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Abstract
We introduce and study “2-roots", which are symmetrized tensor products of orthog-
onal roots of Kac–Moody algebras. We concentrate on the case where W is the Weyl
group of a simply laced Y-shaped Dynkin diagram Ya,b,c having n vertices and with
three branches of arbitrary finite lengths a, b and c; special cases of this include types
Dn , En (for arbitrary n ≥ 6), and affine E6, E7 and E8. We show that a natural
codimension-1 submodule M of the symmetric square of the reflection representation
of W has a remarkable canonical basis B that consists of 2-roots. We prove that, with
respect to B, every element of W is represented by a column sign-coherent matrix in
the sense of cluster algebras. If W is a finite simply laced Weyl group, each W -orbit
of 2-roots has a highest element, analogous to the highest root, and we calculate these
elements explicitly. We prove that if W is not of affine type, the module M is com-
pletely reducible in characteristic zero and each of its nontrivial direct summands is
spanned by a W -orbit of 2-roots.
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Introduction

A 2-root is a symmetrized tensor product α ∨ β := α ⊗ β + β ⊗ α, where α and β

are orthogonal roots for a Kac–Moody algebra. In this paper, we develop the theory of
2-roots, concentrating on the case where the Dynkin diagram � is a Y-shaped, simply
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laced Dynkin diagram of rank n = a + b + c = 1, with arbitrarily long branches of
positive lengths a, b, and c (Fig. 1). The Weyl groups W = W (Ya,b,c) of these types
play an important role in group theory even outside the finite and affine types, in part
because some of them have very interesting finite quotients. For example, by adding
one extra relation to the Coxeter presentation for the Weyl group of type Y3,4,4, it is
possible to obtain the group C2 × M, where C2 has order 2 and M is the Monster
simple group [20]. The special cases of Y1,2,6 and Y1,2,7, also known respectively as
E10 and E11, appear in the physics literature in M-theory and related contexts.

The reflection representation of theWeyl groupW of Ya,b,c is an n-dimensional real
representation V of W that is equipped with a symmetric W -invariant bilinear form
B. As we recall in Proposition 1.1, the module V turns out to be irreducible unless
Ya,b,c is one of the three affine types: affine E6, E7 and E8. The symmetric square
S2(V ) is never an irreducible module (except in trivial cases) because the kernel of
B (regarded as a map from S2(V ) to R) forms a codimension-1 submodule M that
contains the set �2 of 2-roots. We call a 2-root real if it arises from an orthogonal
pair of real roots. The Weyl group W acts on the set �2

re of real 2-roots in a natural
way, and it follows from known results that the action has three orbits in type D4, two
orbits in type Dn for n > 4, and one orbit otherwise (Proposition 3.9). If Ya,b,c is not
of affine type, then in characteristic zero, the module M is a direct sum of irreducible
submodules, each of which is the span of one of theW -orbits of real 2-roots (Theorem
7.8). Furthermore, in the non-affine case, the module M has a complement in S2(V ),
spanned by a kind of Virasoro element (Proposition 7.7), so that S2(V ) is completely
reducible.

We show in Theorem 1.8 that there is a canonically defined subset of�2
re that forms

a basis for M , which we call the canonical basis of M . One way to construct this basis
is in terms of the stabilizer inW of a simple root αi , which is known by work of Brink
[4] and Allcock [1] to be a reflection group with simple system {βi,1, . . . , βi,n−1}.
The canonical basis is then given (Theorem 2.7) by the (redundantly described) set
B := {αi ∨ βi, j : 1 ≤ i ≤ n, 1 ≤ j < n}. If si is a simple reflection and v is a
canonical basis element, then si (v) is equal either to −v, or to v, or to v + v′ for some

Fig. 1 The Dynkin diagram of type Ya,b,c
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other basis element v′ (Theorem 4.7). This is very similar to how a simple reflection
acts on a simple root, which is one of the reasons for the name “2-roots”.

On the module M , the matrices representing group elements w ∈ W with respect
to the canonical basis have integer entries. We prove (Theorem 5.1) that these matrices
are column sign-coherent in the sense of cluster algebras, which means that any two
nonzero entries in the same column of a matrix have the same sign. Because every
real 2-root isW -conjugate to a basis element (Proposition 3.3 (iii)), an equivalent way
to say this is that each real 2-root is an integer linear combination of canonical basis
elements with coefficients of like sign, similar to how every root of W is an integer
linear combination of simple roots with coefficients of like sign. It follows that the
elements of B have a simple characterization: they are the positive real 2-roots that
cannot be expressed as a positive linear combination of two or more positive real
2-roots.

We use the canonical basis B to define a partial order ≤2 on �2
re by declaring that

v1 ≤2 v2 if v2 − v1 is a positive linear combination of elements of B. We prove in
Proposition 6.4 that ≤2 is a refinement of the so-called monoidal partial order defined
by Cohen, Gijsbers, and Wales on sets of orthogonal positive roots in [7]. In the case
where W is finite, it then follows (Theorem 6.6) that �2

re contains a unique maximal
2-root with respect to ≤2, which we describe explicitly (Theorem 6.8).

Although we concentrate on the case of type Ya,b,c in this paper, some of the
results hold for type An by restriction. The difference in type A is that the orthogonal
complement of a root is not spanned by the roots it contains. When V is the reflection
representation in type A (corresponding to the partition (n − 1, 1)), it is known that
S2(V ) is the direct sum of three representations, corresponding to the partitions (n),
(n − 1, 1) and (n − 2, 2). (This follows from [2, Example 2], using the fact that the
exterior square

∧2
(V ) corresponds to the partition (n−2, 12); see also [12, Proposition

5.4.12].) In this case, the submodule (n − 2, 2) corresponds to the span of the 2-roots,
the submodule (n − 1, 1) corresponds to its complement in the module M , and the
submodule (n) corresponds to the Virasoro element.

We also note that the results of this paper do not seem to generalize readily to all
simply lacedWeyl groups. For example, let n > 6 and consider the simply lacedWeyl
group W = W (D̃n−1) of type affine D and rank n. Then by the third example in [1,
Section 4], for any simple root αi of W the stabilizer Wαi of αi in W is a Weyl group
of rank n, not n−1. It follows that the elements of the form αi ∨β where β is a simple
root of Wαi no longer form a linearly independent set, therefore the conclusions in
Theorem 2.7 no longer hold.

The paper is organized as follows. Section1 defines the canonical basis B of 2-
roots (Theorem 1.8). Section2 explains how to construct the basis B in terms of the
stabilizers of real roots (Theorem 2.7). Section3 describes theW -orbits of real 2-roots.
Section4 describes the action of reflections on 2-roots, and gives a simple formula
(Theorem 4.7) for the action of a simple reflection on a canonical basis element. In
Sect. 5, we prove the sign-coherence properties of the canonical basis (Theorem 5.1
and Theorem 5.2). In Sect. 6, we prove that a W -orbit of 2-roots for a finite simply
laced Weyl group has a unique maximal element (Theorem 6.6) and we determine
this maximal element explicitly (Theorem 6.8). In Sect. 7, we use W -orbits of 2-
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roots to describe the submodules of S2(V ), both in general characteristic (Theorem
7.3) and in characteristic zero (Theorem 7.8). In Sect. 8, we determine when W acts
faithfully on the representations arising from W -orbits (Theorem 8.6). The results in
this paper immediately suggest directions for future research, which we summarize in
the conclusion.

1 The Canonical Basis of 2-roots

Throughout this paper, we will work over a field F that is of characteristic zero unless
otherwise stated. By default, we will assume that F = R, but everything will be
defined over Q, and scalars can be extended if necessary.

Let � = Ya,b,c be a simply laced Dynkin diagram with n = a + b+ c+ 1 vertices,
consisting of three paths with a, b, and c vertices emanating from a trivalent branch
vertex. Let A be the associated Cartanmatrix, whose entries Ai j are equal to 2 if i = j ,
−1 if i and j are adjacent in �, and 0 otherwise.

LetW be theWeyl group associated to�. It is generated by the set S = {s1, . . . , sn}
indexed by the vertices of �, and subject to the defining relations s2i = 1, si s j = s j si
if Ai j = 0, and si s j si = s j si s j if Ai j = −1.

Let � = {α1, . . . , αn} be the set of simple roots of W , and let V be the R-span of
�. Let B be the Coxeter bilinear form on V , normalized so that B(αi , α j ) = Ai j , and
let

V⊥ = {v ∈ V : B(v, v′) = 0 for all v′ ∈ V }
be the radical of B. A real root of W is an element of V of the form w(αi ), where
w ∈ W and αi is a simple root. The real root α = w(αi ) is associated with the
reflection sα = wsiw−1; in particular, we have sαi = si for each i . The reflection sα
acts on basis elements of V by the formula

sα(α j ) = α j − B(α, α j )α.

When V is endowed with this action, we call V the reflection representation of W .
It is immediate from the above formula that W stabilizes the Z-span, Z�, of the

simple roots. The lattice Z� is called the root lattice and is often denoted by Q. The
form B is invariant under this action of the Weyl group, meaning that we always have
B(v, v′) = B(w.v,w.v′). This implies that V⊥ is a W -submodule of V , and that we
have B(α, α) = 2 for every real root α.

A Kac–Moody algebra may have roots other than real roots; such roots are called
imaginary roots. We will not give the full definition of imaginary roots, but we will
need the result that in the case of affine Kac–Moody algebras, the imaginary roots are
precisely the nonzero integer multiples nδ of the lowest positive imaginary root, δ.
The root δ satisfies B(δ, v) = 0 for all v ∈ V .

Proposition 1.1 If W is aWeyl group of type Ya,b,c, then V is an irreducible W-module
if and only if W is not of type affine E6, affine E7 or affine E8.
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Proof By [19, Proposition 6.3], it suffices to show that V⊥ = 0. We omit the rest of
the proof, because the result is well known; see for example [9, Example 4.3]. 	


We regard the symmetric square, S2(V ) of V as a submodule (rather than as a
quotient) of V ⊗ V . If α, β ∈ V , we write α ∨ β (or β ∨ α) for the element of S2(V )

given by α ⊗ β + β ⊗ α. The basis � of V gives rise to a basis of S2(V ) given by

{αs ∨ αt : s, t ∈ �},

whichwe call the standard basis of S2(V ) (with respect to�). Restricting the diagonal
action of W on V ⊗ V gives S2(V ) the structure of a W -module.

The following result is an immediate consequence of the W -invariance of B.

Lemma 1.2 Regard B as a map B : S2(V )→F, and let M = ker B. Then M is a
W-submodule of S2(V ) of dimension

dim(M) = dim(S2(V )) − 1 =
(
n + 1

2

)

− 1

and S2(V )/M affords the trivial representation of W. 	

Recall that the positive roots ofW are partially ordered in such a way that α ≤ β if

and only if β −α is a nonnegative linear combination of simple roots, and that ifW is
finite, then there exists a highest root with respect to this order. In type An , the highest
root is the sum of all the simple roots. In type Dn , the highest root is

∑n
i=1 λiαi , where

we have

λi =
{
1 if i is an endpoint of �;
2 otherwise.

Definition 1.3 We define a positive real root α of type Ya,b,c to be elementary if α is
a simple root, or the highest root in a type A3 standard parabolic subsystem, or the
highest root in a type Dm standard parabolic subsystem form ≥ 4. To each elementary
root α, we associate a nonempty subset L(α) of the vertices of �, defined as follows.

(1) If αi is a simple root, then we define L(αi ) to be the set of all j for which Ai j = 0;
in other words, the set of all vertices in � that are not equal to or adjacent to i .

(2) If α is the highest root in a standard parabolic subgroup of type A3, then α =
αi + α j + αk for some path i– j–k in �, and we define L(α) = { j}. We denote
αi +α j +αk by ηi,k . If j is not the branch point of �, then i and k can be deduced
from a knowledge of j , and we may write η j for ηi,k .

(3) Suppose that α is the highest root of a standard parabolic subgroup of type Dm . If
m = 4, we define L(α) to be the three-element set consisting of the neighbours
of the branch point in �. If m > 4, we define L(α) to be the single element {i}
indexing the unique simple root in the support of α that is maximally far from the
branch point. In either case, we may denote α by θi for any i ∈ L(α).

We say that an elementary root α is of type 1, 2, or 3, depending on which of the three
mutually exclusive conditions above applies. If α is an elementary root and i ∈ L(α),
then we say α is elementary with respect to αi ∈ �.
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Remark 1.4 Any simple root αi other than the one corresponding to the branch point
of � lies in a unique standard parabolic subsystem of type Dm that is of minimal rank.
The simple roots involved in this parabolic subsystem are those on the path between
αi and the branch point, together with all the neighbours of the branch point. In the
notation of Definition 1.3, part (3), the highest root of this parabolic subsystem is θi ,
and it is elementary with respect to i .

Lemma 1.5 Let αi be a simple root of type Ya,b,c, and let n = a + b + c + 1. Then
there are precisely n − 1 elementary roots that are elementary with respect to αi , and
each such elementary root α satisfies B(αi , α) = 0.

Proof A case-by-case check based onDefinition 1.3 shows that whenever α is a simple
root and i ∈ L(α), we have B(αi , α) = 0. For the other assertion, we consider three
cases, according as αi is an endpoint of the Dynkin diagram �, or the branch point, or
one of the other vertices.

If αi is an endpoint of �, then the n−1 elementary roots α with i ∈ L(α) are (a) the
n− 2 simple roots that are not equal or adjacent to αi , and (b) the root θi of Definition
1.3, part (3).

If αi is the branch point of �, then the n − 1 elementary roots α with i ∈ L(α)

are (a) the n − 4 simple roots that are not equal or adjacent to αi , and (b) the three
elementary roots ηh, j of type 2 with i ∈ L(ηh, j ).

If αi is neither an endpoint nor the branch point of �, then the n − 1 elementary
roots α with i ∈ L(α) are (a) the n − 3 simple roots that are not equal or adjacent to
αi ; (b) the root ηi of Definition 1.3, and (c) the root θi of Definition 1.3, part (3). 	


Recall that the roots of W are partially ordered by stipulating that α ≤ β if β − α

is a linear combination of simple roots with nonnegative coefficients.

Lemma 1.6 Let α be a positive root that is elementary with respect to the simple root
αi in type Ya,b,c. If α is a linear combination of positive roots β1, . . . , βr with positive
integer coefficients and with r > 1, then not all of the βk can be orthogonal to αi .

Proof Note that the hypotheses imply that we have βk < α for all k. If α is a simple
root, then the statement holds vacuously.

If α = ηh, j = αh + αi + α j , then the only positive roots β < α are

β ∈ {αh, αi , α j , αh + αi , αi + α j }

and none of the roots in this list is orthogonal to αi .
Finally, suppose that α = θi , and consider the parabolic subgroup of type Dm in

which θi is the highest root. Define α j to be the simple root adjacent to αi in the
support of θ . It is well known (and mentioned in [1, §4]) that the roots orthogonal to
αi in Dm form a root system of type Dm−2 ∪ A1, if we interpret D3 as A3 and D2 as
A1 ∪ A1. The roots in the Dm−2 component are those that do not involve αi or α j ,
and the roots in the A1 component are {±θi }. It follows that the only positive roots
β < θi that are orthogonal to αi come from the Dm−2 component, so that αi and α j

both appear with zero coefficient in every βk . This contradicts the fact that αi appears
with a nonzero coefficient in α. 	
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Definition 1.7 Let V be the reflection representation associated with the Dynkin dia-
gram Ya,b,c. We define B = B(a, b, c) to be the subset of S2(V ) consisting of all
elements of the form αi ∨ β, where αi ∈ � and where β is elementary with respect
to αi .

Theorem 1.8 Let � be a Dynkin diagram of type Ya,b,c, let n = a + b + c + 1,
and let B be the bilinear form on the associated reflection representation V . The set
B = B(a, b, c) is a basis for the submodule M = ker B of S2(V ).

Proof Lemma 1.5 implies that every element of B lies in M . The proof now reduces
to showing that B = B(a, b, c) is linearly independent and has cardinality

(n+1
2

) − 1,
which by Lemma 1.2 is equal to dim(M). We prove these two claims by induction on
k = max(a, b, c).

The base case, k = 1, corresponds to � being of type D4. We label the vertices of
� by {1, 2, 3, 4}, where 2 is the branch point. The canonical basis is then given by

{α1∨θ1, α3∨θ3, α4∨θ4, α2∨η1,3, α2∨η1,4, α2∨η3,4, α1∨α3, α1∨α4, α3∨α4}

which has size 9 = (5
2

) − 1, as required.
Suppose for a contradiction that there is a nontrivial dependence relation between

these nine elements. We can show that B is linearly independent by expanding every-
thing in terms of the standard basis {αi ∨ α j : 1 ≤ i, j ≤ n} of S2(V ), as follows.
For each i ∈ {1, 3, 4}, the only element of B with αi ∨ αi in its support is αi ∨ θi .
This implies that the elements αi ∨ θi for i ∈ {1, 3, 4} appear with coefficient zero in
the dependence relation. Next, equating coefficients of α1 ∨ α2 implies that α2 ∨ η1,3
and α2 ∨ η1,4 occur with equal and opposite coefficients in the dependence relation.
Extending this argument to all standard basis elements αi ∨α2 for i ∈ {1, 3, 4} implies
that all basis elements α2 ∨ η1,3, α2 ∨ η1,4 and α2 ∨ η3,4 occur with coefficient zero in
the dependence relation. The remaining elements of B, α1 ∨ α3, α1 ∨ α4 and α3 ∨ α4,
are all standard basis elements and are therefore linearly independent, completing the
base case.

For the inductive step, we will prove that the statements hold when max(a, b, c) =
k + 1, assuming that they hold when max(a, b, c) = k. Since we now have
max(a, b, c) > 1, it follows that n = a + b + c + 1 > 4. We assume without
loss of generality that a ≤ b ≤ c. Denote the vertex of � at the end of the c-branch by
1, and denote the vertex next to it by 2; note that the hypothesis n > 4 guarantees that
2 is not the branch point of �. Let V ′ be the reflection representation in type Ya,b,c−1,
so that the set�\{α1} is a basis for V ′, and letB′ = B(a, b, c−1), so thatB′ ⊂ B. The
elements of B\B′ are α1 ∨ θ1, α2 ∨ η2, and the n − 2 elements α1 ∨ α j for j /∈ {1, 2}.
This implies that |B| = |B′| + n, and therefore by induction that

|B| = |B′| + n =
(
n

2

)

− 1 + n =
(
n + 1

2

)

− 1

as required.



R. M Green and T. Xu

It remains to show thatB is linearly independent. If not, then the linear independence
of B′ (by induction) means that we must have

∑

bi∈B\B′
λi bi =

∑

b′
j∈B′

μi b
′
j

for some scalars λi and μ j , where some λi is nonzero. Now express both sides of
this equation with respect to the standard basis of S2(V ), so that the right hand side
is a linear combination of the standard basis of S2(V ′). The only element of B with a
nonzero coefficient of α1 ∨ α1 is α1 ∨ θ1, so equating coefficients of α1 ∨ α1 in the
above equation implies that α1∨θ1 appears with coefficient zero. The only elements of
Bwith a nonzero coefficient of α1∨α2 are α1∨θ1 and α2∨η2, so equating coefficients
of α1 ∨ α2 implies that α2 ∨ η2 appears with coefficient zero. The other elements of
B\B′ are all standard basis elements that do not lie in S2(V ′), so they also appear with
coefficient zero. This contradiction completes the proof. 	


2 Stabilizers of Real Roots

Recall that a root of W is called real if it is W -conjugate to a simple root. We denote
the set of real roots of W by �re. In Sect. 2, we describe the relationship between the
basis B and the stabilizers of the real roots of W .

To do so, it is helpful to introduce some graph theoretic terminology. For each
integer k ≥ −1, there is a notion of attaching a path of length k to a graph G with n
vertices to form a graph with n + k vertices.

Definition 2.1 Let k ≥ 1 be an integer, and let α be a vertex of a graph G. To attach
a path of length k to G at α, we take the disjoint union of G and a path P with k
vertices, and then add an edge between α and one of the endpoints of P .

To attach a path of length 0 to G at α, we simply take the graph G itself. To attach
a path of length −1 to G at α, we remove the vertex α and all edges incident to α.

Definition 2.2 Let a, b, c ≥ −1 be integers, and let H be the 6-cycle h1–h2–h3–h4–
h5–h6–h1. We define Ha,b,c to be the graph obtained by attaching paths of lengths a,
b, and c to H at the vertices h1, h3, and h5, respectively (Fig. 2).

Remark 2.3 The graphs Ha,b,c are denoted by Qa+1,b+1,c+1 in the ATLAS of Finite
Groups [8, pp 232–233], where they play an important role in the structure of the
Monster simple group.

Lemma 2.4 The number of connected components of Ha,b,c, where a ≤ b ≤ c, is 3 if
a = b = c = −1, is 2 if a = b = −1 and c ≥ 0, and is 1 otherwise.

Proof This follows from the definition of Ha,b,c. 	

In the case of the Dynkin diagram Ya,b,c, the stabilizer in W of a real root has been

determined explicitly by Allcock [1], using a result of Brink [4].
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Fig. 2 The graph Ha,b,c

Theorem 2.5 [Allcock, Brink] Let W be a Weyl group of type Ya,b,c with a, b, c ≥ 1,
and let α be a real root of W . Then the stabilizer Wα = StabW (α) of α in W is
generated by the reflections it contains, and Wα is a simply laced Weyl group of type
Ha−2,b−2c−2.

Proof Since Ya,b,c is simply laced, all real roots are W -conjugate to each other and
therefore have conjugate stabilizers. It therefore suffices to prove the theorem in the
case where α is a simple root αi associated to a Coxeter generator s ∈ W .

It follows from the main result of [4] (see also [1, Corollary 7]) that Wαi can be
expressed as a semidirect product W� � ��, where W� is the subgroup generated by
all the reflections that fix αi , and �� is the free group π1(

odd, s). Since every edge
in Ya,b,c has an odd label of 3, the graph odd is simply the Dynkin diagram �. The
connected component of � containing s has no circuits, which means that the free
group in question is trivial, and that Wα

∼= W�. 	

The proof is completed from the discussion following [1, Theorem 13], which

describes an equivalent construction of the graphs Ha−2,b−2,c−2 as the graphs ofW�.

Example 2.6 Let W = W (Ya,b,c) and let α be a real root of W . If W is a Weyl
group of type D4 = Y1,1,1, D5 = Y1,1,2, or E8 = Y1,2,4, then by Theorem 2.5 the
corresponding Dynkin diagrams Ha−2,b−2,c−2 forWα are as pictured from left to right
in Fig. 3. If W is the affine Weyl group of type Ẽ6 = Y2,2,2, then the corresponding
Dynkin diagram Ha−2,b−2,c−2 = H0,0,0 for Wα is simply a hexagon, which equals
the Dynkin diagram of type Ã5. In other words, the stabilizer of each real root in type
affine E6 is isomorphic (as a reflection group) to the Weyl group of type affine A5.

Theorem 2.7 Let W be a Weyl group of type Ya,b,c with a, b, c ≥ 1, and let n =
a + b + c + 1 be the rank of W.

(i) Let αi be a simple root of W , and regard the stabilizer Wαi as a Weyl group
as in Theorem 2.5. Then the simple roots of Wαi are precisely the (n − 1)
elementary roots with respect to i from Definition 1.3.
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Fig. 3 The H -diagrams corresponding to the Weyl groups D4, D5 and E8

(ii) The canonical basis B(a, b, c) consists of all elements αi ∨ β, where αi is a
simple root of W , and β is a simple root of the stabilizer Wαi .

Proof By Theorem 2.5, the group Wαi has (a + b + c) simple roots. In general, the
simple roots can be characterized as the roots that are not expressible as positive integer
linear combinations of other positive roots. The elementary roots with respect to i have
this property by Lemma 1.6, and there are n − 1 = a + b + c of them by Lemma 1.5.
The conclusion of (i) follows.

The assertion of (ii) follows from (i) and Theorem 1.8. 	

Corollary 2.8 Let i and j be adjacent vertices of W , and for k ∈ {i, j}, define Rk ⊂ B
be the set of basis elements of the form αk ∨ β. Then the map φi j : Ri → R j defined
by φi j (v) = si s j (v) is a well-defined bijection with inverse φ j i .

Proof Note that for any real root β we have

φi j (αi ∨ β) = (si s j (αi )) ∨ (si s j (β)) = α j ∨ si s j (β).

In this way,φi j induces a bijectionφ′
i j between the real roots β orthogonal toαi and the

real roots β ′ = si s j (β) orthogonal to α j . Because the reduced word si s j has a length
of 2, it makes precisely two positive roots negative. These are α j and si (α j ) = αi +α j ,
neither of which is orthogonal to αi . It follows that φ′

i j sends positive roots to positive
roots, and negative roots to negative roots. In turn, this implies that φ′

i j sends the
simple roots of Wαi to the simple roots of Wα j , which proves that φi j has the claimed
property by Theorem 2.7 (i). The claim about inverses is immediate from the fact that
si s j is the inverse of s j si . 	


We record below a technical lemma for future use.

Lemma 2.9 Let αi be a simple root, let αi ∨ β ∈ B(a, b, c) be a canonical basis
element, and let γ ∈ �\{αi , β} be another simple root.
1. At least one of the following holds:

(i) B(αi , γ ) = B(β, γ ) = 0;
(ii) B(αi , γ ) = −1;
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(iii) B(αi , γ ) = 0 and B(β, γ ) = −1.

2. We have B(β, γ ) ∈ {−1, 0, 1}.
Proof (1) Since γ �= αi , it follows from the definition of the generalized Cartan matrix
that we must have B(αi , γ ) ∈ {0,−1}. If B(αi , γ ) = −1 then (ii) holds and we are
done, so assume that we have B(αi , γ ) = 0.

It now follows from Theorem 2.7 that γ and β are both simple roots of Wαi . Con-
sideration of the generalized Cartan matrix ofWαi now shows that either B(β, γ ) = 0
or B(β, γ ) = −1, which completes the proof.

(2) From the explicit description of B, the root β is either a simple root, or is the
highest root in a parabolic subsystem of Ya,b,c of type A3 or Dm . Note that if α′ is a
simple root that occurs with coefficient c ≥ 2 in β, then it must be the case that β is
the highest root in a subsystem of type Dn and c = 2. In this case, the only simple
roots γ in Ya,b,c that are adjacent to α′ must also be in the support of β.

Suppose first that γ is not in the support of β. If γ is not adjacent to a simple root
in the support of β, then we have B(β, γ ) = 0, which satisfies the conclusion. If, on
the other hand, γ is adjacent to a simple root α′ in the support of β, then the previous
paragraph shows that γ is adjacent to a simple root α′ in the support of β that occurs
with coefficient 1. There is a unique such simple root α′, because the support of β is a
tree and there are no circuits in the subgraph of Ya,b,c consisting of γ and the support
of β. It follows that B(β, γ ) = −1 in this case.

The final possibility is that γ is in the support of β. In this case, γ and β lie in a
subsystem of type A3 or Dm , and a case-by-case check (depending on whether the
subsystem is of type A3, D4, or Dm where m > 4) shows that B(β, γ ) ∈ {0, 1}. 	


3 Orbits of 2-roots

In Sect. 3, we investigate the action of W on pairs of orthogonal roots in more detail
(Proposition 3.3), which leads to a detailed description of the W -orbits of 2-roots
(Proposition 3.9). The following result is well known, and follows for example from
[3, Lemma 3.6].

Lemma 3.1 Let W be a simply laced Weyl group, and let αi and α j be two Coxeter
generators of W . Then αi and α j are conjugate in W if and only if they lie in the same
connected component of the Dynkin diagram of W. 	


The next result will be used in the proof of Proposition 3.3 below.

Lemma 3.2 Let � be a Dynkin diagram of type Ya,b,c and let �′ be a parabolic sub-
system of type Dm for m ≥ 4. Number the vertices of �′ such that β0 is the branch
vertex, and such that the paths are β0–β ′, β0–β ′′, and β0–β1– · · · –βm−3. Let θ be
the highest root of �′. Then the ordered pairs (βm−3, θ) and (β ′, β ′′) are in the same
W (Dm)-orbit.

Proof Let si , s′, s′′ be the reflections associated to the roots βi , β ′ and β ′′, respectively.
Direct calculation shows that

(sm−4sm−3)(sm−5sm−4) · · · (s0s1)(s′s0)
(
(β ′, β ′′)

) = (βm−3, θ)
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which completes the proof. 	

Proposition 3.3 Let W be a Weyl group of type Ya,b,c.

(i) The group W acts transitively on �re.
(ii) Every ordered pair of orthogonal real roots of W is W-conjugate to a pair

of orthogonal simple roots of W .
(iii) Every real 2-root is W-conjugate to an element of B.
(iv) Every ordered pair (α, β) of orthogonal real roots of W is W-conjugate to

its reversal, (β, α).
(v) Two ordered pairs of orthogonal real roots (α1, β1) and (α2, β2) are W-

conjugate if and only if the corresponding unordered pairs {α1, β1} and
{α2, β2} are W-conjugate. The number of W-orbits in each case is equal to
the number connected components of Ha−2,b−2,c−2. This number is 3 if W
is of type D4 = Y1,1,1, is 2 if W is of type Dn = Y1,1,n−3 for n > 4, and is
1 otherwise.

Proof Any real root isW -conjugate to a simple root by definition, and the simple roots
are in the same W -orbit by Lemma 3.1 because Ya,b,c is simply laced and connected.
It follows that W acts transitively on the set �re of real roots, proving (i).

Let α1 be a simple root that maximally far from the branch point of �, and let Wα1

be its stabilizer in W . By the previous paragraph, any ordered pair of orthogonal real
roots, (α, β), is W -conjugate to one of the form (α1, γ ). By Theorem 2.5, γ is a real
root for the a simply laced Weyl group Wα1 . It follows that there exists w ∈ Wα1

such that w(γ ) is a simple root in the root system of Wα1 . By Theorem 2.7, we have
w

(
(α1, γ )

) = (α1, β
′), where α1 ∨ β ′ ∈ B is a canonical basis element.

The explicit description of B in Definition 1.7 shows that either (a) β ′ is a simple
root of W , or (b) β ′ = θ1. In the second case, Lemma 3.2 implies that (α1, β

′) is
W -conjugate to an ordered pair of simple roots ofW . This completes the proof of (ii).

Part (iii) follows from (ii), because if αi and α j are orthogonal simple roots, then
αi ∨ α j is an element of B.

To prove (iv), it suffices by (ii) to consider the case where α and β are both simple
roots. By repeatedly using the identity si s j (αi ) = α j when i and j are adjacent vertices
of �, we may assume that there is a subgraph i– j–k of � in which α = αi and β = αk .
Direct calculation now shows that

s j si sks j
(
(α, β)

) = (β, α),

from which (iv) follows.
The first assertion of (v) follows from (iv), so it is enough to prove the second

assertion for ordered pairs of roots. We claim that there is a bijection between the set
of Wα1 -orbits of real roots of Wα1 and the set of W -orbits of ordered orthogonal pairs
of real roots of W , given by

φ([γ ]) = [(α1, γ )],
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where [γ ] is the Wα1 -orbit of γ , and [(α1, γ )] is the W -orbit of the pair (α1, γ ).
The map φ is well-defined and injective because Wα1 is the stabilizer of α1, and φ is
surjective because W acts transitively on �.

It follows from Lemma 3.1, applied to the simply laced Weyl group Wα1 , that
the orbits of real roots of Wα1 are in bijection with the connected components of
Ha−2,b−2,c−2. The number of these connected components is as claimed by Lemma
2.4. 	


The following basic result from linear algebra turns out to be very helpful.

Lemma 3.4 Let V be a finite dimensional vector space, and let α1 and α2 be two
linearly independent vectors in V . If there existβ1, β2 ∈ V such thatα1∨α2 = β1∨β2,
then the vectorsβi agreewith the vectorsαi up to changing the order andmultiplication
by nonzero scalars.

Proof We extend {α1, α2} to a basis A = {α1, . . . , αn} of V . Let {αi ∨ α j : 1 ≤
i ≤ j ≤ n} be the associated standard basis of S2(V ), and consider the expansion of
β1 ∨ β2 = α1 ∨ α2 in terms of this standard basis. Because the coefficient of αk ∨ αk

in α1 ∨ α2 is zero for all k, it follows that the supports of β1 and β2 with respect to A
are disjoint.

In turn, it follows that if αk ∨ αl is in the support of β1 ∨ β2, then either αk is in the
support of β1 and αl is in the support of β2, or vice versa, but not both. By considering
the coefficient of αk ∨αl in α1∨α2, this can only be possible if either k = 1 and l = 2,
or l = 1 and k = 2. This implies that either β1 is a nonzero scalar multiple of α1 and
β2 is a nonzero scalar multiple of α2, or vice versa, which completes the proof. 	

Definition 3.5 If v is an element of S2(V ) of the form α ∨β, then we call α and β the
components of v. By Lemma 3.4, the components of v ∈ S2(V ) are well defined up to
order and multiplication by nonzero scalars. We will therefore say “α is a component
of v" to mean the same as “some scalar multiple of α is a component of v".We call a 2-
root real (respectively, positive) if its components can be taken to be real (respectively,
positive).

Proposition 3.6 Let f be the function from the set of unordered pairs of orthogonal
real roots of Ya,b,c to �2

re defined by

f ({α, β}) = α ∨ β.

(i) The fibre of each 2-root consists of the two pairs {α, β} and {−α,−β}, and
these two pairs are conjugate to each other under the action of theWeyl group.

(ii) The function f induces a bijection between W-orbits of unordered pairs of
orthogonal real roots, and W-orbits of real 2-roots.

Proof The statement about fibres follows from Lemma 3.4 and the fact ([21, Propo-
sition 5.1 (b)]) that the only scalar multiples of a real root α are ±α. The two pairs
listed are conjugate to each other by the Weyl group element sαsβ , which completes
the proof of (i).



R. M Green and T. Xu

For part (ii), Proposition 3.3 (v) gives the equivalence between ordered and
unordered pairs of real roots. Part (i) then implies that the function f gives a well-
defined correspondence betweenordered pairs of orthogonal real roots and real 2-roots.

	


Remark 3.7 Proposition 3.6 allows us to identify the action ofW on pairs of orthogonal
real roots with the action of W on real 2-roots. We will use this implicitly from now
on, for example in Proposition 3.9 below.

Notation 3.8 In order to give a precise description of theW -orbits of 2-roots, we recall
the standard constructions of root systems of types A and D as described in [19, §2].
We endow R

n with the usual positive definite inner product and with an orthonormal
basis {ε1, ε2, . . . , εn}.

In type An−1, the positive roots are {εi − ε j : 1 ≤ i < j ≤ n}, the simple roots are
{εi − εi+1 : 1 ≤ i < n}, and the highest root is ε1 − εn . The Weyl group is isomorphic
to the symmetric group Sn and it acts on the basis elements εi by permutations. For
1 ≤ i < n, the simple reflection si corresponding to αi := εi − εi+1 acts as the
transposition (i, i + 1).

In type Dn , the positive roots are {εi ± ε j : 1 ≤ i < j ≤ n}, the simple roots are

{αi := εi − εi+1 : 1 ≤ i < n} ∪ {αn := εn−1 + εn}

and the highest root is ε1 + ε2. The numbering scheme for the simple roots is shown
in Fig. 4. The Weyl group acts on the elements ±εi by signed permutations. For
1 ≤ i < n, the simple reflection si corresponding to εi − εi+1 acts as the transposition
(i, i + 1). The simple reflection sn corresponding to εn−1 + εn acts as the signed
permutation switching εn−1 and −εn , and fixing ε j for j /∈ {n − 1, n}.

Proposition 3.9 Let W be a simply laced Weyl group of finite type.

(i) If W is of type An then there is a single orbit of positive 2-roots. The elements
of B in this orbit are

{αi ∨ α j : 1 ≤ i < j − 1 ≤ n − 1} ∪ {αi ∨ ηi−1,i+1 : 1 < i < n}

Fig. 4 The Dynkin diagram of type Dn (n ≥ 4)
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(ii) If W is of type D4 (where θ1 = θ3 = θ4 is the highest root), then there are
three orbits of positive 2-roots. The orbits intersect B in the sets

{α1 ∨ α3, α2 ∨ η1,3, α4 ∨ θ4}, {α1 ∨ α4, α2 ∨ η1,4, α3 ∨ θ3}, and

{α3 ∨ α4, α2 ∨ η3,4, α1 ∨ θ1}

(iii) If W is of type Dn for n ≥ 5 then there are two orbits of positive 2-roots,
X1 and X2, where

X1 = {
(εi − ε j ) ∨ (εi + ε j ) : 1 ≤ i < j ≤ n

}

and X2 = �+2\X1 where �+2 is the set of positive 2-roots. The elements
of B in the orbit X1 are the n − 1 elements

α1 ∨ θ1, α2 ∨ θ2, . . . , αn−3 ∨ θn−3, αn−2 ∨ ηn−1,n, αn−1 ∨ αn

(iv) If W is of type E6, E7, or E8, then there is a single orbit of positive 2-roots.

Proof In type A, two positive roots εi − ε j and εk − εl are orthogonal if and only
if their supports, {i, j} and {k, l}, are disjoint. There is therefore a single An-orbit of
orthogonal roots, which proves the first assertion for type An . The second assertion
follows by restricting Definition 1.7 to a parabolic subgroup of type A.

Proposition 3.3 (v) implies that there are three orbits in part (ii). The other claims
of (ii) follow from computations similar to those in Lemma 3.2.

In type Dn for n ≥ 5, Proposition 3.3 (v) shows that there are two orbits of positive
2-roots. In this case, two positive roots are orthogonal if and only if their supports are
either identical or disjoint. Because theWeyl group acts by signed permutations, these
two types of orthogonal roots must form separate orbits. This proves the statement
describing X1 and X2.

To prove the last assertion of (iii), we need to identify all the root pairs in X1 that
contain a simple root. Recall that θ1 is the highest root in type Dn and that θ1 = ε1+ε2.
It follows that {α1, θ1} = {ε1 − ε2, ε1 + ε2}, which is an element of X1. Similarly,
we have θk = εk + εk+1 for all 1 ≤ k ≤ n − 3. Direct calculation shows that
ηn−1,n = εn−2 + εn−1, and the proof follows.

Part (iv) holds by Proposition 3.3 (v). 	

Definition 3.10 If W has type Dn for n ≥ 5, we will refer to the orbits X1 and X2 of
Proposition 3.9 (iii) as the small orbit and the large orbit of W , respectively.

Remark 3.11 When W has type Dn for n ≥ 5, the small orbit of 2-roots behaves like
the root system of type An−1. More precisely, a 2-root of the form (εi −ε j )∨(εi +ε j ),
which can be simplified to (εi ∨ εi )− (ε j ∨ ε j ), can be identified with the root εi − ε j

of type An−1. With this identification, the action of W (Dn) by signed permutations
is equivalent to the action of W (An−1) by unsigned permutations. This means that
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the action factors through the surjective homomorphism of groups from W (Dn) to
W (An−1) that sends the generators sn−1 and sn ofW (Dn) to the same generator, sn−1,
of W (An−1).

In type D4, the argument of the previous paragraph applies verbatim to the orbit

{α3 ∨ α4, α2 ∨ η3,4, α1 ∨ θ1} = {(ε3 − ε4) ∨ (ε3 + ε4), (ε2 − ε3) ∨ (ε2 + ε3), (ε1 − ε2) ∨ (ε1 + ε2)}

and it applies to the other two orbits of 2-roots by applying graph automorphisms.
The action of W on each of the three orbits of 2-roots factors through a surjective
homomorphism from W (D4) to W (A3) ∼= S4 that identifies two of the three branch
nodes.

4 Reflections Acting on 2-roots

The goal of Sect. 4 is to prove Theorem 4.7, which gives a formula for the action of a
simple reflection on a canonical basis element.

Definition 4.1 For each real root α, we define the element Cα of the group algebra
FW to be sα − 1.

Lemma 4.2 Let α be a real root of type Ya,b,c, let sα be the associated reflection, and
let V be the reflection representation.

(i) If v ∈ V , then we have Cα(v) = −B(α, v)α, and Cα acts on V ⊗ V as

Cα ⊗ Cα + Cα ⊗ 1 + 1 ⊗ Cα.

(ii) If v ∈ S2(V ), then Cα(v) is of the form α ∨ v′ for some v′ ∈ V .
(iii) Ifβ is a real root orthogonal toα, thenwe haveCαCβ = CβCα . The product

CαCβ acts as zero on V , and acts on V ⊗ V as

Cα ⊗ Cβ + Cβ ⊗ Cα.

Proof The formula forCα(v) follows from the formula for the action of sα on V . Since
sα acts diagonally as sα ⊗ sα on V ⊗ V , it follows that Cα = sα − 1 acts on V ⊗ V as

sα ⊗ sα − 1 ⊗ 1 = Cα ⊗ Cα + Cα ⊗ 1 + 1 ⊗ Cα.

which completes the proof of (i).
By part (i), it follows that if v1 ∈ V ⊗ V , then we have

Cα(v1) = λ1α ⊗ α + α ⊗ v2 + v3 ⊗ α

for some v2, v3 ∈ V . In particular, if v1 ∈ S2(V ) then we have v2 = v3 and

Cα(v1) = α ∨ (λ1α + v2),
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which proves part (ii).
To prove (iii), note that sα and sβ commute with each other because α and β are

orthogonal. It follows that Cα = sα − 1 and Cβ = sβ − 1 also commute with each
other. If we take v ∈ S2(V ), part (i) implies that CαCβ(v) is a scalar multiple of α,
and that CβCα(v) is a scalar multiple of β. It follows that CαCβ(v) = 0. The formula
for the action on V ⊗ V follows from this by composing the actions of Cα and Cβ on
V ⊗ V as given in (i). 	


Lemma 4.3 Let α and β be real roots of type Ya,b,c such that B(α, β) = ±1, and
define t = sα and u = sβ . Then we have tut = utu, and the element of FW given by

C = 1 − t − u + tu + ut − tut

acts as zero on the submodule M ≤ S2(V ).

Proof Since α and β are real roots, we have B(α, α) = 2 = B(β, β), so the condition
B(α, β) = ±1 implies that α and β are linearly independent by linear algebra.

When computing products of t and u, we note that since sγ = s−γ for any real root
γ of W , by replacing β with −β if necessary we may assume that B(α, β) = −1. It
then follows from the formula for a reflection that tut and utu both negate the vector
α + β and fix its B-orthogonal complement, therefore tut = utu = sα+β .

Note that we have

C = (t − 1)(−1 + u − ut) = Cα(−1 + u − ut).

It follows from Lemma 4.2 (i) that if v ∈ S2(V ) then C(v) = α ∨ v′ for some v′ ∈ V ,
so that α is a component of C(v).

Similarly, we have

C = (u − 1)(−1 + t − tu) = Cβ(−1 + t − tu),

which implies that β is a component of C(v).
Lemma 3.4 now implies that C(v) is a scalar multiple of α ∨ β. However, the

hypothesis that B(α, β) �= 0 implies that α ∨ β does not lie in M . We conclude that
C(v) = 0. 	


Remark 4.4 In the setting of Lemma 4.3, the element C in fact annihilates all of the
symmetric square S2(V ) rather than just the module M . To see this, it suffices to show
that C · (α ∨β) = 0 because M has codimension 1 in S2(V ) and α ∨β ∈ S2(V ) \ M .
The fact that C · (α ∨ β) = 0 can be checked by a straightforward computation:
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assuming that B(α, β) = −1 without loss of generality as in the proof of Lemma 4.3,
we have

C · (α ∨ β) = α ∨ β − t · (α ∨ β) − u · (α ∨ β) + tu · (α ∨ β) + ut · (α ∨ β) − tut · (α ∨ β)

= α ∨ β + α ∨ (α + β) + (α + β) ∨ β − β ∨ (α + β) − (α + β) ∨ α − β ∨ α

= 0.

On the other hand, we note thatC does not annihilate all of the tensor square V ⊗V : a
similar computation to the one shown above proves that if α, β and another root γ are
the simple roots of type A3 subsystem of Ya,b,c with B(α, γ ) = 0 and B(β, γ ) = −1,
then C · (β ⊗ γ ) = α ⊗ β − β ⊗ α �= 0.

The next result describes a situation where applying a reflection to a 2-root is
analogous to applying a reflection to a root. In each case, one obtains a sum of two
2-roots: the original one, and a different 2-root in the same W -orbit.

Proposition 4.5 Let α ∨ β be an arbitrary real 2-root of type Ya,b,c, and let γ be a
simple root.

(i) We have sγ (α ∨ β) = (α ∨ β) + (γ ∨ v), where v is given by

v = B(α, γ )B(β, γ )γ − B(α, γ )β − B(β, γ )α.

(ii) Let α ∨ β be a real 2-root of type Ya,b,c, and let γ be a real root for which
B(α, γ ) = ±1. Then we have

sγ (α ∨ β) = (α ∨ β) + sαsγ (α ∨ β) = (α ∨ β) ∓ (γ ∨ sαsγ (β)).

(iii) The following are equivalent:

(1) the element v ∈ V from (i) is a real root;
(2) either B(α, γ ) = ±1, or B(β, γ ) = ±1, or both.

Proof To prove (i), we use the formula for a reflection acting on V :

sγ (α ∨ β) = (sγ (α) ∨ sγ (β))

= (α − B(γ, α)γ ) ∨ (β − B(γ, β)γ )

= (α ∨ β) − (B(γ, α)γ ∨ β) − (α ∨ B(γ, β)γ ) + (B(γ, α)γ ∨ B(γ, β)γ )

= (α ∨ β) + (
γ ∨ (−B(γ, α)β − B(γ, β)α + B(γ, α)B(γ, β)γ )

)
,

and the stated formula follows.
To prove (ii), let t and u be the reflections associated to α and γ , respectively. Since

α and β are orthogonal, it follows that t fixes β, so that we have

(t − 1)(α ∨ β) = (t(α) ∨ t(β)) − (α ∨ β) = −2(α ∨ β).



2-roots for Simply...

Let C be the element defined from t, u in Lemma 4.3, and note that we have

C = (−1 + u − tu)(t − 1).

By Lemma 4.3, we have C(α ∨ β) = 0. Since (t − 1)(α ∨ β) is a nonzero multiple of
α ∨ β, it follows that we have

(−1 + u − tu)(α ∨ β) = 0,

which implies the first equation in the statement of (ii). The second equation follows
because sαsγ (α) is equal to γ if B(α, γ ) = −1 and to −γ if B(α, γ ) = +1. This
completes the proof of (ii).

To show (1) implies (2) in part (iii), assume that the element v is a real root. It follows
that we have B(v, v) = 2. For brevity, let us define x = B(α, γ ) and y = B(β, γ ),
so that v = xyγ − xβ − yα. We then have

B(v, v) = B(xyγ − xβ − yα, xyγ − xβ − yα)

= x2y2B(γ, γ ) + x2B(β, β) + y2B(α, α) − 2x2yB(γ, β) − 2xy2B(γ, α)

+2xyB(β, α)

= 2x2y2 + 2y2 + 2x2 − 2x2y2 − 2x2y2 + 0

= 2x2 + 2y2 − 2x2y2.

Since we also know that B(v, v) = 2, we have 2x2 + 2y2 − 2x2y2 = 2. This is
equivalent to the condition

(x2 − 1)(y2 − 1) = 0,

so that either x = ±1 or y = ±1, as required.
Nowassume that (2) holds. If B(α, γ ) = ±1, it follows from (ii) thatv = ∓sαsγ (β),

which is a real root. The case B(β, γ ) = ±1 follows by a symmetrical argument,
proving (1). 	

Remark 4.6 If γ is a simple root, then the root sαsγ (β) in the statement of Proposition
4.5 (ii) agrees up to sign with the positive root δr appearing in [7, Lemma 2.2].

The next result gives a short formula for the action of a simple reflection on a
canonical basis element in terms of the element v of Proposition 4.5 (i).

Theorem 4.7 Let B be the canonical basis of 2-roots of type Ya,b,c, let α ∨β ∈ B, and
let γ be a simple root of W . Then we have

sγ (α ∨ β) =

⎧
⎪⎨

⎪⎩

α ∨ β if B(α, γ ) = B(β, γ ) = 0;
−α ∨ β if γ ∈ {α, β};
(α ∨ β) + (γ ∨ v) otherwise, for some (γ ∨ v) ∈ B.

Furthermore, the basis element γ ∨ v appearing above satisfies w(α ∨ β) = γ ∨ v

for some w ∈ 〈sα, sβ, sγ 〉.
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Proof By Theorem 2.7 (ii), we may assume without loss of generality that α is a
simple root. If γ ∈ {α, β} or B(α, γ ) = B(β, γ ) = 0, then sγ (α ∨ β) equals −α ∨ β

or α ∨ β by direct computation. Otherwise, we must either have B(α, γ ) = −1 or
simultaneously have B(α, γ ) = 0 and B(β, γ ) = −1 by Lemma 2.9. It remains to
show that in both these cases, we have sγ (α ∨β) = (α ∨β)+ (γ ∨ v) for a canonical
basis element γ ∨ v with the claimed properties.

If we have B(α, γ ) = −1, then α and γ correspond to adjacent vertices of �, and
Proposition 4.5 (ii) implies that

sγ (α ∨ β) = (α ∨ β) + sαsγ (α ∨ β).

Corollary 2.8 now implies that sαsγ (α ∨ β) is a canonical basis element of the form
γ ∨ v.

The other possibility is that B(α, γ ) = 0 and B(β, γ ) = −1. In this case, Propo-
sition 4.5 (ii) implies that

sγ (α ∨ β) = (α ∨ β) + sβsγ (α ∨ β).

Since both β and γ are orthogonal to α, we have sβsγ (α) = α. The hypothesis
B(β, γ ) = −1 implies that sβsγ (β) = γ . We conclude that

sγ (α ∨ β) = (α ∨ β) + (α ∨ γ ),

which completes the proof because we have (α ∨ γ ) ∈ B. 	

We define the 2-root lattice to be the Z-span of the canonical basis B.

Corollary 4.8 Let W be the Weyl group of type Ya,b,c and let B be the canonical basis
of 2-roots of M.

(i) The action of W on the module M leaves invariant the 2-root lattice ZB.
(ii) Let WI be a parabolic subgroup of W, let �I be the root system of WI , and define

BI = {α ∨ β ∈ B : α, β ∈ �I }.

Then the action of WI leaves invariant the lattice ZBI .

Proof The formula in Theorem 4.7 shows that a generator of W sends a canonical
basis element to an integral linear combination of canonical basis elements, which
proves (i).

To prove (ii), it is enough to show that if si is a generator of WI and we have
α ∨ β ∈ BI , then si (α ∨ β) ∈ ZBI . This is immediate from Theorem 4.7, because the
2-roots α ∨ β and γ ∨ v in that result are conjugate in WI . 	

Remark 4.9 Note that if the parabolic subgroup WI is also of type Ya′,b′,c′ (for some
values of a′, b′, and c′) then the set BI coincides with the canonical basis B(a′, b′, c′).
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5 Sign-Coherence

Following the theory of cluster algebras ([6, Definition 2.2 (i)], [11, Definition 6.12]),
we say that a matrix A is column sign-coherent (or “sign-coherent" for short) if any
two nonzero entries in the same column of A have the same sign. We extend this
terminology to say that a basis of a finite dimensional group representation V is a
sign-coherent basis of V if every element of the group acts on V by a sign-coherent
matrix with respect to the basis, and we say V is a sign-coherent representation if it
admits a sign-coherent basis.

Sign-coherent representations exist in abundance. Some (trivial) examples of this
phenomenon are representations arising from permutations or signed permutations.
An interesting and well-known example of a sign-coherent basis is the basis of simple
roots for the reflection representation of aWeyl group. It also follows quickly from the
definitions that a direct sum or tensor product of sign-coherent representations is sign-
coherent, as is the symmetric square of a sign-coherent representation. In particular,
the standard basis of S2(V ) is a sign-coherent basis.

It is more difficult to find sign-coherent bases for irreducible modules, such as the
direct summands of the module M in Theorem 7.8 below. In this section, we will
establish the following sign-coherence property of the canonical basis B:
Theorem 5.1 Let W be a Weyl group of type Ya,b,c. The canonical basis B is a sign-
coherent basis for the module M. With respect to this basis, every element w ∈ W is
represented by a sign-coherent matrix of integers.

Because each real 2-root is W -conjugate to an element of B (see Proposition 3.3
(iii)), the 2-roots ofW are precisely the set of possible columns ofmatrices representing
the action of elements w ∈ W with respect to the basis B. We can therefore restate
Theorem 5.1 as follows:

Theorem 5.2 Let W be a Weyl group of type Ya,b,c. Then any real 2-root α ∨ β of W
is an integral linear combination of elements of B with coefficients of like sign.

Here, the fact that any real 2-root of W is an integral linear combination of elements
of B(a, b, c) with coefficients of like sign is similar to the fact that any root of W
is an integral linear combination of simple roots of W with coefficients of like sign.
Note also that Theorem 5.2 implies that one can characterize the basis B as the set
of positive 2-roots that cannot be expressed as a positive linear combination of other
positive 2-roots.

Remark 5.3 In an earlier version of this paper, we conjectured that theorems 5.1 and
5.2 hold for all Coxeter groups of type Ya,b,c but proved the theorems only in the finite
and affine cases (our conjecture beyond these types was based on extensive computer
calculations). The proof for the general case that we will give below is based on a
proof that was communicated to us by Robert B. Howlett.

To prove Theorem 5.2, we note that Proposition 3.3 (iii) and Corollary 4.8 (i)
imply that any real 2-root α ∨ β is a linear combination of elements of B with integer
coefficients, so it remains to prove that these integers are positive. We do so below.
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In the proof, we will freely use the result [19, Proposition 5.7] that if w ∈ W and α

is a positive real root, then either w(α) > 0 and �(wsα) > �(w), or w(α) < 0 and
�(wsα) < �(w). We will also make use of the following remark in the proof.

Remark 5.4 Because the components of any element of B can be taken to be positive
roots, it follows that a 2-root is positive (respectively, negative) if and only it is a
positive (respectively, negative) linear combination of the standard basis of S2(V ). In
turn, this implies that if w(α ∨β) is a sign-coherent linear combination of elements of
B, then w(α ∨ β) is a positive linear combination if w(α) and w(β) are both positive
or both negative roots, and w(α ∨ β) is a negative linear combination if one of w(α)

and w(β) is a positive root and the other is a negative root.

Proof of Theorem 5.2 By the discussions following Theorem 5.1, to prove Theorem
5.2 it suffices to show that for any w ∈ W and α ∨ β ∈ B, the 2-root w(α ∨ β) is a
linear combination of B with coefficients of like sign. We prove this fact by induction
on the length, �(w), of w ∈ W . The case �(w) = 0 is trivial, and the case �(w) = 1
follows from Theorem 4.7. Suppose then that we have �(w) > 1.

If we havew(α) < 0, then we have �(wsα) < �(w) andw(α∨β) = −wsα(α∨β),
and the proof is completed by applying the inductive hypothesis to wsα . A similar
argument applies if w(β) < 0, so we may assume from now on that both w(α) > 0
and w(β) > 0.

Fix a simple root γ with the property that �(wsγ ) < �(w), which implies that
wsγ (γ ) > 0. If we have sγ (α ∨ β) = ±(α ∨ β), then the proof follows by applying
the inductive hypothesis towsγ as in the previous paragraph.Wemay therefore assume
that we are in the third case of the statement of Theorem 4.7, so that γ /∈ {α, β}, and
γ is not orthogonal to both α and β. Since γ and α are distinct simple roots, we must
have B(α, γ ) ∈ {0,−1}.

Suppose thatwsγ (α) < 0, which implies that �(wsγ sα) < �(wsγ ). The assumption
that w(α) > 0 implies that B(α, γ ) �= 0, and it follows from the previous paragraph
that B(α, γ ) = −1. Corollary 2.8 implies that sαsγ (α ∨ β) = (γ ∨ sαsγ (β)) is an
element of B. We then have

w(α ∨ β) = wsγ sα(γ ∨ sαsγ (β)),

and the proof follows by applying the inductive hypothesis to wsγ sα .
Suppose that wsγ (β) < 0, which implies that �(wsγ sβ) < �(wsγ ). Let c :=

B(β, γ ). The assumption that w(β) > 0 implies that B(β, γ ) �= 0, and Lemma 2.9
then implies that c = ±1; in particular, we have c2 = 1. It follows that

sβsγ (β) = sβ(β − cγ ) = −β − c(γ − cβ) = −cγ.

We claim that one of ±sβsγ (α ∨ β) is an element of B. If B(α, γ ) = 0, then we
have sβsγ (α) = α and sβsγ (α ∨ β) = α ∨ (−cγ ) = −c(α ∨ γ ), which proves the
claim in this case because α and γ are orthogonal simple roots and c = ±1. The other
possibility is that B(α, γ ) = −1, in which case we have

sαsγ (α) = γ



2-roots for Simply...

and
sβsγ (α) = sβ(α + γ ) = α + γ − cβ = sα(γ − cβ) = −csαsγ (β).

Combining the three equations displayed above, we find that

sβsγ (α ∨ β) = (−csαsγ (β)) ∨ (−cγ ) = sαsγ (β) ∨ sαsγ (α) = sαsγ (β ∨ α)

which completes the proof of the claim by Corollary 2.8. The claim then implies that

w(α ∨ β) = wsγ sβ(sβsγ (α ∨ β)),

and the proof follows by applying the inductive hypothesis to wsγ sβ .
By the previous three paragraphs, we may assume from now on that wsγ (α),

wsγ (β), and wsγ (γ ) are all positive roots.
If we have B(α, γ ) = 0 then, since we are assuming that we are not in the first two

cases of the statement of Theorem 4.7, we have B(β, γ ) = −1 by Lemma 2.9. This
implies that sγ (α ∨ β) = (α ∨ β) + (α ∨ γ ), and we therefore have

w(α ∨ β) = wsγ (sγ (α ∨ β)) = wsγ (α ∨ β) + wsγ (α ∨ γ ).

It follows from the previous paragraph that wsγ (α ∨ β) and wsγ (α ∨ γ ) are positive
2-roots. Remark 5.4 and the inductive hypothesis applied to wsγ then imply that each
ofwsγ (α∨β) andwsγ (α∨γ ) is a nonnegative integral linear combination of elements
of B. It follows that w(α ∨ β) is also a nonnegative integral linear combination of
elements of B, which completes the proof in this case.

We may suppose from now on that B(α, γ ) = −1. Let c = B(β, γ ), so that
c ∈ {−1, 0, 1} by Lemma 2.9. Define β ′ = sαsγ (β) = β − c(α + γ ), and note
that sα(β ′) = β − cγ is also a root. Suppose that wsγ (β ′) < 0, which implies that
�(wsγ sβ ′) < �(wsγ ). The assumption that wsγ (β) > 0 implies that β �= β ′, which
rules out the case c = 0. We now have c2 = 1, sβ ′sγ (α) = ±β and sβ ′sγ (β) = ±α.
This implies that

w(α ∨ β) = wsγ sβ ′(sβ ′sγ (α ∨ β)) = ±wsγ sβ ′(α ∨ β),

and the proof follows by applying the inductive hypothesis to wsγ sβ ′ .
We have reduced to the case where B(α, γ ) = −1 and wsγ (β ′) > 0. We have

sαsγ (α) = γ , and sαsγ (β) = β ′. The case of B(α, γ ) = −1 in the proof of Theorem
4.7 now implies that

w(α ∨ β) = wsγ (sγ (α ∨ β)) = wsγ (α ∨ β) + wsγ (sαsγ (α ∨ β)) = wsγ (α ∨ β) + wsγ (γ ∨ β ′),

and Corollary 2.8 implies that (γ ∨ β ′) = sαsγ (α ∨ β) is an element of B. We have
shown that all of wsγ (α), wsγ (β), wsγ (γ ), and wsγ (β ′) are positive roots, which
implies that wsγ (α ∨ β) and wsγ (γ ∨ β ′) are positive 2-roots. Remark 5.4 and the
inductive hypothesis applied towsγ then imply that eachofwsγ (α∨β) andwsγ (γ∨β ′)
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Fig. 5 Eq.5.1 interpreted as a skein relation

is a nonnegative integral linear combination of elements of B. It follows thatw(α ∨β)

is also a nonnegative integral linear combination of elements of B, which completes
the proof. 	


In finite types types A and D, Theorem 5.2 can be interpreted diagrammatically
using the conventions of Notation 3.8.

We can depict positive roots of types A and D as arcs connecting rows of dots
labelled 1, 2, . . . , n. A positive root of the form εi − ε j (respectively, εi + ε j ) is
depicted as an undecorated (respectively, decorated) arc joining point i to point j . We
can then depict positive 2-roots as pairs of (possibly decorated) arcs connecting points
i and j . In type D, this may result in two arcs connecting the same two points, one of
which is decorated and one of which is not.

In this context, the linear relations between 2-roots that one obtains from Theorem
5.2 can be interpreted as a type of skein relationwith positive coefficients. For example,
in type A the positive 2-root (α1 + α2) ∨ (α2 + α3) decomposes into a positive linear
combination of canonical basis elements by Theorem 5.2:

(α1 + α2) ∨ (α2 + α3) = (α1 ∨ α3) + (α2 ∨ (α1 + α2 + α3)).

Writing this in terms of coordinates, we have

(ε1 − ε3) ∨ (ε2 − ε4) = (
(ε1 − ε2) ∨ (ε3 − ε4)

) + (
(ε2 − ε3) ∨ (ε1 − ε4)

)
. (5.1)

Pictorially, this shows how to express a diagram with a crossing as a positive linear
combination of diagrams with fewer crossings. The canonical basis elements in this
case correspond to the legal configurations of arcs in the top half of diagrams for the
Temperley–Lieb algebra (Fig. 5).

Something similar happens in type D. The positive 2-root (ε1 + ε4) ∨ (ε2 + ε3) in
type D4 decomposes into the following positive linear combination of canonical basis
elements:

(ε1 + ε4) ∨ (ε2 + ε3) = (α1 ∨ α3) + (α2 ∨ η1,3) + (α4 ∨ θ4) (5.2)

= (
(ε1 − ε2) ∨ (ε3 − ε4)

) + (
(ε2 − ε3) ∨ (ε1 − ε4)

)

+ (
(ε3 + ε4) ∨ (ε1 + ε2)

)
.

Pictorially, this shows how to express a diagram with a non-exposed decorated arc
(in this case, the one between 2 and 3) as a linear combination of diagrams that have
fewer such features (Fig. 6). After performing a left-right reflection, the canonical
basis elements in this case correspond to the legal configurations of arcs in the top half
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Fig. 6 Eq.5.2 interpreted as a skein relation

of diagrams for the Temperley–Lieb algebra of type D, as described by the first author
in [13, Theorem 4.2]. The positive 2-roots of the form (εi −ε j )∨ (εi +ε j ) correspond
to the “diagrams of type 1" of [13], and the other positive 2-roots correspond to the
“diagrams of type 2".

From this point of view, the decoration rules for arcs in these algebras are canoni-
cally determined by the basis B.

6 The Highest 2-root

In Sect. 6, we assume that � is a Dynkin diagram of finite type An , Dn , E6, E7, or E8
unless otherwise stated, and we continue to work over a subfield of R.

Recall that the root lattice Q = Z� of arbitrary type is equipped with a standard
partial order: if q1, q2 ∈ Z�, we say that q1 < q2 if q2 − q1 is a positive linear
combination of simple roots �. Also recall that the height of a positive root α =∑

b∈� λbb is defined to be the number ht(α) := ∑
b∈� λb.

The basis B allows us to define natural analogues of ≤ and ht for 2-roots: for 2-
roots q1, q2 ∈ ZB, we say that q1 ≤2 q2 if q2 − q1 is a positive linear combination of
elements of B. If α ∨ β is a positive 2-root satisfying α ∨ β = ∑

b∈B λbb, then we
may define the height of α ∨ β to be the number ht2(α ∨ β) := ∑

b∈B λb. Note that
in this context, Theorem 5.2 implies that every real 2-root is comparable to the zero
vector in the order≤2. The same theorem also implies that the height of a positive root
must be a positive integer. Theorem 4.7 shows that if si is a generator for W , b ∈ B is
a canonical basis element, and si (b) is not a scalar multiple of b, then b <2 si (b) is a
covering pair.

The main purpose of this section is to show that each W -orbit of 2-roots in ZB has
a unique maximal element with respect to the order ≤2. To this end, we first use ≤2
to induce a partial order on the set of pairs of orthogonal positive roots of W , also
denoted by ≤2, defined by

{α1, β1} ≤2 {α2, β2}if (α1 ∨ β1) ≤2 (α2 ∨ β2).

The new order is well-defined sinceα∨β = β∨α for all rootsα, β ofW . Similarly, we
may define the height of each pair of positive orthogonal roots {α, β} to be ht2(α ∨β).

To establish the existence of maximal 2-roots in ZB, we shall compare the order
≤2 on root pairs with two other partial orders on sets of orthogonal roots introduced in
[7]. Motivated by the Lawrence–Krammer representation of the Artin group, Cohen,
Gijsbers, and Wales defined combinatorially in [7] a partial order ≤′ on each W -orbit
of k-tuples of mutually orthogonal positive roots, where W is a simply laced finite
Weyl group and k ∈ Z>0. Here, the action of each elementw ∈ W sends every k-tuple
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ρ = {α1, . . . , αk} to the set

w(ρ) = �+ ∩ {±α1, . . . ,±αk}

where �+ is the set of positive roots ofW . The definition of the order ≤′ also requires
the k-tuples to be “admissible", a technical combinatorial property that is always
satisfied if k = 2 (see [7, Proposition 2.3]). As a consequence, the order ≤′ restricts
to pairs of orthogonal roots as follows.

Definition 6.1 Let W be a simply laced Weyl group of finite type. Let ρ1 and ρ2 be
two (unordered) pairs of orthogonal positive roots of W such that w(ρ1) = ρ2 for
some w ∈ W . We say that ρ1 <′ ρ2 if there exist γ1 ∈ ρ1\ρ2 and γ2 ∈ ρ2\ρ1, of
minimal height in ρ1\ρ2 and ρ2\ρ1 respectively, such that ht(γ1) < ht(γ2).

Proposition 6.2 [Cohen, Gijsbers, Wales] Let W be a simply laced Weyl group of
finite type, and let X be a W-orbit of pairs of orthogonal positive roots. The relation
≤′ of Definition 6.1 is a partial order on X.

Proof This follows from the proof of [7, Proposition 3.1]. (We note that the proof
from [7] asserts that “it is readily verified" that ≤′ is an ordering. However, to our
knowledge it is not completely trivial to prove the fact that ≤′ is transitive.) 	


The second partial order we need from [7] is defined using ≤′ as follows.

Definition 6.3 Let W be a simply laced Weyl group of finite type, and let X be a
W -orbit of pairs of orthogonal positive roots. Let ≤m be the partial order on X whose
covering relations are those of the form ρ <m si (ρ) where si is a Coxeter generator
such that si (ρ) ∈ X\{ρ} and ρ <′ si (ρ). We call ≤m the monoidal order on X .

Note that because ≤′ is a partial order, it follows that ≤m is antisymmetric, and thus
that the reflexive, transitive extension of the relation in Definition 6.3 is a partial order.
It is immediate from the definitions that ≤′ is a refinement of ≤m .

The next result also applies in type A, by using the identifications of Corollary 4.8
(ii).

Proposition 6.4 Let W be a simply laced Weyl group of finite type, and let X be a
W-orbit of pairs of orthogonal positive roots.

(i) If ρ1 = {α, β} ∈ X and ρ1 <m ρ2 is a covering pair in X, then we have ρ2 =
{si (α), si (β)} for some simple reflection si . Furthermore, if x = B(αi , α) and
y = B(αi , β), then we have x, y ∈ {−1, 0, 1}, and we do not have x = y = 0.

(ii) The partial order≤2 refines the monoidal order≤m; in other words, if ρ1, ρ2 ∈ X
satisfy ρ1 ≤m ρ2, then we have ρ1 ≤2 ρ2.

Proof To prove (i), we note that ρ1 = {α, β} ⊆ �+. Then by Definition 6.3 we must
have

ρ1 <′ ρ2 = si (ρ1) = �+ ∩ {±si (α),±si (β)}
for some Coxeter generator si . Let αi ∈ � be the simple root corresponding to si , let
x = B(αi , α), and let y = B(αi , β) as in the statement. Note that if αi = α then we
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have si (α) = −α, si (β) = β and ρ2 = {α, β}. This contradicts the fact that ρ1 �= ρ2,
which proves that αi and α are distinct real roots. Since si permutes the set �+ \ {αi },
it follows that si (α) ∈ �+, A similar argument shows that β �= αi and si (β) ∈ �+,
so it follows that ρ2 = {s2(α), si (β)}.

To prove the claims about x and y, note first α �= −αi since both α and αi are
positive roots. Also note that since W is simply laced, the roots αi and α have the
same norm in the sense that we must have B(αi , αi ) = B(α, α) = 2. Since αi and
α are distinct, are not opposite, and have the same norm, it then follows from [18,
§9.4] that x = B(αi , α) ∈ {−1, 0, 1}. Similarly, we have y ∈ {−1, 0, 1}. Moreover,
since ρ2 �= ρ1, the root αi cannot be orthogonal to both α and β, so we cannot have
x = y = 0. This completes the proof of (i).

It is enough to prove (ii) in the case where ρ1 <m ρ2 forms a covering pair. By the
previous paragraph, we may assume without loss of generality that x ∈ {−1, 1}, and
that the 2-root corresponding to ρ2 is

si (α) ∨ si (β) = si (α ∨ β) = (α ∨ β) + sαsi (α ∨ β) = α ∨ β + sαsi (α) ∨ sαsi (β),

where the second equality holds by Proposition 4.5 (ii) since x ∈ {−1, 1}. Every pos-
itive 2-root is a linear combination of elements of B with positive integral coefficients
by Theorem 5.2, so to prove ρ1 ≤2 ρ2 it now suffices to show that sαsi (α) ∨ sαsi (β)

equals a positive root. We do so by showing that sαsi (α) and sαsi (β) are either both
positive or both negative roots, depending on the values of x and y.

Suppose first that y = 0. In this case, both αi and α are orthogonal to β, which
implies that sαsi (β) = β is positive. By assumption, we have

{α, β} <m {si (α), si (β)} = {α − xαi , β},

which implies (using Definition 6.1) that we have x = −1. In turn, this implies that
sαsi (α) = αi and sαsi (β) = β are both positive roots, which completes the proof in
this case.

Next, suppose that y = x = ±1. In this case, the condition that {α, β} <m

{si (α), si (β)} implies that y = x = −1. This implies that sαsi (α) = αi and
sαsi (β) = α + β + αi are both positive, as required.

Finally, suppose that y = −x = ±1.We cannot have ht(α) = ht(β), because one of
si (α) and si (β)would have a lower height than both of α and β, which is incompatible
with the condition that {α, β} <m {si (α), si (β)}. We may therefore assume without
loss of generality that ht(α) < ht(β). The condition {α, β} <m {si (α), si (β)} then
implies that x = −1 and y = 1. This implies that sαsi (α) = αi , a positive root, and
sαsi (β) = β − α − αi . Because β − α − αi is a root, it cannot have height zero, so
we must have ht(β) ≥ ht(α) + 2 and thus that ht(β − α − αi ) > 0. It follows that
β − α − αi is a positive root, as required, which completes the proof of (ii). 	


The next example shows that the partial order ≤2 strictly refines the order ≤m .

Example 6.5 Let � be a Dynkin diagram of type D5, with vertices numbered 1–2–3–4
and 3–5, so that 3 is the branch point. The pair of positive orthogonal roots {α3, θ1} is
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not minimal in ≤2, because we have

α3 ∨ θ1 = (α3 ∨ α1) + (α3 ∨ η2,4) + (α3 ∨ η2,5).

However, {α3, θ1} is minimal in the order ≤m , because there is no simple reflection
si for which si ({α3, θ1}) <m {α3, θ1}.
Theorem 6.6 Let W be a simply lacedWeyl group of finite type, and let X be a W-orbit
of pairs of orthogonal positive roots. The orbit contains a maximum element {α, β}
with respect to ≤2. In particular, if α ∨ β = ∑

b∈B μbb and α′ ∨ β ′ = ∑
b∈B λbb for

some other element {α′, β ′} in the orbit, then we have λb ≤ μb for all b ∈ B.
Proof The orbit X has a unique maximal element with respect to ≤m by [7, Corollary
3.6], and this is equivalent to having a maximum element because X is finite. The
result now follows from Proposition 6.4 (ii). 	


Recall fromProposition 3.6 and Remark 3.7 that theW -orbits of pairs of orthogonal
real roots and the W -orbits of real 2-roots can be identified under the correspondence
{α′, β ′} ↔ α′ ∨ β ′. Theorem 6.6 may be interpreted as saying that the identification
matches the maximum elements of these orbits.

In the sequel, we will refer to the 2-root α ∨β from Theorem 6.6 the highest 2-root
in its W -orbit. Our next goal is to give an explicit description of the highest 2-root in
each orbit, and the next result will be helpful for this purpose.

Lemma 6.7 Let W be a simply laced Weyl group of finite type, and let {α, β} be a pair
of orthogonal positive roots of W satisfying ht(α) = ht(β). Suppose that every simple
root αi satisfies the following two conditions:

(i) if B(αi , α) = −1 then B(αi , β) = +1;
(ii) if B(αi , β) = −1 then B(αi , α) = +1.

Then α ∨ β is the highest 2-root in its orbit.

Proof Suppose that the conditions are satisfied, but that {α, β} is not the highest 2-root
with respect to ≤m . By Proposition 6.4 (i), there must be a simple reflection si such
that α ∨ β ≤m si (α ∨ β) is a covering relation. Proposition 6.4 (i) also implies that
{B(αi , α), B(αi , β)} ⊆ {−1, 0, 1}, and that αi cannot be orthogonal to both α and β.

Suppose for a contradiction that we have such an si . We claim that in fact neither
of B(αi , α) and B(αi , β) can be zero, because in the case that (say) B(αi , β) = 0,
Proposition 4.5 (i) implies that

si (α ∨ β) = (α ∨ β) − B(αi , α)(αi ∨ β).

Since si (α∨β) is assumed to be a higher root thanα∨β, wemust have B(αi , α) = −1.
However, we also have B(αi , β) = 0, which contradicts condition (i) of the statement.

We may now assume that B(αi , α) = ±1 and that B(αi , β) = ±1, with the signs
chosen independently. By conditions (i) and (ii), the case B(αi , α) = B(αi , β) = −1
never occurs, so there are three other cases to consider.
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The first case is B(αi , α) = −1 and B(αi , β) = +1. In this case, Proposition 4.5
(i) implies that

si (α ∨ β) = (α ∨ β) + (αi ∨ (β − α − αi )) = (α + αi ) ∨ (β − αi ),

and Proposition 4.5 (iii) implies that β −α−αi is a root. The assumption that ht(α) =
ht(β) shows that β − α − αi is a negative simple root, so that si (α ∨ β) <2 (α ∨ β),
a contradiction.

The second case, where B(αi , α) = +1 and B(αi , β) = −1, follows by a symmet-
rical argument exchanging the roles of α and β.

Finally, suppose that we have B(αi , α) = B(αi , β) = +1. In this case, Proposition
4.5 (i) implies that

si (α ∨ β) = (α ∨ β) + (αi ∨ (αi − α − β)) = (α − αi ) ∨ (β − αi ).

Proposition 4.5 (iii) then implies that αi −α−β is a root, and this root must be negative
because ht(αi ) = 1, so that si (α ∨ β) <2 (α ∨ β). This contradiction completes the
proof. 	


In order to state the main result about highest 2-roots, it is convenient to fix some
notation for the simple reflections in type En . (Wemaintain the conventions ofNotation
3.8 for types An and Dn .) We number the nodes of the Dynkin diagram of type En so
that 3 is the branch node, 1—2—3— · · ·—(n − 1) is a path, and the last node, x is
adjacent to 3.

With these conventions, the highest root θ in type E6, E7, and E8 is given by

α1 + 2α2 + 3α3 + 2α4 + α5 + 2αx ,

2α1 + 3α2 + 4α3 + 3α4 + 2α5 + α6 + 2αx ,

and
2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 3α6 + 2α7 + 3αx ,

respectively.
In type Dn (n ≥ 4), E6, E7 and E8, there is a unique simple root, αy , that is not

orthogonal to the highest root.We have αy = α2 in type Dn for all n ≥ 4, and αy = αx ,
α1, and α7 in types E6, E7, and E8 respectively.

If b and c are nodes of the Dynkin diagram, we write αb,c to mean
∑

i∈P αi , where
P is the set of vertices on the unique path between b and c, counting both endpoints.

Theorem 6.8 Let W be a simply laced Weyl group of finite type, let θ be the highest
root of W , and maintain the above notation and Notation 3.8. The highest 2-root in
each W-orbit is given as follows.

(i) If W has type An where n > 2, then the highest 2-root is

α1,n−1 ∨ α2,n = (ε1 − εn) ∨ (ε2 − εn+1).
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(ii) If W has type D4, then the highest 2-roots in each of the three orbits are

(θ − α2,4) ∨ (θ − α2,3) = α1,3 ∨ α1,4 = (ε1 − ε4) ∨ (ε1 + ε4)

= (ε1 ∨ ε1) − (ε4 ∨ ε4),

(θ − α2,4) ∨ (θ − α1,2) = α1,3 ∨ α3,4 = (ε1 − ε4) ∨ (ε2 + ε3), and

(θ − α2,3) ∨ (θ − α1,2) = α1,4 ∨ α3,4 = (ε1 + ε4) ∨ (ε2 + ε3).

(iii) If W has type Dn for n ≥ 5, then the highest 2-root in the small orbit is

α1,n−1 ∨ α1,n = (ε1 − εn) ∨ (ε1 + εn) = (ε1 ∨ ε1) − (εn ∨ εn).

(iv) If W has type Dn for n ≥ 5, then the highest 2-root in the large orbit is

(θ−α1,2)∨(θ−α2,3) = (θ−α1−α2)∨(θ−α2−α3) = (ε2+ε3)∨(ε1+ε4).

(v) If W has type E6, then the highest 2-root is (θ − α2,x ) ∨ (θ − α4,x ) =
(θ − α2,y) ∨ (θ − α4,y).

(vi) If W has type E7, then the highest 2-root is (θ − αx,1) ∨ (θ − α4,1) =
(θ − αx,y) ∨ (θ − α4,y).

(vii) If W has type E8, then the highest 2-root is (θ − α2,7) ∨ (θ − αx,7) =
(θ − α2,y) ∨ (θ − αx,y).

Proof The proof is by Lemma 6.7 in each case. Recall from Proposition 3.9 that there
are three orbits in type D4, two orbits in type Dn for n ≥ 5, and one orbit otherwise.
The three 2-roots appearing in the statement of (ii) can be distinguished by comparing
components (see Definition 3.5).

In type An where n > 2, let α = α1,n−1, and let β = α2,n . The roots α and β are
orthogonal roots of height n − 1. The only simple root αi for which B(αi , α) = −1
is αn , and we have B(αn, β) = +1. Conversely, the only simple root for which
B(αi , β) = −1 is α1, and we have B(αi , α) = +1. Lemma 6.7 implies that α ∨ β is
the highest 2-root in its orbit, proving (i).

The proof of (iii) is similar to that of (i). Suppose we are in the situation of (iii), and
let α = α1,n−1 and β = α1,n . The roots α and β are orthogonal roots of height n − 1.
The only simple root αi for which B(αi , α) = −1 is αn , and we have B(αn, β) = +1.
Conversely, the only simple root for which B(αi , β) = −1 is αn−1, and we have
B(αn−1, α) = +1. Lemma 6.7 implies that α ∨ β is the highest 2-root in its orbit,
proving (iii).

Suppose that we are in the situation of (vii), and let α = θ −α2,7 and β = θ −αx,y .
Since α7 is the only simple root not orthogonal to θ and B(θ, α7) = 1, it follows that
for any root γ = ∑

j λ jα j we have B(θ, γ ) = λ7, so that B(θ, α2,7) = 1. It follows
that

B(α, α7) = B(θ, α7) − B(α2,7, α7) = 1 − 1 = 0
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and that for every generator s �= 7 we have

B(α, αs) = B(θ, αs) − B(α2,7, αs) = −B(α2,7, αs) =

⎧
⎪⎨

⎪⎩

−1 if s = 2,

1 if s = 1 or s = x,

0 otherwise.

Thus, the only simple root αi with B(αi , α) = −1 is α2, and we note that
B(α2, β) = B(α2, θ − αx,7) = 0 − B(α2, αx,7) = 1. Similarly, we can check that
only simple root α j with B(α j , β) = −1 is αx and B(αx , α) = 1. By Lemma 6.7,
to prove α ∨ β is the highest root it now suffices to show that α and β are positive
real roots of the same height. To do so, recall from [21, Proposition 5.10 (i)] that an
element γ in the Z-span of the simple roots is a real root if and only if B(γ, γ ) = 2.
It follows that

B(α, α) = B(θ, θ) − 2B(θ, α2,7) + B(α2,7, α2,7) = 2 − 2 · 1 + 2 = 2,

which in turn implies that α is a real root. A similar argument shows that β is also
a real root. Finally, since every simple root appears with positive integer coefficient
in θ and ht(α2,7) = ht(αx,7), it follows that α and β are positive roots with the same
height.

The proofs of (ii), (iv), (v) and (vi) are the same as the proof of (vii), mutatis
mutandis. 	


Parts (i) and (iv) of Theorem 6.8 also follow from [7, Example 4.4], which the
authors state without proof.

We record without proof the heights of the highest 2-root in each orbit of W , with
respect to the canonical basis B. The explicit decomposition of the highest 2-root in
terms of the canonical basis B is also known in each case, and we remark that in type
E8, α7 ∨ θ7 is the unique element of B that occurs with coefficient 1 in the highest
2-root.

Orbit type Height of highest 2-root

An (n − 2)2 + 1
D4, three orbits 3, 3, 3
Dn , n ≥ 5, small orbit n − 1
Dn , n ≥ 5, large orbit 4(n − 4)(n − 3) + 3
E6 28
E7 85
E8 295

The sequence for An appears as [23, A002522], and the sequence for the large orbit
of Dn appears as [23, A164897]. The reason that the highest 2-root in the small orbit
of Dn has height n−1 is that the highest 2-root is the sum of all (n−1) basis elements
in the small orbit, each with coefficient 1. In turn, this is due to the phenomenon
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described in Remark 3.11, combined with the fact that the highest root in type A is
the sum of all the simple roots, each with coefficient 1.

7 Irreducibility

The main results of Sect. 7 are Theorem 7.3 and Theorem 7.8, which describe the
indecomposable summands of the module M in terms of 2-roots.

Recall from Corollary 4.8 (i) that the lattice of 2-roots, ZB, has the structure of
a ZW -module. The following result shows that any real 2-root is an integral linear
combination of basis 2-roots from the sameW -orbit, and that the 2-roots from a given
W -orbit span a submodule of ZB.
Proposition 7.1 Let B be the canonical basis of 2-roots in type Ya,b,c, and let
X1, X2, . . . , Xr be the orbits of the action of W on the set of real 2-roots, �2

re.

(i) The ZW-module ZB decomposes as a direct sum of ZW-modules

ZB ∼=
r⊕

i=1

Z(B ∩ Xi ).

(ii) Every 2-root in the orbit Xi lies in the submodule Z(B ∩ Xi ).

Proof Since the sets B ∩ Xi partition B, it follows that we have a direct sum decom-
position of ZB as Z-modules of the form given in the statement. Theorem 4.7 implies
that the Z-modules Z(B ∩ Xi ) are ZW -modules, and this completes the proof of (i).

Proposition 3.3 (iii) shows that for any real 2-root α ∨ β ∈ Xi , there exists w ∈ W
with

w(α ∨ β) ∈ B ∩ Xi

for some i . By part (i), the result of applying w−1 to w(α ∨ β) also lies in Z(B ∩ Xi ),
which proves (ii). 	


The Coxeter bilinear form B naturally gives aW -invariant bilinear form on S2(V ),
which we denote by B ′. It is defined as the unique linear map satisfying

B ′(αi ∨ α j , αk ∨ αl) = perm

(
B(αi , αk) B(αi , αl)

B(α j , αk) B(α j , αl)

)

= B(αi , αk)B(α j , αl) + B(αi , αl)B(α j , αk),

where perm denotes the permanent of a matrix. The form B ′ restricts to an integer-
valued form on the lattice ZB. We can also make B ′ into a nonzero F-valued form on
the FW -module FB = F ⊗Z ZB.
Lemma 7.2 Let F be an arbitrary field and let B ′ be the bilinear form on FB defined
above. If α and β are orthogonal real roots and v ∈ FB, then we have

CαCβ(v) = B ′(α ∨ β, v) (α ∨ β).
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Proof It is enough to consider the case where v = v1 ∨ v2 is a symmetrized simple
tensor, because the general case follows by linearity. By Lemma 4.2 (iii), we have

CαCβ(v1 ∨ v2) = (Cα ⊗ Cβ + Cβ ⊗ Cα)(v1 ∨ v2).

Lemma 4.2 (i) implies that

(Cα ⊗ Cβ)(v1 ∨ v2) = B(α, v1)B(β, v2)(α ⊗ β) + B(α, v2)B(β, v1)(α ⊗ β).

Adding this to the analogous expression for (Cβ ⊗ Cα)(v1 ∨ v2) gives

(Cα ⊗ Cβ + Cβ ⊗ Cα)(v1 ∨ v2) = (
B(α, v1)B(β, v2) + B(α, v2)B(β, v1)

)
(α ∨ β)

= B ′(α ∨ β, v1 ∨ v2)(α ∨ β),

as required. 	

If N is an FW -submodule of FB, we define the radical, rad(N ) of N , to be

rad(N ) = {v ∈ N : B ′(v, v′) = 0 for all v′ ∈ N }.

It is immediate from the W -invariance of B ′ that rad(N ) is a submodule of FB.
In the next result, we define the FW -module F(B ∩ X) to be F ⊗Z Z(B ∩ X).

Theorem 7.3 Let B be the canonical basis of 2-roots in type Ya,b,c, let X be a W-orbit
of 2-roots, let F be an arbitrary field, let N = F(B ∩ X), and assume the restriction
of the bilinear form B ′ to N is nonzero.

(i) The radical rad(N ) of N (with respect to B ′) is the unique maximal FW-
submodule of N .

(ii) The module N/rad(N ) is an irreducible FW-module.
(iii) Themodule N is indecomposable, and is irreducible if and only if rad(N ) =

0.

Proof Since B ′ is assumed not to be zero, it follows that rad(N ) is a proper submodule
of N . To prove (i), it remains to show that every proper submodule of N is contained
in rad(N ). The proof reduces to showing that if N ′ ≤ N is a submodule containing
an element v ∈ N\rad(N ) then the submodule 〈v〉 generated by v is equal to N .

Fix an element v ∈ N\rad(N ). Since v /∈ rad(N ), there must be a 2-root α ∨ β in
the W -orbit X such that B ′(α ∨ β, v) �= 0. Lemma 7.2 then implies that 〈v〉 contains
CαCβ(v), which is a nonzeromultiple ofα∨β. It follows that 〈v〉 containsα∨β, which
means that 〈v〉 contains the whole orbit X , and thus the whole of N . This completes
the proof of (i).

Part (ii) follows from part (i), and the second assertion of (iii) follows from (ii). If
N could be expressed as a nontrivial direct sum of modules N ∼= N1 ⊕ N2, then (i)
would imply that both N1 and N2 were contained in the proper submodule rad(N ),
which is a contradiction. Part (iii) now follows. 	
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Remark 7.4 The requirement in Theorem 7.3 that B ′ should not vanish on N is a
mild assumption. This condition is always satisfied when the field does not have
characteristic 2, because any 2-root α ∨ β ∈ X satisfies

B ′(αi ∨ α j , αi ∨ α j ) = 4 �= 0.

Even in characteristic 2, the bilinear form B ′ will not be zero provided thatWI contains
a parabolic subgroup of type A4, because in type A4 we have

B ′(α1 ∨ α3, α2 ∨ α4) = 1.

However, the form B ′ is zero in type A3 in characteristic 2.

For the rest of Sect. 7, we will assume that F is a field of characteristic 0.
Let B̃ be the bilinear form on V ⊗ V satisfying

B̃(bi ⊗ b j , bk ⊗ bl) = B(bi , bk)B(b j , bl),

and let τ : V ⊗ V → V ⊗ V be the linear map satisfying τ(bi ⊗ b j ) = b j ⊗ bi .
We identify the symmetric square S2(V ) and the exterior square

∧2
(V ) of V with the

eigenspaces of τ for the eigenvalues 1 and −1, respectively.

Remark 7.5 The forms B̃ and B ′ are closely related. It follows from the definitions
that the restriction of B̃ to the module M ≤ S2(V ) satisfies

B̃(αi ∨ α j , αk ∨ αl) = 2
(
B(αi , αk)B(α j , αl) + B(αi , αl)B(α j , αk)

)

= 2B ′(αi ∨ α j , αk ∨ αl).

In particular, if the characteristic of F is not 2, the form B ′ is nondegenerate on M if
and only if B̃ is.

Lemma 7.6 The following are equivalent:

(i) B is nondegenerate on V ;
(ii) B̃ is nondegenerate on V ⊗ V ;
(iii) the restrictions of B̃ to S2(V ) and to

∧2
(V ) are both nondegenerate.

Proof To prove the equivalence of (i) and (ii), let G ∈ Mn(k) be the Grammatrix of B
with Gi j = B(bi , b j ). The Gram matrix of B̃ is the Kronecker product G ⊗G, whose
determinant is given by (det(G))2n . It follows that G⊗G is invertible if and only if G
is invertible, and therefore that B̃ is nondegenerate if and only if B is nondegenerate.

To prove the equivalence of (ii) and (iii), note that we have

V ⊗ V ∼= S2(V ) ⊕ ∧2
(V )

as F-vector spaces, because the characteristic of F is zero. Setting αk ∧ αl := αk ⊗
αl − αl ⊗ αk , we have

B̃(αi ∨ α j , αk ∧ αl) = B̃
(
αi ⊗ α j + α j ⊗ αi , αk ⊗ αl − αl ⊗ αk

)
,
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where all the terms cancel in pairs to give zero. It follows that S2(V ) and
∧2

(V ) are
orthogonal to each other with respect to the form B̃. By computing the Gram matrix
G of B̃ using a basis compatible with this decomposition, we obtain a block diagonal
matrix whose two blocks are the Gram matrix of B̃ restricted to S2(V ) and to

∧2
(V ).

It follows that G is invertible if and only if both these blocks are invertible. 	

Now assume that the form B is nondegenerate, or equivalently by Proposition 1.1

that we are not in any of the three affine types. Let�∗ = {α∗
1 , . . . α

∗
n} be the dual basis

of �, which we identify with a subset of V in the usual way, via

B(α∗
i , α j ) = δi j ,

where δ is the Kronecker delta.
Following the theory of vertex operator algebras [17], we define the Virasoro ele-

ment of B (with respect to the basis �) to be the element

ω =
n∑

i=1

α∗
i ⊗ αi .

In [17, §2], the element ω appears in the context of an algebra with identity I = ω/2,
and the bilinear form B ′ is denoted by 〈 , 〉.Wewill show thatω spans a complement in
S2(V ) to the submodule M . Although most of the next result is known from the vertex
operator algebras literature, we will give a self-contained proof for the convenience
of the reader and in order to fix notation.

Proposition 7.7 Maintain the above notation, and assume that B is nondegenerate.

(i) For any v ∈ V ⊗ V , we have B̃(ω, v) = B(v).
(ii) The Virasoro element ω is independent of the choice of basis �.
(iii) The Virasoro element ω is symmetric, meaning that τ(ω) = ω, and

ω = 1

2

n∑

i=1

α∗
i ∨ αi .

(iv) The Virasoro element ω is fixed by the action of any w ∈ W.
(v) We have B̃(ω, ω) = n, and ω ∈ S2(V )\M.

Proof It follows from the definitions that for all 1 ≤ i, j, k ≤ n, we have

B̃(α∗
i ⊗ αi , α j ⊗ αk) = B(α∗

i , α j )B(αi , αk) = δi j B(α j , αk).

Part (i) follows after summing over i .
The form B̃ is nondegenerate by Lemma 7.6, and this implies that there is a unique

element R ∈ V ⊗ V with the property that B̃(R, v) = B(v) for all v ∈ V ⊗ V .
This implies that ω is characterized by the property in (i). This characterization is
basis-free, proving (ii).
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By part (ii), we may also define ω with respect to the dual basis of �, proving that

ω =
n∑

i=1

αi ⊗ α∗
i .

Comparing this with the original definition of ω implies that ω = τ(ω), proving (iii).
Given w ∈ W , part (ii) shows that we can compute the Virasoro element with

respect to the basis {w(αi )}ni=1. Because B is W -invariant, the dual basis in this case
is {w(α∗

i )}ni=1, and we have

w(ω) =
n∑

i=1

w(αi ⊗ α∗
i ) =

n∑

i=1

w(αi ) ⊗ w(α∗
i ) = ω,

which proves (iv).
By part (iii), we have

B̃(ω, ω) = B̃

⎛

⎝
n∑

i=1

α∗
i ⊗ αi ,

n∑

j=1

α j ⊗ α∗
j

⎞

⎠ =
n∑

i, j=1

B(α∗
i , α j )B(αi , α

∗
j ) =

n∑

i, j=1

δ2i j = n,

which proves the first assertion of (v). Part (i) implies that an element v ∈ S2(V ) lies
in M if and only if B̃(ω, v) = 0, and the second assertion of (v) follows from (iii) and
the fact that B̃(ω, ω) �= 0. 	


Theorem 7.8 Let W be a Weyl group of type Ya,b,c and let V be the reflection rep-
resentation of W over a field F of characteristic zero. If Ya,b,c is not of affine type,
then the module S2(V ) decomposes as a direct sum of irreducible modules: the one-
dimensional module Fω, and the modules F(B ∩ Xi ) corresponding to the orbits Xi

of 2-roots.

Proof By Proposition 1.1, the form B is nondegenerate, and it follows from remarks
7.4 and 7.5 that B ′ and B̃ are nonzero when restricted to each summand F(B ∩ Xi ).
Proposition 7.7 (iv) and (v) imply that themodule S2(V ) is isomorphic toSpan(ω)⊕M ,
where Span(ω) affords the trivial representation of W . It remains to show that the
module M decomposes as the direct sum of the modules F(B ∩ Xi ), and that these
modules are irreducible.

We first consider the case where W is finite. It follows from Proposition 7.1 (i), by
extending scalars to F , that we have

FB ∼=
r⊕

i=1

F(B ∩ Xi ).

Themodules in the direct sumare indecomposable byTheorem7.3 (iii), and irreducible
by Maschke’s Theorem, which completes the proof in this case.
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Assume from now on that W is infinite, which means by Lemma 2.4 that there is
a single orbit of 2-roots, and that the module F(B ∩ X) is M itself. For any subspace
N ≤ S2(V ), define N⊥ to be the subspace

N⊥ := {v ∈ S2(V ) : B̃(v, v′) = 0 for all v′ ∈ N }.

The nondegeneracy of B̃ on S2(V ), proved in Lemma 7.6 (iii), shows that we always
have dim(N ) + dim(N⊥) = dim(S2(V )).

Assume for a contradiction that there exists a nonzero element m ∈ M ∩ M⊥, so
that we have M ≤ Span(m)⊥. The previous paragraph shows that dim(Span(m)⊥) =
dim(M), which implies that M = Span(m)⊥. However, Proposition 7.7 (i) shows that
M = Span(ω)⊥, and the nondegeneracy of B̃ on S2(V ) then implies that Span(m) =
Span(ω), which contradicts Proposition 7.7 (v). It follows that M ∩ M⊥ = rad(M) is
zero. Theorem 7.3 (iii) now implies that M is irreducible. 	

Remark 7.9 In the cases where Ya,b,c is of type affine En for n ∈ {6, 7, 8}, the form B
is degenerate and there is no obvious analogue of the Virasoro element. The module
M is indecomposable as is the case for other infinite Weyl groups, but it has an n-
dimensional radical rad(M) consisting of the elements δ ∨ v, where v ∈ V and where
δ is the lowest positive imaginary root. The module rad(M) is isomorphic to the
reflection representation, and it in turn has a submodule spanned by δ ∨ δ.

8 Faithfulness

In Sect. 8, we find the kernels of the action of the Weyl group in its action on the
nontrivial summands of S2(V ). The main result is Theorem 8.6, which describes
when W acts faithfully on the nontrivial summands and on the associated orbits of
2-roots. This description depends on the centre Z(W ) of W , which has the following
explicit description.

Lemma 8.1 Let W be a Weyl group of type Ya,b,c. The centre Z(W ) of W is trivial
unless W is of type E7, E8, or Dn for n even; in particular, Z(W ) is trivial if W is
infinite. In the cases where Z(W ) is nontrivial, we have Z(W ) = {1, w0}, wherew0 is
the longest element of W andw0 acts as the scalar−1 on the reflection representation
V .

Proof Assume first that W is finite. It follows from [19, Exercise 6.3.1] that we have
Z(W ) = {1, w0} in the case where the longest element w0 acts as −1 on V , and
Z(W ) = {1} otherwise. The assertions about Z(W ) being trivial follow from [19,
§3.19], which completes the proof in the finite case.

Now assume thatW is infinite. Qi proves [22, Proposition 2.5] that the center of any
irreducible infinite Coxeter group is trivial. In particular, this implies that the center
of W = W (Ya,b,c) is trivial if W is infinite, which completes the proof. 	

Lemma 8.2 Let � be a Dynkin diagram of type Ya,b,c with at least five vertices, and
let �1 ∪�2 be a partition of the vertices into proper nonempty subsets. Then there are
vertices x1 ∈ �1 and x2 ∈ �2 such that x1 and x2 are not adjacent in �.
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Proof Without loss of generality, we may assume that |�1| ≥ 3.
If |�1| ≥ 4, then any x2 ∈ �2 fails to be adjacent to at least one element of �1,

because � has no vertex of degree 4.
If |�1| = 3 then we must have |�2| ≥ 2. Let x and x ′ be distinct elements of �2.

There is a unique vertex of degree 3 in �, which means that either x or x ′ fails to be
adjacent to one of the vertices in �1, completing the proof. 	

Proposition 8.3 Let W be an infinite group of type Ya,b,c, and let V be the reflec-
tion representation of W. Then W acts faithfully on the irreducible codimension-1
submodule M of S2(V ).

Proof SinceW is infinite, the rank n ofW is at least 7, and the module M is irreducible
by Theorem 7.8 because there is a single orbit of real 2-roots. Let w be a nonidentity
element of W ; we need to show that w does not act on M as the identity.

Let S1 = {αi ∈ � : w(αi ) < 0} and let S2 = �\S1. The set S1 is nonempty
becausew �= 1, and the set S2 is nonempty because otherwise,w would be the longest
element of W , which is impossible because W is infinite. By Lemma 8.2, there exist
orthogonal simple roots αi and α j such that w(αi ) < 0 and w(α j ) > 0. The element
w sends the 2-root αi ∨ α j (which is a standard basis element) to w(αi ) ∨ w(α j ),
which is a negative linear combination of standard basis elements. In particular, w

does not act as the identity on M , which completes the proof. 	

Note that if W is a finite group and the longest element w0 of W acts on V as

the scalar −1, then w0 will act as the identity on M . In these cases, W will not act
faithfully on M .

Proposition 8.4 Let W be a finite Weyl group of type Dn or En with n ≥ 4, let V
be the reflection representation of W over a field F of characteristic zero, and let N
be a nontrivial irreducible direct summand of the module S2(V ) corresponding to a
W-orbit X of 2-roots.

(i) If X is the small orbit in type Dn (as in Definition 3.10), or any of the three
orbits in type D4, then the kernel of the action of W on N is elementary abelian
of order 2n−1.

(ii) In all other cases, the kernel of the action of W on N is the centre, Z(W ).

Proof Suppose that X is one of the orbits in the statement of (i). By Remark 3.11, the
action of W (Dn) on N factors through the action of the symmetric group Sn on the
root system of type An−1, and the latter action is faithful. The kernel of the action is
the kernel of a homomorphism fromW (Dn) to Sn that identifies two of the generators
on the short branches. The latter is elementary abelian of order 2n−1 (see [19, §2.10]),
which proves (i).

To prove (ii), we will show that any w /∈ {1, w0} acts nontrivially on N . Let
S1 = {αi ∈ � : w(αi ) < 0} and let S2 = �\S1. The assumptions on W mean that S1
and S2 are both nonempty. By Lemma 8.2, there exist orthogonal simple roots αi ∈ S1
and α j ∈ S2 such that w(αi ) > 0 and w(α j ) < 0.

The 2-root αi ∨ α j will be in the orbit X as long as αi ∨ α j is not in the small
orbit in type Dn . By Proposition 3.9 (iii), this can only happen if we are in type Dn

and {i, j} = {n − 1, n}. In this case, we can replace the pair {αn−1, αn} by one of the
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pairs {αn−3, αn−1} or {αn−3, αn} to obtain a pair of orthogonal simple roots with one
element from each of S1 and S2.

As in the proof of Proposition 8.3, we now have a 2-root αi ∨ α j that is a standard
basis element in the orbit X such that w(αi ∨ α j ) is a negative linear combination of
standard basis elements. This shows that w acts nontrivially on N .

If w0 ∈ Z(W ), then w0 acts as −1 on V and w0 acts trivially on S2(V ) and N .
Combined with the fact that w acts nontrivially on N , this shows that the kernel of the
action is Z(W ) = {1, w0}.

On the other hand, if w0 /∈ Z(W ), then {1, w0} is not a normal subgroup of W
and Z(W ) is trivial. In this case, the kernel of the action, which we already know is
contained in {1, w0}, is also trivial, as required. 	

Remark 8.5 If W is of type D4, it can be shown that the kernels of the action of W on
each of three nontrivial direct summands of S2(V ) intersect in the centre, Z(W ), of
order 2.

The results of Sect. 8 can be summarized as follows.

Theorem 8.6 Let W be a Weyl group of type Ya,b,c other than W (D4), let V be the
reflection representation of W over a field F of characteristic zero, and let N be a
nontrivial irreducible direct summand of the module S2(V ) corresponding to a W-
orbit X of 2-roots. If X is not the small orbit in type Dn, then the following hold.

(i) The kernel of the action of W on N is the center, Z(W ), of W .
(ii) The group W acts faithfully on N if and only if one of the following conditions

holds:

(1) W is infinite;
(2) W is of type Dn and n is odd;
(3) W is of type E6.

Proof Part (i) follows from Lemma 8.1 and Proposition 8.3 if W is infinite, and from
Proposition 8.4 (ii) if W is finite. Part (ii) follows from (i) and Lemma 8.1. 	


Concluding Remarks

Somenatural candidates for generalizing the results of this paper including considering
k-roots for integers k > 2, meaning symmetrized k-fold tensor products of mutually
orthogonal roots. The most tractable cases may be types A, B, and D, where the
root systems are easy to understand and there is a diagram calculus [13] to use as
a guide. Following the completion of this paper, a notion of k-roots of type D has
been introduced and studied in the preprint [14] by the first author. These k-roots have
similar properties to the 2-roots of the current paper and have applications to spherical
functions of Gelfand pairs (Sn, Sk × Sn−k) arising from maximal Young subgroups of
symmetric groups.

In another direction, it would be interesting to know if the relations from Theorem
5.2 expressing 2-roots as positive combinations of other 2-roots may be amenable to
an interpretation in terms of categorification.
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Although we did not discuss this for reasons of space, the ideas of this paper are
motivated by the authors’ study of the Kazhdan–Lusztig basis of the Hecke algebra
of W , specifically the elements w ∈ W such that a(w) = 2, where a is Lusztig’s
a-function [15, 16]. Using the Kazhdan–Lusztig basis {Cw : w ∈ W }, rather than the
basis {C ′

w : w ∈ W }, it is possible to construct the canonical basis B as follows. When
q is specialized to 1, it can be shown that for each Kazhdan–Lusztig basis element Cw

of a-value 2, there are precisely two reflections sα and sβ such that sα(Cw) and sβ(Cw)

are both equal to−Cw modulo I , where I is the ideal spanned by all Kazhdan–Lusztig
basis elements of a-value at least 3. It then turns out that the function sending Cw to
α ∨ β extends to a module homomorphism from each cell module of a-value 2 to the
module M . These identifications give rise to q-analogues of many of the results in this
paper.

It can also be shown that for non-affine types in characteristic zero, the irreducible
summands of S2(V ) remain irreducible upon restriction to the derived subgroup W ′
ofW . An important special case is the case Y1,2,6, also known as type E10 or E

++
8 . In

this case, the derived subgroupW ′ can be identified with PSL(2,O) [10, §6.4]. Here,
O is the ring of octavians, a discrete subring of the octonions O. The module M in
this case is a 54-dimensional irreducible representation of PSL(2,O) in characteristic
zero. There should be some octonionic interpretation of M in this case, and we note
that in this case, M has twice the dimension of the exceptional Jordan algebra.

It follows from Remark 3.11 that the 2-roots in the small orbit in type Dn form a
scaled copy of the root lattice of type An−1. This suggests that the integral lattice of
2-roots ZB may be related in interesting ways to other known integral lattices. Some
natural questions to ask are the following.

(1) Are the 2-roots the only elements x ∈ ZB for which B ′(x, x) = 4?
(2) When does the lattice ZB contain elements x ∈ ZB such that B ′(x, x) = 2?
(3) Whendoes the latticeZB contain roots,meaning elementsα such that the reflection

sα : x �→ x − 2
B ′(α, x)

B ′(α, α)
α

gives an automorphism of ZB?
(4) Does the latticeZB have any automorphisms other than negation and those induced

from automorphisms of the root lattice Z�?

The answer to question (3) above is positive in the case of the small orbit in
type Dn . For question (2), Willson [24] has shown that, outside the finite and
affine types, there always exist sign-coherent vectors x with B ′(x, x) = 2.
For example, consider the pairs of Coxeter diagrams of the form (�′, �) ∈
{(Y2,2,2,Y2,2,3), (Y1,3,3,Y1,3,4), (Y1,2,5,Y1,2,6)} where �′ is naturally a subdiagram
of � (and where �′ is of affine type and � is of hyperbolic type). Let α−1 be the
unique simple root in �\�′, let α be a simple root corresponding to one of the other
endpoints of �, let δ be the lowest positive imaginary root for �′, and let β be a simple
root of � that is adjacent to α. Then the element x := ((α + β) ∨ α−1) + (α ∨ δ) is a
sign-coherent element with B ′(x, x) = 2.
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Finally, we note that in the physics literature, real roots in type E10 correspond to
instantons, and two real roots are orthogonal if and only if the corresponding instantons
can “bind at threshold" [5, §3.2]. It would be interesting to know if the realization of
2-roots as lattice points in ZB or the linear dependence relations between these lattice
points have a physical interpretation.

Acknowledgements We thank Robert B. Howlett for suggesting to us a proof of Theorem 5.2 on which
our current proof is based, and we thank the referee for reading the paper carefully and suggesting many
improvements. We also thank Justin Willson for some helpful conversations

Declarations
The authors have no conflict of interest.

References

1. Allcock, D.: Reflection centralizers in Coxeter groups. Transformation Groups. 18(3), 599–613 (2013)
2. Bowman, C., De Visscher, M., Orellana, R.: The partition algebra and the Kronecker coefficients.

Transactions of the American Mathematical Society. 367(5), 3647–3667 (2015)
3. Brady, N., McCammond, J.P., Mühlherr, B., Neumann, W.D.: Rigidity of Coxeter groups and Artin

groups. Geometriae Dedicata. 94(1), 91–109 (2002)
4. Brink, B.: On centralizers of reflections in Coxeter groups. Bull. Lond. Math. Soc. 28(5), 465–470

(1996)
5. Brown, J., Ganor, O.J., Helfgott, C.: M-theory and E10: billiards, branes, and imaginary roots. Journal

of High Energy Physics. 2004(08), 063 (2004)
6. Cao, P., Li, F.: Uniform column sign-coherence and the existence of maximal green sequences. Journal

of Algebraic Combinatorics. 50(4), 403–417 (2019)
7. Cohen, A.M., Gijsbers, D.A.H., Wales, D.B.: A poset connected to Artin monoids of simply laced

type. Journal of Combinatorial Theory, Series A. 113(8), 1646–1666 (2006)
8. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: ATLAS of finite groups. Oxford

University Press, Eynsham (1985)
9. Dolgachev, I.: Reflection groups in algebraic geometry. Bulletin of theAmericanMathematical Society.

45(1), 1–60 (2008)
10. Feingold, A.J., Kleinschmidt, A., Nicolai, H.: Hyperbolic Weyl groups and the four normed division

algebras. Journal of Algebra. 322(4), 1295–1339 (2009)
11. Fomin, S., Zelevinsky, A.: Cluster algebras IV: coefficients. CompositioMathematica. 143(1), 112–164

(2007)
12. Geck, M.,Pfeiffer, G., et al.: Characters of finite Coxeter groups and Iwahori–Hecke algebras. Oxford

University Press, (2000)
13. Green, R.M.: Generalized Temperley-Lieb algebras and decorated tangles. Journal of Knot Theory and

its Ramifications. 7(02), 155–171 (1998)
14. Green, R.M.: Positivity properties for spherical functions of maximal Young subgroups. (2022)

arXiv:2211.15989
15. Green, R.M., Xu, T.: Classification of Coxeter groups with finitely many elements of a-value 2.

Algebraic Combinatorics. 3(2), 331–364 (2020)
16. Green, R.M., Xu, T.: Kazhdan–Lusztig cells of a-value 2 in a(2)-finite Coxeter systems. To appear in

Algebraic Combinatorics. (2023). arXiv:2109.09803
17. Griess, R.L.: A vertex operator algebra related to E8 with automorphism group O+(10, 2). In The

Monster and Lie algebras, number 7 in Ohio State Univ. Math. Res. Inst. Publ. pp. 43–58. De Gruyter,
Berlin, (1998)

18. Humphreys, J.E.: Introduction to Lie algebras and representation theory. Graduate Texts in Mathemat-
ics, vo.9, Springer-Verlag, New York-Berlin, Second printing, revised. (1978)

19. Humphreys, J.E.: Reflection groups andCoxeter groups. Number 29 inCambridge Studies inAdvanced
Mathematics. Cambridge University Press, (1990)

http://arxiv.org/abs/2211.15989
http://arxiv.org/abs/2109.09803


R. M Green and T. Xu

20. Ivanov, A.A.: Constructing the Monster via its Y-presentation. In Combinatorics, Paul Erdős is Eighty,
vol.1 of Bolyani Soc. Math. Stud. pp. 253–270. Bolyani Math. Soc. Budapest, (1993)

21. Kac, V.G.: Infinite-dimensional Lie algebras. Cambridge University Press, (1990)
22. Qi, D.: On irreducible, infinite, nonaffine Coxeter groups. Fundamenta Mathematicae. 193(1), 79–93

(2007)
23. Sloane, N.J.A.: The OEIS Foundation Inc.The On-Line Encyclopedia of Integer Sequences, (2022)
24. Willson, J.T.: Personal communication (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.


	2-roots for Simply Laced Weyl Groups
	Abstract
	Introduction
	1 The Canonical Basis of 2-roots
	2 Stabilizers of Real Roots
	3 Orbits of 2-roots
	4 Reflections Acting on 2-roots
	5 Sign-Coherence
	6 The Highest 2-root
	7 Irreducibility
	8 Faithfulness
	Concluding Remarks
	Acknowledgements
	References


