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Abstract
It is known that an isometric action of a Lie group on a compact symmetric space
gives rise to a proper Fredholm action of a path group on a path space via the gauge
transformations. In this paper, supposing that the isometric action is a Hermann
action (i.e., an isometric action of a symmetric subgroup of the isometry group), we
give an explicit formula for the principal curvatures of orbits of the path group action
and study the condition for those orbits to be austere, that is, the set of principal cur-
vatures in the direction of each normal vector is invariant under the multiplication
by −1. To prove the results, we essentially use the facts that Hermann actions are
hyperpolar and all orbits of Hermann actions are curvature-adapted submanifolds.
The results greatly extend the author’s previous result in the case of the standard
sphere and show that there exist a larger number of infinite dimensional austere
submanifolds in Hilbert spaces.

Keywords Hermann action · Hyperpolar action · Proper Fredholm action ·
Principal curvature · Austere submanifold · Proper Fredholm submanifold
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1 Introduction

In [24] and [29], Palais and Terng introduced a class of proper Fredholm (PF) sub-
manifolds in Hilbert spaces. These are submanifolds in Hilbert spaces which have
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finite codimensions and generalize properly immersed submanifolds in Euclidean
spaces. By definition, the shape operators of PF submanifolds are compact self-
adjoint operators. Moreover, the infinite dimensional differential topology and Morse
theory [23, 26, 27] can be applied to PF submanifolds. Typical examples of PF
submanifolds are orbits of the gauge transformations. More precisely, let G be a con-
nected compact Lie group with a bi-invariant Riemannian metric, g its Lie algebra,
and P the trivial principal G-bundle over the circle S1. The loop group H 1(S1, G) of
Sobolev H 1-loops is the gauge group of P and it acts on the Hilbert space L2(S1, g)

of L2-connections by the gauge transformations:

g ∗ u := gug−1 − g g−1.

They showed that this action is isometric, proper and Fredholm (PF) [24]. Thus,
every orbit of this action is a PF submanifold ofL2(S1, g). Moreover, they essentially
considered an equivariant map : L2(S1, g) → G, which is nowadays called the
parallel transport map, and showed that the above gauge group action is hyperpolar
and the principal orbits are isoparametric PF submanifolds. Here, the action is called
hyperpolar if there exists a closed affine subspace of L2(S1, g) which meets every
orbit orthogonally.

The above examples were extended by Pinkall and Thorbergsson [25] and eventu-
ally reformulated by Terng [30] as follows. Let G := H 1([0, 1], G) denote the path
group of all H 1-paths from [0, 1] to G and Vg := L2([0, 1], g) the Hilbert space of
all L2-paths from [0, 1] to g. For any closed subgroup L of G × G, the subgroup

P(G, L) := {g ∈ G | (g(0), g(1)) ∈ L}
acts on Vg isometrically by the gauge transformations. If L is the diagonal G, then
the P(G, L)-action is identified with the action given by Palais and Terng above. If
L = K ×K for a symmetric subgroup K of G, then it is just the one given by Pinkall
and Thorbergsson [25]. Terng [30] generally proved that the P(G, L)-action is PF
and showed that the parallel transport map : Vg → G is equivariant with respect
to the L- and P(G, L)-actions where L acts on G by (b, c) · a := bac−1, and each
P(G, L)-orbit is expressed as the inverse image of an L-orbit under . Using these
results, she showed that if the L-action is hyperpolar then the P(G, L)-action is also
hyperpolar and the principal orbits are isoparametric. Here, the L-action (or more
generally, a proper isometric action on a Riemannian manifold) is called hyperpolar
if there exists a closed connected totally geodesic submanifold which is flat in the
induced metric and meets every orbit orthogonally [6]. In this way, the structure of
the P(G, L)-action is understood through the parallel transport map.

Terng and Thorbergsson [31] investigated the parallel transport map : Vg → G

and showed that it is a Riemannian submersion. Moreover, they gave an interesting
application to the submanifold geometry in symmetric spaces. Let G/K be a sym-
metric space of compact type with projection π : G → G/K . They considered the
composition K := π ◦ : Vg → G → G/K and proved that if N is a closed
submanifold of G/K then the inverse image −1

K (N) is a PF submanifold of Vg.
Moreover, they showed that if N is an equifocal submanifold of G/K then each
component of −1

K (N) is an isoparametric PF submanifold of Vg and the converse
is also true. Although −1

K (N) is infinite dimensional, many techniques and results
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in the finite dimensional Euclidean case are still valid in the case of Hilbert space
Vg. Applying techniques for isoparametric submanifolds to −1

K (N), they studied
equifocal submanifolds in G/K . In this way, the parallel transport map is also known
as a tool to study the submanifold geometry in symmetric spaces. It is a fundamental
problem to show the geometrical relation between N and −1

K (N).
Afterwards, Koike [13] gave a formula for the principal curvatures of −1

K (N)

under the assumption that N is curvature-adapted, that is, for each normal vector v

at each p ∈ N the Jacobi operator Rv leaves the tangent space TpN invariant and
the restriction Rv|TpN commutes with the shape operator Av . Recently, the author
[18] corrected inaccuracies in that formula and studied the relation between two
conditions:

(A) N is an austere submanifold of G/K ,
(B) −1

K (N) is an austere PF submanifold of Vg.

Here, a submanifold is called austere [4] if the set of principal curvatures with mul-
tiplicities in the direction of each normal vector is invariant under the multiplication
by (−1). The author showed [18, Theorem 4.1]:

Theorem [18] If G/K is the standard sphere then (A) and (B) are equivalent.

The purpose of this paper is to extend this theorem to the case that G/K is not
necessarily the standard sphere. However there are two difficulties to do this. The first
one is that N must be curvature-adapted in order to use the formula for the principal
curvatures of −1

K (N), otherwise there is no way to compute those curvatures. The
second one is that even if N is curvature-adapted the principal curvatures of −1

K (N)

and their multiplicities are complicated in general and it is not clear whether the
austere properties of N and −1

K (N) are equivalent or not.
In this paper, we let G/K be a symmetric space of compact type and suppose

that N is an orbit of a Hermann action [7], that is, an isometric action of a sym-
metric subgroup H of G on G/K . We know that all orbits of Hermann actions are
curvature-adapted submanifolds [2]. Moreover, we can explicitly describe the princi-
pal curvatures of orbits of Hermann actions [22]. Furthermore, −1

K (N) is expressed
as an orbit of the P(G, H × K)-action and the conditions (A) and (B) are restated as
follows:

(A) The orbit H · (expw)K through (expw)K is an austere submanifold of G/K ,
(B) The orbit P(G, H × K) ∗ ŵ through ŵ is an austere PF submanifold of Vg,

where w ∈ g and ŵ denotes the constant path with value w. Note that since the
Hermann action is hyperpolar [8], the P(G, H × K)-action is also hyperpolar. This
implies that we only have to consider normal vectors which are tangent to a fixed
when studying the above conditions (see Lemma 7.2).

In this paper, we first derive an explicit formula for the principal curvatures of
P(G, H × K)-orbits (Theorem 6.1), which unifies and generalizes some results by
Terng [29], Pinkall-Thorbergsson [25], and Koike [14] (see Remark 6.4). Then, using
this explicit formula, we study the relation between (A) and (B). To explain the



M. Morimoto

results, we write σ and τ for the involutions of G associated to the symmetric sub-
groups K and H respectively. We denote by g = k ⊕ m (resp. g = h ⊕ p) the
decomposition into the (±1)-eigenspaces of the differential of σ (resp. τ ). Take a
maximal abelian subspace t in m ∩ p and denote by = (σ, τ ) the associated root
system of t. We will prove the following theorem (Theorem 7.1):

Theorem I If is a reduced root system, then (A) and (B) are equivalent.

Then, without supposing that is a reduced root system, we will prove the
following theorem (Theorems 8.2, 8.5, and 8.8):

Theorem II (i) Suppose that σ = τ . Then (A) and (B) are equivalent.
(ii) Suppose that σ and τ commute. Then (A) implies (B).
(iii) Suppose that G is simple. Then (A) implies (B).

Note that (B) does not imply (A) in the cases (ii) and (iii). In fact, we will show
a counterexample of a minimal H -orbit which is not austere but the corresponding
P(G, H × K)-orbit is austere (cf. Section 9). Without the assumption of (ii) or (iii),
we do not know whether (A) implies (B) or not because in the non-simple case there
exist many non-commutative pairs of involutive automorphisms of G [17]. However,
the above theorems greatly extend the previous theorem in the spherical case and
cover all known examples of austere orbits of Hermann actions [9, 22]. Applying
the above theorems to those examples, we obtain a larger number of infinite dimen-
sional austere PF submanifolds in Hilbert spaces. Notice that so obtained austere PF
submanifolds are not totally geodesic due to [19].

This paper is organized as follows. In Section 2, we review basic knowledge
on P(G, H × K)-actions and the parallel transport map. In Section 3, we review
fundamental results on the submanifold geometry of orbits of Hermann actions. In
Section 4, we introduce a hierarchy of curvature-adapted submanifolds in symmetric
spaces and formulate the curvature-adapted property of orbits of Hermann actions.
In Section 5, we refine the formula for the principal curvatures of −1

K (N) [13, 18]
so that it can be applied to orbits of Hermann actions. In Section 6, by applying the
refined formula to orbits of Hermann actions, we derive an explicit formula for the
principal curvatures of P(G, H ×K)-orbits. In Section 7, using this explicit formula,
we formulate the conditions (A) and (B) in terms of roots in and prove Theorem
I. In Section 8, we show an inequality between the multiplicities of roots α and 2α
in and prove Theorem II. Finally, in Section 9, we show a counterexample to the
converse of (ii) and (iii) of Theorem II and mention further remarks on the converse.

2 Preliminaries

Let G be a connected compact semisimple Lie group and K a closed subgroup of
G. Suppose that K is a symmetric subgroup of G, that is, there exists an involutive
automorphism σ of G satisfying the condition Gσ

0 ⊂ K ⊂ Gσ , where Gσ denotes
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the fixed point subgroup of G and Gσ
0 its identity component. We denote by g and

k the Lie algebras of G and K respectively. The differential of σ induces an involu-
tive automorphism of g, which is still denoted by σ . The direct sum decomposition
g = k⊕m into the (±1)-eigenspaces of σ is called the canonical decomposition. We
fix an Ad(G)-invariant inner product ·, · of g which is a negative multiple of the
Killing form of g. Then, it is invariant under all automorphisms of g and the canon-
ical decomposition is orthogonal. We equip G with the corresponding bi-invariant
Riemannian metric and the homogeneous space G/K with the corresponding G-
invariant metric. Then M := G/K is a symmetric space of compact type and the
projection π : G → M is a Riemannian submersion with totally geodesic fiber.

We denote by G := H 1([0, 1], G) the path group of all Sobolev H 1-paths from
[0, 1] to G and by Vg := L2([0, 1], g) the path space of all L2-paths from [0, 1] to
g. Then G is a Hilbert Lie group and Vg a separable Hilbert space. We consider the
isometric action of G on Vg given by the gauge transformations

g ∗ u := gug−1 − g g−1,

where g ∈ G and u ∈ Vg. We know that this action is proper and Fredholm [24,
Theorem 5.8.1], [29, Section 4]. For any closed subgroup L of G × G the subgroup

P(G, L) := {g ∈ G | (g(0), g(1)) ∈ L}
acts on Vg by the same formula. It follows that the P(G, L)-action is also proper and
Fredholm [30, p. 132]. Thus every orbit of the P(G, L)-action is a proper Fredholm
(PF) submanifold of Vg [24, Theorem 7.1.6]. We know that the P(G, {e}×G)-action
on Vg is simply transitive [31, Corollary 4.2] and that the P(G, G × {e})-action on
Vg is also simply transitive [19, Section 5].

The parallel transport map [30, 31] : Vg → G is defined by

(u) := gu(1),

where gu ∈ G is the unique solution to the linear ordinary differential equation

g−1
u gu = u,

gu(0) = e.

We know that is a Riemannian submersion and a principal e(G)-bundle, where
e(G) = P(G, {e} × {e}) denotes the based loop group [31, Corollary 4.4, Theorem

4.5]. The normal space of the fiber −1(e) at 0̂ ∈ Vg is identified with the subspace
ĝ = {x̂ | x ∈ g} of Vg, where x̂ denotes the constant path with value x. It follows
that (x̂) = exp x. The composition

K := π ◦ : Vg → G → M

is a Riemannian submersion which is also called the parallel transport map.
We consider the isometric action of G on M defined by

b · (aK) := (ba)K,

where b ∈ G and aK ∈ M , and the isometric action of G × G on G defined by

(b, c) · a := bac−1,
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where (b, c) ∈ G × G and a ∈ G. Then π and have the following equivariant
properties [30, Proposition 1.1 (i)]:

π((b, c) · a) = b · π(a) for (b, c) ∈ G × K and a ∈ G, (2.1)

(g ∗ u) = (g(0), g(1)) · (u) for g ∈ G and u ∈ Vg. (2.2)

From these, we have

K(g ∗ u) = g(0) K(u) for g ∈ P(G, G × K) and u ∈ Vg. (2.3)

Let H be a closed subgroup of G; in later sections, we will suppose that it is a
symmetric subgroup of G. We denote by h the Lie algebra of H and g = h ⊕ p the
orthogonal direct sum decomposition. Then H acts on M , the subgroup H × K acts
on G and the subgroup P(G, H × K) acts on Vg. We know the following relations
for orbits [30, Proposition 1.1 (ii)]:

(H × K) · a = π−1(H · aK) and P(G, H × K) ∗ u = −1((H × K) · (u)).

Thus, we have
P(G, H × K) ∗ u = −1

K (H · K(u)). (2.4)

Then, we obtain the commutative diagram

G ⊃ P(G, H × K) Vg ⊃ P(G, H × K) ∗ u = −1((H × K) · a)

ψ ↓ ψ ↓ ↓ ↓ ↓
G × G ⊃ H × K G ⊃ (H × K) · a = π−1(H · aK)

p ↓ p ↓ π ↓ π ↓
G ⊃ H M ⊃ H · aK ( (u) = a),

where p denotes the projection onto the first component and ψ the submersion
defined by ψ(g) := (g(0), g(1)) for g ∈ G. We know that the following conditions
are equivalent: the orbit H ·aK is a minimal submanifold of M , the orbit (H ×K) ·a
is a minimal submanifold of G, and the orbit P(G, H × K) ∗ u through u ∈ −1(a)

is a minimal PF submanifold of Vg [12, Theorem, 4.12], [5, Lemma 5.2].
Recall that an isometric action of a compact Lie group A on a Riemannian mani-

fold X is called polar if there exists a closed connected submanifold of X which
meets every A-orbit and is orthogonal to the A-orbits at every point of intersection.
Such a is called a section, which is automatically totally geodesic in X. If is flat
in the induced metric, then the action is called hyperpolar [6]. For a proper Fredholm
action on a Hilbert space, we can define it to be hyperpolar in the similar way. We
know that the following conditions are equivalent [6, Proposition 2.11], [30, Theorem
1.2], [3, Lemma 4]:

(i) The H -action on M is hyperpolar,
(ii) The H × K-action on G is hyperpolar,
(iii) The P(G, H × K)-action on Vg is hyperpolar.

Since we fixed a bi-invariant Riemannian metric on G induced by a negative mul-
tiple of the Killing form of g, the condition (ii) is equivalent to the existence of
a c-dimensional abelian subspace t in m ∩ p where c is the cohomogeneity of the
H × K-action [6, Theorem 2.1]. Then π(exp t), exp t, and t̂ = {x̂ | x ∈ t} are sec-
tions of the H -action, the H × K-action, and the P(G, H × K)-action respectively.
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If the actions are hyperpolar then the following conditions are equivalent [30, Theo-
rem 1.2]: aK ∈ M is a regular point of the H -action, a ∈ G is a regular point of the
H × K-action, and u ∈ −1(a) is a regular point of the P(G, H × K)-action. Here,
a point is called regular if the orbit though it is principal.

3 Submanifold Geometry of Orbits of Hermann Actions

In this section, we review fundamental results on the submanifold geometry of orbits
of Hermann actions. For details, see Ohno [22] (see also Goertsches-Thorbergsson
[2] and Ikawa [9]). Throughout this section, M = G/K denotes a symmetric space
of compact type and H a symmetric subgroup of G. We denote by σ and τ the
involutions of G associated to K and H respectively and by g = k⊕m and g = h⊕p

the canonical decompositions. We choose and fix a maximal abelian subspace t in
m ∩ p so that := π(exp t) is a section of the Hermann action.

Consider the root space decomposition of gC with respect to t:

gC = g(0) ⊕
α∈

g(α),

where

g(0) = {z ∈ gC | ad(η)z = 0 for all η ∈ t},
g(α) = {z ∈ gC | ad(η)z = √−1 α, η z for all η ∈ t}.

Here = {α ∈ t\{0} | g(α) = {0}} is a root system of t [9, Lemma 4.12]. Since
g(α) = g(−α), where the bar denotes the complex conjugation, the real form is

g = g0 ⊕
α∈ +

gα,

where
g0 = g(0) ∩ g, gα = (g(α) + g(−α)) ∩ g.

Note that

g0 = {x ∈ g | ad(η)x = 0 for all η ∈ t},
gα = {x ∈ g | ad(η)2x = − α, η 2x for all η ∈ t}.

Since σ commutes with ad(η)2 for all η ∈ t, we have

k = k0 ⊕
α∈ +

kα, m = m0 ⊕
α∈ +

mα,

where
k0 = g0 ∩ k, m0 = g0 ∩ m,

kα = gα ∩ k, mα = gα ∩ m.

We define a linear orthogonal transformation ψα of gα by

ψα(x) := 1

α, α
ad(α)x for x ∈ gα . (3.1)
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An equivalent definition is that

ψα(z + z̄) := √−1(z − z̄) for z ∈ g(α).

Since σ ◦ ψα = −(ψα ◦ σ), we have a linear isometry ψα : mα → kα . Set

m(α) := dim kα = dimmα .

By setting xα
i := ψα yα

i , we can take bases xα
i

m(α)

i=1 of kα and yα
i

m(α)

i=1 of mα

satisfying

η, xα
i = − α, η yα

i and η, yα
i = α, η xα

i (3.2)

for any η ∈ t.
The root space decompositions above are refined by combining a decomposition

derived from the involutions σ and τ . More precisely, we consider the composition

σ ◦ τ : g → g

and the eigenspace decomposition

gC =
∈U(1)

g( ),

where

g( ) = z ∈ gC | (σ ◦ τ)(z) = z .

Here, the eigenvalues belong to U(1) = { ∈ C | | | = 1}. For each ∈ U(1), we
denote by arg its argument satisfying −π < arg ≤ π . Since σ ◦ τ commutes with
ad(η) for all η ∈ t, we have

gC =
∈U(1)

g(0, ) ⊕
α∈ ∈U(1)

g(α, ),

where

g(0, ) = g(0) ∩ g( ), g(α, ) = g(α) ∩ g( ).

Since g(α, ) = g(−α, −1) the real form is

g =
∈U(1)≥0

g0, ⊕
α∈ + ∈U(1)

gα, ,

where

U(1)≥0 = { ∈ U(1) | Im( ) ≥ 0},

g0, = (g(0, ) + g(0, −1) ∩ g,

gα, = (g(α, ) + g(−α, −1)) ∩ g.

Setting ρ+ = σ ◦ τ + τ ◦ σ and ρ− = σ ◦ τ − τ ◦ σ we can write

g0, = {x ∈ g0 | ρ+(x) = 2Re( )x},
gα, = {x ∈ gα | ρ+(x) = 2Re( )x, ρ−(x) = 2Im( )ψα(x)},
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where Re( ) and Im( ) denote the real and imaginary parts of respectively. Since
g0, and gα, are invariant under σ , we have

k =
∈U(1)≥0

k0, ⊕
α∈ + ∈U(1)

kα, ,

m =
∈U(1)≥0

m0, ⊕
α∈ + ∈U(1)

mα, ,

where
k0, = g0, ∩ k, kα, = gα, ∩ k,

m0, = g0, ∩ m, mα, = gα, ∩ m.

Since gα, is invariant under ψα , we have a linear isometry ψα : mα, → kα, . Set

m(α, ) := dim kα, = dimmα, .

Then, similarly, we can take bases x
α,
i

m(α, )

i=1 of kα, and y
α,
i

m(α, )

i=1 of mα,

satisfying

η, x
α,
i = − α, η y

α,
i and η, y

α,
i = α, η x

α,
i (3.3)

for any η ∈ t.
We now take w ∈ t, set a := expw and consider the orbit N := H · aK through

aK . Denote by La the isometry of M defined by La(bK) := (ab)K . Identifying
TeKM with m, we can describe the tangent space and the normal space of N as
follows [22, p. 12]:

TaKN = dLa(

∈U(1)≥0=1

m0, ⊕
α∈ + ∈U(1)

α,w + 1
2 arg /∈πZ

mα, ), (3.4)

T ⊥
aKN = dLa( t ⊕

α∈ + ∈U(1)
α,w + 1

2 arg ∈πZ

mα, ). (3.5)

Moreover, the decomposition (3.4) is just the common eigenspace decomposition of
the family of shape operators {AN

dLa(ξ)}ξ∈t. In fact [22, p. 17]:

dLa(m0, ) : the eigenspace associated with the eigenvalue 0,

dLa(mα, ) : the eigenspace associated with

the eigenvalue − α, ξ cot α, w + 1

2
arg

for each ξ ∈ t. If σ and τ commute then = ±1 and thus we get [2, Theorem 5.3]:

TaKN = dLa( m0 ∩ h ⊕
α∈ +

α,w /∈πZ

mα ∩ p ⊕
α∈ +

α,w +π/2/∈πZ

mα ∩ h ), (3.6)

T ⊥
aKN = dLa( t ⊕

α∈ +
α,w ∈πZ

mα ∩ p ⊕
α∈ +

α,w +π/2∈πZ

mα ∩ h ), (3.7)
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where

dLa(m0 ∩ h) : the eigenspace associated with the eigenvalue 0,

dLa(mα ∩ p) : the eigenspace associated with the eigenvalue − α, ξ cot α, w ,

dLa(mα ∩ h) : the eigenspace associated with the eigenvalue α, ξ tan α, w .

In particular if σ = τ then we have [28, p. 122]

TaKN = dLa(

α∈ +
α,w /∈πZ

mα ), (3.8)

T ⊥
aKN = dLa( t ⊕

α∈ +
α,w ∈πZ

mα ), (3.9)

where

dLa(mα) : the eigenspace associated with the eigenvalue − α, ξ cot α, w .

4 The Curvature-Adapted Property

In this section, we formulate the curvature-adapted property of orbits of Hermann
actions.

First, we recall the concept of curvature-adapted submanifolds [1]. Let N be a
submanifold of a Riemannian manifold M . For each v ∈ T ⊥

p N at each p ∈ N , the
Jacobi operator Rv is a symmetric linear transformation of TpM defined by

Rv(x) = RM(x, v)v for x ∈ TpM,

where RM denotes the curvature tensor of M . Then N is called curvature-adapted if
for every v ∈ T ⊥

p N at each p ∈ N the Jacobi operator Rv leaves TpN invariant and
the restriction Rv|TpN commutes with the shape operator AN

v of N .
We now make the following definition:

Definition 4.1. Let M = G/K be a symmetric space of compact type and N a
submanifold of M . For an integer c satisfying 1 ≤ c ≤ codimN , we say that N is
c-curvature-adapted if for each aK ∈ N the following two conditions are satisfied:

(i) For every v ∈ T ⊥
aKN , the Jacobi operator Rv leaves TaKN invariant,

(ii) For each v ∈ T ⊥
aKN , there exists a c-dimensional abelian subspace t in m

satisfying v ∈ dLa(t) ⊂ T ⊥
aKN such that the union

{RdLa(ξ)|TaKN }ξ∈t ∪ AN
dLa(ξ)

ξ∈t
is a commuting family of endomorphisms of TaKN .

Note that 1-curvature-adapted submanifolds are just curvature-adapted submani-
folds in the original sense. Note also that if aK = eK then Rv is identified with
− ad(v)2 since M is a symmetric space. Typical examples of c-curvature-adapted
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submanifolds are given by the following proposition, which was essentially shown
by Goertsches and Thorbergsson [2, Corollaries 3.3 and 3.4]:

Proposition 4.2 (Goertsches-Thorbergsson [2]) All orbits of Hermann actions of
cohomogeneity c are c-curvature-adapted submanifolds.

Proof Let N be an orbit of a Hermann action H M of cohomogeneity c. Take
aK ∈ N . Since L−1

a N = (a−1Ka) · eK we can assume aK = eK without loss of
generality. Take v ∈ T ⊥

eKN . Choose a maximal abelian subspace t in m ∩ p = T ⊥
eKN

containing v. Since π(exp t) is a section of the Hermann action, we have dim t = c.
Then it follows from the decomposition (3.4) that the Jacobi operator Rv = − ad(v)2

leaves TeKN invariant and

Rv ◦ Rw = Rw ◦ Rv, Rv|TeKN ◦ AN
w = AN

w ◦ Rv|TeKN , AN
v ◦ AN

w = AN
w ◦ AN

v

hold for any v, w ∈ t. Thus, N is a c-curvature-adapted submanifold of M .

Remark 4.3 We do not knowwhether all orbits of hyperpolar actions of cohomogene-
ity c are c-curvature-adapted submanifolds or not. We know that any indecomposable
hyperpolar action of cohomogeneity at least two on M is orbit equivalent to a
Hermann action [16]. We also know that any cohomogeneity one action on M is
automatically hyperpolar [6, Corollary 2.13]. There exist examples of cohomogene-
ity one actions on the standard sphere which are different from Hermann actions [6,
15]. Since the standard sphere is of constant sectional curvature, all orbits of such
cohomogeneity one actions are 1-curvature-adapted submanifolds.

Let N be a c-curvature-adapted submanifold of a symmetric space M = G/K

of compact type. Take aK ∈ N . Choose and fix an arbitrary c-dimensional abelian
subspace t in m satisfying the condition (ii) of Definition 4.1 for some v ∈ T ⊥

aKN .
Consider the root space decomposition

k = k0 ⊕
α∈ +

kα, m = m0 ⊕
α∈ +

mα,

where

k0 = {x ∈ k | ad(η)x = 0 for all η ∈ t},
kα = {x ∈ k | ad(η)2x = − α, η 2x for all η ∈ t},
m0 = {y ∈ m | ad(η)y = 0 for all η ∈ t},
mα = {y ∈ m | ad(η)2y = − α, η 2y for all η ∈ t}.

These are just the common eigenspace decompositions of the commuting opera-
tors ad(ξ)2

ξ∈t. On the other hand, the following lemma concerns the common

eigenspace decomposition of the commuting operators AN
dLa(ξ)

ξ∈t.
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Lemma 4.4 There exists a unique finite subset of t such that

TaKN =
λ∈

Sλ,

where Sλ is a nonzero subspace of TaKN defined by

Sλ = x ∈ TaKN | AN
dLa(η)(x) = λ, η x for all η ∈ t .

Proof By left translation, we can assume aK = eK without loss of generality. It is
easy to see that such a subset is unique. To see the existence, we take a basis {ηi}ci=1
of t. We denote by {λ(ηi)1, · · · , λ(ηi)m(i)} the set of all distinct eigenvalues of the
shape operator AN

ηi
and by Wλ(ηi)1 , · · · , Wλ(ηi )m(i)

their eigenspaces. Since {AN
ηi

}ci=1
is a commuting family, we have the common eigenspace decomposition

TeKN =
m(1)

j1=1

· · ·
m(c)

jc=1

Wλ(η1)j1
∩ · · · ∩ Wλ(ηc)jc

.

Define a linear functional λj1···jc : t → R by

λj1···jc (a1η1 + · · · + acηc) = a1λ(η1)j1 + · · · + acλ(ηc)jc , where a1, ..., ac ∈ R.

Then for each η = a1η1 + · · · + acηc ∈ t and x ∈ Wλ(η1)j1
∩ · · · ∩ Wλ(ηc)jc

we have

AN
η (x) = a1A

N
η1

+ · · · + acA
N
ηc

(x) = λj1···jc (η)x.

Set := {λj1···jc }1≤j1≤m(1), ··· , 1≤jc≤m(c) and Sλj1···jc := Wλ(η1)j1
∩ · · · ∩ Wλ(ηc)jc

.
Identifying t with the dual space t∗ we obtain the desired subset ⊂ t and the
decomposition TeKN = λ∈ Sλ. This proves the lemma.

The following proposition concerns the common eigenspace decomposition of the

union of commuting operators {RdLa(ξ)}ξ∈t ∪ AN
dLa(ξ)

ξ∈t.

Proposition 4.5 Let be as in Lemma 4.4. Then the tangent space and the normal
space of N are decomposed as follows:

TaKN =
λ∈ 0

(dLa(m0) ∩ Sλ) ⊕
α∈ + λ∈ α

(dLa(mα) ∩ Sλ), (4.1)

T ⊥
aKN = dLa(m0) ∩ T ⊥

aKN ⊕
α∈ +

dLa(mα) ∩ T ⊥
aKN , (4.2)

where 0 := {λ ∈ | dLa(m0) ∩ Sλ = {0}} and α := {λ ∈ | dLa(mα) ∩ Sλ =
{0}}.

Proof By left translation, we can assume aK = eK without loss of generality. Since
the tangent space is invariant under {Rξ }ξ∈t the normal space is also invariant under
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{Rξ }ξ∈t and we have the decompositions

TeKN = m0 ∩ TeKN ⊕
α∈ +

(mα ∩ TeKN),

T ⊥
eKN = m0 ∩ T ⊥

eKN ⊕
α∈ +

mα ∩ T ⊥
eKN .

By the curvature-adapted property, m0 ∩ TeKN and mα ∩ TeKN are invariant under
{AN

ξ }ξ∈t. Thus, by similar arguments as in the proof of Lemma 4.4, we obtain the
common eigenspace decompositions

m0 ∩ TeKN =
λ∈ 0

(m0 ∩ Sλ), mα ∩ TeKN =
λ∈ α

(mα ∩ Sλ)

and the assertion follows.

Example 4.6 Let H M be a Hermann action of cohomogeneity c. Choose a max-
imal abelian subspace t in m ∩ p. Take w ∈ t, set a := expw and consider the orbit
N = H · aK through aK . From the decomposition (3.4), it is clear that t is a c-
dimensional abelian subspace in m satisfying the condition (ii) of Definition 4.1 for
any v ∈ {dLa(ξ)}ξ∈t. We set U(1)0 := { ∈ U(1)≥0 | m0, = {0}} and

U(1)0 := { ∈ U(1)0 | = 1}.
We also set U(1)α := { ∈ U(1) | mα, = {0}} and

U(1)α := ∈ U(1)α | α, w + 1

2
arg /∈ πZ ,

U(1)⊥α := ∈ U(1)α | α, w + 1

2
arg ∈ πZ .

Then, we can rewrite the decompositions (3.4) and (3.5) as follows:

TaKN =
∈U(1)0

dLa(m0, ) ⊕
α∈ + ∈U(1)α

dLa(mα, ), (4.3)

T ⊥
aKN = dLa(t) ⊕

α∈ + ∈U(1)⊥α

dLa(mα, ). (4.4)

For each α ∈ + and ∈ U(1)α , we set

λ(α, ) := − cot α, w + 1

2
arg α ∈ t.

Then, 0 and α in Proposition 4.5 are

0
= {0} (if U(1)0 = ∅)

= ∅ (if U(1)0 = ∅)
, α = {λ(α, ) | ∈ U(1)α }.
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Note that the correspondence U(1)α → λ(α, ) ∈ α is one-to-one because
cot x is strictly decreasing on R/πZ. Thus, we have

∈U(1)0

dLa(m0, ) = dLa(m0) ∩ S0, dLa(mα, ) = dLa(mα, ) ∩ Sλ(α, ),

dLa(t) = dLa(m0) ∩ T ⊥
aKN,

∈U(1)⊥α
dLa(mα, ) = dLa(mα) ∩ T ⊥

aKN

and therefore the decompositions (4.3) and (4.4) are expressed as

TaKN = dLa(m0) ∩ S0 ⊕
α∈ + λ∈ α

(dLa(mα) ∩ Sλ), (4.5)

T ⊥
aKN = dLa(m0) ∩ T ⊥

aKN ⊕
α∈ +

dLa(mα) ∩ T ⊥
aKN . (4.6)

5 Principal Curvatures via the Parallel Transport Map

Let M = G/K be a symmetric space of compact type and K : Vg → M the
parallel transport map. In [13] and [18], an explicit formula for the principal curva-
tures of the PF submanifold −1

K (N) of Vg was given under the assumption that N

is a curvature-adapted submanifold of M . In this section, we refine that formula to
the case of c-curvature-adapted submanifolds so that it can be applied to orbits of
Hermann actions.

Let N be a c-curvature-adapted submanifold of M . To consider the PF submani-
fold −1

K (N) of Vg, we can assume eK ∈ N without loss of generality due to the
equivariant property (2.3) of K . Choose and fix an arbitrary c-dimensional abelian
subspace t in T ⊥

eKN satisfying the condition (ii) of Definition 4.1 for some v ∈ T ⊥
eKN .

Recall the decompositions given in Proposition 4.5:

TeKN =
λ∈ 0

(m0 ∩ Sλ) ⊕
α∈ + λ∈ α

(mα ∩ Sλ), (5.1)

T ⊥
eKN = m0 ∩ T ⊥

eKN ⊕
α∈ +

mα ∩ T ⊥
eKN . (5.2)

Set
m(0, λ) := dim(m0 ∩ Sλ), m(α, λ) := dim(mα ∩ Sλ),

m(0, ⊥) := dim(m0 ∩ T ⊥
eKN), m(α, ⊥) := dim mα ∩ T ⊥

eKN .

Take bases

y
0,λ
j

m(0,λ)

j=1
of m0 ∩ Sλ, y

α,λ
k

m(α,λ)

k=1
of mα ∩ Sλ,

{y0,⊥
l

m(0,⊥)

l=1
of m0 ∩ T ⊥

eKN, y
α,⊥
r

m(α,⊥)

r=1
of mα ∩ T ⊥

eKN .

Then we obtain a basis

λ∈ 0

y
0,λ
j

m(0,λ)

j=1
∪ y

0,⊥
l

m(0,⊥)

l=1
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of m0 and a basis

λ∈ α

y
α,λ
k

m(α,λ)

k=1
∪ yα,⊥

r

m(α,⊥)

r=1

of mα . Via an isometry ψα : mα → kα defined by (3.1) we take a basis

λ∈ α

x
α,λ
k

m(α,λ)

k=1
∪ xα,⊥

r

m(α,⊥)

r=1

of kα . Finally we choose a basis {x0
i }dim k0

i=1 of k0. Then the relations

ξ, x0
i = 0, ξ, y

0,λ
j = ξ, y

0,⊥
l = 0,

ξ, x
α,λ
k = − α, ξ y

α,λ
k , ξ, y

α,λ
k = α, ξ x

α,λ
k ,

ξ, x
α,⊥
r = − α, ξ y

α,⊥
r , ξ, y

α,⊥
r = α, ξ x

α,⊥
r .

hold for any ξ ∈ t.
We write V (g) for the Hilbert space Vg = L2([0, 1], g) and decompose

V (g) = V (k0) ⊕ V (m0 ∩ TeKN) ⊕ V (m0 ∩ T ⊥
eKN)

⊕
α∈ +

(V (kα) ⊕ V (mα ∩ TeKN) ⊕ V (mα ∩ T ⊥
eKN)).

We equip a suitable basis with each term above. Recall that in addition to

1,
√
2 cos 2nπt,

√
2 cos 2nπt

∞
n=1

there are two other kinds of orthonormal bases of L2([0, 1],R), namely

1,
√
2 cos 2nπt

∞
n=1

and
√
2 sin nπt

∞
n=1

.

We consider bases

x0
i sin nπt

i, n
of V (k0),

y
0,λ
j

λ, j
∪ y

0,λ
j cos nπt

λ, j, n
of V (m0 ∩ TeKN),

y
0,⊥
l

l
∪ y

0,⊥
l cos nπt

l, n
of V (m0 ∩ T ⊥

eKN),

x
α,λ
k sin nπt

λ, k, n
∪ x

α,⊥
r sin nπt

r, n
of V (kα),

y
α,λ
k

λ, k
∪ y

α,λ
k cos nπt

λ, n, k
of V (mα ∩ TeKN),

y
α,⊥
r

r
∪ y

α,⊥
r cos nπt

n, r
of V (mα ∩ T ⊥

eKN).
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Then all these bases form a basis of V (g) = Vg
∼= T0̂Vg. Since : Vg → G is a

Riemannian submersion with the orthogonal direct sum decomposition [31, p. 686]

T0̂Vg = T0̂
−1(e) ⊕ ĝ, X = (X − 1

0 X(t)dt) ⊕ 1
0 X(t)dt,

we have the orthogonal direct sum decomposition

T0̂Vg
∼= T0̂

−1
K (N) ⊕ T ⊥

eKN, X = (X − (
1
0 X(t)dt)⊥) ⊕ (

1
0 X(t)dt)⊥,

where ⊥ denotes the projection from g = k ⊕ TeKN ⊕ T ⊥
eKN onto T ⊥

eKN . Thus, we
obtain a basis

x0
i sin nπt

i, n
∪ y

0,λ
j

λ, j
∪ y

0,λ
j cos nπt

λ, j, n
∪ y0,⊥

r cos nπt
r, n

∪
α∈ +

x
α,λ
k sin nπt

λ, k, n
∪ y

α,λ
k

λ, k
∪ y

α,λ
k cos nπt

λ, k, n

∪
α∈ +

xα,⊥
r sin nπt

r,n
∪ yα,⊥

r cos nπt
r, n

of T0̂
−1
K (N).

For each ξ ∈ t, we denote by A
−1
K (N)

ξ̂
the shape operator of −1

K (N) in the

direction of ξ̂ . Similarly to [18, Lemma 3.1], the following lemma holds.

Lemma 5.1

(i) A
−1
K (N)

ξ̂
x0
i sin nπt = 0 , A

−1
K (N)

ξ̂
y
0,λ
j = λ, ξ y

0,λ
j ,

(ii) A
−1
K (N)

ξ̂
y
0,λ
j cos nπt = A

−1
K (N)

ξ̂
y
0,⊥
l cos nπt = 0,

(iii) A
−1
K (N)

ξ̂
(x

α,⊥
r sin nπt) = − α,ξ

nπ
y

α,⊥
r cos nπt,

A
−1
K (N)

ξ̂
(y

α,⊥
r cos nπt) = − α,ξ

nπ
x

α,⊥
r sin nπt,

(iv) A
−1
K (N)

ξ̂
y

α,λ
k = λ, ξ y

α,λ
k + 2 α,ξ

π

∞

n=1

1
n

x
α,λ
k sin nπt ,

(v) A
−1
K (N)

ξ̂
x

α,λ
k sin nπt = − α,ξ

nπ
y

α,λ
k (−1 + cos nπt),

(vi) A
−1
K (N)

ξ̂
y

α,λ
k cos nπt = − α,ξ

nπ
x

α,λ
k sin nπt .

The following theorem describes the principal curvatures of the PF submanifold
−1
K (N) of Vg. This theorem refines [18, Theorem 3.2] (see also [13, Theorem 3.3]).

In fact, if c = 1 then it is equivalent to the original one. It can be proven by the
similar arguments using Lemma 5.1.

Theorem 5.2 Let M = G/K be a symmetric space of compact type, K : Vg → M

the parallel transport map, N a c-curvature-adapted submanifold of M through eK ,
and t an arbitrary c-dimensional abelian subspace in m satisfying the condition (ii)
of Definition 4.1. Then for each ξ ∈ t the principal curvatures of the PF submanifold
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−1
K (N) in the direction of ξ̂ are given by

{0} ∪ { λ, ξ | λ ∈ 0 ∪ β∈ +
ξ

β}

∪ α, ξ

arctan α,ξ
λ,ξ

+ mπ
α ∈ +\ +

ξ , λ ∈ α, m ∈ Z

∪ α, ξ

nπ
α ∈ +\ +

ξ , mα ∩ T ⊥
eKN = {0}, n ∈ Z\{0} ,

where we set +
ξ := {β ∈ + | β, ξ = 0} and arctan α,ξ

λ,ξ
:= π

2 if λ, ξ = 0. The
eigenfunctions and the multiplicities are given in Table 1.

6 Principal Curvatures of P(G,H × K)-Orbits

In this section, from Theorem 5.2, we derive an explicit formula for the principal
curvatures of orbits of P(G, H × K)-actions induced by Hermann actions.

Let M = G/K be a symmetric space of compact type and H a symmetric sub-
group of G. Choose and fix a maximal abelian subspace t in m ∩ p. Then π(exp t)
is a section of the Hermann action H M and t̂ = {x̂ | x ∈ t} is a section of the
hyperpolar P(G, H × K)-action on Vg. We take arbitrary w, ξ ∈ t and consider the
principal curvatures of P(G, H × K) ∗ ŵ in the direction of ξ̂ .

Recall that the tangent space and the normal space of the orbit N = H ·aK where
a := expw are decomposed as follows (cf. Section 3 and Example 4.6):

TaKN =
∈U(1)0

dLa(m0, ) ⊕
α∈ + ∈U(1)α

dLa(mα, ),

T ⊥
aKN = dLa(t) ⊕

α∈ + ∈U(1)⊥α

dLa(mα, ),

Table 1 Eigenfunctions and multiplicities

Eigenvalue Basis of the eigenspace Multiplicity

0

x0
i sin nπt, y

0,λ
j cos nπt, y

0,⊥
l cos nπt

λ∈ 0, n∈Z≥1, i, j, l

∪ x
β,λ

k sin nπt, y
β,λ

k cos nπt
β∈ ξ , λ∈ β, n∈Z≥1, k

∪ x
β,⊥
r sin nπt, y

β,⊥
r cos nπt

β∈ ξ , n∈Z≥1, r

∞

λ, ξ y
0,λ
j }j ∪ {yβ,λ

k β∈ ξ , k

m(0, λ) +

β
m(β, λ)

α,ξ

arctan α,ξ
λ,ξ

+mπ
n∈Z

arctan α,ξ
λ,ξ

+mπ

arctan α,ξ
λ,ξ

+(m+n)π
x

α,λ
k sin nπt + y

α,λ
k cos nπt

k

m(α, λ)

α,ξ
nπ

x
α,⊥
r sin nπt − y

α,⊥
r cos nπt

r
m(α,⊥)
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where we set U(1)α := { ∈ U(1) | mα, = {0}} and

U(1)α := ∈ U(1)α | α, w + 1

2
arg /∈ πZ ,

U(1)⊥α := ∈ U(1)α | α, w + 1

2
arg ∈ πZ .

Here, dLa(m0, ) and dLa(mα, ) are the eigenspaces of the shape operator AN
dLa(ξ)

associated with the eigenvalues 0 and − α, ξ cot α, w + 1
2 arg respectively.

Using the above information, we can describe the principal curvatures of orbits of
P(G, H × K)-actions induced by Hermann actions:

Theorem 6.1 Let M = G/K be a symmetric space of compact type and H a sym-
metric subgroup of G. Take a maximal abelian subspace t in m ∩ p and w ∈ t. Then
for each ξ ∈ t the principal curvatures of P(G, H × K) ∗ ŵ in the direction of ξ̂ are
given by

{0} ∪ α, ξ

− α, w − 1
2 arg + mπ

α ∈ +\ +
ξ , ∈ U(1)α , m ∈ Z

∪ α, ξ

nπ
α ∈ +\ +

ξ satisfying U(1)⊥α = ∅, n ∈ Z\{0} .

Taking bases x0
i i

of k0, x
α,
k k

of kα, , y
0,
j

j
of m0, , {ηl}l of t and y

α,
k k

of

mα, with the relation (3.3) we can describe the eigenfunctions and the multiplicities
as in Table 2. Here, we are identifying TŵVg with T0̂Vg via the gauge transformation

g∗ : Vg → Vg for a unique g ∈ P(G, G × {e}) satisfying g ∗ 0̂ = ŵ.
In particular, if w ∈ t is a regular point then the term α,ξ

nπ
vanishes.

Table 2 Eigenfunctions and multiplicities

Eigenvalue Basis of the eigenspace Multiplicity

0

x0
i sin nπt, y

0,
j sin nπt, ηl cos nπt ∈U(1)0 , n∈Z≥1,i, j, l

∪ x
β,

k sin nπt, y
β,

k sin nπt
β∈ +

ξ , ∈U(1)β , n∈Z≥1, k

∪ x
β,
r sin nπt, y

β,
r cos nπt

β∈ +
ξ , ∈U(1)⊥β , n∈Z≥1, r

∞

α,ξ

− α,w − 1
2 arg +mπ

n∈Z
α,w + 1

2 arg +mπ

α,w + 1
2 arg +(m+n)π

x
α,
k sin nπt + y

α,
k cos nπt

k

m(α, )

α,ξ
nπ

x
α,
r sin nπt − y

α,
r cos nπt ∈U(1)⊥α , r

m(α, )
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Proof Take a unique g ∈ P(G, G × {e}) satisfying g ∗ 0̂ = ŵ. By (2.2) we have
g(0) = expw = a. From (2.3) the diagram

commutes. Thus setting N̄ := L−1
a (N)we have g∗ −1

K (N̄) = −1
K (N) = P(G, H×

K) ∗ ŵ by (2.4). Moreover since w ∈ t it follows from g ∗ 0̂ = ŵ that g(t) ∈ exp t
for all t ∈ [0, 1]. Thus we have d(g∗)ξ̂ = gξ̂g−1 = ξ̂ . Hence it suffices to compute
the principal curvatures of −1

K (N̄) in the direction of ξ̂ . Since t is a c-dimensional
abelian subspace in m satisfying the condition (ii) of Definition 4.1 we can apply
Theorem 5.2 to N̄ . From (4.3) and (4.4), the tangent space and the normal space of
N̄ are

TeKN̄ =
∈U(1)0

m0, ⊕
α∈ + ∈U(1)α

mα, ,

T ⊥
eKN̄ = t ⊕

α∈ + ∈U(1)⊥α

mα, .

From (4.5) and (4.6), the above decompositions are rewritten as

TeKN̄ = m0 ∩ S̄0 ⊕
α∈ + λ∈ α

(mα ∩ S̄λ),

T ⊥
eKN̄ = m0 ∩ T ⊥

eKN̄ ⊕
α∈ +

mα ∩ T ⊥
eKN̄ ,

where S̄0 := dL−1
a (S0) and S̄λ := dL−1

a (Sλ). Since β, ξ = 0 implies λ(β, ), ξ =
0 the eigenvalue λ, ξ in the theorem is equal to 0. Moreover taking a unique m ∈ Z

satisfying −π/2 < α, w + 1
2 arg + m π ≤ π/2 we have

arctan
α, ξ

λ(α, ), ξ
= − α, w − 1

2
arg − m π .

Since m ∈ Z in the theorem is arbitrary, the assertion follows.

Applying Theorem 6.1 to (3.6) and (3.7), we obtain the following corollary.
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Corollary 6.2 Suppose that σ ◦ τ = τ ◦σ . Then the principal curvatures of the orbit
P(G, H × K) ∗ ŵ in the direction of ξ̂ are given by

{0}
∪ α, ξ

− α,w + mπ
α ∈ +\ +

ξ , mα ∩ p = {0}, α,w /∈ πZ, m ∈ Z

∪ α, ξ

− α,w − π
2 + mπ

α ∈ +\ +
ξ , mα ∩ h = {0}, α,w + π

2
/∈ πZ, m ∈ Z

∪ α, ξ

nπ
α ∈ +\ +

ξ , mα ∩ p = {0}, α,w ∈ πZ, n ∈ Z\{0}

or α ∈ +\ +
ξ , mα ∩ h = {0}, α,w + π

2
∈ πZ, n ∈ Z\{0} .

The multiplicities are respectively given by

∞, dim(mα ∩ p), dim(mα ∩ h), dim(mα ∩ p) + dim(mα ∩ h).

In particular, if w ∈ t is a regular point then the term α,ξ
nπ

vanishes.

Applying Theorem 6.1 to (4.5) and (4.6), we obtain the following corollary.

Corollary 6.3 Suppose that σ = τ . Then the principal curvatures of the orbit
P(G, H × K) ∗ ŵ in the direction of ξ̂ are given by

{0} ∪ α, ξ

− α, w + mπ
α ∈ +\ +

ξ , α, w /∈ πZ, m ∈ Z

∪ α, ξ

nπ
α ∈ +\ +

ξ , α, w ∈ πZ, n ∈ Z\{0} .

The multiplicities are respectively given by

∞, dimmα, dimmα .

In particular, if w ∈ t is a regular point then the term α,ξ
nπ

vanishes.

Remark 6.4 Terng [29] showed that any principal orbit of the P(G, G)-action,
where G is the diagonal of G × G, is an isoparametric PF submanifold of Vg and
computed its principal curvatures. This result was extended by Pinkall and Thor-
bergsson [25] to the case of P(G, K × K)-action, where K is a symmetric subgroup
of G. (Note that in the equation (28) of [25] the term α(Y ) should be −α(Y ).) More
generally, Koike [14] computed the principal curvatures of principal orbits of the
P(G, H × K)-action induced by a Hermann action with the assumption that the
involutions σ and τ commute [14, p. 114]. Theorem 6.1 above does not require such
assumptions at all.

Remark 6.5 For each α ∈ + and ∈ U(1)α it is clear that

α, ξ

− α, w − 1
2 arg + mπ

m ∈ Z = − α, ξ

α, w + 1
2 arg + mπ

m ∈ Z .



Curvatures and austere property of orbits of path group actions...

We will alternatively use the latter expression to describe the principal curvatures.

7 The Austere Property: Reduced Case

In this section, we study the relation between the austere properties of H - and
P(G, H × K)-orbits under the assumption that the root system is reduced; the
non-reduced case will be dealt with in the next section. Notice that this assumption is
independent of the choice of a maximal abelian subspace t in m ∩ p. The main result
of this section is the following theorem (Theorem I in Introduction):

Theorem 7.1 Let M = G/K be a symmetric space of compact type and H a sym-
metric subgroup of G. Suppose that the root system of a maximal abelian subspace
t in m ∩ p is reduced. Then for w ∈ g the following conditions are equivalent:

(i) The orbit H · (expw)K through (expw)K is an austere submanifold of M ,
(ii) The orbit P(G, H × K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.

To prove this theorem, we need the following lemma. The statement (i) was essen-
tially shown by Ohno [22, Proposition 13]. Note that this lemma is still valid in the
non-reduced case.

Lemma 7.2 Let t be a maximal abelian subspace in m ∩ p and w ∈ t. Set

U(1)∗α := { ∈ U(1)α | α, w + 1

2
arg /∈ π

2
Z},

which is a subset of U(1)α . Then

(i) (Ohno [22]) The orbit H · (expw)K through (expw)K is an austere submani-
fold of M if and only if the set

cot α, w + 1

2
arg α α ∈ +, ∈ U(1)∗α

with multiplicities is invariant under the multiplication by (−1), where the
multiplicity of cot( α, w + 1

2 arg )α is defined to be m(α, ),
(ii) The orbit P(G, H × K) ∗ ŵ through ŵ is an austere PF submanifold of Vg if

and only if the set

1

α, w + 1
2 arg + mπ

α α ∈ +, ∈ U(1)∗α, m ∈ Z

with multiplicities is invariant under the multiplication by (−1), where the
multiplicity of 1

α,w + 1
2 arg +mπ

α is defined to be m(α, ).

In connection with the proof of (ii), we reprove (i) here.
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Proof (i) Set a := expw and N := H · aK . From the straightforward computa-
tions [22, pp. 15–16], the normal space of N is expressed as

T ⊥
aKN = dLa(m ∩ Ad(a)−1p) = dLa(

b∈K∩a−1Ha

Ad(b)t ). (7.1)

Thus for each v ∈ T ⊥
aKN there exist ξ ∈ t and b ∈ K ∩ a−1Ha such that

v = dLa(Ad(b)ξ). Since b belongs to a−1Ha the isometry Lb leaves the
submanifold N̄ := L−1

a N invariant. Moreover since b belongs to K the differ-
ential dLb of the isometry Lb at eK is identified with Ad(b). Thus, the shape
operators satisfy AN̄

Ad(b)ξ = dLb ◦ AN̄
ξ ◦ dL−1

b . From this, we obtain

AN
dLa(Ad(b)ξ) = dLa ◦ dLb ◦ dL−1

a ◦ AN
dLa(ξ) ◦ dLa ◦ dL−1

b ◦ dL−1
a .

This shows that the eigenvalues with multiplicities of the shape operators AN
v

and AN
dLa(ξ) coincide. Thus, to consider the austere property, it suffices to

consider normal vectors {dLa(ξ)}ξ∈t of N . Thus, it follows from the com-
mon eigenspace decomposition (3.4) that the orbit H · (expw)K is an austere
submanifold of M if and only if the set

α, ξ cot α, w + 1

2
arg α ∈ +, ∈ U(1)α

with multiplicities is invariant under the multiplication by (−1) for each ξ ∈ t.
Notice that this condition is equivalent to the condition that the set

cot α, w + 1

2
arg α α ∈ +, ∈ U(1)α

with multiplicities is invariant under the multiplication by (−1) cf. [11, p. 459].
Hence, the assertion follows from the fact cot π

2 + πZ = {0}.
(ii) Choose a unique g ∈ P(G, G × {e}) satisfying g ∗ 0̂ = ŵ. Then we have

a = g(0) and the commutative diagram

(7.2)

Since K is a Riemannian submersion it follows from (7.1) and (7.2) that each
normal vector of −1

K (N) is expressed as (dg∗)Ad(b)ξ̂ for some ξ ∈ t and b ∈
K ∩ a−1Ha. Denote by b̂ ∈ G the constant path with value b. Then by (2.3) we have
the commutative diagram
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where b̂∗ is identified with Ad(b) acting on Vg by pointwise operation. Since Lb

leaves N̄ invariant, it follows that b̂∗ leaves −1
K (N̄) invariant. Thus, we have

A
−1
K (N̄)

Ad(b)(ξ̂ )
= (db̂∗) ◦ A

−1
K (N̄)

ξ̂
◦ (db̂∗)−1.

This together with the equality g ∗ −1
K (N̄) = −1

K (N) implies

A
−1
K (N)

(dg∗)(Ad(b)ξ̂ )
= (dg∗) ◦ (db̂) ∗ ◦(dg∗)−1 ◦ A

−1
K (N)

(dg∗)(ξ̂ )
◦ (dg∗) ◦ (db̂∗)−1 ◦ (dg∗)−1.

Thus, similarly, it suffices to consider normal vectors {d(g∗)ξ̂ }ξ∈t of −1
K (N). Note

that g ∗ 0̂ = ŵ implies d(g∗)ξ̂ = ξ̂ as mentioned in the proof of Theorem 6.1. Thus,
from Theorem 6.1 and Remark 6.5, it follows that the orbit P(G, H × K) ∗ ŵ is an
austere PF submanifold of Vg if and only if the set

1

α, w + 1
2 arg + mπ

α α ∈ +, ∈ U(1)α , m ∈ Z

with multiplicities is invariant under the multiplication by (−1). Hence, the assertion

follows from the fact that the set 1
π/2+mπ

α
m∈Z with multiplicities is invari-

ant under the multiplication by (−1) due to the equality 1
π/2+mπ

α = (−1) ×
1

π/2+(−m−1)π α.

We are now in position to prove Theorem 7.1.

Proof of Theorem 7.1 Take a maximal abelian subspace t in m∩ p. Since π(exp t) is
a section of the H -action, we can assume w ∈ t without loss of generality.

“(i) ⇒ (ii)” : Let α ∈ + and ∈ U(1)∗α . Since the orbit H · (expw)K is austere,
it follows from Lemma 7.2 (i) that there exist α ∈ + and ∈ U(1)∗

α
such that

cot α, w + 1

2
arg α = (−1) × cot α , w + 1

2
arg α . (7.3)

Since cot α, w + 1
2 arg = 0 and cot α , w + 1

2 arg = 0, it follows from

the reduced property of that α = α. Moreover since the map → cot( α, w +
1
2 arg ) is injective we have m(α, ) = m(α, ). Then we have

cot α, w + 1

2
arg = (−1) × cot α, w + 1

2
arg .

Since cot x is strictly decreasing on R/πZ, there exists a unique n ∈ Z such that

α, w + 1

2
arg = (−1) × α, w + 1

2
arg + nπ .

For each m ∈ Z we set m := −n − m. Then we obtain

1

α, w + 1
2 arg + mπ

α = (−1) × 1

α, w + 1
2 arg + m π

α.
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Thus, by Lemma 7.2 (ii) the orbit P(G, H × K) ∗ ŵ is an austere PF submanifold of
Vg.

“(ii) ⇒ (i)”: Since the orbit P(G, H × K) ∗ ŵ is austere, it follows from Lemma
7.2 (ii) that for each α ∈ +, ∈ U(1)∗α and m ∈ Z there exist α ∈ +, ∈ U(1)∗

α
and m ∈ Z such that

1

α, w + 1
2 arg + mπ

α = (−1) × 1

α , w + 1
2 arg + m π

α .

Since is reduced, we have α = α . Moreover since the map ( , m) →
1

α,w +(arg )/2+mπ
is injective we have m(α, ) = m(α, ). Then we have

1

α, w + 1
2 arg + mπ

= (−1) × 1

α, w + 1
2 arg + m π

,

that is,

α, w + 1

2
arg + mπ = (−1) × α, w + 1

2
arg + m π .

Hence, we have

cot α, w + 1

2
arg α = (−1) × cot α, w + 1

2
arg α.

Thus by Lemma 7.2 (i) the orbit H · (expw)K is an austere submanifold of M .

Remark 7.3 In the above proof, we essentially showed that the following conditions
are equivalent when is reduced:

(i) The orbit H · (expw)K through (expw)K is an austere submanifold of M ,
(ii) For each α ∈ + the set

cot α, w + 1

2
arg α ∈ U(1)∗α

with multiplicities is invariant under the multiplication by (−1),
(iii) For each α ∈ + the set

1

α, w + 1
2 arg + mπ

α ∈ U(1)∗α, m ∈ Z

with multiplicities is invariant under the multiplication by (−1).
(iv) The orbit P(G, H × K) ∗ ŵ through ŵ is an austere PF submanifold of Vg,

8 The Austere Property: General Case

In this section, without supposing that the root system is reduced, we study the
relation between the austere properties of H - and P(G, H × K)-orbits.

As a preliminary, we prove the following lemma, which generalizes Lemma 4.32
in [9]. In fact, if σ = τ then it is just the original one.
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Lemma 8.1 Let M = G/K be a symmetric space of compact type, H a symmetric
subgroup of G and t a maximal abelian subspace in m ∩ p. Suppose that there exists
α ∈ satisfying 2α ∈ . Then the multiplicities satisfy m(α) > m(2α).

Proof We extend the inner product of g to the complex symmetric bi-linear form
on gC which is still denoted by ·, · . Choose ∈ U(1) satisfying g(α, ) = {0}.
Since g(α, ) = σ(g(α, )) = g(−α, −1) the involution z → σ(z̄) leaves g(α, )

invariant. Thus we have the (±1)-eigenspace decomposition

g(α, ) = g(α, )+ ⊕ g(α, )−.

Take z0 ∈ g(α, )+\{0}. Then by definition we have

σ(z0) = z̄0, σ (z̄0) = z0, τ (z0) = z̄0, τ (z̄0) = −1z0. (8.1)

Since [g(α), g(α)] ⊂ g(2α) we have the linear map ad(z0) : g(α) → g(2α). We
restrict this map to the subspace

(Cz0)
⊥ := {z ∈ g(α) | z, z̄0 = 0}.

It suffices to show that the restriction ad(z0) : (Cz0)
⊥ → g(2α) is surjective. Take

arbitrary y ∈ g(2α). We define x ∈ (Cz0)
⊥ by

x := −1

2 α 2 z0 2
[z̄0, y], where z0

2 := z0, z̄0 .

Then, by the Jacobi identity, we have

ad(z0)[z̄0, y] = −[z̄0, [y, z0]] − [y, [z0, z̄0]] = [[z0, z̄0], y], (8.2)

where the last equality follows from [y, z0] ∈ [g(2α), g(α)] ⊂ g(3α) = {0}. Notice
that [z0, z̄0] ∈ [g(α), g(−α)] ⊂ g(0). Moreover, from (8.1), we have [z0, z̄0] ∈
mC ∩ pC. Hence, we have [z0, z̄0] ∈ tC by maximality. Since

[z0, z̄0], η = z̄0, [η, z0] = z̄0,
√−1 α, η z0 = √−1 z0

2 α, η

for all η ∈ t we get [z0, z̄0] = √−1 z0
2α. Applying (8.2) to this, we obtain

ad(z0)[z̄0, y] = √−1 z0
2[α, y] = −2 z0

2 α 2y.

Therefore, we have ad(z0)(x) = y. This proves the lemma.

Using this lemma, we study the relation between the austere properties of H - and
P(G, H × K)-orbits in the rest of this section. First we consider the case σ = τ

(Theorem II (i) in “Introduction”):

Theorem 8.2 Let M = G/K be a symmetric space of compact type and H a sym-
metric subgroup of G. Suppose that σ = τ . Then for w ∈ g the following conditions
are equivalent:

(i) The orbit H · (expw)K through (expw)K is an austere submanifold of M ,
(ii) The orbit P(G, H × K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.
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Remark 8.3 The above conditions (i) and (ii) are also equivalent to the following
conditions (see [9, Proposition 4.27, Theorem 4.31] and [19, Theorem 8]. See also
[20, Theorem 1] for the irreducible case):

(iii) The orbit H · (expw)K through (expw)K is a totally geodesic submanifold of
M ,

(iv) The orbit H · (expw)K through (expw)K is a reflective submanifold of M ,
(v) The orbit P(G, H × K) ∗ ŵ through ŵ is a weakly reflective PF submanifold

of Vg.

Note that the orbit P(G, H × K) ∗ ŵ is not totally geodesic [19, Corollary 2] and
thus not reflective.

Proof of Theorem 8.2 Take a maximal abelian subspace t in m = p. Since π(exp t)
is a section of the H -action we can assume w ∈ t without loss of generality.

“(i) ⇒ (ii)”: Let α ∈ + satisfy α, w /∈ πZ. Suppose that α, w /∈ π
2Z. Then

from Lemma 7.2 (i) there exists α ∈ + satisfying α , w /∈ π
2Z such that

α cot α, w = (−1) × α cot α , w . (8.3)

Since α, w /∈ π
2Z we have α = α. Then by the property of root systems α is either

2α or 1
2α. Suppose that α = 2α. Then the multiplicities of left and right terms of

(8.3) are m(α) and m(2α) respectively. However m(α) > m(2α) holds by Lemma
8.1. Thus α = 2α. Similarly α = 1

2α. This is a contradiction. Thus, α, w ∈ π
2Z

holds for all α ∈ + satisfying α, w /∈ πZ. (Thus, N is totally geodesic.) Hence
from Lemma 7.2 (ii) the orbit P(G, H × K) ∗ ŵ is an austere PF submanifold of Vg.

“(ii) ⇒ (i)”: Let α ∈ + satisfy α, w /∈ πZ. Suppose that α, w /∈ π
2Z. Take

m ∈ Z. Then it follows from Lemma 7.2 (ii) that there exist α ∈ + satisfying
α , w /∈ π

2Z and m ∈ Z such that

1

α, w + mπ
α = (−1) × 1

α , w + m π
α . (8.4)

Since α, w /∈ π
2Z we have α = α. Then α is either 2α or 1

2α. Suppose that
α = 2α. Then the multiplicity of the left term is m(α) + m(2α) due to the equality

1
α,w +mπ

α = 1
2α,w +2mπ

2α. However, that of the right term is m(2α) since α = α.

Thus, we have α = 2α. Similarly, we have α = 1
2α. This is a contradiction. Thus

α, w ∈ π
2Z holds for all α ∈ + satisfying α, w /∈ πZ. This shows that the orbit

H · (expw)K is totally geodesic and therefore austere.

To generalize Theorem 8.2, we recall an equivalence relation for involutions: For
two involutive automorphisms τ and τ of G, we write τ ∼ τ if there exists c ∈ G

such that τ = Ad(c) ◦ τ ◦ Ad(c)−1. If τ ∼ τ and H a symmetric subgroup of G

with respect to τ then H := Ad(c)H is a symmetric subgroup of G with respect to
τ . Moreover, the actions of H and H on M are conjugate, that is, there exists an
isomorphism φ : H → H and an isometry ψ : M → M such that ψ(b · p) =
φ(b) · ψ(p) for b ∈ H and p ∈ M . In fact φ := Ad(c) and ψ := Lc satisfy the
property. Thus, we can identify H -orbits with H -orbits via ψ and the theorem is
generalized as follows:
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Corollary 8.4 Let M , H be as in Theorem 8.2. Suppose that σ ∼ τ . Then for w ∈ g

the following conditions are equivalent:

(i) The orbit H · (expw)K through (expw)K is an austere submanifold of M ,
(ii) The orbit P(G, H × K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.

Proof Let c ∈ G satisfy σ = Ad(c)◦τ ◦Ad(c)−1. Take g ∈ P(G, G×{e}) satisfying
g(0) = c. Then from (2.3) the diagram

commutes. Since each P(G, H × K)-orbit is the inverse image of an H -orbit under
K the assertion follows from Theorem 8.2.

Next we consider the case σ ◦ τ = τ ◦ σ (Theorem II (ii) in “Introduction”):

Theorem 8.5 Let M = G/K be a symmetric space of compact type and H a sym-
metric subgroup of G. Suppose that the involutions σ and τ commute. Then if the
orbit H · (expw)K through (expw)K where w ∈ g is an austere submanifold of M ,
the orbit P(G, H × K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.

Remark 8.6 The converse of Theorem 8.5 does not hold in general. In the next
section, we will show a counterexample of a minimal H -orbit which is not austere
but the corresponding minimal P(G, H × K)-orbit is austere.

Proof of Theorem 8.5 Take a maximal abelian subspace t in m ∩ p. We can assume
w ∈ t without loss of generality. Let α ∈ +. If the set Rα ∩ + consists of only α

then it follows by the same argument as in the proof of Theorem 7.1 that the set

1

α, w + 1
2 arg + mπ

α ∈ U(1)∗α, m ∈ Z

with multiplicities is invariant under the multiplication by (−1). Let us consider the
other cases Rα ∩ + = {α, 2α} or {α, 1

2α}. It suffices to consider the former case.
By Lemma 7.2 the union X ∪ Y of two sets

X := cot α, w + 1

2
arg α ∈ U(1)∗α and

Y := cot 2α, w + 1

2
arg δ 2α δ ∈ U(1)∗2α
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with multiplicities is invariant under the multiplication by (−1), and it suffices to
show that the union Z ∪ W of two sets

Z := 1

α, w + 1
2 arg + mπ

α ∈ U(1)∗α, m ∈ Z and

W := 1

2α, w + 1
2 arg δ + mπ

2α δ ∈ U(1)∗2α, m ∈ Z

with multiplicities is invariant under the multiplication by (−1).
Since σ and τ commute, we have , δ ∈ {±1}. Thus if α, w ∈ π

2Z then the sets
X, Y , Z, and W are empty. Suppose that α, w /∈ π

2Z. Then α, w + 1
2 arg /∈ π

2Z

for all ∈ U(1)α . Thus, U(1)∗α = U(1)α . Hence m(α) = ∈U(1)∗α m(α, ). This
implies that there exists , ∈ U(1)∗α such that

cot α, w + 1

2
arg α = (−1) × cot α, w + 1

2
arg α. (8.5)

In fact, if this does not hold then for each ∈ U(1)∗α there exists a unique δ( ) ∈
U(1)∗2α satisfying

cot α, w + 1

2
arg α = (−1) × cot 2α, w + 1

2
arg δ( ) 2α.

The multiplicity of the left term is m(α, ), or m(α, ) + m(2α, δ ) if there exists

δ ∈ U(1)∗2α satisfying cot α, w + 1
2 arg α = cot 2α, w + 1

2 arg δ 2α.

That of the right term is m(2α, δ( )); due to negation of (8.5), we have

cot 2α, w + 1
2 arg δ( ) = cot α, w + 1

2 arg for any ∈ U(1)∗α and thus it

is not m(2α, δ( )) + m(α, ) but m(2α, δ( )). Thus, we get m(α, ) ≤ m(2α, δ( )).
Hence, we obtain

m(α) =
∈U(1)∗α

m(α, ) ≤
∈U(1)∗α

m(2α, δ( )) ≤ m(2α),

where the last inequality is due to the injective property of the map → δ( ). This
contradicts the fact m(α) > m(2α) of Lemma 8.1. Thus, from (8.5), we have

α, w + 1

2
arg = (−1) × α, w + 1

2
arg , mod πZ.

Thus, α, w = − 1
4 arg − 1

4 arg mod πZ. Since , ∈ {±1}, we obtain α, w ∈
π
4Z and 2α, w ∈ π

2Z. Thus

α, w + 1

2
arg ∈ π

4
Z, 2α, w + 1

2
arg δ ∈ π

2
Z.

for any ∈ U(1)α and δ ∈ U(1)2α . Thus, the sets Y and W are empty. Hence, the
set X with multiplicities is invariant under the multiplication by (−1). Therefore, by
the same argument as in the proof of Theorem 7.1, the set Z with multiplicities is
invariant under the multiplication by (−1). This proves the theorem.
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To generalize Theorem 8.5, we recall an equivalence relation for pairs of involu-
tions introduced by Matsuki [17]. Let (σ, τ ) and (σ , τ ) be two pairs of involutive
automorphisms of G. We write (σ, τ ) ∼ (σ , τ ) if there exist an automorphism ρ of
G and an element c ∈ G such that

σ = ρ ◦ σ ◦ ρ−1, τ = Ad(c) ◦ ρ ◦ τ ◦ ρ−1 ◦ Ad(c)−1.

IfK andH are symmetric subgroups ofG thenK := ρ(K) andH := Ad(c)◦ρ(H)

are symmetric subgroups of G. Moreover, the H -action on G/K and the H -action
on G/K are conjugate. In fact, these actions are conjugate under the isomorphism
φ := Ad(c) ◦ ρ : H → H and the isometry ψ : G/K → G/K defined by
ψ(aK) := cρ(a)K . Then the theorem is generalized as follows:

Corollary 8.7 Let M , H be as in Theorem 8.5. Suppose that there exists a pair of
commuting involutions (σ , τ ) of G satisfying (σ, τ ) ∼ (σ , τ ). Then if the orbit
H · (expw)K through (expw)K where w ∈ g is an austere submanifold of M , the
orbit P(G, H × K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.

Proof Let ρ ∈ Aut(G) and c ∈ G be as above. Since we equipped an Aut(G)-
invariant inner product with g the automorphism ρ is an isometry of G. Thus, it
induces an isometry from G/K to G/K , which is still denoted by ρ. The differential
dρ : g → g induces a linear orthogonal transformation of Vg by pointwise operation,
which is still denoted by dρ. Note that dρ(g ∗ 0̂) = (ρ ◦ g) ∗ 0̂ holds for all g ∈ G.
Take h ∈ P(G, G × {e}) satisfying h(0) = c. Then from (2.3) the diagram

commutes. Since each P(G, H × K)-orbit is the inverse image of an H -orbit under
K the assertion follows from Theorem 8.5.

Finally, as far as possible, we consider the general case that σ and τ do not nec-
essarily commute. In view of Corollary 8.7, it suffices to consider non-commutative
pairs of involutions which are not equivalent to commutative ones. According to
the classification result [17] if G is simple then there are three kinds of such non-
commutative pairs, and if G is not simple then there are many such non-commutative
pairs. For a technical reason, here we focus on the case that G is simple. In this case
if (σ, τ ) is one of those three pairs then the order of the composition σ ◦τ is 3 or 4 see
also [22, Section 5]. We will use this fact to prove the following theorem (Theorem
II (iii) in “Introduction”):

Theorem 8.8 LetM = G/K be a symmetric space of compact type andH a symmet-
ric subgroup of G. Suppose that G is simple. Then if the orbit H · (expw)K through
(expw)K where w ∈ g is an austere submanifold of M , the orbit P(G, H × K) ∗ ŵ

through ŵ is an austere PF submanifold of Vg.
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Proof From the above discussion, it suffices to consider a pair of involutions (σ, τ )

where the order l of σ ◦ τ is 3 or 4. Take a maximal abelian subspace t in m ∩ p. We
can assume w ∈ t without loss of generality. Let α ∈ +. By the same argument as
in the proof of Theorem 8.5, it suffices to consider the case Rα ∩ + = {α, 2α} and
to show that the austere property of X ∪ Y implies that of Z ∪ W .

First we show that α, w ∈ π
2lZ. If U(1)∗α U(1)α then there exists ∈ U(1)α

satisfying α, w + 1
2 arg ∈ π

2Z. This shows α, w ∈ π
2lZ. If U(1)∗α = U(1)α then

m(α) = ∈U(1)∗α m(α, ). Thus, by the same argument as in the proof of Theorem
8.5, there exists , ∈ U(1)∗α such that

cot α, w + 1

2
arg α = (−1) × cot α, w + 1

2
arg α.

From this, we have

α, w + 1

2
arg = (−1) × α, w + 1

2
arg , mod πZ.

Hence, α, w = − 1
4 arg − 1

4 arg mod πZ. Therefore, α, w ∈ π
2lZ as claimed.

Since α, w ∈ π
2lZ we have

α, w + 1

2
arg ∈ π

2l
Z, 2α, w + 1

2
arg δ ∈ π

l
Z

for any ∈ U(1)α and δ ∈ U(1)2α . Thus if l = 3 then

cot α, w + 1

2
arg = ±√

3, ± 1√
3
, cot 2α, w + 1

2
arg δ = ± 1√

3

and if l = 4 then

cot α, w + 1

2
arg = ±1, ±(

√
2 ± 1), cot 2α, w + 1

2
arg δ = ±1

for ∈ U(1)∗α and δ ∈ U(1)∗2α . Therefore

cot α, w + 1

2
arg α = (−1) × cot 2α, w + 1

2
arg δ 2α.

for any ∈ U(1)∗α and δ ∈ U(1)∗2α . This shows that the sets X and Y with multiplic-
ities are respectively invariant under the multiplication by (−1). Thus, by the similar
arguments as in the proof of Theorem 7.1, the sets Z and W with multiplicities are
respectively invariant under the multiplication by (−1). This proves the theorem.

Remark 8.9 By the same arguments, we can generalize Theorem 8.8 to the case that
G is not simple but the order of σ ◦ τ is 3 or 4.

Remark 8.10 In the proofs of Theorems 8.5 and 8.8, we essentially showed that the
orbit H · (expw) is an austere submanifold of M if and only if the set

cot α, w + 1

2
arg α ∈ U(1)∗α

with multiplicities is invariant under the multiplication by (−1) for each α ∈ +.
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Example 8.11 Ikawa [9] classified austere orbits of Hermann actions under the
assumptions that G is simple and that σ and τ commute. This result was extended
by Ohno [22] to the non-commutative case. Thus, applying Theorems 8.5 and 8.8 to
those results, we can obtain many examples of homogeneous austere PF submani-
folds in Hilbert spaces. Note that so obtained austere PF submanifolds are not totally
geodesic due to Corollary 2 in [19].

9 A Counterexample to the Converse

In this section, we show a counterexample to the converse of Theorems 8.5 and 8.8;
we show an example of a minimal H -orbit which is not austere but the corresponding
minimal P(G, H × K)-orbit is austere. Note that from Theorem 7.1 the root system

must be non-reduced. We give such an example by the triple

(G, K, H) = (SU(p + q), S(U(p) × U(q)), SO(p + q)).

We shall suppose that p > q.
The involutions σ and τ of G corresponding to K and H respectively are

σ = Ad(Ipq) where Ipq = −Ep 0
0 Eq

and τ : complex conjugation,

where Ep denote the unit matrix of order p. Clearly σ and τ commute. The canonical
decomposition of g = su(p+q) with respect to σ is given by k = s(u(p)+u(q)) and

m =
⎧⎨
⎩
⎡
⎣ 0 0 Z

0 0 W

−t Z̄ −t W̄ 0

⎤
⎦ Z ∈ gl(q,C), W ∈ gl(p − q, q,C)

⎫⎬
⎭ .

The canonical decomposition of g with respect to τ is given by h = so(p + q) and

p = {√−1X | X ∈ Sym(p + q,R), trX = 0}.
Thus, we can write

m ∩ p =
⎧⎨
⎩

√−1

⎡
⎣ 0 0 X

0 0 Y
tX tY 0

⎤
⎦ X ∈ gl(q,R), Y ∈ gl(p − q, q,R)

⎫⎬
⎭ .

We define a maximal abelian subspace t in m ∩ p by

t =

⎧⎪⎨
⎪⎩

√−1

⎡
⎣ 0 0 X

0 0 0
X 0 0

⎤
⎦ X =

⎡
⎢⎣

x1
. . .

xq

⎤
⎥⎦ , x1, · · · , xq ∈ R

⎫⎪⎬
⎪⎭ .

Note that t is maximal also in m. For each i = 1, · · · , q we set

ei = √−1

⎡
⎣ 0 0 Eii

0 0 0
Eii 0 0

⎤
⎦ .
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where Eij denote the square matrix of order q having 1 in the i-th row and j -th
column and zeros elsewhere. We set

m2ei
=
⎧⎨
⎩
⎡
⎣ 0 0 X(i)

0 0 0
−tX(i) 0 0

⎤
⎦ X(i) = xEii, x ∈ R

⎫⎬
⎭ ,

mei
=

⎧⎪⎨
⎪⎩
⎡
⎣ 0 0 0
0 0 W(i)

0 −t W̄ (i) 0

⎤
⎦ W(i) =

⎡
⎢⎣
0 w1,i 0

0
... 0

0 wp−q,i 0

⎤
⎥⎦, w1,i , · · · , wp−q,i ∈C

⎫⎪⎬
⎪⎭,

mei±ej
=
⎧⎨
⎩
⎡
⎣ 0 0 Z(i,j)

0 0 0
−t Z̄(i,j) 0 0

⎤
⎦ Z(i,j) = zEij ∓ z̄Eji, z ∈ C

⎫⎬
⎭ ,

where

dimm2ei
= 1, dimmei

= 2(p − q), dimmek+el
= dimmek−el

= 2.

Then, we obtain the root space decomposition

m = t ⊕
q

i=1

m2ei
⊕

q

i=1

mei
⊕

1≤i<j≤q

mei+ej
⊕

1≤i<j≤q

mei−ej
.

By commutativity of involutions, this decomposition is refined as follows:

m ∩ p= t ⊕
q

i=1

(mei
∩ p) ⊕

1≤i<j≤q

(mei+ej
∩ p) ⊕

1≤i<j≤q

(mei−ej
∩ p).

m ∩ h=
q

i=1

m2ei
⊕

q

i=1

(mei
∩ h) ⊕

1≤i<j≤q

(mei+ej
∩ h) ⊕

1≤i<j≤q

(mei−ej
∩ h),

We now consider the orbit N := H · (expw)K , where w ∈ t is defined by

w := π

8

q

i=1

ei .

Set a := expw. Then, from (3.6) and (3.7), the tangent space and the normal space
of N are

TaKN = dLa(

q

i=1

(mei
∩ p) ⊕

1≤i<j≤q

(mei+ej
∩ p) ) ⊕ dLa(

q

i=1

m2ei

+
q

i=1

(mei
∩ h) ⊕

1≤i<j≤q

(mei+ej
∩ h) ⊕

1≤i<j≤q

(mei−ej
∩ h) ),

T ⊥
aKN = dLa( t ⊕

1≤i<j≤q

(mei−ej
∩ p) ),
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and for each ξ ∈ t the principal curvatures of N in the direction of dLa(ξ) are
expressed as the inner product of ξ with vectors

−(
√
2 + 1)ei, −(ei + ej ), 2ei, (

√
2 − 1)ei, ei + ej , 0,

whose multiplicities are respectively

p − q, 1, 1, p − q, 1, 1.

Since the set {−(
√
2+ 1)ei, 2ei, (

√
2− 1)ei} can not be invariant under the multipli-

cation by (−1), the orbitN is not an austere submanifold ofM . Note that if p−q = 1
then it is a minimal submanifold of M but still not austere.

On the other hand, from Corollary 6.2 (see also Remark 6.5), the principal curva-
tures of the orbit P(G, H × K) ∗ ŵ in the direction of ξ̂ are expressed as the inner
product of ξ with vectors

{0}, − 1
π
8 + mπ

ei

m∈Z
, − 1

π
4 + mπ

(ei + ej )
m∈Z

,

− 1
3
4π + mπ

2ei

m∈Z
, − 1

5
8π + mπ

ei

m∈Z
, − 1

3
4π + mπ

(ei + ej )

m∈Z
,

− 1
π
2 + mπ

(ei − ej )
m∈Z

,
1

nπ
(ei − ej )

n∈Z\{0}
,

whose multiplicities are respectively

∞, p − q, 1, 1, p − q, 1, 1, 1.

Note that

− 1
3
4π + mπ

2ei

m∈Z
= − 1

3
8π + mπ

ei

m∈Z
∪ − 1

7
8π + mπ

ei

m∈Z
.

Note also that the sets {− 1
π/2+mπ

(ei − ej )}m∈Z and { 1
nπ

(ei − ej )}n∈Z\{0} with mul-
tiplicities are respectively invariant under the multiplication by (−1). Thus, from the
equalities

1
π
8 + mπ

ei = (−1) × 1
7
8π + (−m − 1)π

ei,

1
5
8π + mπ

ei = (−1) × 1
3
8π + (−m − 1)π

ei,

1
π
4 + mπ

(ei + ej ) = (−1) × 1
3
4π + (−m − 1)π

(ei + ej )

the orbit P(G, H × K) ∗ ŵ is austere if and only if p − q = 1. Therefore, we have
shown that if p − q = 1 then the orbit H · (expw)K is not austere but the orbit
P(G, H × K) ∗ ŵ is austere. This is the desired counterexample. In this case, the
orbit H · (expw)K is a minimal submanifold of M as mentioned above; and thus, the
orbit P(G, H × K) ∗ ŵ is minimal PF submanifold of Vg [5, 12].
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Finally, we mention further remarks on the converse. As we have seen above, if
the root system is non-reduced then there exists a counterexample to the converse
of Theorems 8.5 and 8.8. However, even if is non-reduced, the converse holds in
some cases. In fact, Theorem 8.2 and Corollary 8.4 are valid in the non-reduced case.
Moreover, consider the case σ ◦ τ = τ ◦ σ and set

+
1 := {α ∈ + | mα ∩ p = {0}} and +

−1 := {α ∈ + | mα ∩ h = {0}}.
Suppose that is of type BC and write + = {ei, 2ei}i ∪{ei ±ej }i<j . Suppose also
that dim t ≥ 2 and +

1 ∩ +
−1 = {ei}i . Then, it follows by straightforward calculations

that the converse holds (cf. [21]). Note that the counterexample shown in this section
satisfies +

1 ∩ +
−1 = {ei}i ∪ {ei ± ej }i<j if dim t ≥ 2, and +

1 ∩ +
−1 = {e1} if

dim t = 1. For the investigation of the triple ( , 1, −1) and the corresponding
commutative Hermann actions, see Ikawa’s papers [9] and [10].
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