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Abstract. Considering a certain construction of algebraic varieties X endowed with an
algebraic action of the group Aut(Fn), n <∞, we obtain a criterion for the faithfulness
of this action. It gives an infinite family F of Xs such that Aut(Fn) embeds into Aut(X).
For n > 3, this implies nonlinearity, and for n > 2, the existence of F2 in Aut(X) (hence
nonamenability of the latter) for X ∈ F . We find in F two infinite subfamilies N
and R consisting of irreducible affine varieties such that every X ∈ N is nonrational
(and even not stably rational), while every X ∈ R is rational and 3n-dimensional. As
an application, we show that the minimal dimension of affine algebraic varieties Z, for
which Aut(Z) contains the braid group Bn on n strands, does not exceed 3n. This upper
bound significantly strengthens the one following from the paper by D. Krammer [Kr02],
where the linearity of Bn was proved (this latter bound is quadratic in n). The same
upper bound also holds for Aut(Fn). In particular, it shows that the minimal rank of the
Cremona groups containing Aut(Fn), does not exceed 3n, and the same is true for Bn.

1. Introduction

The exploration of abstract-algebraic, topological, algebro-geometric and dyna-
mical properties of biregular automorphism groups and groups of birational self-
maps of algebraic varieties has become the trend of the last decade. In terms
of popularity, the Cremona groups are probably the leaders among the studied
groups.

Below, algebraic varieties and algebraic groups are understood in the same sense
as in [Se55], [Sh07], [Bo91], [Hu75] and are taken over an algebraically closed field k.
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The subject of this paper is the following questions on the group embeddability
related to automorphism groups of algebraic varieties.

(Q1) For a given group S, is there an algebraic variety Z such that S embeds
in the group Aut(Z) of its biregular automorphisms?

(Q2) If yes, what are the properties of such Z? Are there such Z in some
distinguished classes of varieties (e.g., rational, nonrational, affine, complete, etc.)?
What are the “extreme” values of the parameters of such Z (e.g., the minimum of
their dimensions)? Etc.

(Q3) Conversely, in which groups can automorphism groups of algebraic varieties
of some type be embedded (e.g., are these groups linear)?

Similar questions are also formulated in the context of groups of birational self-
maps of algebraic varieties.

It is clear that question (Q1) (but not (Q2)) stands only for “large” groups S,
in particular nonlinear ones. Generally speaking, the answer to it is no.1 Finding
for a given S the varieties Z such that the answer is “yes” serves not only as a
source of information about Aut(Z), but also as the method of obtaining essential
information about the structure of S (see [BL83], [Ma81], [CX18]).

In this paper, we explore the case of S = Aut(Fn), where Fn is a free group of
rank n < ∞. To this end, we consider a general construction that assigns to any
finitely generated group Σ a family of algebraic varieties Z endowed with an action
of Aut(Σ) by biregular automorphisms. Our results concern each of questions (Q1),
(Q2), and (Q3). The main question for us is (Q1), i.e., that of faithfulness of the
action of Aut(Fn) on Z which means that the homomorphism Aut(Fn)→ Aut(Z)
defining the action is an embedding.

Here is this construction. Let Σ and G be groups, and let

X := Hom(Σ, G). (1)

For any σ ∈ End(Σ), γ ∈ End(G), put

σX : X → X,x 7→ x ◦ σ, γX : X → X,x 7→ γ ◦ x. (2)

If σ ∈ Aut(Σ) and γ ∈ Aut(G), then σX and γX are invertible (their inverses σ−1
X

and γ−1
X are respectively (σ−1)X and (γ−1)X), and the mapping(

Aut(Σ)×Aut(G)
)
×X → X, (σγ, x) 7→ (σ−1

X ◦ γX)(x) (3)

is an action on X of the group Aut(Σ) × Aut(G) (whose factors are naturally
identified with its subgroups).

Below, when considering the action on X of a subgroup of this group, the
restriction of the action (3) on it is always meant. The actions of Aut(Σ) and
Aut(G) commute with each other.

1E.g., in view of [CX18, Thm. C], even in the context of groups of birational self-maps,
the answer is negative if S is an infinite simple torsion group with Kazhdan’s property
(T) (such a group exists; see [Ki94, Sect. 5]).
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If Σ is a finitely-generated group, and G is an algebraic group, then X is endowed
with the structure of an algebraic variety so that all σX and γX lie in Aut(X). Let
R be an algebraic subgroup of Aut(G), for whose action on X there is a categorical
quotient

πX//R : X → X//R (4)

in the sense of geometric invariant theory (see [MF82, Def. 05], [PV94, Def. 4.5]).
The following two cases are the main examples when this quotient exists (see
Proposition 4.1 below):

(F) R is finite;

(R) G is affine and R is reductive.

As the actions of Aut(Σ) and R on X commute, it follows from the definition
of categorical quotient that for every σ ∈ Aut(Σ), the authomorphism σX of the
variety X descends to a uniquely defined automorphism σX//R of the variety X//R
having the property

πX//R ◦ σX = σX//R ◦ πX//R. (5)

The map

Aut(Σ)→ Aut(X//R), σ 7→ σ−1
X//R (6)

is a group homomorphism. It determines an action of Aut(Σ) on X//R by biregular
automorphisms. In view of (5), the morphism πX//R is Aut(Σ)-equivariant.

In the present paper, for Σ = Fn, we consider the problem of classifying pairs
(G,R) such that the action of Aut(Σ) on X//R is faithful. Our main results concern
case (F).2 This problem is related to question (Q1). We apply our results to
questions (Q2) and (Q3) as well. These results consist of the following.

The first main result is the faithfulness criterion for the action of Aut(Fn) on
X//R in case (F).

Theorem 1.1. Let G be an algebraic group (not necessarily connected or affine),
X = Hom(Fn, G), n > 2, and let R be a finite subgroup of Aut(G). The following
properties are equivalent:

(a) the action of Aut(Fn) on X//R is faithful;

(b) the connected component of the identity of the group G is nonsolvable.

Corollary 1.2 describes the applications of Theorem 1.1 to questions (Q1)–(Q3);
namely, to the problem of linearity of automorphism groups of algebraic varieties
(considered in [CD13, Prop. 5.1], [Co17], [Ca12]), and to the problem of describing
subgroups of the Cremona groups.

2In [Po23], we consider the situation of case (R) where G is connected and semisimple
and R is the image in Int(G) of a closed subgroup of a maximal torus of G. We prove the
faithfulness of the action of Aut(Fn) on X//R in this case.
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Corollary 1.2. In the notation of Theorem 1.1, let the connected component of
the identity of the group G be nonsolvable. Then

(a) Aut(X//R) contains the following groups:
• Aut(Fn),
• F2,
• the braid group Bn on n strands;

(b) Aut(X//R) is nonamenable and, if n > 3, nonlinear.

Among the varieties X//R from Corollary 1.2 whose automorphism group con-
tains Aut(Fn), F2 and Bn, there are both rational and nonrational (and even not
stably rational), namely, the following.

Proposition 1.3. Let, in the notation of Theorem 1.1, the group G be connected
and the group R be trivial. Then the variety X//R is rational if G is affine, and
nonunirational if G is nonaffine.

In the general case, the rationality of the variety X//R for a connected reductive
G and R = Int(G) is an old problem, open even for n = 2 and G = GLd with
d > 5 (see [Po94, (1.5.2)], [DF04, pp. 190–191]).

In view of Proposition 1.3, if G is nonaffine, then the variety X//R with trivial
R is not stably rational. For nontrivial finite R, the variety X//R with the faithful
action of Aut(Fn) may be not stably rational even if G is affine. Our second main
result is Theorem 1.4 giving the construction of such affine X//R with a connected
reductive G. Its proof also uses Theorem 1.1.

Theorem 1.4. For every prime number p 6= char(k), there is a finite p-group K,
having the following property. Let V be a finite-dimensional vector space over k,
and let ι :K ↪→GL(V ) be a group embedding for which ι(K) contains no nontrivial
center elements of the group GL(V ) (such pairs (V, ι) exist for any finite group K).
Let X=Hom(Fn,GL(V )), n > 2, and let R be the image of the group ι(K) under the
canonical homomorphism GL(V )→ Int

(
GL(V )

)
. Then X//R is nonrational (and

even not stably rational) affine algebraic variety, on which the group Aut(Fn) acts
faithfully.

Examples of groups K from Theorem 1.4 can be explicitly specified using
generators and relations (see Remark 10.2 below).

Our third main result concerns question (Q2) and, in particular, gives upper
bounds for “extremal” parameter values for embeddings of Aut(Fn) and Bn into
automorphism groups of algebraic varieties.

Theorem 1.5. Keep the notation of Theorem 1.1. Let n > 2, G = SL2 or PSL2,
and let R be finite. Then X//R is an irreducible rational affine 3n-dimensional
algebraic variety, whose automorphism group contains Aut(Fn).

Note that the variety X//R from Theorem 1.5 in the case of trivial R and
G = SL2 (respectively, PSL2) is the product of n copies of the smooth affine quadric
Q in A4 given by the equation x1x2+x3x4 = 1 (respectively, n copies of Q/I, where
I is the group, generated by the automorphism (a, b, c, d) 7→ (−a,−b,−c,−d)).
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Definition 1.6. Let S be a group. If there are (defined over k) irreducible algeb-
raic varieties Z (respectively, Cremona groups C) such that S embeds into Aut(Z)
(respectively, C), then we denote the minimum of dimensions of such varieties
(respectively, of ranks of such Cremona groups) by

vark(S) (respectively, Cremk(S)).

If there are no such varieties (respectively, Cremona groups), then we set vark(S) =
∞ (respectively, Cremk(S) =∞).

Groups S with vark(S)= Cremk(S)=∞ exist (see footnote 1).

Corollary 1.7. Let S = Aut(Fn) or Bn. Then

vark(S) 6 3n and Cremk(S) 6 3n. (7)

The upper bounds (7) for S = Bn significantly strengthen the ones following
from the paper by D. Krammer [Kr02], where embeddability of Bn into GLn(n−1)/2

was proved (which yields the upper bound n(n− 1)/2).3

A special case of the described construction, where R = Int(G) with reductive
G, is explored in many publications, starting essentially with the paper by Vogt
of 1889. The subjects of these studies are:

(a) applications to the theory of deformations of hyperbolic structures on topo-
logical surfaces; see [Go09] (in this case, Σ is the fundamental group of a surface,
G = SL2(C), and X//R is the “variety of characters” of Σ);

(b) dynamic properties of the action of Aut(Σ) on X//R; see [Go97], [Go06];
[Ca132];

(c) for Σ = Fn, finding the equations of the “variety of characters” and describ-
ing the kernel of the action of Aut(Fn) on it; see [Ho72], [Ho75]; [Ma80].

For the purposes of the present paper, this special case is of little interest,
since the group Int(Σ) is always contained in the kernel of the action of Aut(Σ) on
X//Int(G), and therefore, for Σ = Fn, the faithfulness of this action is only possible
for n = 1 (in which case Aut(Fn) is a group of order 2). For n = 1 and connected
G, the rare cases when this action is faithful are described in the following theorem.

Theorem 1.8. Let G be a connected reductive algebraic group, X = Hom(Fn, G)
and R= Int(G). The action of Aut(Fn) on X//R is faithful if and only if n = 1
and G contains a connected simple normal subgroup of any of the following types:

A` with ` > 2, D` with odd `, E6. (8)

The proof of Theorem 1.1 is given in Sections 7 and 8, of Corollary 1.2 in Secti-
on 9, of Theorem 1.4 in Section 10, of Theorem 1.5 and Corollary 1.7 in Section 11,
and of Theorem 1.8 in Section 12.

Acknowledgements. The author is grateful to N. L. Gordeev for discussing the
questions about group identities that arose in connection with the proof of Theorem
1.1, information about some publications on this topic, and comments on the
first version [Po21] of this paper. The author is also grateful to the referee whose
comments are highly appreciated.

3As the referee noted, a lower bound for vark(Aut(Fn)) can be obtained using the
methods of [CX18].

1281



VLADIMIR L. POPOV

2. Conventions and notation

If X is an algebraic variety (respectively, a differentiable manifold), then Aut(X)
denotes the group of its regular automorphisms (respectively, diffemorphisms).

Groups are considered in multiplicative notation. The identity element of a
group is denoted by e.

The claim that the group G contains the group H means the existence of a
group embedding ι : H ↪→ G, by which H is identified with ι(H).

C (G) is the center of the group G.
CG(g) is the centralizer in G of an element g ∈ G.
intg is the inner group automorphism determined by an element g.
〈g1, . . . , gm〉 is the group generated by the elements g1, . . . , gm.
G0 is the connected component of the identity of an algebraic group or a real

Lie group G.
The Lie algebra of an algebraic group is denoted by the lowercase Gothic version

of the letter denoting that group.
G is the underlying variety (or manifold) of an algebraic group (or real Lie

group) G.
Aut(G), Int(G), Out(G), and End(G) are respectively the group of automor-

phisms, inner automorphisms, outer automorphisms, and the monoid of endomor-
phisms of a group G. If G is an algebraic group or a real Lie group, then by
its automorphisms we mean automorphisms in the category of algebraic groups
or real Lie groups, so that Aut(G) denotes the intersection of Aut(G) with the
automorphism group of the abstract group G. If an algebraic group H faithfully
acts by automorphisms of an algebraic group G and the mapping H × G → G
defining this action is a morphism of algebraic varieties, then H is called an
algebraic subgroup of Aut(G).

The reductivity of an affine algebraic group G does not assume its connectedness
and is understood in the sense of [MF82], i.e., as the triviality of the unipotent
radical of the group G0.

3. Fixing a system of generators of Σ

Consider a group G and a finitely generated group Σ. Let s1, . . . , sn be a system
of generators of Σ. Consider a free group Fn with a basis f1, . . . , fn and let ϕ : Fn →
Σ be the epimorphism defined by the equalities ϕ(fj) = sj for every j.

For any group H, any w ∈ Fn, and any h = (h1, . . . , hn) ∈ Hn, denote by
w(h) = w(h1, . . . , hn) the image of w under the (unique) homomorphism Fn → H
mapping fj to hj for every j. In other words, if we write w as a word

fε1i1 · · · f
εd
id
, where εj ∈ Z, (9)

(a noncommutative Laurent monomial in f1, . . . , fn), then w(h) is obtained by
replacing fj with hj in (9) for each j.

The map

X := Hom(Σ, G)→ Gn, x 7→
(
x(s1), . . . , x(sn)

)
∈ Gn (10)
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is an injection. Its image is the set

{g ∈ Gn | w(g) = e for all w ∈ Ker(ϕ)}. (11)

In the rest of this paper, we identify X with the set (11) using the injection (10).
For Σ = Fn and sj = fj for all j, we have X = Gn, so in this case X is the group
(with the componentwise multiplication).

Let g = (g1, . . . , gn) ∈ X ⊆ Gn and t ∈ Σ. It follows from (11) that the element
w(g) ∈ G is the same for all w ∈ ϕ−1(t). Denote it by t(g). In other words, writing
t as a noncommutative Laurent monomial in s1, . . . , sn and replacing sj in this
monomial by gj for each j, we obtain, regardless of the chosen monomial, t(g).
In this notation, for any σ ∈ End(Σ), γ ∈ End(G), formulas (2) are rewritten as
follows:

σX : X → X, g = (g1, . . . , gn) 7→
(
σ(s1)(g), . . . , σ(s1)(g)

)
,

γX : X → X, (g1, . . . , gn) 7→
(
γ(g1), . . . , γ(gn)

)
.

(12)

If G is an algebraic group, then X is closed in Gn and therefore endowed with
the structure of an algebraic variety. This structure does not depend on the choice
of systems of generators, and the maps (12) are morphisms. If Σ = Fn and G is a
real Lie group, then (12) are differentiable mappings Gn → Gn.

Some properties, selectively used below and in [Po21],[Po23],[Po22], are brought
together in Proposition 3.1 for ease of reference.

Proposition 3.1. We maintain the notation introduced above in Section 3. Let σ
and τ ∈ End(Fn). Then the following hold:

(a) (σ ◦ τ)X = τX ◦ σX .
(b) eX = id.
(c) σX(X ∩ Sn) ⊆ X ∩ Sn for any subgroup S of the group G.
(d) Let θ : G → H be a group homomorphism and let Y := Hom(Σ, H)
⊆ Hn. Then the map

θn : X → Y, (g1, . . . , gn) 7→ (θ(g1), . . . , θ(gn))

is End(Σ)-equivariant, i.e., θn ◦ σX = σY ◦ θn.
(e) If σ = intt for t ∈ Σ, then the following properties of an element

x = (g1, . . . , gn) ∈ X ⊆ Gn (13)

are equivalent:
(e1) σX(x) = x;
(e1) t(x) ∈

⋂n
i=1 CG(gi).

In statements (f) and (g), it is assumed that Σ = Fn.

(f) The following properties of element (13) are equivalent:
(f1) σX(x) = x for each σ ∈ Aut(Fn);
(f2) if n > 1, then g1 = · · · = gn = e, and if n = 1, then g2

1 = e.
(g) The multiplication in X = Gn has the property:

σX(xz) = σX(x)σX(z) for all x ∈ X = Gn, z ∈ C (X).

In particular, the restriction of σX to the group C (X) is its endomorphism.
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Proof. Statement (f) follows from the fact that for n = 1, the only nonidentity
element of Aut(Fn) maps f1 to f−1

1 , and for n > 2, for any i, j ∈ {1, . . . , n}, i 6= j,
the element σij ∈ End(Fn) defined by the formula

σij(fl) =

{
fl for l 6= i,

fifj for l = i,

lies in Aut(Fn).
The rest of the statements follow directly from the definitions and the fact that

each element of Σ is written as a noncommutative Laurent monomial in s1, . . . , sn.
�

4. The existence of categorical quotient

Proposition 4.1. Let Σ be a finitely generated group, let G be an algebraic group
(not necessarily connected or affine), let R be an algebraic subgroup of Aut(G), and
let X = Hom(Σ, G). The categorical quotient (4) exists in each of the following
two cases:

(F) R is finite;
(R) G is affine and R is reductive.

If (F) holds, then the categorical quotient (4) is the geometric quotient. If (R) holds,
then the variety X//R is affine. In both cases, the morphism πX//R is surjective.

Proof. According to [Ba54], the variety G is quasi-projective. Hence X, being
closed in the product of several copies of G, is quasi-projective as well. This implies
the existence of the geometric quotient in case (F) (see [Se97, Chap. III, Sect.
12, Prop. 19, Ex. 2]). This quotient is automatically categorical, and πX//R is a
surjective morphism (see [PV94, 4.3], [Bo91, Sect. II, §6]).

In case (R), the variety G is affine. In view of the remark on closedness made in
the previous paragraph, X is affine as well. According to [MF82, Chap. 1, §2], from
this and the reductivity of R it follows the existence of the categorical quotient
(4), the affineness of X//R, and the surjectivity of πX//R. �

5. The kernel of the action of Aut(Σ) on Hom(Σ, G)//R
in cases (F) and (R): geometric description

Let Σ be a finitely generated group and let G be an algebraic group (not
necessarily connected or affine). Having fixed a system of n generators in Σ, we
identify X = Hom(Σ, G) with a closed subset of Gn as described in Section 3. For
any w ∈ Σ, γ ∈ Aut(G), and i ∈ {1, . . . , n}, the closed set

Xw,γ,i := {x = (g1, . . . , gn) ∈ X | w(x) = γ(gi)} (14)

is the fiber over e of the morphism

X → G, x = (g1, . . . , gn) 7→ w(x)γ(gi)
−1.

As it contains (e, . . . , e), it is nonempty.
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From (12) and (14) it follows that for any σ ∈ Aut(Σ) we have⋂n
i=1Xσ(fi),γ,i = {x ∈ X | σX(x) = γ(x)}. (15)

The following Lemmas 5.1 and 5.2 describe the kernel of the action of Aut(Σ)
on Hom(Σ, G)//R respectively in cases (F) and (R).

Lemma 5.1. Let R be a finite subgroup of Aut(G). The following properties of an
element σ ∈ Aut(Σ) are equivalent:

(a) σ lies in the kernel of the action of Aut(Σ) on X//R;
(b) σX(O) = O for every R-orbit O in X;
(c) for every irreducible component Y of the variety X there is an element

γ ∈ R such that
Y ⊆

⋂n
i=1Xσ(fi),γ,i. (16)

Proof. In view of Proposition 4.1, each fiber of the morphism πX//R is an R-orbit
in X and vice versa. As the actions of Aut(Σ) and R on X commute, it follows
from (5) that for each point b ∈ X//R, the restriction of the morphism σX to the
orbit π−1

X//R(b) is its R-equivariant isomorphism with the orbit π−1
X//R(σX//R(b)).

This proves the equivalence of the conditions (a) and (b) and, given (15), their
equivalence to the equality

X =
⋃
γ∈R

(⋂n
i=1Xσ(fi),γ,i

)
. (17)

(a)⇒(c) If the equality (17) holds, then each irreducible component Y of X is
the union of closed subsets of the form

Y ∩
(⋂n

i=1Xσ(fi),γ,i

)
,where γ ∈ R. (18)

As the group R is finite, there are finitely many of these subsets. The irreducibility
of Y therefore implies that Y coincides with one of them. Hence, (16) holds for
some γ ∈ R.

(c)⇒(a) If (c) holds, then the union of all irreducible components of X lies on
the right-hand side of the equality (17), i.e., this right-hand side contains X. The
reverse inclusion is obvious. Hence, the equality (17) holds. �

Lemma 5.2. Assume that the group G is affine. Let R be a reductive algebraic
subgroup of Aut(G). The following properties of an element σ ∈ Aut(Σ) are
equivalent:

(a) σ lies in the kernel of the action of Aut(Σ) on X//R;
(b) σX(O) = O for every closed R-orbit O in X;
(c) each closed R-orbit in X belongs to the set⋃

γ∈R
(⋂n

i=1Xσ(fi),γ,i

)
. (19)

Proof. For every b ∈ X//R, the fiber π−1
X//R(b) of the surjective (see Proposition

4.1) morphism πX//R is an R-invariant closed subset of X, which contains a unique
closed R-orbit Ob (see [MF82, §2 and Append. 1B]. The restriction of σX to
π−1
X//R(b) is an R-equivariant isomorphism with the fiber π−1

X//R(σX//R(b)). In view

of the uniqueness of closed orbits in the fibers, this means that σX(Ob) = OσX//S(b).
Therefore, the equalities σX//S(b) = b and σX(Ob) = Ob are equivalent. This proves
(a)⇔(b). In turn, this and (15) imply (a)⇔(c). �
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Corollary 5.3. If the conditions of Lemma 5.2 hold and R = Int(G), then Int(Σ)
lies in the kernel of the action of Aut(Σ) on X//R.

Proof. If σ ∈ Int(Σ), then (12) implies that x and σX(x) lie in the same R-orbit
for each x ∈ X. The assertion therefore follows from the equivalence of conditions
(a) and (b) in Lemma 5.2. �

6. The faithfulness of the actions of Aut(Fn) and Int(Fn)
on Hom(Fn,G): algebraic criteria

Theorem 6.1. Let G be a group and let X=Hom(Fn, G). Consider the following
properties:

(a) the action of Aut(Fn) on X is faithful;
(b) the action of Int(Fn) on X is faithful;
(c) n > 2 and there is no nonempty reduced word in an alphabet consisting of

n letters that is an identity relation in G;
(d) n = 1 and G contains an element of order > 3.

Then (a)⇔(b)⇔(c) for each n > 2, and (a)⇔(d) for n = 1.

Proof. We use the notation of Section 3 with Σ = Fn and sj = fj for all j. For
n = 1, the statement follows from Proposition 3.1(f). Consider the case n > 2.

(a)⇒(b) This is clear.
(b)⇒(c) Suppose, arguing by contradiction, that (b) holds, but there exists a

nonempty reduced word in an alphabet consisting of n letters that is an identity
relation in G. So there is a nonidentity element w ∈ Fn such that

w(x) = e for each x ∈ X. (20)

The element σ := intw ∈ Aut(Fn) is different from the identity because the
group C (Fn) is trivial for n > 2 (cf. [LS77, Chap. I, Prop. 2.19]) and w 6= e.
However, from (20) it follows that σX(x) = x for each x ∈ X, i.e., that σ lies in
the kernel of the action of Aut(Fn) on X. This contradicts (b).

(c)⇒(a) Suppose, arguing by contradiction, that (c) holds, but the kernel of the
action of Aut(Fn) on X contains a nonidentity element σ ∈ Aut(Fn), so that we
have (see (12))

σ(fi)(x) = fi(x) for all x ∈ X and i. (21)

In view of σ 6= e, there exists fj for which σ(fj) 6= fj , i.e., w := σ(fj)f
−1
j is

a nonidentity element of the group Fn. At the same time, (21) implies that this
w satisfies condition (20). Therefore, there is a nonempty reduced word in the
alphabet f1, . . . , fn that is an identity relation in G. This contradicts (c). �

Corollary 6.2. For each virtually solvable group G, the action of Aut(Fn) on
X := Hom(Fn, G), n > 2, is nonfaithful.

Proof. By the definition of virtual solvable group, G has a solvable subgroup S
of a finite index d. We can (and shall) assume that S is normal, replacing it with
the intersection of all subgroups conjugate to it. As S is solvable, there exists a
nonempty reduced word in the alphabet x, y that is an identity relation in S (see
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[Ne67, 14.65]). Denote this word by r(x, y). It follows from the normality of S that
gd ∈ S for each g ∈ G. Hence the nonempty reduced word r(xd, yd) is an identity
relation in G. The claim now follows from Theorem 6.1. �

7. Proof of Theorem 1.1: the case of trivial subgroup R

To prove Theorem 1.1, we first need to consider the special case of R = {e}.
We will prove a more general statement concerning not only algebraic groups, but
also real Lie groups.

Theorem 7.1. Let X = Hom(Fn, G), n > 2, and let G be either an algebraic
group (not necessarily connected or affine) or a real Lie group with a finite number
of connected components. Then the following properties are equivalent:

(a) the action of Aut(Fn) on X is faithful;
(b) the group G0 is nonsolvable.

If G is a real Lie group, then the implication (b)⇒(a) is true even without the
condition that the number of its connected components is finite.

Proof. If G is a real Lie group, then

[G : G0] <∞ (22)

by the condition. If G is an algebraic group, then (22) is satisfied automatically.
It follows from (22) that if G0 is solvable, then G is virtually solvable. Together
with Corollary 6.2, this proves implication (a)⇒(b).

(b)⇒(a) Let the group G0 be nonsolvable. In view of Theorem 6.1, it is required
to prove that there is no nonempty reduced word in an alphabet consisting of n
letters that is an identity relation in G. Arguing by contradiction, suppose that
such a word exists. Hence, there is a nontrivial element w ∈ Fn with the property
(20).

Let G be a connected real Lie group. Then, due to nonsolvability, G0 contains
a free subgroup of rank n (see [Ep71, Thm.]). Let g1, . . . , gn be its free system of
generators. Then w(g1, . . . , gn) = e due to (20), which contradicts the absence of
nontrivial relations between g1, . . . , gn.

Let now G be an algebraic group. By Chevalley’s theorem, the algebraic group
G0 contains the largest connected affine normal subgroup G0

aff , and G0/G0
aff is

an Abelian variety. As the group G0 is nonsolvable and the group G0/G0
aff is

commutative (and therefore solvable), the group G0
aff is nonsolvable. Hence, G0

aff

does not coincide with its radical Rad(G0
aff), and therefore, G0

aff/Rad(G0
aff) is a

nontrivial connected semisimple algebraic group. This reduces the proof to the case
where G is a nontrivial connected semisimple algebraic group. We will therefore
further assume that this condition is met. In view of [Bo83, Thm. B], from it and
the inequality n > 2 it follows that the morphism

X → G, x 7→ w(x)

is dominant. In view of (20), this means that the group G is trivial, which is a
contradiction. �
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Remark 7.2. If G is a nonsolvable algebraic group and the field k is uncountable,
then G contains a free subgroup of any finite rank (see [BGGT12, Thm. 1.1],
[BGGT15, App. D]), which means that the same proof of the implication (b)⇒(a)
in Theorem 7.1 as in the case of a real Lie group goes through. This proof is given
in the first version [Po21] of the present paper. However, in the general case, G
may not contain a free subgroup (for example, this is the case for G = SLd if k is
the algebraic closure of a finite field, since then the order of every element of SLd
is finite).

Remark 7.3. Without the condition that the number of connected components is
finite, the implication (a)⇒(b) in Theorem 7.1 is false. Indeed, take as G the group
Fn considered as a real Lie group with G0 = {e}. Then idFn

∈ Hom(Fn, Fn) = X
and, for any σ ∈ Aut(Fn), we have σX(idFn

) = σ (see (2)). Therefore, (a) holds,
but (b) does not.

8. Proof of Theorem 1.1: general case

In view of the surjectivity and Aut(Fn)-equivariance of the morphism πX//R (see
(4)), the implication (a)⇒(b) follows from Theorem 7.1.

(b)⇒(a) Let the group G0 be nonsolvable. Arguing by contradiction, suppose
that a nonidentity element σ ∈ Aut(Fn) lies in the kernel of the action of Aut(Fn)
on X//R. The variety X is isomorphic to Gn. It is clear that (G0)n is one of
the irreducible components of the variety Gn. By virtue of what was said in
Section 3, this implies that X0 := Hom(Fn, G

0) is an Aut(Fn)-invariant irreducible
component of the variety X. In turn, in view of Lemma 5.1 and formulas (15), (12),
this implies the existence of an element γ ∈ R such that for every i ∈ {1, . . . , n},
the following identity relation holds in G0:

σ(fi)(g1, . . . , gn) = γ(gi) for any g1, . . . , gn ∈ G0. (23)

In particular, for every g ∈ G0, the equality obtained by substituting g1 = · · · =
gn = g in (23) holds. As σ(fi) has the form (9), this means the existence of an
integer d such that the following identity relation holds:

gd = γ(g) for each g ∈ G0. (24)

Notice that d 6= 0 because γ ∈ Aut(G), and that

d 6= 1 and d 6= −1. (25)

Indeed, if d=1 then from (24) and (23) it follows that σX0 =idX0 , i.e., σ lies in
the kernel of the action of Aut(Fn) on X0. As σ is a nonidentity element, and the
group G0 is nonsolvable, this contradicts Theorem 7.1.

If d = −1, then for any g, h ∈ G0, the equality

h−1g−1 = (gh)−1 (24)
= γ(gh) = γ(g)γ(h)

(24)
= g−1h−1

holds, meaning that the group G0 is commutative contrary to its nonsolvability.
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Further, for any positive integer m, we obtain from (24) by induction the
following identity relation:

gd
m

= γm(g) for each g ∈ G0. (26)

As the group R is finite, the order of γ is finite. Let m in (26) be equal to this
order. Then (26) becomes the identity relation

gd
m−1 = e for every g ∈ G0. (27)

As dm − 1 6= 0 due to (25), from (27) we infer that G0 is a torsion group whose
element orders are bounded from above. Let us show that this contradicts the
properties of the group G0.

Indeed, as in the proof of Theorem 7.1 (whose notation we retain), the affine
algebraic group G0

aff is nonsolvable. Hence, it contains a nontrivial semisimple
element, and therefore a torus of positive dimension (see [Bo91, Thms. 4.8, 11.10]).
But the set of orders of elements of the torsion subgroup of any torus of positive
dimension is not bounded (see [Bo91, Prop. 8.9]). This gives the required contradic-
tion. �

9. Proofs of Corollary 1.2 and Proposition 1.3

Proof of Corollary 1.2. Statements (a) and (b) follow from Theorem 1.1 and the
next Proposition 9.1. �

Proposition 9.1. Assume that a group H contains Aut(Fn). Then

(i) H contains F2 if n > 2;
(ii) H contains Bn;

(iii) H is not amenable if n > 2;
(iv) H is nonlinear if n > 3.

Proof. If n > 2, then C (Fn) is trivial and therefore, Int(Fn) is isomorphic to Fn.
This gives (i).

As Aut(Fn) contains Bn (see [KT08, Sect. 1.5]), we have (ii).
If n>3, then Aut(Fn) is nonlinear (see [FP92]); whence (iv).
(i) implies (iii). �

Proof of Proposition 1.3. If G is affine, then the rationality of X = Gn follows
from the rationality of G (see [Bo91, Cor. 14.14]).

Let G be nonaffine. Arguing by contradiction, assume that X = Gn is unira-
tional, i.e., there is a dominant rational map of a rational variety to X. Let us use
the notation of the proof of Theorem 7.1. Our assumption implies that the variety
G/Gaff is unirational in view of the surjectivity of the composition of the following
morphisms

X = Gn
α−→ G

β−→ G/Gaff ,

where α is a projection onto some factor, and β is the canonical projection. By
the condition, Gaff 6= G, therefore, the Abelian variety G/Gaff is nontrivial. As
such varieties are nonunirational (see [Sh07, Chap. 3, Sect. 6.2, 6.4]), we get a
contradiction. �
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10. Proof of Theorem 1.4

We use in the proof of Theorem 1.4 the following known statement (see, e.g.,
[Po13, Thm. 1]).

Lemma 10.1. If the field of invariant rational functions of some faithful linear
action of a finite group on a finite-dimensional vector space over k is stably rational
over k, then the same property holds for any other such action of this group.

Proof of Theorem 1.4. Consider one of the pairs (K, ι) found in [Sa84], where K
is a finite group, and

ι : K ↪→ GL(V )

is a group embedding, where V is a finite-dimensional vector space over k, for
which the field of ι(K)-invariant rational functions on V is not stably rational
over k.

In view of Lemma 10.1, replacing V and ι if necessary, we can (and shall) assume
that

ι(K) ∩ C
(
GL(V )

)
= {idV }. (28)

Indeed, let L be a one-dimensional vector space over k. As we have C
(
GL(V⊕L)

)
=

{c · idV⊕L | c ∈ k, c 6= 0}, the group embedding

ι′ : K ↪→ GL(V ⊕ L), f 7→ ι(f)⊕ idL,

has the property ι′(K) ∩ C
(
GL(V ⊕ L)

)
= {idV⊕L}.

It follows from (28) that the diagonal linear action of ι(K) on the vector space
End(V )⊕n by conjugation is faithful. Therefore, in view of Lemma 10.1, the field
of ι(K)-invariant rational functions on End(V )⊕n is not stably rational over k.
But GL(V )n is a ι(K)-invariant open subset of End(V )⊕n. It is ι(K)-equivariantly
isomorphic to the algebraic variety Hom(Fn,GL(V )). Hence the field of R-invariant
rational functions on X is not stably rational over k. But this field is isomorphic to
the field of rational functions on X//R because, by Proposition 4.1, the categorical
quotient (4) is geometric. Hence the variety X//R is not stably rational. It is affine
due to the affinness of GL(V ) (see Proposition 4.1). Finally, by Theorem 1.1, from
the nonsolvability of GL(V ) with n > 2 it follows that the action of Aut(Fn) on
X//R is faithful. �

Remark 10.2. The first examples of groups, which can be taken as K in Theorem
1.4, have been obtained in [Sa84]; they have order p9. At present, all groups of
order p5 with the specified property have been found (see details and references
in [Po13, p. 414, Rem.]). For example, for p > 5, one of them is the group K =
〈g1, g2, g3, g4, g5〉 of order p5 given by the following conditions (in which [a, b] :=
a−1b−1ab):

C (F )=〈g5〉, gpi =e for each i,

[g2, g1]=g3, [g3, g1]=g4, [g4, g1]=[g3, g2]=g5, [g4, g2]=[g4, g3]=e.
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11. Proofs of Theorem 1.5 and Corollary 1.7

Proof of Theorem 1.5. In view of the finiteness of R, it follows from Proposition 4.1
that (4) is the geometric quotient, and the variety X//R is affine (and irreducible
due to the connectedness of G). In particular, the fibers of the surjective morphism
(4) are R-orbits and therefore zero-dimensional. This implies the claim about the
dimension, since dim(G) = 3 and X = Gn. It remains to prove the rationality.

In this case, Aut(G) = Int(G). Consider the adjoint action of Int(G) on g =
Mat0

2 := {m ∈ Mat2(k) | trace(m) = 0}. According to [LPR06, Examples 1.11
and 1.16], the groups SL2 and PSL2 are Cayley, i.e., there is an Int(G)-equivariant
birational mapping

λ : G 99K g.

For the readers who prefer to restrict with direct checking, we note that in this
case λ and λ−1 can be specified quite explicitly. Namely, if G = SL2, then

λ(g) = (I2 − g)(I2 + g)−1 for g ∈ SL2,

λ−1(m) = (I2 −m)(I2 +m)−1 for m ∈ Mat0
2.

If G = PSL2, and [g] denotes the image of g ∈ SL2 under the canonical projection
SL2 → PSL2, then

λ([g]) = 2 trace(g)−1g − I2 for g ∈ SL2,

λ−1(m) = [m+ I2] for m ∈ Mat0
2.

For the diagonal actions of Int(G) on X = Gn and gn := g ⊕ · · · ⊕ g (n
summands), the existence of λ implies the existence of an Int(G)-equivariant
(hence, R-equivariant) birational mapping

X 99K gn. (29)

Consequently, the fields of R-invariant rational functions on X and gn are isomor-
phic. Hence the geometric quotients X//R and gn//R are birationally isomorphic.
But the linearity of the action of R on gn and the decomposition gn = g ⊕ gn−1

with the R-invariant summands imply, in view of the No-name lemma (see [Po13,
Lem. 1], [PV94, Thm. 2.13]), that gn//R is birationally isomorphic to

(
g//R

)
×

A(n−1) dim(g). As dim(g) = 3 implies the rationality of g//R (see [Mi71, Thm. 2]),
this shows that gn//R, and therefore, also X//R, is rational. �

Proof of Corollary 1.7. This claim follows from Definition 1.6, Theorem 1.5, and
Corollary 1.2. �

12. Proof of Theorem 1.8

For n > 2, the group Int(Fn) is nontrivial, and hence by Corollary 5.3, the
action of Aut(Fn) on X//R is nonfaithful.

Now, let n = 1. We have X = G and Aut(F1) is the group of order two. Let
σ ∈ Aut(F1), σ 6= e. Then σ(f1) = f−1

1 , so σX(g) = g−1 for any g ∈ X. Each fiber
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of the morphism (4) contains a single orbit consisting of semisimple elements, and
it is the only closed orbit in this fiber (see [St65]). As R = Int(G), from here and
Lemma 5.2 the equivalence of the following properties follows:

(i) σ lies in the kernel of the action of Aut(F1) on X//R;

(ii) g and g−1 are conjugate for each semisimple element g ∈ G.

As the intersection of any semisimple conjugacy class with a fixed maximal torus
T of G is nonempty (see [Bo91, Thm. 11.10]) and is an orbit of the normalizer of
this torus (see [St65, 6.1]), property (ii) is equivalent to the fact that the Weyl
group W of the group G considered as a subgroup of the group GL(t) contains
−1. This, in turn, is equivalent to the fact that −1 is contained in the Weil group
of every nontrivial connected simple normal subgroup of the group G. Let C be
a Weyl chamber in t. As −C is also a Weyl chamber, the simple transitivity of
the action of W on the set of all Weyl chambers implies the existence of a unique
element w0 ∈ W such that w0(C) = −C . In view of (−1)(C) = −C, this means
that the inclusion of −1 ∈ W is equivalent to the equality w0 = −1. In [Bo68,
Table I–IX], the explicit description of the element w0 is given for every connected
simple algebraic group. It follows from it that the equality w0 = −1 for such a
group is equivalent to the fact that the type of this group is not contained in the
list (8). This completes the proof. �

13. Final remarks

(a) Corollary 1.7 concerns, in particular, the subgroups of the Cremona groups.
Taking this opportunity, we will supplement it here with a remark on S. Cantat’s
question about these subgroups.

In [Co17], examples are given of finitely generated (and even finitely presented)
groups nonembeddable into any Cremona group, which answers S. Cantat’s ques-
tion about the existence of such groups (see also [Ca131]). These examples are
based on the fact that the word problem ([Co13, Thm. 1.2]) is solvable in every
finitely generated subgroup of any Cremona group. Below we indicate another
way to answer this question (and even in a stronger form, with the addition of
the group simplicity condition). This is not for claiming that the new way uses
simpler means, but because adding a new approach always contributes to a better
understanding, especially if it yields some answers so far unreachable for the other
means. We assume that char(k) = 0.

Namely, we recall [Po14, Def. 1] that a group H is called Jordan if there exists a
finite set F of finite groups such that every finite subgroup of H is an extension of
an Abelian group by a group taken from F . According to [Po14, p. 188, Exmp. 6],
the R. Thompson group V is an example of a non-Jordan finitely presented group.
As any Cremona group is Jordan (see [Bi16, Cor. 1.5], [PS16]), the group V is
nonembeddable into it. Furthermore, in addition to this property, V is simple,
and therefore every homomorphism of V into any Cremona group is trivial (unlike
[Co13], this proves [Co13, Cor. 1.4] without using the obtained in [Mi81] amplifi-
cation of the Boone–Novikov construction).

We note that, after [Co13], many unrelated to the word problem examples
of finitely generated (and even finitely presented) groups nonembeddable into
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any Cremona group were obtained in [CX18]. However, basing on the currently
available (July 2022) information, it is impossible to deduce from [CX18, Thms. C
and 7.15] that V is nonembeddable into any Cremona group. Indeed, the group V
does not have Kazhdan’s property (T) (see [BJ19]), and whether it has property
(τ∞) (see [CX18, Sect. 7.1.3]) is unknown [Co22].

(b) Among the irreducible affine varieties X//R whose automorphism group
contains Aut(Fn), there are open subsets of affine spaces. Indeed, by Theorem 1.1
for n > 2, such an example is X//R with G = GLd, d > 2, and trivial R. The
following construction generalizes this example.

Consider a finite dimensional associative k-algebra A with identity. The group
A∗ of its invertible elements is a connected affine algebraic group whose underlying
variety is open in A. If A∗ is nonsolvable, then in view of Theorem 1.1, it can be
taken instead of GLd in the example from the previous paragraph.

(c) In [CX18, pp. 272], the following lower bound is obtained:

n− 2 6 varC

(
Out(Fn)

)
.

The following theorem yields, among other things, an upper bound.

Theorem 13.1. We retain the notation of Theorem 1.1. Let char(k) = 0, n > 3,
G = SL2 or PSL2, and R = Int(G). Then X//R is an irreducible rational affine
(3n− 3)-dimensional manifold, whose automorphism group contains Out(Fn).

Proof. The affineness of X//R follows from the reductivity of R. According to
[Ho75], for n > 3, the kernel of the action of Aut(Fn) on X//R is Int(Fn), so
Out(Fn) is embedded in Aut(X//R). From [Ri88, Lem. 3.3, Thm. 4.1] and dim(G) =
3, we infer the nonemptiness of the open subsets of X = Gn and gn comprised
by points whose R-orbits are three-dimensional and closed. This and the existence
of the geometric quotients for the suitable open subsets of X = Gn and gn (see
[PV94, Thm. 4.4]) imply that the dimensions of the varieties Gn//R and gn//R
are equal to 3n − 3, and their fields of rational functions coincide under the
natural embedding with the fields of R-invariant rational functions on X and gn

respectively. As in the proof of Theorem 1.5, there is an R-equivariant birational
mapping (29), and therefore, the specified fields of R-invariant rational functions
are isomorphic. Hence the algebraic varieties Gn//R and gn//R are birationally
isomorphic. But, according to P. Katsylo, the field of invariant rational functions
on any finite dimensional algebraic SL2-module is purely transcendental over k
(see [PV94, Thm. 2.12]). Hence Gn//R = X//R is a rational algebraic variety. �

Corollary 13.2. If char(k) = 0 and n > 3, then

vark
(
Out(Fn)

)
6 3n− 3 and Cremk

(
Out(Fn)

)
6 3n− 3. (30)

As noted in [CX18, pp. 272] (with reference to [MS75]), over C, the minimal
dimension in which Out(Fn) is the group of birational self-maps, does not exceed
6n. The right-hand side inequality in (30) is the twice stronger upper bound.

(d) Let Y be an irreducible algebraic variety. A subgroup H of the group Bir(Y )
of birational self-maps of Y is called compressible (cf. [Re04], [Po19, Sect. 2.1]) if
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there are an irreducible algebraic variety Z, a group embedding ι : H ↪→ Bir(Z),
and a dominant rational map ϕ : X 99K Z (called a compression for H) such that

(c1) ϕ is not birational;
(c2) ϕ is H-equivariant, i.e., ϕ ◦ h = ι(h) ◦ ϕ for each h ∈ H.

Otherwise, H is called incompressible.
In this context, the above results give the following. Let G be a connected

nonsolvable algebraic group (not necessarily affine) and let X = Hom(Fn, G),
n > 2. By Theorem 7.1, the homomorphism Aut(Fn) → Aut(X), σ 7→ σX , is a
group embedding, so we can (and shall) identify Aut(Fn) with its image.

Theorem 13.3. Aut(Fn) is a compressible subgroup of Aut(X).

Proof. First, Aut(G) contains a nontrivial finite subgroup. To prove this, it suffices,
in view of Int(G) = G/C (G), to show that G \ C (G) contains an element of finite
order. In turn, for this, it suffices to show that there exists such an element in
Gaff \ C (Gaff) (we use the notation of the proof of Theorem 1.1). Arguing by
contradiction, suppose it does not exist. As every torus is the closure of its torsion
subgroup (see [Bo91, Cor. 8.9], then every torus of Gaff lies in C (Gaff). As every
semisimple element of Gaff lies in a torus (see [Bo91, Thm. 11.10], this means
that C (Gaff) contains all semisimple elements of Gaff . Using that the canonical
projection Gaff → Gaff/C (Gaff) preserves Jordan decompositions (see [Bo91, Thm.
4.4], from this we infer that every element of Gaff/C (Gaff) is unipotent. Whence
Gaff/C (Gaff) is a solvable group (see [Bo91, Cor. 4.8]). Therefore, Gaff is solvable
as well. This contradicts the fact that, as is explained in the proof of Theorem 1.1,
Gaff is nonsolvable.

Now take a nontrivial finite subgroup R of Aut(G). As the categorical quotient

πX//R : X → X//R (31)

is geometric (see Proposition 4.1), the degree of the finite morphism πX//R is equal

to |R| > 1. Therefore, πX//R is not birational. From this, Theorem 1.1, and condi-

tions (c1), (c2) in the definition of compressibility we infer that (31) is a com-
pression for Aut(Fn). �

Question 13.4. Are there G, n, and a finite subgroup R of Aut(G) such that
Aut(Fn) is an incompressible subgroup of Aut(X//R)?
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