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Abstract
We construct indefinite Einstein solvmanifolds that are standard, but not of pseudo-
Iwasawa type. Thus, the underlying Lie algebras take the form g �D R, where g is a
nilpotent Lie algebra and D is a nonsymmetric derivation. Considering nonsymmetric
derivations has the consequence that g is not a nilsoliton, but satisfies a more general
condition. Our construction is based on the notion of nondiagonal triple on a nice
diagram. We present an algorithm to classify nondiagonal triples and the associated
Einstein metrics. With the use of a computer, we obtain all solutions up to dimension
5, and all solutions in dimension≤ 9 that satisfy an additional technical restriction. By
comparing curvatures, we show that the Einstein solvmanifolds of dimension≤ 5 that
we obtain by our construction are not isometric to a standard extension of a nilsoliton.
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1 Introduction

Einstein manifolds of negative curvature and maximal symmetry have been studied
for decades. After contributions by many authors (see [3, 15–17]), it was proved in [4]
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that every homogeneous Einstein Riemannian manifold of negative curvature can be
represented as a solvmanifold, i.e. a solvable Lie group endowed with a left-invariant
metric (a statement previously known as the Alekseevsky conjecture).

Given an Einstein solvmanifold, at the Lie algebra level, there is an orthogonal
decomposition g� a, where g is the nilradical and a an abelian subalgebra [18]; such
a decomposition is called a standard decomposition. Up to isometry, one can then
assume that a acts by symmetric derivations [12]; the standard decomposition is then
said to be of Iwasawa type. Furthermore, the restriction of the metric to g satisfies the
equation

Ric = λ Id+D, D ∈ Der g; (1)

one then says that g is a nilsoliton; the terminology is motivated by the fact that a
left-invariant metric on a nilpotent Lie group satisfies Eq. 1 if and only if it is a Ricci
soliton [14, 19].

Indefinite homogeneous Einstein manifolds are less constrained (partly because
restrictions on the sign of the scalar curvature cease to be significant if one does
not fix the signature): they need not be solvmanifolds, or even diffeomorphic to R

n

(consider the symmetric spaces SO0(p, q)/SO(p)×SO(q)), and even if one restricts
to solvmanifolds, the Einstein condition does not imply the existence of a standard
decomposition g� a. Furthermore, if a standard decomposition does exist, it may not
be the case that a acts by symmetric derivations, even up to isometry.

Nevertheless, the constructive aspects of the positive-definite theory generalize
to arbitrary signature. For instance, large classes of Einstein solvmanifolds can be
obtained by extending indefinite nilsolitons (see [7, 8]). The solvmanifolds obtained
this way admit standard decompositions of pseudo-Iwasawa type, i.e. they take the
form g �D R where D is symmetric and g is the nilradical.

Constructing Einstein solvmanifolds which are not of pseudo-Iwasawa type is more
difficult. In [9] we obtained the first such examples in the guise of standard Sasaki-
Einstein solvmanifolds; since Sasaki solvmanifolds can never be of pseudo-Iwasawa
type, those metrics are not isometric to any standard solvmanifold of pseudo-Iwasawa
type ([10, Proposition 2.6]).

The construction of [9] is based on a generalization of the nilsoliton condition: on a
nilpotent Lie algebra, one considers a metric and a derivation D with symmetric part
Ds = 1

2 (D + D∗) such that for τ = ±1 the following conditions involving the Ricci
operator hold:

Ric = τ

(
− tr((Ds)2) Id−1

2
[D, D∗]+ (tr D)Ds

)
, tr(ad v ◦ D∗) = 0, v ∈ g. (2)

Rather than attack this equation directly, the method of [9] is to find solutions by
inverting contact (symplectic) reduction, which is a peculiar feature of Sasaki (Kähler)
geometry.

By contrast, in this paperwe leave contact geometry aside and give a direct construc-
tion of solutions of Eq. 2. Unlike the Sasaki case, we do not have a general criterion to
exclude that the resulting metrics are isometric to solvmanifolds of pseudo-Iwasawa
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type, but we show that this is not generally the case by explicit curvature computations
in low dimensions.

Our construction uses Lie algebras admitting a special type of basis, introduced in
[20, 21] under the name of nice bases. The metrics we consider have an orthonormal
nice basis, but the derivation D is not diagonal in this basis. It is a feature of our
construction that D is always diagonalizable, although this does not follow by any
means from Eq. 2.

The precise ansatz we impose on D is that for every i = 1, . . . , n, the derivation
D has at most one nonzero element on either the i-th row or the i-th column which is
not on the diagonal. Some of the entries of D are forced to be zero by the condition
tr(ad V ◦ D∗) = 0. Having assumed that the nice basis is orthogonal, the left-hand
side of Eq. 2 is diagonal relative to that basis, so we need to impose that the right-
hand side is zero off the diagonal; the resulting constraints on D are linear, due to
the special nature of our ansatz. The diagonal part of the right-hand side of Eq. 2,
however, depends nonlinearly on D. A full characterization of the conditions is given
in Lemma 3.1.

In order to obtain a linear problem, we change the point of view; rather than fix the
nice Lie algebra and consider an arbitrary diagonal metric, we consider the set of nice
Lie algebras which share the same set of indices i, j, k such that [ei , e j ] = ci jkek �= 0
(in the terminology of [5], they have the same nice diagram), and leave the structure
constants relative to a fixed orthonormal basis as unknowns. We then determine the
derivation D in terms of the nice diagram, the set A of indices corresponding to off-
diagonal nonzero entries of D, and a function A : A → R characterizing the actual
entries of D in a suitable sense. We call (D,A, A) a nondiagonal triple, and deter-
mining it is a linear problem. For a fixed nondiagonal triple, the structure constants
ci jk must then be computed in such a way that the Jacobi identity holds, the Ricci
operator takes the required form, and D is a derivation. This is a nonlinear problem,
but it can be solved effectively using the fact that finding a diagonal metric on a nice
Lie algebra with prescribed Ricci operator is a linear problem in the squared structure
constants c2i jk . The full conditions that must be satisfied in order to obtain a solution
of Eq. 2 from a nondiagonal triple are given in Theorem 3.7.

In view of a classification, we then introduce a suitable notion of equivalence
between nondiagonal triples, taking into account sign flipping in the basis elements
and automorphisms of the nice diagrams.

We thenpresentAlgorithm1,which classifies nondiagonal triples and the associated
solutions of Eq. 2 up to equivalence; our implementation of the algorithm can be found
at (https://github.com/diego-conti/jormungandr). This algorithm ismostly effective in
low dimensions or under two technical assumptions, namely that the so-called root
matrix is surjective and that the linear system determining A has a unique solution,
ensuring that the equations to be solved do not depend on parameters.

We obtain a classification of nondiagonal triples and the associated solutions of Eq.
2, up to equivalence, both in dimension ≤ 5 (Tables 1 and 2) and in dimension
≤ 9 under the two technical assumptions outlined above (see ancillary files). Each
entry in these tables determines a standard Einstein solvmanifold in one dimension
higher, which is not of pseudo-Iwasawa type. We argue that these metrics differ from

https://github.com/diego-conti/jormungandr
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the known metrics obtained by extending a nilsoliton by computing the curvature
(Proposition 4.4).

2 Generalized Nilsolitons and Diagonal Metrics

In this section we recall the results, terminology and notation from [5, 6, 20, 21] that
will be used in the sequel.

We shall consider metrics on a Lie algebra g, i.e. nondegenerate scalar products that
determine a left-invariant pseudo-Riemannian metric on a Lie group with Lie algebra
g; the Levi-Civita connection and its curvature can then be expressed at the Lie algebra
level. In particular, we shall denote by Ric : g → g the Ricci operator; the Einstein
condition reads Ric = λ Id, where Id is the identity operator on g; the notation Idg
will also be used when necessary.

Given a Lie algebra g̃ with a metric g̃, we say that a standard decomposition is an
orthogonal decomposition g̃ = g � a, where g is a nilpotent ideal and a an abelian
subalgebra. As g and a are required to be orthogonal, the restriction of the metric to g
is nondegenerate, and will be denoted by g.

The standard decomposition is generally not unique. A standard decomposition is
said to be of pseudo-Iwasawa type if ad X is symmetric for all X in a. Given anEinstein
solvmanifold of pseudo-Iwasawa type g̃ = g � a, g satisfies the nilsoliton Eq. 1. We
are interested in Einsteinmetrics which admit a standard decomposition, but not one of
pseudo-Iwasawa type. The standard decomposition will take the form g�D R, where
D differs from its symmetric part Ds = 1

2 (D + D∗). The condition that the metric on
the nilpotent factor g must satisfy is given by the following result, generalizing Eq. 1
to the case where D is not assumed to be symmetric:

Theorem 2.1 ([9, Proposition 2.1]) Let g be a nilpotent Lie algebra with a pseudo-
Riemannian metric g, D a derivation and τ = ±1. Then the metric g̃ = g+ τe0 ⊗ e0

on g̃ = g �D Span {e0} is Einstein if and only if

Ric = τ

(
− tr((Ds)2) Id−1

2
[D, D∗] + (tr D)Ds

)
, tr(ad v ◦ D∗) = 0, v ∈ g;

in this case, R̃ic = −τ tr((Ds)2) Idg̃.

For the remainder of the article we set τ = 1, thus solving the equation

Ric = − tr((Ds)2) Id−1

2
[D, D∗] + (tr D)Ds, tr(ad v ◦ D∗) = 0, v ∈ g. (3)

One can recover the metrics with τ = −1 by flipping the overall sign of the metric.
Our approach to finding solutions of Eq. 3 is through nice Lie algebras. Given a

Lie algebra g, a basis e1, . . . , en with dual basis e1, . . . , en is a nice basis if each
[ei , e j ], ei� de j is a multiple of a basis element (see [20, 21]); a nice Lie algebra is a
Lie algebra endowed with a nice basis. To such a basis one can associate a directed
graph with nodes {1, . . . , n}, and such that i → k is an arrow if and only if [ei , e j ] is
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a nonzero multiple of ek for some j . The arrow i → k is then decorated with the label

j ; we will write i
j−→ k. It is clear from the definition that for fixed i, j there can be at

most one arrow i
•−→ j and at most one arrow i

j−→ •. In addition, if i j−→ k is an arrow,

then j
i−→ k is also an arrow. Nilpotency implies that the graph is acyclic; additionally,

it satisfies a condition involving concatenated arrows which follows from the Jacobi
identity. All these conditions (see [5] for details) define a class of labeled directed
acyclic graphs known as nice diagrams. These are combinatorial objects which can in
principle be classified in any fixed dimension.

Having assigned a nice diagram �, any nice Lie algebra whose underlying nice
diagram is � can be expressed by assigning structure constants ci jk to every arrow

i
j−→ k in such a way that the Jacobi identity holds. However, the solutionmay not exist

or be unique; thus, the correspondence between nice Lie algebra and nice diagrams is
not bijective. In particular, if each basis vector ei is rescaled by a constant gi , a new
solution {c′

i jk} is obtained by c′
i jk = gk

gi g j
ci jk . This can be seen as follows.

Given a nice diagram �, one defines the root matrix M�, which has a row of the
form (

0, . . . , −1︸︷︷︸
i

, . . . , −1︸︷︷︸
j

, . . . , 1︸︷︷︸
k

, . . . , 0
)

for every pair of arrows i
j−→ k, j

i−→ k. The rows of M� represent the weights for the
action of the diagonal group Dn (in the basis {ei ⊗ ei } of its Lie algebra dn) on the
m-dimensional space of structure constants {ci jk}. Accordingly, we can view M� as
a linear map dn → dm , which exponentiates to a map Dn → Dm which we denote by
eM� ; identifying dn with R

n and dm with R
m , if the I -th row of M� corresponds to

i
j−→ k, the I -th component of eM�(g1, . . . , gn) is

gk
gi g j

.
It then follows that when M� is surjective the structure constants ci jk can be nor-

malized to ±1 by rescaling. Otherwise, continuous families of Lie algebras with the
same diagram may occur. In order to avoid the difficulty of having to solve equations
depending on parameters, we will only consider nice diagrams with surjective root
matrix in this paper.

Nice Lie algebras have two features which make them a good candidate for the
construction of solutions of Eqs. 1 and 3. First, one has fine control over the derivations,
as the following holds:

Proposition 2.2 ([21, Proof of Theorem 3]) Let g be a Lie algebra with a nice basis
e1, . . . , en. Then every derivation of g splits as the sum of a diagonal derivation∑

λi ei ⊗ ei and a derivation with zeroes on the diagonal,
∑

i �= j ai j e
i ⊗ e j .

Moreover, diagonal derivations can be computed solely in terms of the nice diagrams.
Given a vector v ∈ R

n , we will denote by vD the diagonal n × n matrix with entries
determined by v. On a nice Lie algebra g, identified with R

n by fixing a nice basis,
one then has:

vD ∈ Der g ⇐⇒ v ∈ ker M�. (4)
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The second and most important feature of nice Lie algebras is that any diagonal
metric has diagonal Ricci operator. The problem of determining a diagonal metric with
prescribedRicci tensor is then expressed by n equations in n unknowns; furthermore, it
can be split into a linear and a polynomial problem.Wewill use the following formula:

Proposition 2.3 ([6, Theorem 2.3]) If g is a nice Lie algebra with nice diagram �

and structure constants {cI }, then the Ricci operator of the diagonal metric gD =
g1e1 ⊗ e1 + . . . + gnen ⊗ en is

Ric = 1

2
(tM�X)D,

(
xI
c2I

)
= eM�(g). (5)

Notice that the particular value of g satisfying

(
xI
c2I

)
= eM�(g) is only relevant to

establish the signature: if g and h are solutions of Eq. 5 that differ by a positive factor
in each entry, say gi = ti hi , then the map that rescales each ei by

√
ti is a Lie algebra

isomorphism, i.e. the metrics gD and hD effectively correspond to the same metric and
Lie algebra written relative to different bases. To account for the signature, we will
introduce the notation

logsign x =
{
1 x < 0

0 x > 0
, logsign X = (logsign xI )I .

Equation 5 shows that if I represents the arrow i
j−→ k, xI has the same sign as

gk/(gi g j ); in term of the mod 2 reduction of the root matrix, denoted M�,2, we can
write

logsign X = M�,2 logsign g. (6)

Finally, let us recall that an automorphism of the nice diagram is a permutation σ of

its nodes that maps arrows to arrows, i.e. σi
σ j−→ σk is an arrow whenever i

j−→ k is an
arrow. It is natural to consider nice diagrams up to automorphisms, which corresponds
to considering nice Lie algebras up to reordering of the basis. An explicit computation
of automorphisms of a nice diagram is given below in Example 4.1.

3 Constructing Generalized Nilsolitons

The aim of the section is to develop tools to construct solutions to the “generalized
nilsoliton” Eq. 3 on a nice Lie algebra g. We consider the case tr D �= 0, which gives
rise to nonunimodular solvmanifolds g �D R. The derivation D will turn out to be
diagonalizable, but not diagonal relative to the nice basis.

In the following construction,we consider derivations Dwhich are almost diagonal,
meaning that their nondiagonal entries are indexed by a set

A = {(i1, j1), . . . , (ik, jk)},
i1, . . . , ik, j1, . . . , jk pairwise distinct elements in 1, . . . , n.

(7)
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The next lemma will be the guide to determine what properties should be imposed
on the setA and derivation D.Without loss of generality, wewill require tr D = tr D2.
Notice that this normalization affects the Einstein constant − tr((Ds)2).

Lemma 3.1 Let g be a nice Lie algebra with a diagonal metric

g = g1e
1 ⊗ e1 + . . . + gne

n ⊗ en,

let A be as in Eq. 7, and let D be a derivation of the form

D = λ1e
1 ⊗ e1 + . . . + λne

n ⊗ en +
∑

(i, j)∈A
a ji e

i ⊗ e j ,

where the a ji are nonzero. Assume furthermore that tr D = tr D2 �= 0. Then Eq. 3
holds if and only if for (i, j) ∈ A

ei� de j = 0, tr D = λi − λ j , a2j i = 2
gi
g j

Ai
j tr D,

where Ai
j are constants such that

tr(DμD) =
(
1 +

∑
(i, j)∈A

Ai
j

)
trμD +

∑
(i, j)∈A

Ai
j (μ j − μi ), μD ∈ Der g, (8)

and

1

tr D
Ric = −

(
1 +

∑
(i, j)∈A

Ai
j

)
Id−

∑
(i, j)∈A

Ai
j (e

j ⊗ e j − ei ⊗ ei )

+ (λ1e
1 ⊗ e1 + . . . + λne

n ⊗ en).

Proof We compute

D∗ = λ1e
1 ⊗ e1 + . . . + λne

n ⊗ en +
∑

(i, j)∈A

g j

gi
a ji e

j ⊗ ei .

Sinceg is nice, the diagonal part of D is a derivation (seeProposition2.2). Therefore,
tr ad v ◦ D∗ = 0 if and only if

0 = tr

(
ad v ◦

∑
(i, j)∈A

g j

gi
a ji e

j ⊗ ei )

)
=

∑
(i, j)∈A

g j

gi
a ji e

j ([v, ei ])

= −v�
∑

(i, j)∈A

g j

gi
a ji (ei� de j ), v ∈ g.
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By the nice condition, the terms ei� de j = 0 can only be linearly dependent if they
are zero. We also compute

[D, D∗] =
∑

(i, j)∈A

(
a ji (λi−λ j )

(g j

gi
e j ⊗ ei + ei ⊗ e j ) + g j

gi
a2j i (e

j ⊗ e j − ei ⊗ ei )

)
,

Ds = λ1e
1 ⊗ e1 + . . . + λne

n ⊗ en + 1

2

∑
(i, j)∈A

a ji (e
i ⊗ e j + g j

gi
e j ⊗ ei ),

tr((Ds)2) = λ21 + . . . + λ2n + 1

2

∑
(i, j)∈A

a2j i
g j

gi
= tr(D2) + 1

2

∑
(i, j)∈A

a2j i
g j

gi
.

Since we assume a ji �= 0, the offdiagonal part of Eq. 3 is satisfied if and only if
for (i, j) ∈ A

−1

2
(λi − λ j )

(g j

gi
e j ⊗ ei + ei ⊗ e j ) + (tr D)(

1

2
ei ⊗ e j + g j

2gi
e j ⊗ ei ) = 0,

i.e.
tr D = λi − λ j , (i, j) ∈ A.

On the other hand, the diagonal part of Eq. 3 gives

Ric = −
(∑

i

λ2i + 1

2

∑
(i, j)∈A

a2j i
g j

gi

)
Id−

∑
(i, j)∈A

g j

2gi
a2j i (e

j ⊗ e j − ei ⊗ ei )

+ (tr D)

(∑
i

λi e
i ⊗ ei

)
.

Setting Ai
j = g j a2j i

2gi tr D
and dividing by tr D, we can write

1

tr D
Ric = −

(
tr D2

tr D
+

∑
(i, j)∈A

Ai
j

)
Id−

∑
(i, j)∈A

Ai
j (e

j ⊗e j −ei ⊗ei )+
∑
i

λi e
i ⊗ei .

If μD is a diagonal derivation, since tr(Ric ◦μD) = 0, we compute

0 = −
(
1 +

∑
(i, j)∈A

Ai
j

)
trμD −

∑
(i, j)∈A

Ai
j (μ j − μi ) + tr DμD.

�
Remark 3.2 A derivation D satisfying the conditions of Lemma 3.1 must necessarily
be diagonalizable. Indeed, suppose D is as in Lemma 3.1. Up to reordering indices,
we can assume that D is upper triangular; in particular, the diagonal elements λi are
the eigenvalues. If λ = λ j is an eigenvalue, then the j-th row of D − λI consists of
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zeroes except possibly for the i-th entry, if (i, j) ∈ A; in the latter case, however,
λi − λ j = tr D �= 0, so the i-th row of D − λI is zero everywhere except at the
i-th entry. This shows that the rank of D − λI coincides with the number of diagonal
elements distinct from λ. Thus, D is diagonalizable.

Remark 3.3 A similar construction as in Lemma 3.1 could be in principle considered
for tr D = 0; in that case, g �D R would be unimodular, and the derivation not
diagonalizable. We do not know whether this will produce new examples; we plan to
study this in future work.

Example 3.4 Consider the Lie algebra g = (0, 0, e12, e13); this notation, inspired
by [22], means that there is a fixed basis e1, . . . , e4 such that the dual basis e1, . . . , e4

satisfies
de1 = 0 = de2, de3 = e1 ∧ e2, de4 = e1 ∧ e3.

The generic diagonal derivation is

(−a + b, 2a − b, a, b)D.

We consider A = {(1, 2)}, i.e. the derivation

D = (−a + b, 2a − b, a, b)D + a21e
1 ⊗ e2.

The condition tr D = 2a + b = λ1 − λ2 gives

2a + b = −a + b − (2a − b);

together with the Eq. 8, this gives a linear system in a, b, A1
2 with solution

a = 7

51
, A1

2 = −11

17
, b = 35

51
,

i.e.

D =

⎛
⎜⎜⎝

28
51 0 0 0
a21 − 7

17 0 0
0 0 7

51 0
0 0 0 35

51

⎞
⎟⎟⎠ .

In addition, we have

a221 = −1078

867

g1
g2

.

By Eq. 5, we must solve

1

2 tr D
tM�(X) =

(
−23

51
,− 2

17
,−11

51
,
1

3

)
,

which gives

X =
(
196

867
,
98

153

)
.
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Now we must solve eM�(g) = X , i.e.

g3
g1g2

= 196

867
,

g4
g1g3

= 98

153
.

A particular solution is given by

g1 = 3, g2 = −22, g3 = −4312

289
, g4 = −422576

14739
, a21 = 7

17
.

Therefore we see that the metric

3e1 ⊗ e1 − 22e2 ⊗ e2 − 4312

289
e3 ⊗ e3 − 422576

14739
e4 ⊗ e4 + e5 ⊗ e5

on the Lie algebra g̃ = g �D Span {e5}
(
28

51
e15,− 7

17
e25 + 7

17
e15,

7

51
e35 + e12,

35

51
e45 + e13, 0

)

is Einstein with

Ric = − 98

289
Id .

In Lemma 3.1, the structure constants are fixed, the parameters {a ji } must satisfy
linear conditions that make D a derivation, and the Ai

j linear conditions that follow
from tr(Ric ◦D) = 0, but their relation to the metric is nonlinear. We now take a
differerent point of view: we do not fix the structure constants, but only the nice
diagram. The Ai

j and the diagonal part of the derivations are determined linearly,
and then we impose conditions on the structure constants so that the Ricci operator
takes the required form and D is a derivation. Notice that since we allow the structure
constants to vary, we may assume that the nice basis is orthonormal, i.e. the gi equal
±1. This leads to the following definition.

Let � be a nice diagram with n nodes. We will identify nodes with numbers
{1, . . . , n}. Let A be a nonempty subset of N (�) × N (�). Let D : R

n → R
n be

a linear map, A : A → R
∗ a function; we will write Ai

j for A(i, j). We say that
(D, A,A) is a nondiagonal triple if the following conditions hold:

(N1) whenever (i, j) is in A, i �= j ;
(N2) whenever (i, j), (i ′, j ′) are distinct elements ofA, then the elements i, j, i ′, j ′

are pairwise distinct;

(N3) if (i, j) is in A, then there is no arrow i
k−→ j ;

(N4) denoting by (λ1, . . . , λn) the diagonal elements of D, for every μ ∈ ker M�,

∑
i

λiμi =
(
1 +

∑
(i, j)∈A

Ai
j

)∑
i

μi +
∑

(i, j)∈A
Ai
j (μ j − μi );

(N5) λ1 + . . . + λn = λi − λ j whenever (i, j) ∈ A;
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(N6) D takes the form

D = λ1e
1 ⊗ e1 + . . . + λne

n ⊗ en +
∑

(i, j)∈A
a ji e

i ⊗ e j ,

where a2j i =
∣∣∣2Ai

j tr D
∣∣∣ �= 0 and (λ1, . . . , λn) is in ker M�.

Remark 3.5 Conditions (N4) and (N5) always determine the λi completely, but not
necessarily the Ai

j . Indeed, let fi j (λ) = λ1 + · · · + λn − (λi − λ j ) and let

V = {λ ∈ ker M� | fi j (λ) = 0}, dim V = n5

be the space of diagonal derivations satisfying (N5). Then, for λ in V , imposing (N4)
for any μ in V yields n5 independent equations

∑
i

λiμi =
∑
i

μi ,

thus completely determining λ ∈ ker M�.
On the other hand, consider W ⊂ ker M� such that V ⊕ W = ker M�. Impos-

ing (N4) for μ in W gives an equation of the form

∑
i, j

fi j (μ)Ai
j = tr(λμ) − tr(μ). (9)

The matrix of this linear system in the unknowns Ai
j has columns fi j (μ), where

each generator μ of W determines a row.
The rows are independent because W intersects V trivially. Hence, the system

always admits a solution, which is unique precisely when dimW = |A|, i.e.

n5 = dim ker M� − |A| .

This holds if and only if condition (N5) imposes exactly |A| linearly independent
equations.

Remark 3.6 Any Lie algebra admits a semisimple derivation N satisfying tr N f =
tr f for every derivation f , unique up to automorphisms, known as a Nikolayevsky
derivation, or pre-Einstein derivation; it is known that for Riemannian solutions of Eq.
1 one must have D = N up to multiples and automorphisms (see [21, Theorem 1]). If
A is empty, condition (N4) implies that D is the Nikolayevsky derivation. In general,
however, the Nikolayevsky derivation will not satisfy (N5) (for instance, when its
eigenvalues are positive, as is the case for Riemannian nilsolitons). In addition, D may
only equal the Nikolayevsky derivation if the linear equations Eq. 9 are homogeneous.
A nontrivial solution in A only exists if the columns fi j (μ) are linearly dependent,
i.e. |A| > dimW , which means that the equations of condition (N5) are linearly
dependent. In this paper we will focus on Lie algebras of dimension ≤ 5, for which
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the Nikolayevsky derivation has positive eigenvalues, and those of higher dimension
for which the equations of condition (N5) are independent. Therefore, none of the
metrics we construct have D = N up to a multiple.

In the next theorem, we restate the construction of Lemma 3.1 using nice diagrams
and nondiagonal triples. We will use the notation [x] to represent the vector all of
whose entries equal x in R

n , where n is to be deduced from the context.

Theorem 3.7 Let � be a nice diagram. Let (A, D, A) be a nondiagonal triple. Let X
be a vector such that

1

2 tr D
(tM�X) =

[
−1 −

∑
(i, j)∈A

Ai
j

]
+

∑
(i, j)∈A

Ai
j (ei − e j ) + (λ1, . . . , λn). (10)

Suppose ε ∈ {±1}n satisfies

M�,2(logsign ε) = logsign X , εi/ε j = sign(Ai
j tr D), (i, j) ∈ A.

Suppose g is a nice Lie algebra with diagram � such that the structure constants
satisfy c2I = |xI | and D is a derivation. Then the diagonal metric εD satisfies Eq. 3.

Proof The hypotheses of Lemma 3.1 are satisfied. Thus, the Ricci operator is diagonal
and Eq. 3 is equivalent to

1

tr D
Ric =

[
−1 −

∑
(i, j)∈A

Ai
j

]D
+

∑
(i, j)∈A

Ai
j (ei − e j )

D + (λ1, . . . , λn)
D.

By Proposition 2.3, we must solve

eM�(ε) =
(
xI
c2I

)
= (

sign xI
)
.

Taking log signs, this boils down to

M�,2(logsign ε) = logsign X .

�

Every metric obtained with Theorem 3.7 determines a standard Einstein solvmani-
fold which is not of pseudo-Iwasawa type by applying Theorem 2.1. We will illustrate
this concretely in one example.
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Example 3.8 Consider the diagram with four nodes and arrows 1
2−→ 3, 1

3−→ 4. Then
we have a nondiagonal triple given by

A = {(1, 2)}, D =

⎛
⎜⎜⎝

28
51 0 0 0

± 7
51

√
3
√
22 − 7

17 0 0
0 0 7

51 0
0 0 0 35

51

⎞
⎟⎟⎠ , A1

2 = −11

17
.

A solution of Eq. 10 is given by

X =
(
196

867
,
98

153

)
,

giving rise to the Lie algebra

(
0, 0,

14

867

√
867e12,

√
98

153
e13

)
.

It is easy to check that D is always a derivation. We have two choices of ε that satisfy
the conditions of Theorem 3.7, namely

ε = (−1, 1,−1, 1), ε = (1,−1,−1,−1).

The resulting 5-dimensional solvable Lie algebra is

(
28

51
e15 + 7

51

√
3
√
22e25,− 7

17
e25,

7

51
e35 + 14

867

√
867e12,

35

51
e45 +

√
98

153
e13, 0

)
.

It will be convenient to give the following definition. Given a nondiagonal triple
(A, A, D), a nondiagonal solution is a pair ({cI }, ε) such that the conditions of The-
orem 3.7 hold for some X . Notice that X is uniquely determined by the data.

A nondiagonal solution determines an Einstein solvmanifold applying Theorem 3.7
and Theorem 2.1.We conclude this section by discussing when two Einstein solvman-
ifolds obtained in this way should be regarded as equivalent.

In general, identifying whether two solvmanifolds are isometric as pseudo-
Riemannian manifolds is a difficult problem. There is a straightforward sufficient
condition that one can test, as explained in [1, Theorem 5.6], [9, Proposition 1.1]. The
observation is that if D is replaced with a different derivation D′ that commutes with
D and such that D − D′ is skew-symmetric relative to the metric, the resulting exten-
sions g�D′ R and g�D R lead to isometric pseudo-Riemannian manifolds. However,
no two metrics obtained from Theorem 3.7 can be related in this way. Indeed, fix two
nondiagonal triples (A, A, D), (A′, A′, D′). The form of the metric implies that the
space of skew-symmetric endomorphisms is spanned by

ei ⊗ e j − εiε j e
j ⊗ ei , i �= j .
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The only possibility in order to have a pair ( j, i) such that both (i, j) and ( j, i)
are nonzero entries of D − D′ is if (i, j) ∈ A and ( j, i) ∈ A′ or viceversa. On the
other hand, ei ⊗ e j − εiε j e j ⊗ ei will not commute with D in this case, because
λi − λ j = tr D �= 0.

A finer notion of equivalence we can consider is identifying two extensions g�D R

and g′
�D′ R if they are related by a Lie algebra isomorphismwhich is also an isometry.

We observe that since in the construction tr D �= 0, g is the nilradical of g �D R.
Therefore, an isomorphism g �D R → g′

�D′ R would induce an isomorphism of
the nilradicals g and g′. Since the nilradicals are nice Lie algebras, we consider two
nondiagonal solutions equivalent if denoting by g the nice Lie algebra determined
by �, {cI } and g the metric defined by ε, with g′, g′ defined similarly, there is an
equivalence of nice Lie algebras g → g′ that maps g to g′ and D to D′.

Lemma 3.9 Given nice diagrams �, �′, nondiagonal triples (A, A, D), (A′, A′, D′),
and nondiagonal solutions ({cI }, ε), ({c′

I }, ε′), the nondiagonal solutions are equiva-
lent if and only if there is an isomorphism of nice diagrams f : � → �′ and δ ∈ {±1}n
such that

λ′
f (i) = λi , a′

f (i) f ( j) = δiδ j ai j , c′
f (i) f ( j) f (k) = δiδ jδkci jk, ε′

f (i) = εi .

Proof Since the nice bases are assumed to be orthonormal, the isomorphism is essen-
tially obtained by a permutation of the indices {1, . . . , n}, which corresponds to an
isomorphism of the diagrams, preceded by sign flips. �

If we fix �, (δ, f ) as in Lemma 3.9 is an element of the group Z
n
2 �Aut(�), acting

on the set of nondiagonal triples. Equivalence of nondiagonal triples amounts to being
in the same orbit for this action.

4 Algorithm, Implementation and Results

The discussion of Section 3 leads naturally to an algorithm to classify nondiagonal
solutions up to equivalence, which we give explicitly in Algorithm 1. The algorithm
reflects the construction in a straightforwardway; the only subtlety is that for efficiency
the quotient under the action ofZ

n
2�Aut(�) is taken in two steps: in the outer iteration

through the possible index sets A, only one index set is taken in each orbit for the
natural action of Aut(�), and at the end of the iteration, the resulting nondiagonal
triples are factored by the action of Z

n
2 � (Aut�)A, where (Aut�)A indicates the

stabilizer of A.

Example 4.1 Consider the nice diagram � with 5 nodes and arrows 1
2−→ 3, 1

2−→
4, 1

3−→ 5 (see Fig. 1). The only nontrivial automorphism of � is the involution
(1 2)(4 5). The sets A that satisfy (N1)–(N3) are reduced using the automorphism
of �, so (1, 2) is in the same orbit as (2, 1); similarly, (5, 3) is in the same orbit as
(4, 3). Since D = di j ei ⊗ e j in the nondiagonal triple (A, A, D) is a derivation of
a Lie algebra g with diagram �, and since the generic derivation of the Lie algebra
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Algorithm 1 Classification of nondiagonal solutions up to equivalence.
input : The dimension n
output: Nondiagonal solutions up to equivalence on nice Lie algebras of dimension n

1 for � nice diagram with n nodes (one in each isomorphism class) do
2 for A ⊂ N (�) × N (�) nonempty and satisfying (N1)–(N3) (one in each Aut(�)-orbit) do
3 L ← ∅
4 Compute (λ1, . . . , λn) ∈ ker M� and A : A → R

∗ such that (N4) and (N5) hold.
5 Compute X so that Eq. 10 holds.

6 for {cI } with c2I = |xI | and D as in (N6) such that the Jacobi identity holds and D is a
derivation do

7 for ε such that Theorem 3.7 holds do
8 add (A, A, D, {cI }, ε) to L

9 Add a section of L/(Zn
2 � Aut(�)A) to output

Fig. 1 Diagram of (0, 0, e12, e13, e23)

(0, 0, c123e12, c134e13, c235e23) is given by

⎛
⎜⎜⎜⎜⎝

d33 − d22 d12 0 0 0
d21 d22 0 0 0
d31 d32 d33 0 0
d41 d42

c134
c123

d32 2d33 − d22
c134
c235

d12
d51 d52 − c235

c123
d31

c235
c134

d21 d22 + d33

⎞
⎟⎟⎟⎟⎠ ,

the elements of D in position (2, 1) and (5, 4) are simultaneously zero or nonzero, and
similarly for: (1, 2) and (4, 5); (3, 2) and (4, 3); (3, 1) and (5, 3). In addition, d42 and
d51 are allowed to be nonzero; the remaining nondiagonal elements vanish. Taking all
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into account, the following are the allowed A up to the action of Aut(�):

A1 = {(1, 5)}, A2 = {(1, 5), (2, 4)}, A3 = {(1, 2), (4, 5)}.

We see that

M� =
⎛
⎝−1 −1 1 0 0

−1 0 −1 1 0
0 −1 −1 0 1

⎞
⎠ ,

so ker M� = {(λ3 − λ2, λ2, λ3, 2λ3 − λ2, λ2 + λ3) | λ2, λ3 ∈ R}. Conditions (N4)–
(N5) give the following constraints for each case:

Case A1 = {(1, 5)}. ⎧⎪⎨
⎪⎩
2λ2 + 5A1

5 + 5 = 7λ3
2λ2 = λ3 + A1

5

5λ3 = −2λ2

,

with solution A1
5 = − 5

7 , λ3 = 5
42 and λ2 = − 25

84 . Equation 10 gives

X =
(
25

63
,
25

84
,
25

84
,

)
;

solving c2i jk = ∣∣xi jk∣∣ we get

c123 = 5

3
√
7
, c134 = 5

2
√
21

, c235 = 5

2
√
21

;

and by a2i j =
∣∣∣2Ai

j tr D
∣∣∣ we obtain

a51 = ±5

7

√
5

3
.

However, M�,2(logsign ε) = logsign X gives ε1ε2ε3 = +1 = ε2ε3ε5, thus

ε1 = ε1ε2ε3ε5 = ε5,

but εi/ε j = sign(Ai
j tr D) gives ε1ε5 = −1, which is impossible.

Case A2 = {(1, 5), (2, 4)}.
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2λ2 + 7A2
4 + 5A1

5 + 5 = 7λ3
2λ2 + A2

4 = λ3 + A1
5

5λ3 = −2λ2
2λ2 = 7λ3

,

with solution A1
5 = − 5

12 , A
2
4 = − 5

12 , λ3 = 0 and λ2 = 0. This does not give a
nondiagonal triple because tr D is zero.
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Case A3 = {(1, 2), (4, 5)}.
⎧⎪⎨
⎪⎩
2λ2 + 4A1

2 + 4A4
5 + 5 = 7λ3

2λ3 + 2A1
2 + 2A4

5 = 4λ2
λ2 + 2λ3 = 0

,

with solution A1
2 = −A4

5 − 25
31 , λ3 = 5

31 and λ2 = − 10
31 . Equation 10 gives

X =
(
100

961
, x134,

150

961
− x134

)
, A1

2 = −31

50
x134 − 11

31
, A4

5 = 31

50
x134 − 14

31
;

solving c2i jk = ∣∣xi jk∣∣ we get

c123 = 10

31
, c134 = √|x134|, c235 =

√∣∣∣∣150961
− x134

∣∣∣∣;

and by a2i j =
∣∣∣2Ai

j tr D
∣∣∣ we obtain

a21 = ±5

√
2

31

∣∣A1
2

∣∣, a54 = ±5

√
2

31

∣∣∣∣−A1
2 − 25

31

∣∣∣∣.

Since D is a derivation, we obtain a54c134 = c234a21. Taking the square and
substituting the previous equation we get the following

|x134|
∣∣∣∣3150 x134 − 14

31

∣∣∣∣ =
∣∣∣∣150961

− x134

∣∣∣∣
∣∣∣∣−31

50
x134 − 11

31

∣∣∣∣ ,

which gives three solutions for x134, namely 75
961 ,

25
961

(
3 − 5

√
3
)

and

25
961

(
5
√
3 + 3

)
. However, M�,2(logsign ε) = logsign X and

εi/ε j = sign(Ai
j tr D) have solutions only for x134 = 75

961 , hence we get

x134 = 75

961
, A1

2 = −25

62
, A4

5 = −25

62
, a21 = ±25

31
, a54 = ±25

31
,

and the metrics are

−e1 ⊗ e1 + e2 ⊗ e2 − e3 ⊗ e3 + e4 ⊗ e4 − e5 ⊗ e5,

e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3 − e4 ⊗ e4 + e5 ⊗ e5.
(11)

Finally, we observe that changing the sign of e1, e3 and e5 amounts to switching
the sign of a12 and a45, and by Lemma 3.9 we only need to consider the case
a21 > 0.
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So we conclude that up to equivalence the only solution is given by the Lie algebra

(0, 0, 10
31e

12, 5
√
3

31 e13, 5
√
3

31 e23) with metrics Eq. 11 and derivation

D =
(
15

31
,−10

31
,
5

31
,
20

31
,− 5

31

)D

+ 25

31
e1 ⊗ e2 + 25

31
e4 ⊗ e5.

Applying Algorithm 1 poses several problems. We illustrate the issues and how we
addressed them in our implementation (https://github.com/diego-conti/jormungandr),
based on the C++ library GiNaC [2].

1. At line 2 of Algorithm 1, a classification of nice diagrams up to automorphisms
is needed. An algorithm to this effect was introduced in [5] and implemented
in (https://github.com/diego-conti/DEMONbLAST); thus,we resorted to the same
code.

2. For a fixed nice diagram, the set of possible A is generally quite large; however,
as observed in Example 4.1, at line 2 it is not necessary to consider all possible
A, but only those such that for some nice Lie algebra with diagram � there exist
derivations whose nondiagonal entries are exactly parameterized byA. In general,
the nice diagram does not determine the nice Lie algebra uniquely; however, it is
always possible to write down a linear space that contains the space of derivations
of all Lie algebras with a given nice diagram. This optimization also has the effect
of eliminating nice diagrams which are not associated to any nice Lie algebra.

3. At lines 4–5, computing λ1, . . . , λn , A and X are linear computations. These
may result in solutions depending on parameters: as observed in Remark 3.5,
if (N5) does not determine λ1, . . . , λn , then the Ai

j are not uniquely determined.
Additionally, it may be the case that Eq. 10 does not determine X if tM� is not
injective, i.e. the root matrix M� is not surjective.

4. At line 6, nonlinear computations take place: X determines the structure constants,
but square roots appear in the expression. Simple equations such as those of Exam-
ple 4.1, caseA3 can be solved automatically by rationalizing and solving a second
degree equation in one variable, and we implemented this in (https://github.com/
diego-conti/jormungandr), but this becomes hopeless as free parameters increase
or when equations contain the sum of three square roots.

5. At line 9, we need to extract a section. For this, we used the explicit form of
the group action given in Lemma 3.9 and a simple scheme where the set L is
progressively reduced by an iteration that eliminates elements that are in the orbit
of preceding elements.

For the reasons outlined above, in dimension 6 and higher, our software is not able
to solve all cases. With this in mind, we have restricted our classifications to n ≤ 5,
and 6 ≤ n ≤ 9 with surjective root matrix and A chosen so that (N5) consists of
|A| independent equations. Notice that in dimension 5 the root matrix is automatically
surjective. The resulting solutions of Eq. 3, each giving rise to anEinstein solvmanifold
in one dimension higher, are given in Tables 1, 2, A, B, C and D (see the ancillary
files). Each table row contains a Lie algebra g, a derivation D, and then the list of
compatible metrics. The derivation D is expressed as a sum v+∑

ai j ei ⊗e j , where v

https://github.com/diego-conti/jormungandr
https://github.com/diego-conti/DEMONbLAST
https://github.com/diego-conti/jormungandr
https://github.com/diego-conti/jormungandr
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Table 1 Solutions of Eq. 3 obtained with Algorithm 1 with n = 3, 4

Name � g D S

31:1 0, 0, 4
7 e

12 ( 67 , − 2
7 , 4

7 )

+ 8
7 e

1 ⊗ e2
{13, 23}

3:1 0,0,0
(1, − 1

5 , 2
5 )

+ 6
5 e

1 ⊗ e2
{1, 13, 2, 23}

421:1 0, 0, 14
51

√
3e12, 7

51

√
34e13

( 2851 ,− 7
17 , 7

51 , 35
51 )

+ 7
51

√
66e1 ⊗ e2

{13, 234}

41:1 0, 0, 0, 2
17

√
22e12

( 1517 ,− 7
17 , 6

17 , 8
17 )

+ 22
17 e

1 ⊗ e2
{134, 14, 234, 24}

41:1 0, 0, 0, 1
3

√
6e12

(0, 0, 1, 0)
+ 2

3

√
3e3 ⊗ e4

{123, 14, 3}

41:1 0, 0, 0, 1
3

√
6e12

( 23 , 0, − 1
3 , 2

3 )

+ 2
3

√
3e1 ⊗ e3

{12, 14, 234, 3}

41:1 0, 0, 0, 2
9

√
6e12

( 13 , − 1
3 , 2

3 , 0)
+ 2

3 e
1 ⊗ e2 + 4

9

√
3e3 ⊗ e4

{14, 24}

4:1 0,0,0,0
(1, − 1

3 , 1
3 , 1

3 )

+ 4
3 e

1 ⊗ e2

{1, 13, 134,
2, 23, 234}

4:1 0,0,0,0
( 35 , 3

5 , − 1
5 ,− 1

5 )

+ 4
5 e

1 ⊗ e3 + 4
5 e

2 ⊗ e4
{12, 14, 34}

is a vector representing the diagonal derivation vD. Since the nice basis is orthonormal,
the metric is specified by giving the indices of the timelike vectors in the basis; thus,
for instance, 12 represents the metric diag(−1,−1, 1, . . . , 1). The set of admissible
signatures is denoted by S. We obtain:

Theorem 4.2 Every solution of Eq. 3 arising from a nondiagonal triple on a nice
diagram with n ≤ 5 is equivalent to exactly one entry in Tables 1 or 2.

Theorem 4.3 Every solution of Eq. 3 arising from a nondiagonal triple on a nice
diagram with 6 ≤ n ≤ 9, a surjective root matrix and A chosen so that (N5) consists
of |A| independent equations is equivalent to exactly one entry in Tables A, B, C, D
(see ancillary files).

In order to show that the construction of this paper yields new metrics, we compare
theEinstein solvmanifoldsweobtain to the knownEinsteinmetrics of pseudo-Iwasawa
type. Specifically, we compare with the Einstein solvmanifolds obtained by extending
a nilsoliton of dimension ≤ 4 that admits an orthonormal nice basis.

Proposition 4.4 The Einstein solvmanifolds obtained from the metrics of Table 1 are
not isometric to any pseudo-Iwasawa Einstein solvmanifolds obtained by extending a
nilsoliton admitting a nice orthonormal basis.

Proof Diagonal nilsoliton metrics on irreducible nice Lie algebras of dimension 3 and
4 are classified in [8]. Using the same methods, the classification can be extended
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Ta
bl
e
2

So
lu
tio

ns
of

E
q.

3
ob
ta
in
ed

w
ith

A
lg
or
ith

m
1
w
ith

n
=

5

N
am

e
�

g
D

S

53
21

:1
0,

0,
3 10

√ 5e
12

,
3 10

√ 2e
13

,
3 10

√ 5e
14

(−
3 10

,
3 4
,

9 20
,

3 20
,
−

3 20
)

+
3 10

√ 14
e2

⊗
e 5

{1
24

,1
35

}

53
21

:1
0,

0,
11 15
9

√ 6e
12

,
11 15
9

√ 10
6e

13
,

22 53

√ 3e
14

(
55 15
9
,
−

22 53
,
−

11 15
9
,

44 15
9
,
33 53

)

+
22 15
9

√ 57
e1

⊗
e 2

{1
4,
2}

53
2:
1

0,
0,

10 31
e1

2
,

5 31

√ 3e
13

,
5 31

√ 3e
23

(
15 31

,
−

10 31
,

5 31
,
20 31

,
−

5 31
)

+
25 31
e1

⊗
e 2

+
25 31

e4
⊗

e 5
{1
35

,2
34

}

52
1:
1

0,
0,

0,
4 15

√ 10
e1

2
,

4 15

√ 3e
14

(−
2 15

,
2 3
,
−

2 5
,

8 15
,
2 5
)

+
4 15

√ 21
e2

⊗
e 3

{1
25

,1
34

,2
45

,3
}

52
1:
1

0,
0,

0,
5 51

√ 6e
12

,
5 51

√ 34
e1

4
(
10 51

,
−

5 17
,
10 17

,
−

5 51
,

5 51
)

+
5 51

√ 42
e1

⊗
e 2

+
5 51

√ 42
e3

⊗
e 5

{1
34

,2
45

}

52
1:
1

0,
0,

0,
4 15

√ 3e
12

,
4 15

√ 10
e1

4
(−

2 15
,
1 5
,
1,

1 15
,
−

1 15
)

+
4 15

√ 21
e3

⊗
e 5

{1
25

,1
34

,2
45

,3
}

52
1:
1

0,
0,

0,
4 21

√ 14
e1

2
,

4 21

√ 14
e1

4
(
1 3
,
−

1 21
,
−

3 7
,
2 7
,
13 21

)
+

4 21

√ 30
e1

⊗
e 3

{1
25

,1
4,
23

45
,3
}

52
1:
1

0,
0,

0,
4 15

√ 3e
12

,
4 15

√ 10
e1

4
(
17 30

,
−

1 2
,

3 10
,

1 15
,
19 30

)

+
4 15

√ 21
e1

⊗
e 2

{1
34

,1
4,
23
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to include the reducible nice Lie algebra (0, 0, 0, e12). For each nilsoliton obtained
in this way, we can write down explicitly the resulting Einstein solvmanifold g̃ and
compute the curvature tensor. The metric is determined only up to a multiple; we will
fix a normalization, so the statement must be proved up to isometry and rescaling.

By raising an index, we view the curvature tensor as an element of �2g̃∗ ⊗ g̃ ⊗ g̃
rather than �2g̃∗ ⊗ g̃∗ ⊗ g̃, obtaining an endomorphism R : �2g̃ → �2g̃. We use the
conjugacy class of R as an invariant. More precisely, we determine the characteristic
polynomial and whether R is diagonalizable; notice that R is symmetric relative to
the scalar product induced by g̃ on �2g̃, but the latter is not definite, so the spectral
theorem does not apply. It turns out that the trace of R is nonzero in each case; in order
to account for rescalings, we consider the characteristic polynomial of the normalized
operator R̃ = 1

tr R R.
We illustrate the computation comparing the metrics obtained by extending the

Heisenberg Lie algebra. Extending the diagonal nilsoliton metric, we obtain the
Lie algebra ( 16

√
3e14, 1

6

√
3e24, 1

3

√
3e12 + 1

3

√
3e34, 0) with metric e1 ⊗ e1 − e2 ⊗

e2 − e3 ⊗ e3 + e4 ⊗ e4; the Riemann operator R : �2 → �2 in the basis
{e12, e13, e14, e23, e24, e34} is given by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

1
3 0 0 0 0 1

6
0 1

12 0 0 1
12 0

0 0 1
12

1
12 0 0

0 0 1
12

1
12 0 0

0 1
12 0 0 1

12 0
1
6 0 0 0 0 1

3

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which is diagonalizable. On the other hand, the extension of theHeisenbergLie algebra
corresponding to the first entry of Table 1 yields the Einstein Lie algebra ( 67e

14, 8
7e

14−
2
7e

24, 4
7e

12 + 4
7e

34) with metric e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3 + e4 ⊗ e4; the Riemann
operator R is then given by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

16
49 0 0 0 0 8

49
0 20

49
8
49 − 16

49 − 4
49 0

0 − 8
49 − 12

49
12
49

16
49 0

0 16
49

12
49 − 12

49 − 8
49 0

0 − 4
49 − 16

49
8
49

20
49 0

8
49 0 0 0 0 16

49

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which is not diagonalizable. Thus, the metrics are not isometric. Notice that the char-
acteristic polynomial is not sufficient to distinguish these two particular metrics, since
in both cases one obtains det(λ Id−R̃) = λ6 − λ5 + λ4

3 − 5λ3
108 + λ2

432 .
To compare the rest of the metrics, we use both diagonalizability and the charac-

teristic polynomial of R̃, which due to the normalization takes the form λN −λN−1 +
a2λN−2 + . . . . It turns out that the coefficient a2 is sufficient to distinguish metrics
obtained from diagonal nilsolitons from those obtained by nondiagonal triples.
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In Table 3, we list Einstein solvmanifolds obtained by extending a diagonal nice
nilsoliton, the signature and the corresponding value of a2; a check mark � in the last
column indicates that R is diagonalizable over C. We do not include positive-definite
metrics, since the purpose is a comparison with the metrics obtained from Table 1,
which are indefinite by design. Table 4 contains analogous data, starting with the
metrics of Table 1.

In both tables, only one entry is given up to equivalence in the sense of Lemma 3.9.
Notice that when more than one signature arises, the signatures are related by an
element of ker M�,2. The corresponding metrics are then related by a so-called Wick
rotation, so it is not surprising that the Riemann tensor is the same ([8, 13]). Metrics
related in this way appear in the same row in the table.

Since a2 is an invariant up to isometry and rescaling, the statement follows by
comparing the rows of the two tables. �
Remark 4.5 In the Riemannian case, an Einstein solvmanifold is determined by the
nilradical: two Einstein solvmanifolds with isomorphic nilradicals are isometric (see
[12, 19]). In the indefinite case this is not true: indeed, there exist nilpotent Lie alge-
bras with two nonisometric nilsoliton metrics, and this implies that the corresponding
Einstein standard extensions are nonisometric (see [7, Remark 2.6]).

The construction of this paper shows in addition that even if one fixes the metric on
the nilradical, the standard Einstein extension is not unique. For instance, consider the
two extensions of the Heisenberg Lie algebra given explicitly in the proof of Proposi-
tion 4.4. The metrics induced on the nilradical are diagonal metrics on the Heisenberg
Lie algebra, so they coincide up to a change of basis and rescaling. However, the
extensions are not isometric.

Moreover, we easily see that the pseudo-Iwasawa extension is isomorphic to M12

of [11], whilst the other is isomorphic to M13
3
4
: thus, they are neither isometric nor

isomorphic.
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