e0 ∧ σ + dσ

)

= eiλt
( 1
2 Tr(J ad e0) − 1

2 Tr(J ad e0)
)
e01 ∧ γ1 · · · ∧ γn−1

= 0.

Therefore, τ is closed. ��
In the next example we apply Proposition 5.10 in order to show the triviality of the

canonical bundle associated to complex structures of splitting type (see [5] for a precise
definition) on the 6-dimensional complex parallelizable Nakamura solvmanifold.

Example 5.11 In [5, Proposition 3.1] complex structures of splitting type on the 6-
dimensional complex parallelizable Nakamuramanifold are classified. There are three
non-equivalent cases:

(i) J : dω1 = −ω13, dω2 = ω23, dω3 = 0,

(ii) JA :

⎧⎪⎨
⎪⎩

dω1 = Aω13 − ω13̄,

dω2 = −Aω23 + ω23̄, A ∈ C, |A| �= 1,

dω3 = 0,

(iii) JB :

⎧⎪⎨
⎪⎩

dω1 = −ω13 + Bω13̄,

dω2 = −B̄ω23 + ω23̄, B ∈ C, |B| < 1,

dω3 = 0

where {ω1, ω2, ω3} is a basis of (1, 0)-forms.
According to [14, Proposition 3.7], the underlying Lie algebra admits a nonzero

holomorphic (3, 0)-form only for complex structures of type (i) and (ii). Therefore
any associated solvmanifold equipped with JB in (iii) admits no invariant trivializing
sections of the canonical bundle. Nevertheless, we shownext that there are lattices such
that the associated complex solvmanifolds equipped with JB do have trivial canonical
bundle.

In a real basis of 1-forms { f 1, . . . , f 6} such that in the dual basis JB is given by
JB f2i−1 = f2i , equations (iii) can be written as

d f 1 = (r − 1) f 15 + s f 16 − s f 25 + (r + 1) f 26, d f 2 = s f 15 − (r + 1) f 16 + (r − 1) f 25 + s f 26,

d f 3 = (1 − r) f 35 − s f 36 − s f 45 + (r + 1) f 46, d f 4 = s f 35 − (r + 1) f 36 − (r − 1) f 45 − s f 46,

d f 5 = 0, d f 6 = 0,
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where B = r + is. Therefore, the Lie brackets determined by {d f 1, . . . , d f 6} are

[ f1, f5] = (1 − r) f1 − s f2, [ f1, f6] = −s f1 + (r + 1) f2,

[ f2, f5] = s f1 + (1 − r) f2, [ f2, f6] = −(r + 1) f1 − s f2,

[ f3, f5] = (r − 1) f3 − s f4, [ f3, f6] = s f3 + (r + 1) f4,

[ f4, f5] = s f3 + (r − 1) f4, [ f4, f6] = −(r + 1) f3 + s f4.

Let us denote g the Lie algebra determined by these Lie brackets. On the other hand,
recall the Lie algebra s from the paragraph before Example 3.7. It is straightforward
to verify that ϕ : (g, JB) → (s, J̃B) given by

ϕ =

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤
⎥⎥⎦⊕

[ −s r + 1
1 − r −s

]

is a biholomorphic isomorphism, where

J̃Be1 = −e2, J̃Be2 = e1, J̃Be3 = e4, J̃Be4 = −e3,

J̃Be5 = −2s e5 + (r2 + s2 − 2r + 1) e6
r2 + s2 − 1

, J̃Be6 = −(r2 + s2 + 2r + 1) e5 + 2s e6
r2 + s2 − 1

.

The Koszul 1-form on (s, J̃B) is given by ψ = 4e5. Since ψ([s, s]) = 0 we can
apply Proposition 5.10 and get a closed nowhere vanishing (3, 0)-form in the Lie
group S = R � H given by

τ = e−2i t (e1−ie2)∧(e3+ie4)∧
(
e5 − i

(
2s

r2 + s2 − 1
e5 + r2 + s2 + 2r + 1

r2 + s2 − 1
e6
))

,

where t is the coordinate of R. On the other hand, according to Example 3.7, the Lie
group S admits lattices given by �m = (πZ ⊕ tmZ) � PmZ

4 for m ∈ N, m ≥ 3. The
form τ is invariant by �m since exp(−2i(t + πk)) = exp(−2i t) for all k ∈ Z, so
it induces a closed non-vanishing (3, 0)-form on (�m\S, J̃B), which therefore have
trivial canonical bundle.

We finish this section with an example of a solvmanifold with trivial canonical
bundle such that its Lie algebra does not appear in [14, Proposition 2.8].

Example 5.12 Let g = Re6 �A R
5, where in the basis {e1, . . . , e5} the matrix A is

given by

A := ade6|R5 =

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
−1 0 0 1 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

.
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Equip g with the complex structure Je1 = e2, Je3 = e4, Je5 = e6. By Theorem 3.2,
since ψ = 4e6, (g, J ) does not admit a nonzero closed (3, 0)-form so that g does not
appear in [14, Proposition 2.8]. However, since ψ([g, g]) = 0, using Proposition 5.10
we obtain a closed non-vanishing (3, 0)-form τ on the associated simply connected
Lie group G, which is given by τ = e−2i t (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6), where
t is the coordinate of R. Moreover,

exp(π A) =
⎡
⎣

−1 0 −π 0 0
0 −1 0 −π 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

⎤
⎦

is conjugate to its Jordan form B :=
⎡
⎣

−1 1 0 0 0
0 −1 0 0 0
0 0 −1 1 0
0 0 0 −1 0
0 0 0 0 1

⎤
⎦ via some P ∈ GL(5, R).

Setting f j = Pe j for 1 ≤ j ≤ 5, it follows from Theorem 2.3 that G admits a lattice
� = πZ � PZ

5. The form τ is invariant by � since exp(−2i(t + πk)) = exp(−2i t).
Then K(�\G,J ) is holomorphically trivial.

We remark that �\G is not homeomorphic to a nilmanifold since the lattice � is
not nilpotent. Indeed, if �k denotes the k-th term of the lower central series of �, then
it is easy to compute �k = 0Z ⊕ Im(B − I5)k which is not trivial because B − I5 is
not nilpotent.

6 Applications to Hypercomplex Geometry

In this last section, we explore the triviality of the canonical bundle of complex mani-
folds obtained from a hypercomplex Lie group (G, {J1, J2, J3}), or the corresponding
quotients by uniform lattices. More concretely, we will show that if there exists a
left invariant trivializing section of K(G,Jα) for some α = 1, 2, 3, then any associ-
ated compact quotient (�\G, Jα) has trivial canonical bundle for all α, also via an
invariant section. However, if the trivializing section of (�\G, Jα) is not invariant,
then K(�\G,Jβ) is not necessarily trivial for β �= α. Using these results we provide a
negative answer to a question by Verbitsky.

We begin by recalling some facts about hypercomplex manifolds. A hypercomplex
structure on M is a triple of complex structures {J1, J2, J3} on M which obey the laws
of the quaternions:

J1 J2 = −J2 J1 = J3.

In particular, Jα Jβ = −Jβ Jα = Jγ for any cyclic permutation (α, β, γ ) of (1, 2, 3).
It follows that M carries a 2-sphere of complex structures. Indeed, given a =

(a1, a2, a3) ∈ S
2,

Ja := a1 J1 + a2 J2 + a3 J3 (9)

is a complex structure on M . Moreover, for any p ∈ M , the tangent space TpM has
an H-module structure, where H denotes the quaternions. In particular dimR M = 4n,
n ∈ N.
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Anyhypercomplex structure {Jα}onM determines a unique torsion-free connection
∇O, called the Obata connection (see [34]), which satisfies ∇O Jα = 0 for all α. It
was shown in Soldatenkov [41] that an expression for this connection is given by:

∇O
X Y = 1

2 ([X ,Y ] + J1[J1X ,Y ] − J2[X , J2Y ] + J3[J1X , J2Y ]) , X ,Y ∈ X(M).

Given the hypercomplex structure {Jα} on R
4n induced by the quaternions, we

denote by
GL(n, H) := {T ∈ GL(4n, R) : T Jα = JαT for allα},

the quaternionic general linear group, with corresponding Lie algebra

gl(n, H) := {T ∈ gl(4n, R) : T Jα = JαT for allα}.

Since ∇O Jα = 0 for all α, the holonomy group of the Obata connection,
Hol(∇O), is contained in GL(n, H). A hypercomplex manifold (M4n, {Jα}) is
said to be an SL(n, H)-manifold if Hol(∇O) ⊂ SL(n, H), where SL(n, H) =
[GL(n, H),GL(n, H)] is the commutator subgroup of GL(n, H). These manifolds
have been actively studied (see for instance [17, 18, 20, 25, 28, 29]).

We will consider now left invariant hypercomplex structures on Lie groups, which
are given equivalently by hypercomplex structures on Lie algebras, as usual. The
corresponding Obata connection is also left invariant and it can be determined by its
action on left invariant vector fields, that is, on the Lie algebra.

As an application of Theorem 3.2 we show that if (G4n, Jα) admits a non-vanishing
left invariant closed (2n, 0)-form for some α = 1, 2, 3, then (G4n, Ja) (with Ja as in
(9)) has a non-vanishing left invariant closed (2n, 0)-form, for all a ∈ S

2.

Theorem 6.1 Let {J1, J2, J3} be a hypercomplex structure on the 4n-dimensional Lie
algebra g. If Jα admits a non-vanishing closed (2n, 0)-form for some α = 1, 2, 3,
then Ja admits a non-vanishing closed (2n, 0)-form for any a ∈ S

2, with Ja given by
(9).

Proof Let (α, β, γ ) a cyclic permutation of (1, 2, 3) with Jα satisfying the conditions
in the statement. Then, due to the vanishing of the Nijenhuis tensor NJγ , for any
x, y ∈ g we get

Jγ [x, y] = [Jγ x, y] + [x, Jγ y] + Jγ [Jγ x, Jγ y].

Since Jγ = Jα Jβ , applying −Jα in both sides of this equality we have

Jβ [x, y] = −Jα[Jγ x, y] − Jα[x, Jγ y] + Jβ [Jγ x, Jγ y],

which implies

Tr(Jβ ad(x)) = −Tr(Jα ad(Jγ x)) − Tr(Jα ad(x)Jγ ) + Tr(Jβ ad(Jγ x)Jγ ).
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Using that Tr(AB) = Tr(BA) and Tr(Jα ad(x)) = Tr(ad(Jαx)) for all x ∈ g due to
Theorem 3.2 (since the Koszul 1-form ψα vanishes) we arrive at

Tr(Jβ ad(x)) = −Tr(ad(Jα Jγ x)) − Tr(Jγ Jα ad(x)) + Tr(Jγ Jβ ad(Jγ x))

= Tr(ad(Jβx)) − Tr(Jβ ad(x)) − Tr(Jα ad(Jγ x))

= Tr(ad(Jβx)) − Tr(Jβ ad(x)) + Tr(ad(Jβx)),

which implies Tr(Jβ ad(x)) = Tr(ad(Jβx)).
The same computation with α replaced by β shows that the same condition holds

for Jγ . It follows that Tr(Ja ad(x)) = Tr(ad(Jax)) for any a ∈ S
2. Therefore, the

corresponding Koszul 1-form ψa vanishes and according to Theorem 3.2 the proof is
complete. ��
Corollary 6.2 Let {J1, J2, J3} be a hypercomplex structure on the simply connected Lie
group G and let � be a uniform lattice on G. If there exists an invariant trivializing
section of K(�\G,Jα) for some α = 1, 2, 3, then (�\G, Ja) has trivial canonical bundle
for any a ∈ S

2.

In [44],Verbitskyproves that if (M, {Jα}) is anSL(n, H)-manifold then the complex
manifold (M, Jα) has trivial canonical bundle for all α. Then he poses the following
question:

Question [44]:Let (M, {Jα}) be a compact hypercomplexmanifold. If the complex
manifold (M, J1) has trivial canonical bundle, does it follow that M is an SL(n, H)-
manifold?

In certain cases there is an affirmative answer to this question, for instance when
(M, {Jα}) admits a hyperKählerwith torsionmetric ([44, Theorem2.3]) orwhenM is a
hypercomplex nilmanifold [7, Corollary 3.3]. In the latter case, the key fact is that every
complex nilmanifold has trivial canonical bundle via an invariant trivializing section.
Using the same arguments, in [17] it is proved that if a hypercomplex solvmanifold
(�\G, {Jα}) admits an invariant trivializing section of K(�\G,Jα) for some α then�\G
is an SL(n, H)-manifold.

We exhibit next an hypercomplex solvmanifold (�\G, {Jα}) such that K(�\G,J1) is
trivial but the solvmanifold is not an SL(n, H)-manifold.

Example 6.3 Let g = span{e1, . . . , e4} be the 4-dimensional unimodular Lie algebra
given by

[e2, e3] = e1, [e2, e4] = e2, [e3, e4] = −e3.

It is easily verified that the almost complex structure J defined by Je1 = e2 and
Je3 = e4 is integrable. Note that g+ = span{e1, e3} and g− := Jg+ = span{e2, e4}
are subalgebras of g. Then, according to Andrada and Salamon [3], the Lie algebra
ĝ := (gC)R admits a hypercomplex structure {J1, J2, J3}. Indeed, with respect to the
decomposition ĝ = g ⊕ ig, these complex structures are given by

J1(x + iy) =
{
i(x + iy), x, y ∈ g+,

−i(x + iy), x, y ∈ g−,

J2(x + iy) = J x + i J y, x, y ∈ g,



A. Andrada and A. Tolcachier

and J3 = J1 J2. Let uswrite themdownexplicitly. Relabelling the basis {e1, . . . , e4, ie1,
. . . , ie4} as {e1, . . . , e8} we have that {J1, J2, J3} are given by

J1e1 = e5, J1e2 = −e6, J1e3 = e7, J1e4 = −e8,

J2e1 = e2, J2e3 = e4, J2e5 = e6, J2e7 = e8,

J3e1 = −e6, J3e2 = −e5, J3e3 = −e8, J3e4 = −e7.

With respect to this basis the Lie brackets of ĝ are

[e2, e4] = e2, [e3, e4] = −e3, [e4, e6] = −e6, [e4, e7] = e7,

[e2, e8] = e6, [e3, e8] = −e7, [e6, e8] = −e2, [e7, e8] = e3,

[e2, e3] = e1, [e2, e7] = e5, [e3, e6] = −e5, [e6, e7] = −e1.

If we denote ψα(x) := Tr(Jα ad x) for α = 1, 2, 3, then

ψ1 = −4e8, ψ2 = −4e3, ψ3 = −4e7,

where {e j }8j=1 is the dual basis of {e j }8j=1. Since ψα �= 0, we have that (ĝ, Jα) does
not admit a nonzero closed (4, 0)-form, for any α.

Moreover, note thatψ1([ĝ, ĝ]) = 0 butψ2([ĝ, ĝ]) �= 0 andψ3([ĝ, ĝ]) �= 0. Accord-
ing to Theorem 5.3, for any lattice� ⊂ Ĝ, where Ĝ is the simply connected Lie group
associated to ĝ, the compact complex manifold (�\Ĝ, Jα) has non-trivial canonical
bundle for α = 2, 3. Nevertheless we show next that there exist lattices �m ⊂ Ĝ such
that the corresponding complex solvmanifolds (�m\Ĝ, J1) do have trivial canonical
bundle.

We show first that Ĝ admits a lattice �m for any m ∈ N, m ≥ 3. Indeed, we may
write ĝ = (Re8⊕Re4)�n, where the nilradical n is spanned by {e1, e2, e3, e5, e6, e7}.
We compute

A := exp(π ad e8|n) = diag(1,−1,−1, 1,−1,−1),

Bm := exp(tm ad e4|n) = diag(1, α−1
m , αm, 1, α−1

m , αm),

where αm = m+√
m2−4
2 , and tm = logαm . Setting

Pm =
⎡
⎢⎣
1 0 0
0 1 α−1

m

0 1
αm−α−1

m

αm

αm−α−1
m

⎤
⎥⎦

⊕2

,

we obtain P−1
m Bm Pm =

[ 1 0 0
0 0 −1
0 1 m

]⊕2
and P−1

m APm = A for any m. If we define

f j = Pme j for j = 1, 2, 3, 5, 6, 7 then it is easy to verify that [ fk, f�] = [ek, e�] for
k, � ∈ {1, 2, 3, 5, 6, 7}. Therefore, { f1, f2, f3, f5, f6, f7} is a rational basis of n in
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which A and Bm are expressed as unimodular integer matrices. According to Theorem
2.3, the semidirect product

�m = (πZ ⊕ tmZ) � expN (spanZ{ f1, f2, f3, f5, f6, f7})

is a lattice in Ĝ = R
2

� N , where N is the nilradical of Ĝ.
Let σ1 := (e1+ ie5)∧(e2− ie6)∧(e3+ ie7)∧(e4− ie8)which is a nonzero (4, 0)-

form with respect to J1. It follows from Proposition 5.10 and − 1
2 Tr(J1 ad e8) = 2

that τ1 := exp(2i x8)σ1 is a nonzero closed (4, 0)-form on Ĝ with respect to J1, where
x := (x8, x4, x1, x2, x3, x5, x6, x7) are the real coordinates of Ĝ. It follows from
exp(2i(x8 + πk)) = exp(2i x8) that f (x) = exp(2i x8) is invariant by the action of
�m so there is an induced smooth function f̂ : �m\Ĝ → C such that the (4, 0)-form
τ̂1 = f̂ σ̂1 is a trivializing section of (�m\Ĝ, J1). In particular, (�m\Ĝ, J1) has trivial
canonical bundle.

If Hol(∇O) were contained in SL(n, H), then the canonical bundle of (�m\Ĝ, Jα)

would be trivial for all α but we have shown that this is not the case for α = 2 and
α = 3. Therefore, this example provides a negative answer to Verbitsky’s question.

Remark 6.4 Verbitsky’s question remains open for a hypercomplex manifold (M, {Jα})
such that (M, Jα) has trivial canonical bundle for all α.
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