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Abstract
A 2-torus manifold is a closed connected smooth n-manifold with a non-free effective
smooth Z

n
2-action. In this paper, we prove that a 2-torus manifold is equivariantly

formal if and only if the Z
n
2-action is locally standard and every face of its orbit space

(including the whole orbit space) is mod 2 acyclic. Our study is parallel to the study of
torus manifolds with vanishing odd-degree cohomology by M. Masuda and T. Panov
in (2006). As an application, we determine when such kind of 2-torus manifolds can
have regular m-involutions (i.e., involutions with only isolated fixed points of the
maximum possible number).
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1 Introduction

Let G be a compact Lie group and BG be the classifying space of G. For a G-space
X , the G-equivariant cohomology of X with coefficients in a field k is the singular
cohomology of the Borel construction XG (see [6])

H∗
G(X;k) := H∗(XG;k).

There is a natural fibration X → XG → BG associated with XG called the Borel
fibration. If the inclusion of the fiber ιX : X → XG induces a surjection on cohomol-
ogy ι∗X : H∗

G(X;k) → H∗(X;k), X is called (cohomologically) equivariantly formal
over k. This term was coined in 1998 in Goresky-Kottwitz-MacPherson [18]. But this
condition had already been studied by A. Borel in [5, §4] and [6, Ch.XII] where X
is called totally non-homologous to zero in XG (also, see [7, Ch.VII]).
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For some special groups G shown below, the equivariant formality of a G-action
can be interpreted in some other ways (see [5, §4], [1, Ch.3], and [2, Sec. 4]).

• When BG is simply connected (e.g., G is a torus T r = (S1)r ), X is equivari-
antly formal if and only if the Serre spectral sequence of the Borel fibration of X
degenerates at the E2 stage.

• When G is the p-torus Z
r
p (p is prime), X being equivariantly formal is equivalent

to either one of the following conditions.

(i) The Serre spectral sequence with Zp-coefficients of the Borel fibration of X
degenerates at the E2 stage and the induced action of Z

r
p on H∗(X; Zp) is

trivial.
(ii) H∗

Zr
p
(X; Zp) ∼= H∗(X; Zp) ⊗ H∗(BZ

r
p; Zp) is a free H∗(BZ

r
p; Zp)-module.

Due to the above fact, we call a Z
r
p-action on X weakly equivariantly formal if

we only assume that the Serre spectral sequence (with Zp-coefficients) of the Borel
fibration of X degenerates at the E2 stage. So an equivariantly formal Z

r
p-action is

always weakly equivariantly formal.
When G = T r or Z

r
2 and k = Q or Z2 respectively, there is another equivalent

description of equivariantly formal G-actions given by the so called “Atiyah-Bredon
sequence” (see Bredon [8] and Franz-Puppe [16] for the T r case, and Allday-Franz-
Puppe [2] for the Z

r
2 case). In addition, there are many sufficient conditions for a T r -

action to be equivariantly formal (for example: vanishing of odd-degree cohomology,
all homology classes being representable by T r -invariant cycles, etc.).

Equivariantly formalG-spaces provide many nice examples in geometry and topol-
ogy. Some of them are as follows:

• Smooth compact toric varieties.
• Hamiltonian G-actions on symplectic manifolds which have moment maps (see
Atiyah-Bott [3] and Jeffrey-Kirwan [22]).

• Quasitoric manifolds and small covers defined in Davis-Januszkiewicz [14].
• Torusmanifoldswith vanishing odd degree cohomology (seeMasuda-Panov [27]).

In addition, when G = T r or (Zp)
r , the following theorem gives us an easy way

to recognize equivariantly formal G-actions.

Theorem 1.1 (see Theorem (3.10.4) in Allday-Puppe [1]) Let G = T r or (Zp)
r where

p is a prime and k = Q or Zp respectively. Let X be a paracompact G-space with
only finitely many orbit types and dimk H∗(X;k) < ∞. Then, the fixed point set XG

always satisfies
dimk H∗(XG;k) ≤ dimk H∗(X;k)

where the equality holds if and only if X is equivariantly formal over k. Here
dimk H∗(X;k) denotes the sum of the rank of the cohomology groups of X in all
dimensions over k.

A very special case is when G = Z2 and XZ2 consists only of isolated points. By
Theorem 1.1, we have

|XZ2 | = dimZ2 H
∗(XZ2; Z2) ≤ dimZ2 H

∗(X; Z2) (1)
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Such a Z2-action on X is equivariantly formal if and only if the number of the
fixed points reaches the maximum, i.e., |XZ2 | = dimZ2 H

∗(X; Z2). In this case, the
involution determined by the Z2-action is called an m-involution on X (this term was
named by Puppe [28]).

There is an interesting relation between m-involutions on closed manifolds and
binary codes. It was shown in [28] that one can obtain a self-dual binary code from
any m-involution on an odd-dimensional closed manifold. This motivates the study in
Chen-Lü-Yu [12] on the m-involutions on a special kind of closed manifolds called
small covers (see [14]). In this paper, we want to study a more general type of closed
manifolds with 2-torus actions defined below.

Definition 1.2 (see Lü-Masuda [25]) A 2-torus manifold is a closed connected smooth
n-manifold W with a non-free effective smooth action of Z

n
2. For such a manifold W ,

since dim(W ) = n = rank(Zn
2) and the Z

n
2-action is effective, the fixed point setW

Z
n
2

must be discrete. Then, since W is compact, WZ
n
2 is a finite set of isolated points (if

not empty). Note that we require all 2-torus manifolds to be connected in this paper.

• For brevity, we call a 2-torus manifold W equivariantly formal or weakly equiv-
ariantly formal if the Z

n
2-action on W is so, respectively.

• We call W locally standard if for every point x ∈ W , there is a Z
n
2-invariant

neighborhood Vx of x such that Vx is equivariantly homeomorphic to an invariant
open subset of a real n-dimensional faithful linear representation space of Z

n
2. An

equivalentlyway to describe such a neighborhood Vx is: Vx is weakly equivariantly
homeomorphic to an invariant open subset of R

n under the standard Z
n
2-action

defined by: for any (x1, · · · , xn) ∈ R
n and (g1, · · · , gn) ∈ Z

n
2,

(g1, · · · , gn) · (x1, · · · , xn) 	−→ (
(−1)g1x1, · · · , (−1)gn xn

)
.

• Every non-zero element g ∈ Z
n
2 determines a nontrivial involution τg onW , called

a regular involution on W .

We will prove in Theorem 3.3 that if a 2-torus manifold is equivariantly formal,
then it must be locally standard.

For an n-dimensional locally standard 2-torus manifold W , the orbit space
Q = W/Z

n
2 naturally becomes a connected smooth nice n-manifold with corners

and with non-empty boundary (since the Z
n
2-action is non-free). Moreover,

• The Z
n
2-action on W determines a characteristic function

λW : {F1, · · · , Fm} → Z
n
2

where F1, · · · , Fm are all the facets (codimension-one faces) of Q.
• The free part of the Z

n
2-action onW determines a principal Z

n
2-bundle ξW over Q.

It is shown in Lü-Masuda [25, Lemma 3.1] that W can be recovered from the
data (Q, λW , ξW ) up to equivariant homeomorphism. In addition, let π : W → Q
denote the orbit map. If f is a codimension-k face of Q, then W f := π−1( f ) is a
codimension-k submanifold of W called a facial submanifold of W . Let G f denote
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the isotropy subgroup of W f . Then, W f is also a 2-torus manifold with respect to the
induced action of Z

n
2/G f . In the following, when we say W f is equivariantly formal,

we always consider W f being equipped with the induced Z
n
2/G f -action from W .

The main purpose of this paper is to answer the following two questions:
Question-1: What kind of 2-torus manifolds are equivariantly formal?
Question-2: What kind of locally standard 2-torus manifolds have regular m-

involutions?
Generally speaking, it is very hard to compute the equivariant cohomology of a

locally standard 2-torus manifold W directly from its orbit space Q and the data
(λW , ξW ). So it is difficult to judge whetherW is equivariantly formal by directly ver-
ifying the condition in the definition.Meanwhile, it was proved byMasuda-Panov [27]
that a smooth T n-action on a connected smooth 2n-manifold with non-empty fixed
points is equivariantly formal if and only if the T n-action is locally standard and every
face of its orbit space is acyclic (also see Goertsches-Töben [19, Theorem 10.19] for
a reformulation of this result). This result is also implied by Franz [15, Theorem 1.3].
The arguments in [27] inspire us to prove the following parallel result for 2-torus
manifolds.

Theorem 1.3 Let W be a 2-torus manifold with orbit space Q.

(i) W is equivariantly formal if and only if W is locally standard and Q is mod 2
face-acyclic.

(ii) W is equivariantly formal and H∗(W ; Z2) is generated by its degree-one part as
a ring if and only if W is locally standard and Q is a mod 2 homology polytope.

The definitions of “mod 2 face-acyclic” and “mod 2 homology polytope” are given
in Definition 2.1.

The main strategy in our proof of Theorem 1.3 is very similar to the strategy used
in [27] for equivariantly formal torus manifolds. Besides, our proof uses the mod 2
GKM theory introduced in Biss-Guillemin-Holm [4] which allows us to observe the
equivariant cohomology of an equivariantly formal 2-torus manifold by restricting to
its fixed point set (see Sect. 2.3).

Remark 1.4 If a 2-torus manifold W is assumed to be locally standard in the first
place, Theorem 1.3 (i) can also be derived from Chaves [11, Theorem 1.1] whose
proof uses the theory of syzygies in the mod 2 equivariant cohomology (see Allday-
Franz-Puppe [2, Theorem 10.2]) and the mod 2 “Atiyah-Bredon sequence”. But we
will use a completely different approach in our proof here.

Using Theorem 1.3, we can easily derive the following theorem which gives an
answer to Question-2.

Theorem 1.5 Let W be an n-dimensional locally standard 2-torus manifold with orbit
space Q. Then, there exists a regularm-involution on W if and only if Q is mod 2 face-
acyclic (or equivalently W is equivariantly formal) and the values of the characteristic
function λW on all the facets of Q consist exactly of a linear basis of Z

n
2 .

A nice manifold with corners Q is called k-colorable if we can assign k different
colors to all the facets of Q so that no two adjacent facets are of the same color. Clearly,
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there exists a 2-torus manifold over Q whose characteristic function takes value in a
linear basis of Z

n
2 if and only if Q is n-colorable.

Remark 1.6 By Theorem 1.5 and the construction in Puppe [28], we can obtain a self-
dual binary code CQ from an n-colorable mod 2 face-acyclic nice smooth n-manifold
with corners Q when n is odd. This generalizes the self-dual binary codes from n-
colorable simple convex n-polytopes in Chen-Lü-Yu [12]. Moreover, we can write
down CQ explicitly in the same way as the self-dual binary code obtained in [12,
Corollary 4.5].

The paper is organized as follows. In Sect. 2, we review the definitions and some
basic facts of locally standard2-torusmanifolds andquote somewell known results that
are useful for our proof. In Sect. 3, we study various properties of equivariantly formal
2-torus manifolds. Since the philosophy of our study is very similar to the study of
torus manifolds with vanishing odd degree cohomology in Masuda-Panov [27], many
lemmas in this paper are parallel to those in [27]. In Sect. 4, we prove some special
properties of equivariantly formal 2-torus manifolds whose mod 2 cohomology rings
are generated by their degree-one part. Then finally, in Sect. 5, we prove Theorem 1.3
and Theorem 1.5.

2 Preliminaries

2.1 Manifolds with Corners and Locally Standard 2-Torus Manifolds

Recall a (smooth) n-dimensional manifold with corners Q is a Hausdorff space
together with a maximal atlas of local charts onto open subsets of R

n≥0 such that
the transition functions are (diffeomorphisms) homeomorphisms which preserve the
codimension of each point. Here, the codimension c(x) of a point x = (x1, · · · , xn) in
R
n≥0 is the number of xi that is 0. So we have a well defined map c : Q → Z≥0 where

c(q) is the codimension of a point q ∈ Q. An open face of Q of codimension k is a
connected component of c−1(k). A (closed) face is the closure of an open face. A face
of codimension one is called a facet of Q. When Q is connected, we also consider Q
itself as a face (of codimension zero).

• For any k ∈ Z≥0, the k-skeleton of Q is the union of all the faces of Q with
dimension ≤ k.

• The face poset of Q, denoted by PQ , is the set of faces of Q ordered by reversed
inclusion (so Q is the initial element).

A manifold with corners Q is said to be nice if either its boundary ∂Q is empty or
∂Q is non-empty and any codimension-k face of Q is a component of the intersection
of k different facets in Q. If Q is nice, PQ is a simplicial poset. But in general PQ

may not be the face poset of a simplicial complex. Indeed, PQ is the face poset of a
simplicial complex if and only if all non-empty multiple intersections of facets of Q
are connected (see [27, Sec. 5.2]).
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Definition 2.1 Let Q be a nice manifold with corners.

• We call Q mod 2 face-acyclic if every face of Q (including Q itself) is a mod 2
acyclic space.

• We call Q a mod 2 homology polytope if Q is mod 2 face-acyclic and PQ is the
face poset of a simplicial complex.

A topological space B is called mod 2 acyclic if H∗(B; Z2) ∼= H∗(pt; Z2).
It is not difficult to prove the following lemma (see [27, p.743 Remark] for a short

argument).

Lemma 2.2 If Q is mod 2 face-acyclic, then every face of Q has a vertex and the
1-skeleton of Q is connected.

In the following, letW be an n-dimensional locally standard 2-torus manifold with
orbit space Q. Then, Q is a smooth nice manifold with corners with ∂Qeq∅. Let
π : W → Q denote the projection, and let the set of facets of Q be

F(Q) = {F1, · · · , Fm}.

Then, π−1(F1), · · · , π−1(Fm) are embedded codimension-one closed connected
submanifolds of W , called the characteristic submanifolds of W . Moreover, the Z

n
2-

action on W determines a characteristic function on Q which is a map

λW : F(Q) → Z
n
2 (2)

where λW (Fi ) ∈ Z
n
2 is the generator of the Z2 subgroup that pointwise fixes the

submanifoldπ−1(Fi ), 1 ≤ i ≤ m. Since theZ
n
2-action is locally standard, the function

λW satisfies the following linear independence condition:

whenever the intersection of k different facets Fi1, · · · , Fik is non-empty,
the elements λW (Fi1), · · · , λW (Fik ) are linearly independent when viewed
as vectors of Z

n
2 over the field Z2.

For a codimension-k face f of Q, let Fi1 , · · · , Fik be all the facets containing f .
Then, the isotropy subgroup of the facial submanifold W f is

G f = the subgroup generated by {λW (Fi1), · · · , λW (Fik )} ⊆ Z
n
2 . (3)

By the linear independence condition of λW , G f ∼= Z
k
2. HenceW f is also a 2-torus

manifold with respect to the induced action of Z
n
2/G f ∼= Z

n−k
2 .

In addition, W determines a principal Z
n
2-bundle over Q as follows. We take a

small invariant open tubular neighborhood for each characteristic submanifold of W
and remove their union fromW . Then, theZ

n
2-action on the resulting space is free, and

its orbit space can naturally be identified with Q, which gives a principal Z
n
2-bundle

over Q, denoted by ξW . It is shown in Lü-Masuda [25] that W can be recovered (up
to equivariant homeomorphism) from (Q, ξW , λW ). For example, when ξW is a trivial
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Z
n
2-bundle, W is equivariantly homeomorphic to the following “canonical model”

determined by (Q, λW ).
MQ(λW ) := Q × Z

n
2/ ∼ (4)

where (q, g) ∼ (q ′, g′) if and only if q = q ′ and g − g′ ∈ G f (q) where f (q) is
the unique face of Q that contains q in its relative interior. This canonical model is a
generalization of a result of Davis-Januszkiewicz [14, Prop. 1.8]. We will see that the
canonical model plays an important role in our proof of Theorem 1.3 in Sect. 5.

2.2 Borel Construction and Equivariant Cohomology

For a topological group G, there exists a contractible free right G-space EG called
the universal G-space. The quotient BG = EG/G is called the classifying space for
free G-actions. For example, when G = Z

n
2, we can choose

EZ
n
2 = (EZ2)

n = (S∞)n, BZ
n
2 = (BZ2)

n = (RP∞)n .

Let X be a topological space with a left G-action (we call X a G-space for brevity).
The Borel construction of X is denoted by

EG ×G X = EG × X/ ∼

where (e, x) ∼ (eg, g−1x) for any e ∈ EG, x ∈ X and g ∈ G.
The equivariant cohomology of X with coefficients in a field k is defined as

H∗
G(X;k) := H∗(EG ×G X;k).

Convention: The term “cohomology” of a space in this paper, always mean singular
cohomology if not specified otherwise.

The Borel construction determines a canonical fibration called Borel fibration:

X → EG ×G X → BG. (5)

The map ρ collapsing X to a point induces a homomorphism

ρ∗ : H∗
G(pt;k) = H∗(BG;k) → H∗

G(X;k) (6)

which defines a canonical H∗(BG;k)-module structure on H∗
G(X;k). A useful fact

is: when X is a paracompact space with finite cohomology dimension, and G = T r

or (Zp)
r where p is a prime and k = Q or Zp respectively, ρ∗ is injective if and only

if the fixed point set XG is non-empty (see [21, Ch. IV]).
In general, H∗

G(X;k) may not be a free H∗(BG;k)-module. The following local-
ization theorem due to A. Borel (see [21, p. 45]) says that we can compute the free
H∗(BG;k)-module part of H∗

G(X;k) by restricting to the fixed point set.
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Theorem 2.3 (Localization Theorem) Let G = T r or (Zp)
r where p is a prime and

k = Q or Zp respectively. For a paracompact G-space X with finite cohomology
dimension, the following localized restriction homomorphism is an isomorphism:

S−1H∗
G(X;k) → S−1H∗

G(XG;k) = H∗(XG;k) ⊗k (S−1H∗(BG;k))

where S = R−{0} where R is the polynomial subring of H∗(BG;k). So the kernel of
the restriction H∗

G(X;k) → H∗
G(XG;k) lies in the H∗(BG;k)-torsion of H∗

G(X;k).
In particular if X is equivariantly formal, H∗

G(X;k) → H∗
G(XG;k) is injective.

The Borel construction can also be applied to a G-vector bundle π : E → X (i.e.,
both E and X are G-spaces and the projection π is G-equivariant). In this case, the
Borel construction EG of E is a vector bundle over XG whose mod 2 Euler class,
denoted by eG(E), lies in H∗

G(X; Z2). Note that using Z2-coefficients allows us to
ignore the orientation of a vector bundle.

2.3 Mod 2 GKM-Theory

Let W be an n-dimensional equivariantly formal 2-torus manifold. Then, the fixed
point set WZ

n
2 is a finite non-empty set (by Theorem 1.1), and H∗

Z
n
2
(W ; Z2) is a free

module over H∗(BZ
n
2; Z2). Moreover, H∗

Z
n
2
(W ; Z2) can be computed by the so called

Mod2GKM-theory (seeBiss-Guillemin-Holm [4])which is an extension of theGKM-
theory in [18] to 2-torus actions. In this section, we briefly review some results related
to our study. The reader is referred to [4] and [24] for more details.

For each 1 ≤ i ≤ n, let ρi ∈ Hom(Zn
2, Z2) be the homomorphism defined by

ρi ((g1, · · · , gn)) = gi , ∀(g1, · · · , gn) ∈ Z
n
2 .

By a canonical isomorphism Hom(Zn
2, Z2) ∼= H1(BZ

n
2; Z2), we can identify

H∗(BZ
n
2; Z2) with the graded polynomial ring Z2[ρ1, · · · , ρn] where deg(ρi ) = 1,

1 ≤ i ≤ n.
Let Q = W/Z

n
2 be the orbit space ofW . By our Theorem 3.3 proved later, a 2-torus

manifoldW being equivariantly formal implies that it is locally standard. Hence Q is a
nice manifold with corners. Then, the 1-skeleton of Q, consisting of vertices (0-faces)
and edges (1-faces) of Q, is an n-valent graph denoted by 	(Q). Let V (Q) and E(Q)

denote the set of vertices and edges of Q, respectively.
Convention:We will not distinguish a vertex of Q and the corresponding fixed point
in WZ

n
2 in the rest of the paper.

• Let π : W → Q be the quotient map.
• For each edge e ∈ E(Q), π−1(e) is a circle whose isotropy subgroup Ge is a rank
n − 1 subgroup of Z

n
2. Then, we obtain a map

α : E(Q) → Hom(Zn
2, Z2) ∼= H1(BZ

n
2; Z2)

where for each edge e ∈ E(Q), ker(α(e)) = Ge.
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• For each vertex p ∈ V (Q), let αp = {α(e) | p ∈ e} ⊂ Hom(Zn
2, Z2).

Such a map α is called an axial function which has the following properties:

(i) For every vertex p ∈ V (Q), αp is a linear basis of Hom(Zn
2, Z2).

(ii) For every edge e ∈ E(Q), αp ≡ αp′ mod α(e) where p, p′ are the two vertices
of e.

By [4, Theorem C] and [4, Remark 5.9], we have the following theorem which
is a consequence of the Z2-version Chang-Skjelbred theorem (see [4, Theorem 4.1]
and [10]).

Theorem 2.4 (see [4]) Let W be an n-dimensional equivariantly formal 2-torus man-
ifold. If we choose an element ηp ∈ H∗

Z
n
2
(WZ

n
2 ; Z2) for each p ∈ WZ

n
2 , then

(ηp) ∈
⊕

p∈WZ
n
2

H∗(BZ
n
2; Z2) ∼= H∗

Z
n
2
(WZ

n
2 ; Z2)

is in the image of the restriction homomorphism r : H∗
Z
n
2
(W ; Z2) → H∗

Z
n
2
(WZ

n
2 ; Z2)

if and only if for every edge e ∈ E(Q) with vertices p and p′, ηp − ηp′ is divisible by
α(e).

Moreover, we can understand the above axial function α in the following way. For
brevity, we use the following notations for an n-dimensional locally standard 2-torus
manifold W in the rest of this section.

• Let G = Z
n
2.• Let Wi := WFi = π−1(Fi ), 1 ≤ i ≤ m, be all the characteristic submanifolds of

W where F1, · · · , Fm are all the facets of Q.
• Let Gi := 〈λW (Fi )〉 ∼= Z2 be subgroup of G that fixes Wi pointwise.
• Let νi be the (equivariant) normal bundle of Wi in W . So we have the equivariant
Euler class of νi , denoted by eG(νi ) ∈ H1

G(Wi ; Z2).
• For any fixed point p ∈ WZ

n
2 , let I (p) := {i | p ∈ Wi }.We have the decomposition

of tangent space TpW as

TpW =
⊕

i∈I (p)
νi |p.

where νi |p denotes the restriction of νi to p. So νi |p is a 1-dimensional linear
representation of G whose equivariant Euler class

eG(νi |p) = eG(νi )|p ∈ H1(BZ
n
2; Z2).

The inclusion map ψi : Wi ↪→ W defines an equivariant Gysin homomorphism
ψi! : H∗

G(Wi ; Z2) → H∗+1
G (W ; Z2) (see [1, §5.3] for example). For brevity, let

τi = τFi = ψi!(1) ∈ H1
G(W ; Z2)
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be the image of the identity 1 ∈ H0
G(Wi ; Z2). The element τi can be thought of as

the Poincaré dual of the Borel construction of Wi in H∗
G(W ; Z2) and is called the

equivariant Thom class of νi . A standard fact is

τi |p agrees with the equivariant Euler class of νi |p.

Note that the elements of Hom(Zn
2, Z2) are in one-to-one correspondence with

all the 1-dimensional linear representations of Z
n
2. So the canonical isomorphism

between Hom(Zn
2, Z2) and H1(BZ

n
2; Z2) is given by the equivariant Euler class of a

1-dimensional representations of Z
n
2. Then, we have the following identification:

αp = {α(e) | p ∈ e} ←→ {eG(νi )|p = τi |p ; i ∈ I (p)}. (7)

where an edge e containing p corresponds to the unique index i ∈ I (p) so that the
facet Fi intersects e transversely (or equivalently e � Fi ).

• For a codimension-k face f of Q, let ν f denote the (equivariant) normal bundle
ofW f inW . Denote by τ f ∈ Hk

G(W ; Z2) the equivariant Thom class of ν f . Then,
the restriction of τ f to Hk

G(W f ; Z2) is the equivariant Euler class of ν f , denoted
by eG(ν f ). In particular, if f = Q, W f = W and so τ f is the identity element of
H0
G(W f ; Z2).

Let rp : H∗
G(W ; Z2) → H∗

G(p; Z2) ∼= H∗(BG; Z2) denote the restriction map at
a fixed point p ∈ WG . Then,

r =
⊕

p∈WG

rp : H∗
G(W ; Z2) → H∗

G(WG; Z2) =
⊕

p∈WG

H∗(BG; Z2). (8)

By Theorem 2.3, the kernel of r is the H∗(BG; Z2)-torsion subgroup of H∗
G(W ; Z2).

Clearly, rp(τ f ) = 0 unless p ∈ (W f )
G (i.e., p is a vertex of f ). It follows from (7)

that for any p ∈ WG ,

rp(τ f ) =
⎧
⎨

⎩

∏

p∈e, e� f

α(e), if p ∈ f ;

0, otherwise.
(9)

In addition, define

Ĥ∗
G(W ; Z2) := H∗

G(W ; Z2)
/
H∗(BG; Z2)-torsion. (10)

By the localization theorem (Theorem2.3), the restriction homomorphism r induces
a monomorphism Ĥ∗

G(W ; Z2) → H∗
G(WG; Z2), still denoted by r .

The following proposition is parallel to [27, Proposition 3.3].

Proposition 2.5 Let W be an n-dimensional locally standard 2-torus manifold.
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(i) For each characteristic submanifold Wi with (Wi )
G �= ∅ where G = Z

n
2 , there

is a unique element ai ∈ H1(BG; Z2) such that

ρ∗(t) =
∑

i

〈t, ai 〉τi modulo H∗(BG; Z2)-torsion

for any element t ∈ H1(BG; Z2). Here the sum is taken over all the characteristic
submanifolds Wi with (Wi )

G �= ∅ and ρ∗ is defined in (6).
(ii) For each Wi with (Wi )

G �= ∅, the subgroup Gi fixing Wi coincides with the sub-
group determined by ai ∈ H1(BG; Z2) through the identification H1(BG; Z2) ∼=
Hom(Z2,G).

(iii) If n different characteristic submanifolds Wi1 , · · · ,Win have a G-fixed point
in their intersection, then the elements ai1 , · · · , ain form a linear basis of
H1(BG; Z2) over Z2.

Proof The argument is completely parallel to the arguments for torus manifolds in
the proof of [26, Lemma 1,3, Lemma. 1.5, Lemma 1.7]. Indeed, we can just replace
the torus manifold M in [26] by our 2-torus manifold W and replace T n by Z

n
2 and

H2(M; Z) by H1(W ; Z2) to obtain our proof here. The details of the proof are left to
the reader. ��

In addition, the following lemma is completely parallel to the torus manifold
case [27, Lemma 6.2]. Its proof is also parallel to [27], hence omitted.

Lemma 2.6 Let W be a locally standard 2-torus manifold with orbit space Q. For any
η ∈ H∗

G(W ; Z2) and any edge e ∈ E(Q), r p(η) − rp′(η) is divisible by α(e) where p
and p′ are the endpoints of e.

2.4 Face Ring

A poset (partially ordered set) P is called simplicial if it has an initial element 0̂ and
for each x ∈ P the lower segment [0̂, x] is a boolean lattice (the face lattice of a
simplex).

Let P be a simplicial poset. For each x ∈ P := P − {0̂}, we assign a geometrical
simplex whose face poset is [0̂, x] and glue these geometrical simplices together
according to the order relation in P . The cell complex we obtained is called the
geometrical realization of P , denoted by |P|. We may also say that |P| is a simplicial
cell complex.

For any two elements x, x ′ ∈ P , denote by x∨x ′ the set of their least common upper
bounds, and by x ∧ x ′ their greatest common lower bounds. Since P is simplicial,
x ∧ x ′ consists of a single element if x ∨ x ′ is non-empty.

Definition 2.7 (see Stanley [29]) The face ring of a simplicial poset P over a field k
is the quotient

k[P] := k[vx : x ∈ P]/IP
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where IP is the ideal generated by all the elements of the form

vxvx ′ − vx∧x ′ ·
∑

x ′′∈x∨x ′
vx ′′ .

Let Q be a nice manifold with corners. It is easy to see that the face poset of Q is a
simplicial poset, denoted by PQ . We call |PQ | the simplicial cell complex dual to Q.

We define the face ring of Q to be the face ring of PQ . Equivalently, we can write
the face ring of Q as

k[Q] := k[v f : f a face of Q]/IQ .

where IQ is the ideal generated by all the elements of the form

v f v f ′ − v f ∨ f ′ ·
∑

f ′′∈ f ∩ f ′
v f ′′ .

where f ∨ f ′ denotes the unique minimal face of Q containing both f and f ′.
Convention: For any face f of Q, define the degree of v f to be the codimension of
f . Then, k[Q] = k[PQ] becomes a graded ring. Note that in the discussion of torus
manifolds in [27], the degree of v f is defined to be twice the codimension of f to fit
the study there.

The f -vector of Q is defined as f(Q) = ( f0, · · · , fn−1)where n = dim(Q) and fi
is the number of faces of codimension i + 1. The equivalent information is contained
in the h-vector h(Q) = (h0, · · · , hn) determined by the equation:

h0t
n + · · · + hn−1t + hn = (t − 1)n + f0(t − 1)n−1 + · · · + fn−1. (11)

TheHilbert series of k[Q] is F(k[Q]) := ∑
i dimk k[Q]i · t i where k[Q]i denotes

the homogeneous degree i part of k[Q]. By [29, Proposition 3.8],

F(k[Q]; t) = h0 + h1t + · · · + hntn

(1 − t)n
. (12)

The following construction is taken from [27, Sect. 5]. For any vertex (0-face)
p ∈ Q, we define a map

sp : k[Q] → k[Q]/(v f : p /∈ f ). (13)

If p is the intersection of n different facets F1, · · · , Fn , then k[Q]/(v f : p /∈ f )
can be identified with the polynomial ring k[vF1, · · · , vFn ].
Lemma 2.8 (Lemma 5.6 in [27]) If every face of Q has a vertex, then the direct sum
s = ⊕

p sp over all vertices p ∈ Q is a monomorphism from k[Q] to the sum of

polynomial rings k[Q]/(v f : p /∈ f ).
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A finitely generated graded commutative ring R over k is called Cohen-Macaulay
if there exists an h.s.o.p (homogeneous system of parameters) θ1, · · · , θn such that R
is a free k[θ1, · · · , θn]-module. Clearly, if k[Q] = k[PQ] is Cohen-Macaulay, then it
has a l.s.o.p (linear system of parameters).

A simplicial complex K is called aGorenstein* complex over k if its face ring k[K ]
is Cohen-Macaulay and H∗(K ;k) ∼= H∗(Sd ;k) where d = dim(K ). The reader
is referred to Bruns-Herzog [9] and Stanley [30] for more information of Cohen-
Macaulay rings and Gorenstein* complexes.

The following proposition is parallel to [27, Lemma 8.2 (1)].

Proposition 2.9 If Q is an n-dimensional mod 2 homology polytope, then the geomet-
rical realization |PQ | ofPQ is aGorenstein* simplicial complex overZ2. In particular,
Z2[PQ] is Cohen-Macaulay and H∗(|PQ |; Z2) ∼= H∗(Sn−1; Z2).

Proof The proof is almost identical to the proof in [27, Lemma 8.2] except that we use
Z2-coefficients instead of Z-coefficients when applying [30, II 5.1] in the argument.��

3 Equivariantly Formal 2-Torus Manifolds

In this section, we study various properties of equivariantly formal 2-torus manifolds.
One may find that many discussions on 2-torus manifolds here are parallel to the
discussions in [27] on torus manifolds. The condition “vanishing of odd degree coho-
mology” on a torus manifold in [27] is now replaced by the equivariant formality
condition on a 2-torus manifold and, the coefficients Z is replaced by Z2. Many argu-
ments in [27] are transplanted into our proof here while some of them actually become
simpler.

In Sect. 3.1, we prove some general results of equivariantly formal Z
r
2-actions on

compact manifolds. In particular, we prove that any equivariantly formal 2-torusmani-
fold is locally standard, and the equivariant formality of a 2-torus manifold is inherited
by all its facial submanifolds.

In Sect. 3.2, we explore the relations between the equivariant cohomology of a
locally standard 2-torus manifold and the face ring of its orbit space.

In Sect. 3.3, we prove that the equivariant formality of a 2-torus manifold is pre-
served under real blow-ups along its facial submanifolds. Our proof uses a result from
Gitler [17].

3.1 Equivariantly Formal⇒ Locally Standard

Lemma 3.1 Suppose M is a compact manifold whose connected components are
M1, · · · , Mk. A Z

r
2-action on M is equivariantly formal if and only if each Mi is

Z
r
2-invariant and the restricted Z

r
2-action on Mi is equivariantly formal.

Proof The “if” part is obvious. For the “only if” part, assume that M1, · · · , Ms , s ≤ k,
are all the components each of which is preserved under the Z

r
2-action. Since the Z

r
2-
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action on M is equivariantly formal, by Theorem 1.1 we have

dimZ2 H
∗(MZ

r
2; Z2) = dimZ2 H

∗(M; Z2).

So in particular, MZ
r
2 is not empty. Clearly, MZ

r
2 must lie in M1 ∪ · · · ∪ Ms , so s > 0

and MZ
r
2 is the disjoint union of M

Z
r
2

1 , · · · , M
Z
r
2

s . Then, by Theorem 1.1,

dimZ2 H
∗(MZ

r
2; Z2) =

s∑

i=1

dimZ2 H
∗(MZ

r
2

i ; Z2) ≤
s∑

i=1

dimZ2 H
∗(Mi ; Z2)

≤ dimZ2 H
∗(M; Z2).

By comparing this inequality with the previous equation, we can deduce that s =
k and on every component Mi , dimZ2 H

∗(MZ
r
2

i ; Z2) = dimZ2 H
∗(Mi ; Z2). So by

Theorem 1.1 again, the Z
r
2-action on Mi is equivariantly formal. ��

Lemma 3.2 If a Z
r
2-action on a compact manifold M is equivariantly formal, then for

every subgroup H of Z
r
2,

(i) The action of H on M is equivariantly formal.
(ii) The induced action ofZr

2 on M
H andZ

r
2/H on MH are both equivariantly formal.

(iii) The induced action of Z
r
2 (or Z

r
2/H) on every connected component N of MH is

equivariantly formal, hence N has a Z
r
2-fixed point.

Proof (i) By Theorem 1.1, it is equivalent to prove

dimZ2 H
∗(MH ; Z2) = dimZ2 H

∗(M; Z2). (14)

Otherwise, assume dimZ2 H
∗(MH ; Z2) < dimZ2 H

∗(M; Z2). Observe that the
Z
r
2-action on M induces an action of Z

r
2/H on MH and we have

MZ
r
2 = (MH )Z

r
2/H . (15)

So by Theorem 1.1, dimZ2 H
∗(MZ

r
2; Z2) ≤ dimZ2 H

∗(MH ; Z2) < dimZ2 H
∗

(M; Z2), which contradicts the assumption that the Z
r
2-action on M is equivari-

antly formal. This proves (i).
(ii) By (15) and the assumption that the Z

r
2-action is equivariantly formal,

dimZ2 H
∗((MH )Z

r
2/H ; Z2

) = dimZ2 H
∗(MZ

r
2; Z2

)

= dimZ2 H
∗(M; Z2

) 14= dimZ2 H
∗(MH ; Z2).

Then, by Theorem 1.1, the action of Z
r
2/H on MH is equivariantly formal, so is

the action of Z
r
2 on MH .

(iii) By the conclusion in (ii) and Lemma 3.1, the induced action of Z
r
2 (or Z

r
2/H ) on

every connected component N ofMH is equivariantly formal. So by Theorem 1.1,
N must have a Z

r
2-fixed point.

��
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Next, we prove a theorem that is parallel to [27, Theorem 4.1].

Theorem 3.3 If a 2-torus manifold W is equivariantly formal, then W must be locally
standard.

Proof Suppose dim(W ) = n. For a point x ∈ W , denote by Gx the isotropy group of
x .

• If Gx is trivial, then x is in a free orbit of the Z
n
2-action. So W is locally standard

near x .
• Otherwise, let N be the connected component of WGx containing x . By
Lemma 3.2 (iii), the inducedZ

n
2-action on N has a fixed point, say x0. SinceWZ

n
2 is

discrete, the tangentialZn
2-representation Tx0W is faithful. Then, since x and x0 are

in the same connected component fixed pointwise by Gx , the Gx -representation
on TxW agrees with the restriction of the tangential Z

n
2-representation Tx0W to

Gx . This implies that W is locally standard near x .

The theorem is proved. ��
Proposition 3.4 Let W be an equivariantly formal 2-torus manifold with orbit space
Q. For any face f of Q, the facial submanifold W f is also an equivariantly formal
2-torus manifold.

Proof Supposedim(W ) = n and f is a codimension-k face ofQ. ByTheorem3.3,W is
locally standard. Then,W f is a connected (n−k)-dimensional embedded submanifold
of W fixed pointwise by G f ∼= Z

k
2 (see (3)). By Lemma 3.2 (iii), the induced action

of Z
n
2/G f ∼= Z

n−k
2 on W f is equivariantly formal. ��

3.2 Equivariant Cohomology of Locally Standard 2-Torus Manifolds

Let W be an n-dimensional locally standard 2-torus manifold with orbit space Q. We
explore the relation between H∗

G(W ; Z2) where G = Z
n
2 and the face ring Z2[Q]

under some conditions on Q. In the following, we use the notations from Sect. 2.3.
First of all, we have a lemma that is parallel to [27, Lemma 6.3].

Lemma 3.5 For any faces f and f ′ of Q, the relation below holds in Ĥ∗
G(W ; Z2):

τ f τ f ′ = τ f ∨ f ′ ·
∑

f ′′∈ f ∩ f ′
τ f ′′ .

Here we define τ∅ = 0.

Proof The proof is parallel to the proof of [27, Lemma 6.3]. The idea is to use the
monomorphism r : Ĥ∗

G(W ; Z2) → H∗
G(WG; Z2) to map both sides of the identity to

the fixed points and then use the formula (9) to check that they are equal. ��
By Lemma 3.5, we obtain a well-defined homomorphism

ϕ : Z2[Q] −→ Ĥ∗
G(W ; Z2).

v f 	−→ τ f
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The following lemma and its proof are parallel to [27, Lemma 6.4].

Lemma 3.6 The homomorphism ϕ is injective if every face Q has a vertex.

Proof According to the definitions of r and s (see (8) and (13)), we have s = r ◦ ϕ by
identifying H∗

G(p, Z2) with Z2[Q]/(v f : p /∈ f ) for every vertex p of Q. Then, by
Lemma 2.8, s is injective if every face of Q has a vertex, so is ϕ. ��

The following lemma is parallel to [27, Proposition 7.4].

Lemma 3.7 If the 1-skeleton of every face of Q (including Q itself) is connected,
then Ĥ∗

G(W ; Z2) is generated by the elements τF1 , · · · , τFm ∈ H1
G(W ; Z2) as an

H∗(BG; Z2)-module, where F1, · · · , Fm are all the facets of Q.

Proof The argument is a bit technical, but it is completely parallel to the proof of [27,
Proposition 7.4]. The main idea of the proof is to consider the restriction of an element
η ∈ H∗

G(W ; Z2) to the fixed point set WG via r : H∗
G(W ; Z2) → H∗

G(WG; Z2), and
then use τF1 , · · · , τFm and elements in H∗(BG; Z2) to spell out r(η) at each fixed
point p ∈ WG (see Proposition 2.5). The details of the proof are left to the reader. ��

The following theorem is parallel to [27, Theorem 7.5].

Theorem 3.8 Let W be a locally standard 2-torus manifold with orbit space Q. If
every face f of Q has a vertex and the 1-skeleton of f is connected, then the map
ϕ : Z2[Q] → Ĥ∗

G(W ; Z2) is an isomorphism of graded rings.

Proof By Lemma 3.6, ϕ is injective and, by Lemma 3.7, ϕ is surjective. ��
Lemma 3.9 Let W be an equivariantly formal 2-torus manifold with orbit space Q.
Then the 1-skeleton of every face of Q (including Q itself) is connected.

Proof SinceW is equivariantly formal, the localization theorem (Theorem2.3) implies
that the restriction homomorphism r : H∗

G(W ; Z2) → H∗
G(WG; Z2) is injective.

In addition, since W is connected, the image of H0
G(W ; Z2) under the restriction

homomorphism is isomorphic to Z2. So the “if” part of Theorem 2.4 implies that the
1-skeleton of Q must be connected.

For any proper face f of Q, the facial submanifold W f is also an equivariantly
formal 2-torus manifold by Proposition 3.4. Then, by applying the above argument to
W f , we obtain that the 1-skeleton of f is also connected. ��
Corollary 3.10 If W is an equivariantly formal 2-torus manifold, then the map ϕ :
Z2[Q] → H∗

G(W ; Z2) is an isomorphism of graded rings.

Proof Since W is equivariantly formal, its equivariant cohomology H∗
G(W ; Z2) is a

free module over H∗(BG; Z2). So by definition, Ĥ∗
G(W ; Z2) = H∗

G(W ; Z2). For
any face f of Q, the facial submanifold W f is also an equivariantly formal 2-torus
manifold by Proposition 3.4. This implies that f has a vertex.Moreover, the 1-skeleton
of f is connected by Lemma 3.9. Then, the corollary follows from Theorem 3.8. ��
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When a 2-torus manifoldW is equivariantly formal, Corollary 3.10 tells us that the
equivariant cohomology ring of W is completely determined by the face poset of its
orbit space (so independent on the characteristic function λW or the principal bundle
ξW ). This suggests that the orbit space of W should be rather special.

The following corollary is parallel to [27, Corollary 7.8]. It generalizes the calcu-
lation of the mod 2 cohomology ring of a small cover in [14].

Corollary 3.11 If a 2-torus manifold W is equivariantly formal, then

H∗(W ; Z2) ∼= Z2[v f : f a face of Q]/I

where I is the ideal generated by the following two types of elements:
(a) v f v f ′ − v f ∨ f ′

∑
f ′′∈ f ∩ f ′ v f ′′ , (b)

∑m
i=1〈t, ai 〉vFi , t ∈ H1(BG; Z2).

Here, F1, · · · , Fm are all the facets of Q, and the elements ai ∈ H1(BG; Z2) are
defined in Proposition 2.5.

Proof Since W is equivariantly formal, ι∗W : H∗
G(W ; Z2) → H∗(W ; Z2) is surjective

and its kernel is generated by all ρ∗(t) with t ∈ H1(BG; Z2) (see (6)). Then, the
statement follows from Corollary 3.10 and Proposition 2.5. ��

3.3 Real Blow-up of a Locally Standard 2-Torus Manifold Along a Facial
Submanifold

LetW be a locally standard 2-torus manifold with orbit space Q. For a codimension-k
face f of Q, the facial submanifold W f is an embedded connected codimension-k
submanifold of W . So the equivariant normal bundle ν f of W f in W is a real vector
bundle of rank k. If we replace W f ⊂ W by the real projective bundle P(ν f ), we
obtain a new 2-torus manifold denoted by W̃ f called the real blow-up of W along
W f . This is analogous to the blow-up of a torus manifold in [27, Sec. 9] (also see [20,
p. 605] and [15, Sec. 4]).

The orbit space of W̃ f , denoted by Q f , is the result of “cutting off” the face f
from Q (see Fig. 1). So W̃ f is also locally standard. Correspondingly, the simplicial
cell complex |PQ f | is obtained from |PQ | by a stellar subdivision of the face dual to
f .

Fig. 1 Cutting off a face from a nice manifold with corners
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Proposition 3.12 Let W be a locally standard 2-torus manifold with orbit space Q
and f be a proper face of Q with codimension-k. Then, W̃ f is equivariantly formal
if and only if so is W.

Proof (a) Let ν̃ f denote the equivariant normal bundle of P(ν f ) in W̃ f . Besides, let
Th(ν f ) and Th(̃ν f ) be the Thom space of ν f and ν̃ f , respectively. Then, we have a
natural commutative diagram of continuous maps:

P(ν f )

p0

��

ĩ �� W̃ f

p

��

t̃ �� Th(̃ν f )

q

��
W f

i �� W
t �� Th(ν f )

where i and ĩ are the inclusions; t and t̃ are the Thom-Pontryagin maps; p : W̃ f → W
is the blow-down map; p0 is the restriction of p to P(ν f ); and q is the induced map
by p in the Thom spaces.

According to [17, §5] and [17, Theorem 3.7], there is a short exact sequence:

0−→H∗(Th(ν f ); Z2)
α−→H∗(W ; Z2) ⊕ H∗(Th(̃ν f ); Z2)

β−→H∗(W̃ f ; Z2)−→0.
(16)

where α = (t∗, q∗) and β = p∗ − t̃∗. This implies:

dimZ2 H
∗(W̃ f ; Z2) = dimZ2 H

∗(W ; Z2) + dimZ2 H
∗(Th(̃ν f ); Z2) − dimZ2 H

∗(Th(ν f ); Z2).

By the Thom isomorphism, we have

dimZ2 H
∗(Th(ν f ); Z2) = dimZ2 H

∗(W f ; Z2),

dimZ2 H
∗(Th(̃ν f ); Z2) = dimZ2 H

∗(P(ν f ); Z2).

By Leray-Hirsch theorem, H∗(P(ν f ); Z2) ∼= H∗(W f ; Z2) ⊗ H∗(RPk−1; Z2) (as
Z2-vector spaces), which implies dimZ2 H

∗(P(ν f ); Z2) = k · dimZ2 H
∗(W f ; Z2).

So

dimZ2 H
∗(W̃ f ; Z2) = dimZ2 H

∗(W ; Z2) + (k − 1) · dimZ2 H
∗(W f ; Z2). (17)

IfW is equivariantly formal, thenW is locally standard and so Q is a nice manifold
with corners. It is easy to see

#vertices of Q f = #vertices of Q + (k − 1) · #vertices of f .

Since the fixed point set WG (G = Z
n
2) corresponds to the vertex set of Q which

is discrete, the number of fixed points of the G-action satisfies

|(W̃ f )G | = |WG | + (k − 1) · |(W f )
G |. (18)
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By Proposition 3.4, W f is also equivariantly formal. So by Theorem 1.1,

dimZ2 H
∗(W ; Z2) = |WG |, dimZ2 H

∗(W f ; Z2) = |(W f )
G |.

It follows from (17) and (18) that |(W̃ f )G | = dimZ2 H
∗(W̃ f ; Z2). So we deduce

from Theorem 1.1 that W̃ f is equivariantly formal.
Conversely, if W̃ f is equivariantly formal, we have

dimZ2 H
∗(W ; Z2)

17= dimZ2 H
∗(W̃ f ; Z2) − (k − 1) · dimZ2 H

∗(W f ; Z2)

(by Theorem 1.1) ≤ |(W̃ f )G | − (k − 1) · |(W f )
G | 17= |WG | = dimZ2 H

∗(WG; Z2).

But by Theorem 1.1, dimZ2 H
∗(WG; Z2) ≤ dimZ2 H

∗(W ; Z2). So we must have
dimZ2 H

∗(W ; Z2) = dimZ2 H
∗(WG; Z2), which implies that W is equivariantly for-

mal. The proposition is proved. ��
The following lemma is parallel to [27, Lemma 9.1]. Its proof is almost identical

to the proof in [27], hence omitted.

Lemma 3.13 Let Q be a nice manifold with corners and f be a proper face of Q.
Then, Q f is mod 2 face-acyclic if and only if so is Q.

4 Equivariantly Formal 2-Torus Manifolds with Mod 2 Cohomology
Generated by Degree-One Part

In our study of equivariantly formal 2-torus manifolds, those manifolds whose mod
2 cohomology rings are generated by their degree-one part are of special importance.
We will see in Sect. 5 that the study of general equivariantly formal 2-torus manifolds
can be reduced to the study of these special 2-torus manifolds by a sequence of real
blow-ups along facial submanifolds.

The following lemma is parallel to [27, Lemma 2.3].

Lemma 4.1 Suppose there is an equivariantly formal Z
r
2-action on a compact mani-

fold M where the cohomology ring H∗(M; Z2) is generated by its degree-one part.
Then, for any subgroup H of Zr

2 and every connected component N of MH , the homo-
morphism i∗ : H∗(M; Z2) → H∗(N ; Z2) is surjective where i : N ↪→ M is the
inclusion. In particular, H∗(N ; Z2) is also generated by its degree-one part.

Proof First, we assume H ∼= Z2. We have a commutative diagram as follows:

H∗
H (M; Z2)

ι∗M
��

î∗H �� H∗
H (N ; Z2)

ι∗N
��

H∗(M; Z2)
i∗ �� H∗(N ; Z2)

(19)
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where H∗
H (N ; Z2) ∼= H∗(N ; Z2) ⊗ H∗(BH ; Z2) and î∗H is the homomorphism on

equivariant cohomology induced by i . By our assumption, both ι∗M and ι∗N are surjec-
tive. The following argument is parallel to the proof of [27, Lemma 2.3].

By [7, Theorem VII.1.5], the inclusion MH ↪→ M induces an isomorphism
Hk
H (M; Z2) → Hk

H (MH ; Z2) for sufficiently large k, which implies that

î∗H : Hk
H (M; Z2) → Hk

H (N ; Z2)

is surjective if k is sufficiently large.
Let v1, · · · , vd ∈ H1(M; Z2) be a set of multiplicative generators of H∗(M; Z2).

For each 1 ≤ l ≤ d, let v̂l be a lift of vl in H∗
H (M; Z2) andwl := i∗(vl) ∈ H1(N ; Z2).

Let t be a generator of H1(BH ; Z2) ∼= Z2. By the commutativity of the above dia-
gram (19),

î∗(̂vl) = bl t + wl for some bl ∈ Z2.

Then, for an arbitrary element ζ ∈ H∗(N ; Z2), there exists a large enough integer
q ∈ Z and a polynomial P(x1, · · · , xd) such that

î∗
(
P (̂v1, · · · , v̂d)

) = ζ ⊗ tq .

On the other hand, we have

î∗
(
P (̂v1, · · · , v̂d)

) = P(b1t + w1, · · · , bd t + wd) =
∑

k≥0

Pk(w1, · · · , wd) ⊗ tk

for some polynomials Pk , k ≥ 0. Hence ζ = Pq(w1, · · · , wd) = i∗(P(v1, · · · , vd)).
Therefore, i∗ is surjective and H∗(N ; Z2) is generated by w1, · · · , wd ∈ H1(N ; Z2).

For the general case, suppose H ∼= Z
s
2, 1 ≤ s ≤ r . Then, we have a sequence:

{0} = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hs = H

where Hl ∼= Z
l
2 for each 0 ≤ l ≤ s. Moreover, we have

MH = (
(MH1)H2/H1) · · · )Hs/Hs−1 , Hl/Hl−1 ∼= Z2, l = 1, · · · , s.

Repeating the above argument for each Hl/Hl−1 proves the lemma. ��
The following lemma is parallel to [27, Lemma 3.4].

Lemma 4.2 Let W be an equivariantly formal 2-torus manifold whose cohomology
ring H∗(W ; Z2) is generated by its degree-one part. Then, all non-empty multiple
intersections of the characteristic submanifolds of W are equivariantly formal 2-torus
manifolds whose mod 2 cohomology rings are generated by their degree-one part as
well.

Proof Let F1, · · · , Fm be all the facets of Q and G = Z
n
2 where n = dim(W ). In the

following, we use the notations defined in Sect. 2.3. First of all, since the characteristic
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submanifold Wi is a connected component of the fixed point set XGi , Lemma 4.1
implies that the restriction H∗(W ; Z2) → H∗(Wi ; Z2) is surjective. So the G-action
on Wi is equivariantly formal (by Proposition 3.4). Then, we have

H∗
G(W ; Z2) ∼= H∗(W ; Z2) ⊗ H∗(BG; Z2),

H∗
G(Wi ; Z2) ∼= H∗(Wi ; Z2) ⊗ H∗(BG; Z2).

It follows that the restriction H∗
G(W ; Z2) → H∗

G(Wi ; Z2) is also surjective. In addi-
tion, by using Proposition 2.5 (i) and a completely parallel argument to the proof of [26,
Prop. 3.4(2)], we can prove the following claim:

Claim: H∗
G(W ; Z2) is generated as a ring by all the equivariant Thom classes

τ1, · · · , τm of the normal bundles of the characteristic submanifolds W1, · · · ,Wm .
WhenWj1 ∩· · ·∩Wjs = ∅, τ j1 · · · τ js clearly vanishes. So the above claim implies

that for any k ≥ 0, Hk
G(W ; Z2) is additively generated by the monomials τ

k1
j1

· · · τ ksjs
such that Wj1 ∩ · · · ∩ Wjs �= ∅ and k1 + · · · + ks = k.

Let N be a connected component of Wi1 ∩ · · · ∩ Wik , 1 ≤ k ≤ n. Then, N is the
facial submanifold W f over some codimension-k face f of Q. So by Lemma 4.1,
N is an equivariantly formal 2-torus manifold whose cohomology ring H∗(N ; Z2) is
generated by its degree-one part. Moreover, by a completely parallel argument to the
proof of [27, Lemma 3.4], we can show that N is the only connected component of
Wi1 ∩ · · · ∩ Wik from the above discussion of Hk

G(W ; Z2). The lemma is proved. ��
The following proposition is parallel to [27, Lemma 8.2 (2)].

Proposition 4.3 Suppose W is an n-dimensional equivariantly formal 2-torus man-
ifold with orbit space Q and the cohomology ring H∗(W ; Z2) is generated by its
degree-one part. Then, the geometrical realization |PQ | of the face poset PQ of Q is
a Gorenstein* simplicial complex over Z2. In particular, Z2[PQ] = Z[Q] is Cohen-
Macaulay and H∗(|PQ |; Z2) ∼= H∗(Sn−1; Z2).

Proof By Lemma 4.2, all non-empty multiple intersections of the characteristic sub-
manifolds of W are connected. This implies that |PQ | is a simplicial complex.
Moreover, by [30, II 5.1(d)], it is enough to verify the following three conditions
to prove that |PQ | is Gorenstein* over Z2:

(a) Z2[PQ] is Cohen-Macaulay;
(b) Every (n − 2)-simplex in PQ is contained in exactly two (n − 1)-simplices;
(c) χ(PQ) = χ(Sn−1).

Since W is equivariantly formal, H∗
G(W ; Z2) is a free H∗(BG; Z2)-module and

Z2[PQ] = Z2[Q] is isomorphic to H∗
G(W ; Z2) (by Corollary 3.10) where G = Z

n
2.

This implies (a).
Note that each (n − 2)-simplex of PQ corresponds to a non-empty intersection

of n − 1 characteristic submanifolds of W . The latter intersection is an equivariantly
formal 1-manifold by Lemma 4.2, so it is a circle with exactly two G-fixed points.
This implies (b).

The proof of (c) is completely parallel to [27, Lemma 8.2 (2)], so we leave it to the
reader. The proposition is proved. ��
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Using the above proposition and the lemmas from Sect. 3, we obtain the following
theorem that is parallel to [27, Theorem 7.7].

Theorem 4.4 Let W be a 2-torus manifold whose orbit space is Q. Then, W is equiv-
ariantly formal and the cohomology ring H∗(W ; Z2) is generated by its degree-one
part if and only if the following three conditions are satisfied:

(a) H∗
G(W ; Z2) is isomorphic to Z2[Q] = Z2[PQ] as a graded ring.

(b) Z2[Q] is Cohen-Macaulay.
(c) |PQ | is a simplicial complex.
Proof The argument is completely parallel to the proof of [27, Theorem 7.7]. We only
need to replace T n by Z

2
n and Q-coefficients by Z2-coefficients to obtain our proof

here. ��

5 Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. Our proof follows the proof of [27,
Theorem 8.3, Theorem 9.3] almost step by step, while some arguments for 2-torus
manifolds here are simpler than those for torus manifolds in [27].

5.1 Equivariant Cohomology of the Canonical Model

Let Q be a connected compact smooth nice n-manifold with corners. We call any
function λ : F(Q) → Z

n
2 that satisfies the linear independence relation in Sect. 2.1 a

characteristic function on Q. By the same gluing rule in (4), we can obtain a space
MQ(λ) fromany characteristic functionλon Q, called the canonicalmodel determined
by (Q, λ). It is easy to see that MQ(λ) is a 2-torus manifold of dimension n.

Let Q∨ denote the cone of the geometrical realization of the order complex ord(PQ)

ofPQ = PQ −{0̂}. So topologically, Q∨ is homeomorphic to Cone(|PQ |). Moreover,
Q∨ is a “space with faces” (see Davis [13, Sec. 6]) where each proper face f of Q
determines a unique “face” f ∨ of Q∨ that is the geometrical realization of the order
complex of the poset { f ′ | f ′ ⊆ f }. More precisely, f ∨ consists of all simplices of
the form f ′

k � · · · � f ′
1 � f ′

0 = f in ord(PQ). The “boundary” of Q∨, denoted by
∂Q∨, is ord(PQ) which is homeomorphic to |PQ |. So we have homeomorphisms:

∂Q∨ ∼= |PQ |, Q∨ ∼= Cone(|PQ |). (20)

Remark 5.1 When |PQ | is a simplicial complex, the space Q∨ with the face decom-
position was called in [14, p. 428] a simple polyhedral complex.

Suppose F1, · · · , Fm are all the facets of Q. Let F(Q∨) = {F∨
1 , · · · , F∨

m }. Then,
any characteristic function λ : F(Q) → Z

n
2 induces a map λ∨ : F(Q∨) → Z

n
2 where

λ∨(F∨
i ) = λ(Fi ), 1 ≤ i ≤ m. Then, by the same gluing rule in (4), we obtain a space

MQ∨(λ∨) with a canonical Z
n
2-action. By the same argument as in the proof of [27,

Proposition 5.14], we can prove the following.
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Proposition 5.2 There exists a continuous map φ : Q → Q∨ which preserves the face
structure and induces an equivariant continuous map

� : MQ(λ) → MQ∨(λ∨).

Here φ : Q → Q∨ is constructed inductively, starting from an identification of
vertices and extending the map on each higher-dimensional face by a degree-one map.
Since every face f ∨ of Q∨ is a cone, there are no obstructions to such extensions.

In addition, by a similar argument to that in [14, Theorem 4.8], we can obtain the
following result.

Proposition 5.3 H∗
G(MQ∨(λ∨); Z2) is isomorphic to Z2[Q] where G = Z

n
2 .

On the other hand, H∗
G(MQ(λ); Z2) could be much more complicated. Indeed,

it is shown in [31, Theorem 1.7] that H∗
G(MQ(λ); Z2) isomorphic to the so called

topological face ring of Q over Z2 which involves the mod 2 cohomology rings of all
the faces of Q.

5.2 Proof of Theorem 1.3 (ii)

Proof We first prove the “if” part. Let Q be an n-dimensional mod 2 homology poly-
tope and G = Z

n
2. Since H1(Q; Z2) = 0 and W is locally standard, the principal

G-bundle ξW determined by W is a trivial G-bundle over Q. Then, by [25, Lemma
3.1],W is equivariantly homeomorphic to the canonical model MQ(λW ) (see (4)). So
by Proposition 5.3, there exists an equivariant continuous map

� : W = MQ(λW ) → MQ∨(λ∨
W ) := W∨.

Let π : W → Q and π∨ : W∨ → Q∨ be the projections, respectively. Let
F1, · · · , Fm be all the facets of Q. Since Q is a mod 2 homology polytope, so are
F1, · · · , Fm . For brevity, let

Wi = π−1(Fi ), W∨
i = (π∨)−1(F∨

i ), 1 ≤ i ≤ m.

It is easy to see that the Z
n
2-actions on W\⋃

i Wi and W∨\⋃
i W

∨
i are both free.

Then, we have

H∗
G

(
W ,

⋃

i

Wi ; Z2

)∼=H∗(Q, ∂Q; Z2), H
∗
G

(
W∨,

⋃

i

W∨
i ; Z2

)∼=H∗(Q∨, ∂Q∨;Z2).
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So � : W → W∨ induces a map between the following two exact sequences:

�� H∗(Q∨, ∂Q∨; Z2)

φ∗

��

�� H∗
G(W∨; Z2)

�∗
��

�� H∗
G

( ⋃
i W

∨
i ; Z2

)

�∗
��

�� · · ·

�� H∗(Q, ∂Q; Z2) �� H∗
G(W ; Z2) �� H∗

G

( ⋃
i Wi ; Z2

)
�� · · ·
(21)

Each Wi is a 2-torus manifold over the homology polytope Fi . So using induc-
tion and a Mayer-Vietoris argument, we may assume that in the diagram (21),
�∗ : H∗

G(
⋃

i W
∨
i ; Z2) → H∗

G(
⋃

i Wi ; Z2) is an isomorphism.
By Proposition 2.9, H∗(|PQ |; Z2) ∼= H∗(Sn−1; Z2). Then, by (20), we obtain

H∗(Q∨, ∂Q∨; Z2) ∼= H∗(Dn, Sn−1; Z2).

We also have H∗(Q, ∂Q; Z2) ∼= H∗(Dn, Sn−1; Z2) since Q is an n-dimensional
mod 2 homology polytope. By the construction of φ, it is easy to see that the homo-
morphism φ∗ : H∗(Q∨, ∂Q∨; Z2) → H∗(Q, ∂Q; Z2) is an isomorphism. Then, by
applying the five-lemma to the diagram (21),we can deduce that�∗ : H∗

G(W∨; Z2) →
H∗
G(W ; Z2) is also an isomorphism. So by Proposition 5.3, H∗

G(W ; Z2) ∼= Z2[Q].
Besides, we also know that Z2[Q] is Cohen-Macaulay by Proposition 2.9. Then,

since |PQ | is a simplicial complex, all the three conditions in Theorem4.4 are satisfied.
Hence W is equivariantly formal and H∗(W ; Z2) is generated by its degree-one part
as a ring. The “if” part is proved.

Next, we prove the “only if” part. By the assumption on W and Lemma 4.2, all
non-empty multiple intersections of characteristic submanifolds of W are connected
and their cohomology rings are generated by their degree-one elements. So we may
assume by induction that all the proper faces of Q are mod 2 homology polytopes. In
particular, the proper faces of Q are all mod 2 acyclic. From these assumptions, we
need to prove that Q itself is mod 2 acyclic.

By Proposition 4.3, |PQ | is a simplicial complex. So |PQ | is the nerve simplicial
complexof the cover of ∂Q by the facets ofQ. By aMayer-Vietoris sequence argument,
we can deduce that H∗(∂Q; Z2) ∼= H∗(|PQ |; Z2). This together with Proposition 4.3
shows that

H∗(∂Q; Z2) ∼= H∗(Sn−1; Z2). (22)

Claim: H1(Q; Z2) = 0.
Since W is equivariantly formal, H∗

G(W ; Z2) is a free H∗(BG; Z2)-module. On
the other hand, H∗(Q, ∂Q; Z2) is finitely generated over Z2 since Q is compact. So
H∗(Q, ∂Q; Z2) is a torsion H∗(BG; Z2)-module. It follows that the whole bottom
row in the diagram (21) splits into short exact sequences:

0 → Hk
G(W ; Z2) → Hk

G

( ⋃

i

Wi ; Z2

)
→ Hk+1(Q, ∂Q; Z2) → 0, k ≥ 0. (23)
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Take k = 0 above, we clearly have H0
G(W ; Z2) ∼= H0

G

( ⋃
i Wi ; Z2

) ∼= Z2. This

implies H1(Q, ∂Q; Z2) = 0. So in the following exact sequence,

· · · → H1(Q, ∂Q; Z2) → H1(Q; Z2) → H1(∂Q; Z2) → · · · ,

H1(Q; Z2) is mapped injectively into H1(∂Q; Z2) ∼= H1(Sn−1; Z2). Note that if
n = 1, the claim is trivial. When n = 2, we have ∂Q = S1 and H1(Q; Z2) = 0 or
Z2. But by the classification of compact surfaces, the latter case is impossible. When
n ≥ 3, we have H1(∂Q; Z2) = 0, so H1(Q; Z2) = 0. The claim is proved.

Now since H1(Q; Z2) = 0, by the above proof of the “if” part, there exists an
equivariant homeomorphism � fromW to the canonical model MQ(λW ). In addition,
by (20) and Proposition 4.3, we have

H∗(∂Q∨; Z2) ∼= H∗(|PQ |; Z2) ∼= H∗(Sn−1; Z2).

So we have an isomorphism

H∗(Q∨, ∂Q∨; Z2) ∼= H∗(Dn, Sn−1; Z2). (24)

Then, by the construction ofφ, themapφ∗ : H∗(Q∨, ∂Q∨; Z2)→H∗(Q, ∂Q; Z2)

is an isomorphism in degree n (since Q is connected) and thus is injective in all degrees.
So by an extended version of the 5-lemma, we can deduce that in the diagram (21) the
map �∗ : H∗

G(W∨; Z2) → H∗
G(W ; Z2) is injective. Moreover,

• H∗
G(W∨; Z2) = H∗

G(MQ∨(λ∨
W ); Z2) ∼= Z2[Q] by Proposition 5.3, and

• Z2[Q] ∼= H∗
G(W ; Z2) by Corollary 3.10.

So H∗
G(W∨; Z2) and H∗

G(W ; Z2) have the same dimension over Z2 in each degree.
Therefore, the monomorphism �∗ : H∗

G(W∨; Z2) → H∗
G(W ; Z2) is actually an

isomorphism. Then, by the 5-lemma again, we can deduce from the diagram (21) that
φ∗ : H∗(Q∨, ∂Q∨; Z2) → H∗(Q, ∂Q; Z2) is an isomorphism. So by (24),

H∗(Q, ∂Q; Z2) ∼= H∗(Dn, Sn−1; Z2)

which implies that Q is mod 2 acyclic by Poincaré-Lefschetz duality. This finishes
the proof. ��

5.3 Proof of Theorem 1.3 (i)

Proof We can reduce Theorem 1.3 (i) to Theorem 1.3 (ii) by real blow-ups ofW along
sufficient many facial submanifolds, which corresponds to doing some barycentric
subdivisions of the face poset PQ of Q (see Fig. 2). Indeed, after doing enough
barycentric subdivisions to PQ , we can turn |PQ | into a simplicial complex. Let Ŵ be
the 2-torus manifold obtained after these real blow-ups on W and Q̂ be its orbit space
(with |PQ̂ | being a simplicial complex).

Fact-1: Ŵ is equivariantly formal if and only if so is W (by Proposition 3.12).
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Fig. 2 Cutting a vertex and an edge

Fact-2: Q̂ is mod 2 face-acyclic if and only if so is Q (by Lemma 3.13).

We first prove the “if” part. Suppose W is locally standard and Q is mod 2 face-
acyclic. Then, Ŵ is also locally standard and Q̂ is a mod 2 homology polytope by
Fact-2. So by Theorem 1.3 (ii), Ŵ is equivariantly formal, then so is W .

Next, we prove the “only if” part. If W is equivariantly formal, then so is Ŵ , and
W is locally standard by Theorem 3.3. So by Corollary 3.10, we have a graded ring
isomorphism H∗

G(Ŵ ; Z2) ∼= Z2[Q̂]. Moreover, since |PQ̂ | is a simplicial complex,
Z2[Q̂] is generated by its degree-one elements, then so is H∗

G(Ŵ ; Z2). In addition,
since ι∗̂

W
: H∗

G(Ŵ ; Z2) → H∗(Ŵ ; Z2) is surjective, H∗(Ŵ ; Z2) is also generated by

its degree-one elements. Then, by Theorem 1.3 (ii), Q̂ is a mod 2 homology polytope.
So by Fact-2, Q is mod 2 face-acyclic. ��

5.4 Proof of Theorem 1.5

Proof We first prove the “if” part. Assume that there exists a regular m-involution τ

on W . By definition the fixed point set W τ of τ is discrete, then so is WZ
n
2 ⊆ W τ .

This implies that Q must have vertices. Let p be a vertex of Q and let F1, · · · , Fn be
all the facets containing p. By the property of λW ,

e1 = λW (F1), · · · , en = λW (Fn)

form a linear basis of Z
n
2 over Z2. Then, since the Z

n
2-action on W is locally standard,

it is easy to see that only when g = e1 + · · · + en could the fixed point set W τg be
discrete. So we must have τ = τe1+···+en , and in particular

W τ = W τe1+···+en = WZ
n
2 .

Hence

dimZ2 H
∗(WZ

n
2 ; Z2) = dimZ2 H

∗(W τ ; Z2) = dimZ2 H
∗(W ; Z2)
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where the second “=” is due to the assumption that τ is an m-involution. So
by Theorem 1.1, W is equivariantly formal. Then, Q is mod 2 face-acyclic by
Theorem 1.3. In particular, every face of Q has a vertex and the 1-skeleton of Q
is connected (by Lemma 2.2).

It remains to prove that the image of λW : F(Q) → Z
n
2 is exactly {e1, · · · , en}.

Indeed, take an edge e of Q whose vertices are p and p′. So the n facets of Q that
contain p′ are F1, · · · , Fi−1, F ′

i , Fi+1, · · · , Fn for some 1 ≤ i ≤ n. Then, since
τe1+···+en is an m-involution, we must have

λW (F1) + · · · + λW (Fi−1) + λW (F ′
i ) + λW (Fi+1) + · · · + λW (Fn) = e1 + · · · + en .

This implies λW (F ′
i ) = ei . Then, since the 1-skeleton of Q is connected and every

facet F of Q contains a vertex, we can iterate the above argument to prove that every
λW (F) must take value in {e1, · · · , en}.

Next, we prove the “only if” part. Suppose Q is mod 2 face-acyclic and the values
of the characteristic function λW of Q consist exactly of a linear basis e1, · · · , en of
Z
n
2. By Theorem 1.3 (i), W is equivariantly formal. So we have

dimZ2 H
∗(WZ

n
2 ; Z2) = dimZ2 H

∗(W ; Z2) (by Theorem 1.1).

On the other hand, our assumption on λW implies that the regular involution τ =
τe1+···+en satisfies W

τ = WZ
n
2 which is a discrete set. Then, we have

dimZ2 H
∗(W τ ; Z2) = dimZ2 H

∗(WZ
n
2 ; Z2) = dimZ2 H

∗(W ; Z2).

So τ is a regular m-involution on W by definition. The theorem is proved. ��
Remark 5.4 If we do not assume a 2-torus manifold W to be locally standard, even
if W admits a regular m-involution, W may not be equivariantly formal or locally
standard. For example: let

S2 = {(x1, x2, x3) ∈ R
3 | x21 + x22 + x23 = 1}.

Define two involutions σ and σ ′ on S2 by

σ(x1, x2, x3) = (−x1,−x2, x3), σ ′(x1, x2, x3) = (x1, x2,−x3).

It is easy to see that σ is an m-involution on S2 with two isolated fixed points
(0, 0, 1) and (0, 0,−1). But since the Z

2
2-action on S2 determined by σ and σ ′ has no

global fixed point, it is not equivariantly formal. We can also directly check that this
Z
2
2-action on S2 is not locally standard.

Finally, we propose some questions on weakly equivariantly formal 2-torus mani-
folds:

Question-3:Does there exist a weakly equivariantly formal 2-torusmanifoldwhich
is not equivariantly formal?
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Question-4: If a 2-torus manifold is weakly equivariantly formal, are there any
restrictions on the topology and combinatorial structure of its orbit space?

Question-5:Whether or not a 2-torus manifold being weakly equivariantly formal
is determined only by the topology and combinatorial structure of its orbit space?
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