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Abstract. In this work, we study the integrability of quotients of quasi-Poisson mani-
folds. Our approach allows us to put several classical results about the integrability of
Poisson quotients in a common framework. By categorifying one of the already known
methods of reducing symplectic groupoids we also describe double symplectic groupoids,
which integrate the recently introduced Poisson groupoid structures on gauge groupoids.

Introduction

One of the main tools in the study of Poisson manifolds is the concept of
symplectic groupoid; see [13], [24], [15], [16], [19] for some of its most exciting appli-
cations. So a basic problem in Poisson geometry is the construction of interesting
examples of symplectic groupoids. Unlike finite-dimensional Lie algebras, which
always admit integrations to Lie groups, not every Poisson manifold is “integrable”
to a symplectic groupoid [47]. Although general criteria for the integrability of
Poisson manifolds (and Lie algebroids in general) were established in [17], [18],
in most cases, these conditions do not easily lead to an explicit finite-dimensional
construction.

In this paper, we address the problem of describing symplectic groupoids which
integrate Poisson manifolds obtained as quotients of Lie groupoid actions on q-
Poisson manifolds. The study of the integrability of quotient Poisson structures
began with [38], where it was established that the quotient of a symplectic manifold
S by a Lie group action is integrable by performing Marsden–Weinstein reduction
on the fundamental groupoid of S. Subsequently, it was proven in [22] that the
quotient of an integrable Poisson manifold S by a Lie group action by automor-
phisms is also integrable by a Marsden–Weinstein quotient of the source-simply-
connected integration of S. The work in [23, 44] generalized this result for Poisson
actions of Poisson groupoids on integrable Poisson manifolds. In this work, we
generalize these results even further by considering Poisson quotients of quasi-
Poisson (q-Poisson) manifolds.
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of Poisson structures on representation varieties provided in [3]. Later on, it was
realized that most of the known methods of Poisson reduction by symmetries
could be described in terms of an even broader notion of q-Poisson manifold [41].
Roughly, a q-Poisson manifold (in the general sense of [41]) is a manifold endowed
with a suitable (global or infinitesimal) action and a bilinear bracket on the space
of smooth functions that fails to be Poisson in a way controlled by the action; an
important feature is that the orbit space of such an action turns out to carry a
genuine Poisson structure, provided it is smooth. Let (S, π) be a q-Poisson manifold
for a Lie quasi-bialgebroid (A, δ, χ) such that the moment map J : S → M is a
surjective submersion. There is a canonical Lie algebroid structure on the conormal
bundle C of the A-orbits as long as it is a smooth vector bundle. If the A-action
on S integrates to a G-action, where G⇒M is a Lie groupoid integrating A, and
if the G-action on S is free and proper, then the quotient S/G inherits a canonical
Poisson structure σ.

Theorem 0.1. The Poisson manifold (S/G, σ) is integrable if and only if the
Lie algebroid C is integrable. Moreover, if G(C) is the source-simply-connected
integration of C, then there is a lifted G-action on G(C) such that the orbit space
G(C)/G is a symplectic groupoid integrating (S/G, σ).

Theorem 0.1 is a consequence of the integrability of Lie groupoid actions on Lie
algebroids established in [39]. We obtain some corollaries about Poisson reduction
such as the following. Let G be a Poisson group acting freely and properly by a
Poisson action on a Poisson manifold (S, π). Then the induced Poisson structure
on S = S/G is integrable if S is integrable [22], [23]. For the original q-Poisson
g-manifolds of [3] we get a completely analogous result. If (S, π) is a q-Poisson
G-manifold, then there is a nonobvious but canonical Lie algebroid structure on
T ∗S [27]. Theorem 0.1 implies that the Poisson structure induced on S = S/G
is integrable if T ∗S is integrable. In both of these situations, the Lie algebroid C
that appears in Theorem 0.1 controlling the integrability of the quotient can be
interpreted as the Lie algebroid of the level set corresponding to the unit of a Lie
group valued moment map as in [28] in the former case and in the sense of [2] in
the latter. This last observation is related to the integration of Poisson structures
on moduli spaces of flat G-bundles that shall be studied in a companion paper,
see [4].

Poisson actions also allow us to obtain Poisson quotients by considering the
action restricted to a coisotropic subgroup [43], [28]. In this situation, the integrabi-
lity of the quotient can be proved only under the assumption that the acting
Poisson group is complete [23]. We have the following result which can be seen as
a simple categorification of the idea behind the proof of [23, Thm. 3.11].

Theorem 0.2. Let G be a complete Poisson group acting freely and properly on
a Poisson manifold M . If M is integrable, then the gauge Poisson groupoid (M ×
M)/G⇒M/G is integrable by a double symplectic groupoid.

This last result, together with an observation coming from [6] about the symplec-
tic leaves of Poisson groupoids, can be applied to an interesting family of examples
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thereby producing a number of new examples of symplectic groupoids: see [29], [30].
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1. Preliminaries

1.1. Lie groupoids and Lie algebroids

A smooth groupoid G over a manifold M , denoted by G ⇒ M , is a groupoid
object in the category of not necessarily Hausdorff smooth manifolds, such that
its source map is a submersion. The structure maps of a groupoid are its source,
target, multiplication, unit map and inversion, denoted respectively by s, t, m, u, i.
For the sake of brevity, we also denote m(a, b) by ab. A Lie groupoid is a smooth
groupoid such that its base and source-fibers are Hausdorff manifolds, see [40],
[21]. A Lie groupoid is source-simply-connected if its source fibres are 1-connected.

A left Lie groupoid action of a Lie groupoid G ⇒ M on a map J : S → M is
a smooth map a : Gs ×J S → S such that (1) a(m(g, h), x) = a(g, a(h, x)) for all
g, h ∈ G and for all x ∈ S for which a and m are defined, and (2) a(u(J(x)), x) = x
for all x ∈ S, the fiber product Gt ×J S is denoted by G ×M S. There is a Lie
groupoid structure on G ×M S over S with the projection pr2 : G ×M S → S
being the source map, a being the target map, and the multiplication given by
(g, a(h, p))(h, p) = (gh, p). The Lie groupoid G×M S ⇒ S thus obtained is called
an action groupoid. A Lie groupoid action as before is free if the associated action
groupoid has trivial isotropy groups; a Lie groupoid action is proper if the map
(a, pr2) : G×M S → S×S is proper. If a Lie groupoid is a Lie group, this recovers
the usual notion of free and proper actions.

A Lie algebroid is a vector bundle A over a manifold M together with (1) a
bundle map a : A→ TM called the anchor and (2) a Lie algebra structure [ , ] on
Γ(A) such that the Leibniz rule holds

[u, fv] = f [u, v] +
(
La(u)f

)
v,

for all u, v ∈ Γ(A) and f ∈ C∞(M). See [25, 45] for the definition of Lie algebroid
morphism.

The Lie algebroid A = AG of a Lie groupoid G ⇒ B is the vector bundle
A = kerTs|B endowed with the restriction of Tt to A as the anchor and with the
bracket defined by means of right invariant vector fields [40], [35]. A Lie groupoid
morphism induces a Lie algebroid morphism between the associated Lie algebroids;
this construction defines a functor called the Lie functor that we denote by Lie. A
Lie algebroid which is isomorphic to the Lie algebroid of a Lie groupoid is called
integrable. If A is an integrable Lie algebroid, we denote by G(A) its source-simply-
connected integration (which is unique up to isomorphism).

A fundamental result relating Lie groupoids and Lie algebroids is Lie’s second
theorem. Let φ : A → B be a Lie algebroid morphism between integrable Lie
algebroids. Then for every Lie groupoid K integrating B there exists a unique Lie
groupoid morphism Φ : G(A)→ K such that Lie(Φ) = φ [39], [40].
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A Poisson structure on a manifold M is a bivector field π ∈ Γ(∧2TM) such that
[π, π] = 0, where [ , ] is the Schouten bracket; with this kind of structure, (M,π)
is called a Poisson manifold. There is a canonical Lie algebroid structure on the
cotangent bundle of a Poisson manifold in which the Lie bracket on Ω1(M) is given
by

[α, β] = Lπ](α)β − Lπ](β)α− dπ(α, β)

for all α, β ∈ Ω1(M), and the anchor is the map π] defined by α 7→ iαπ; T ∗M
is usually called the cotangent Lie algebroid of (M,π). A Poisson morphism J :
(P, πP )→ (Q, πQ) between Poisson manifolds is a smooth map which satisfies that

π]P (J∗α) is J-related to π]Q(α) for all α ∈ Ω1(Q).
Let A be a Lie algebroid over M . A closed IM 2-form on A [11] is a vector

bundle morphism µ : A→ T ∗M over the identity such that

〈µ(v), a(u)〉 = −〈µ(u), a(v)〉, (1)

µ([u, v]) = La(u)µ(v)− ia(v)dµ(u) (2)

for all u, v ∈ Γ(A). In the case of a Poisson manifold (M,π), the identity on
T ∗M is a closed IM 2-form. Closed IM 2-forms are the basic infrastructure ne-
cessary for performing Poisson reduction as we shall see below; see [12] for a
general discussion. At the Lie groupoid level, a closed IM 2-form induces a closed
multiplicative 2-form: let G⇒M be a Lie groupoid and take ω ∈ Ω2(G); ω is called
multiplicative if pr∗1ω + pr∗2ω − pr∗3ω vanishes on the graph of the multiplication
inside G × G × G. A Lie groupoid G ⇒ B is a symplectic groupoid [47], [26] if
it is endowed with a symplectic form which is multiplicative. If the cotangent Lie
algebroid of a Poisson manifold M is integrable, we shall say that M is integrable.
If M is an integrable Poisson manifold, we denote by Σ(M) ⇒ M its source-
simply-connected integration which naturally becomes a symplectic groupoid by
integrating its canonical closed IM 2-form [11].

2. Integrability of quotients of quasi-Poisson manifolds

The integrability of Poisson manifolds obtained by reduction has been studied
in [38], [22], [44], [23], [12]. In this section, we put some of the results contained in
those works in the broader context of q-Poisson manifolds.

Poisson structures and quasi-Poisson manifolds.

Definition 2.1 ([42]). A Lie quasi-bialgebroid is a Lie algebroid A over M en-
dowed with a degree one derivation δ : Γ(∧kA) → Γ(∧k+1A) for all k ∈ N which
is a derivation of the bracket on A

δ([u, v]) = [δ(u), v] + (−1)p−1[u, δ(v)]

for all u ∈ Γ(∧pA), v ∈ Γ(∧•A) and satisfies δ2 = [χ, ], where χ ∈ Γ(∧3A) is such
that δ(χ) = 0.

Since δ is a derivation, it is determined by its restriction to degree 0 and degree
1 where it is given respectively by a vector bundle map a∗ : A∗ → TM and a map
Γ(A)→ Γ(∧2A) called the cobracket.
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)
which χ = 0 and hence the differential δ satisfies δ2 = 0 [37]. Since the dual of a
differential which squares to zero is a Lie bracket, a Lie bialgebroid consists of a
pair of Lie algebroid structures on A and A∗ which are compatible in a suitable
sense. A Lie bialgebra (g, g∗) is a Lie bialgebroid over a point [20].

For the next definition we shall need the concept of a Lie algebroid action: a Lie
algebroid A over M acts on a map J : S → M if there is a Lie algebra morphism
ρ : Γ(A) → X(S) such that uS := ρ(u) is J-related to a(u) for all u ∈ Γ(A): see
[35].

Definition 2.3 ([41]). A quasi-Poisson manifold (or a Hamiltonian space) for a
Lie quasi-bialgebroid (A, δ, χ) on M consists of a Lie algebroid action ρ : Γ(A)→
X(S) of A on a smooth map J : S →M and a bivector field π on S such that

1
2 [π, π] = ρ(χ),

Lρ(U)π = ρ(δ(U)), ∀U ∈ Γ(A),

π]J∗ = ρ ◦ a∗∗,

where a∗ : A∗ → TM is the component of δ in degree zero as before.

Example 2.4. An infinitesimal Poisson action ρ : g → TS of the tangent Lie
bialgebra (g, g∗) of a Poisson group [20], [28] can be expressed by saying that
(S, π, ρ) is a Hamiltonian space for (g, δ, 0), where δ is the differential dual to the
bracket on g∗.

Example 2.5. The original q-Poisson manifolds, which were introduced in [3],
are a special case of Definition 2.3. Consider a Lie algebra g endowed with an
Ad-invariant symmetric nondegenerate bilinear form B. Then there is a Lie quasi-
bialgebra structure (g, δ, χ) on g which depends on B and is determined by the
splitting of g⊕ g as the sum of the diagonal Lie subalgebra and the anti-diagonal
[1], [3]. The q-Poisson manifolds corresponding to (g, δ, χ) shall be called q-Poisson
g-manifolds in accordance to [3], [27].

The main feature of this notion is the following well-known reduction construc-
tion which we rephrase in the language introduced in [12]. Let (S, π) be a quasi-
Poisson manifold for a Lie quasi-bialgebroid (A, δ, χ) with action map ρ : Γ(A)→
X(S). Suppose that the A-action on S induces a simple foliation, then the leaf space
S of this foliation inherits a unique Poisson structure σ such that Tq ◦π] ◦q∗ = σ],
where q : S → S is the projection. In fact, the cotangent Lie algebroid of S can
be described as the quotient of a Lie algebroid over S: the conormal bundle of
the A-orbits in S, that we denote by C, admits (1) a distinguished Lie algebroid
structure (Proposition 2.6 below) and (2) a distinguished closed linear 2-form, both
of which are reducible along q.

First of all, it is immediate to check, based on (4) below, that the inclusion
µ : C ↪→ T ∗S constitutes a closed IM 2-form on C. Let λ be the canonical 1-form
on T ∗S and let us put Λµ = d(µ∗λ) ∈ Ω2(C): see [9, Ex. 2.6]. We have that Λµ
is a linear 2-form on C which is kernel-reducible [12, Def. 2.27]. This follows from
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〈Q(α), X〉 = 〈α,X ′〉 (3)

where α ∈ Cx, X ∈ Tq(x)S and X ′ ∈ TxS is such that Tq(X ′) = X. Take the

canonical symplectic form ωcan ∈ Ω2(T ∗S), then we can see that Q∗ωcan = Λµ.
Finally, [12, Thm. 2.33] implies that there is a unique Lie algebroid structure on
T ∗S such that Q is a Lie algebroid morphism, this structure is isomorphic to the
cotangent Lie algebroid of (S, σ). So we have the following diagram corresponding
to this infinitesimal reduction procedure

C � � µ //

Q
��

T ∗S

T ∗S

;

if (A, δ, χ) is a Lie quasi-bialgebra as in Example 2.5, there is a natural Lie algebroid
structure on T ∗S such that µ is a Lie algebroid morphism [27, Thm. 1]. We shall
see in Theorem 2.11 that, whenever C is integrable, the existence of a free and
proper groupoid action integrating the A-action on S allows us to integrate this
infinitesimal diagram to a global reduction of Lie groupoids, which gives us a
symplectic groupoid integrating (S, σ).

Proposition 2.6. If the A-action induces a regular foliation on S, then the conor-
mal bundle C of the A-orbits is a Lie algebroid with the anchor defined by α 7→
π](α) and the Lie bracket

[α, β]C := Lπ](α)β − iπ](β)dα (4)

for all α, β ∈ Γ(C).

Proof. Take U ∈ Γ(A), α ∈ Γ(C) and let β ∈ Ω1(S) be arbitrary. Then we have
that

〈β,Lρ(U)(π
](α))〉 = Lρ(U)〈β, π](α)〉 − 〈Lρ(U)β, π

](α)〉
= 〈ρ(δ(U)), α ∧ β〉+ 〈β, π](Lρ(U)α)〉,

where we used the identity Lρ(U)π = ρ(δ(U)) and the fact that

Lρ(U)(π(α, β)) = (Lρ(U)π)(α, β) + π(Lρ(U)α, β) + π(α,Lρ(U)β).

But 〈ρ(δ(U)), α ∧ β〉 = 0 since α lies in the annihilator of ρ(Γ(A)). As a conse-
quence,

Lρ(U)π
](α) = π](Lρ(U)α). (5)
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the following fact. Define Q : C → T ∗S by



〈Lπ](α)β, ρ(U)〉 = Lπ](α)〈β, ρ(U)〉 − 〈β,Lπ](α)ρ(U)〉
= 〈β, [ρ(U), π](α)]〉 = −〈Lρ(U)α, π

](β)〉,

where we used the fact that 〈β, ρ(U)〉 = 0 in the first equality and (5) in the last
one. On the other hand,

〈iπ](β)dα, ρ(U)〉 = dα(π](β), ρ(U)) = −Lρ(U)〈α, π](β)〉+ 〈α,Lρ(U)π
](β)〉.

By combining the last two equations we get that

〈[α, β]C , ρ(U)〉 = 〈α,Lρ(U)(π
])(β)〉 = (Lρ(U)π)(α, β),

and this last term is zero because Lρ(U)π = ρ(δ(U)) is generated by vectors tangent
to the A-orbits. Finally,

π]([α, β]C) = [π](α), π](β)]− 1
2 iα∧β [π, π]

= [π](α), π](β)]− iα∧βρ(χ) = [π](α), π](β)].
(6)

The Leibniz rule is automatic for [ , ]C and the anchor π]; it follows from equation
(6) that the Jacobiator of [ , ]C

Jac(α, β, γ) := [α, [β, γ]C ]C + [γ, [α, β]C ]C + [β, [γ, α]C ]C

is C∞(S)-linear in each entry, where α, β, γ ∈ Γ(C). As a consequence, in order
to verify the Jacobi identity, we just have to check that it holds for locally defined
exact 1-forms. Take a foliation chart T ⊂ S for the orbits of the A-action and
suppose that f, g, h ∈ C∞(T ) are constant along the orbits of the A-action restric-
ted to T . We have that [df, dg]C = d(π(df, dg)) and the identity

φ(f, g, h) : = π(df, d(π(dg, dh))) + π(dh, d(π(df, dg))) + π(dg, d(π(dh, df)))

= −Lπ]([dg,dh]C)f + Lπ](dg)Lπ](dh)f − Lπ](dh)Lπ](dg)f = 0

follows also from (6). Therefore, Jac(df, dg, dh) = d(φ(f, g, h)) = 0. So the bracket
[ , ]C and the anchor π] endow C with a Lie algebroid structure. �

Remark 2.7. As we shall see next, the integrability of the quotient Poisson struc-
ture is controlled by the integrability of this Lie algebroid structure on C. Let us
notice that C can also be seen as a Lie subalgebroid of a Dirac structure L ↪→
TM ⊕ T ∗M over S [11], which is spanned by the space of sections{

ρ(u) + π](α)⊕ α ∈ Γ(TM ⊕ T ∗M) | α ∈ Γ(C), u ∈ Γ(A)
}
.

If the A-action on S induces a simple foliation with projection to its leaf space
denoted by q : S → S, we can see L as the pullback Dirac structure of the quotient
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the cotangent Lie algebroid T ∗S as a reduction of L with the quotient map given
by composing the projection L→ C with Q as in (3). Using this approach, we can
see that q is of pullback type with respect to L [12, Rem. 2.16]. We can also use
L to study the integrability of the Poisson quotient from the viewpoint of [5] but
our current approach seems better suited for our desired applications.

A q-Poisson manifold (S, π) for a Lie quasi-bialgebroid (A, δ, χ) comes naturally
equipped with a canonical action of A on C as in Proposition 2.6 in the following
sense. Let J : S →M be a surjective submersion, let A be a Lie algebroid over M
and let C be a Lie algebroid over S such that TJ ◦ a = 0, where a is the anchor
of C.

Definition 2.8 ([25], [39]). Let Der(C) be the space of derivations of C. An action
of A on a Lie algebroid C over S is an A-action ρ : Γ(A)→ X(S) on J and a Lie
algebra morphism ψ : Γ(A) → Der(C), which is C∞(M)-linear and is such that
the symbol of ψ(u) is ρ(u) for all u ∈ Γ(A).

Lemma 2.9. Let (S, π) be a Hamiltonian space for a Lie quasi-bialgebroid (A, δ, χ)
on M with moment map J : S → M . If J is a surjective submersion and the A-
action induces a regular foliation on S, then the map given by U 7→ Lρ(U) for all
U ∈ Γ(A) defines an infinitesimal action of A on C: the conormal bundle of the
A-orbits.

Proof. First of all, equation (5) implies that

Lρ(U)[α, β]C = [Lρ(U)α, β]C + [α,Lρ(U)β]C .

On the other hand, the equation π]J∗ = ρ ◦ a∗∗ implies that TJ ◦ π] : C → TM
is the zero map. Since Lfρ(U)α = fLρ(U)α by Cartan’s formula, the map ψ is
C∞(M)-linear and so we are done. �

We are only interested in the situation in which the previous infinitesimal action
of A on C is integrable by a global action of the following kind. Let G⇒M be a Lie
groupoid which integrates A and suppose that it acts on a surjective submersion
J : S →M . Let C be a Lie algebroid over S such that TJ ◦a = 0. In this situation
we have an action of C on the projection G×M S → S given by X 7→ (0, a(X)) for
all X ∈ Γ(C). Hence, there is an action Lie algebroid structure on G ×M C over
G×M S. Let p : C → S be the vector bundle projection.

Definition 2.10 ([39]). An action of G ⇒ M on C is a Lie groupoid action
of G on J ◦ p : C → S such that the structure maps of the action groupoid
G×M C ⇒ C are Lie algebroid morphisms over the structure maps of the action
groupoid G×M S ⇒ S.

In the previous definition, G×M C ⇒ C is a vacant LA-groupoid [33].

The integrability criterion.
Let (S, π) be a q-Poisson manifold for a Lie quasi-bialgebroid (A, δ, χ) such that

the moment map J : S → M is a surjective submersion and the A-action on
S induces a regular foliation. Let G ⇒ M be a Lie groupoid integrating A and
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in Definition 2.10. If the G-action is free and proper, then the quotient S/G is
a smooth manifold and it inherits a Poisson structure σ with the property that
Tq ◦ π] ◦ q∗ = σ], where q : S → S/G is the quotient map.

Theorem 2.11. The Poisson manifold (S/G, σ) is integrable if and only if the
Lie algebroid C is integrable. Moreover, if G(C) is the source-simply-connected
integration of C, then there is a lifted G-action on G(C) such that the orbit space
G(C)/G is a symplectic groupoid integrating (S/G, σ).

Remark 2.12. The source-simply-connected integration of A is a quasi-Poisson
groupoid [41], but we do not need G⇒M to be endowed with such a structure. The
previous result generalizes [44, Thm 3.4.4] which applies only to Poisson groupoid
actions.

The G-action on G(C) as in the previous theorem is compatible with the grou-
poid structure in the following sense.

Let K ⇒ S and G ⇒ M be Lie groupoids and let J : S → M be a surjective
submersion such that J ◦ s = J ◦ t.

Definition 2.13 ([25]). An action of G⇒M on K ⇒ S is an action on the map
J ◦ s = J ◦ t : K → M , which is a Lie groupoid action G ×M K → K such
that it is a Lie groupoid morphism with respect to the fiber product groupoid
G×M K ⇒ G×M S.

Notice that when M is a point, a G-action in the previous sense is a G-action
by automorphisms on K.

Proof of Theorem 2.11. Suppose that C is integrable.

Step 1: Lift of the G-action to G(C).
First of all, [39, Thm. 3.6] implies that the G-action on C lifts to a G-action

on G(C). On the other hand, this lifted action is principal since it is principal on
the base and hence the quotient G(C)/G inherits a unique Lie groupoid structure
such that the projection map G(C) → G(C)/G is a Lie groupoid morphism [39,
Lem. 2.1].

Step 2: Existence of a canonical multiplicative 2-form on G(C).
Recall that the inclusion µ : C ↪→ T ∗S constitutes a closed IM 2-form on C.

Let λ be the canonical 1-form on T ∗S and let us denote Λµ = d(µ∗λ) ∈ Ω2(C),
see [9, Ex. 2.6]. Then Λµ : TC ⊕C TC → R is a Lie algebroid morphism [9, Thm.
3.1] which lifts to a Lie groupoid morphism ω : TG(C) ⊕ TG(C) → R with the
property that ω is a multiplicative closed 2-form on G(C) [9, Thm. 4.6].

Step 3: Reduction of ω to a symplectic form on G(C)/G.
The lifted G-action on G(C) is obtained as the integration α̃ : G ×M G(C) →

G(C) of the Lie algebroid morphism α : G×M C → C; see the proof of [39, Thm.
3.6]. Since α̃ is also an action, Γ := G×M G(C) ⇒ G(C) inherits an action groupoid
structure, where α̃ is its target map and the projection pr2 : G×M G(C)→ G(C)
is its source. In order to prove that ω descends to a symplectic form on G(C)/G,
we have to check that it is basic with respect to the action α̃: (1) the G-orbits are
tangent to kerω and (2) t∗Γω = α̃∗ω = s∗Γω = pr∗2ω.
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suppose that the A-action on C integrates to a G-action α : G ×M C → C as



.
Infinitesimally, the A-action on C lifts to G(C) as follows. Take U ∈ Γ(A) of

compact support. Since Lρ(U) is a derivation of C over ρ(U), it integrates to a
1-parameter family of automorphisms ψt of C. Lie’s second theorem implies that
ψt lifts to a family of Lie groupoid automorphisms Ψt of G(C). The infinitesimal

generator of Ψt is a multiplicative vector field Ũ ∈ X(G(C)): i.e., a vector field

which is a Lie groupoid morphism Ũ : G(C)→ TG(C). Since iŨω : TG(C)→ R is
a Lie groupoid morphism, in order to prove that iŨω = 0 we just have to check that
its associated Lie algebroid morphism is zero. Let us denote by B the distribution
tangent to the A-orbits; by construction, it is generated by the vector fields of the
form Ũ .

The Lie algebroid morphism Λµ : TC ⊕C TC → R associated with ω : TG(C)⊕
TG(C) → R is defined by the linear 2-form Λµ = µ∗ωcan, where ωcan is the
canonical symplectic form on T ∗S [9, Ex. 2.6]. On the other hand, we have that

Ũ induces a Lie algebroid morphism U ′ : C → TC in the following way

U ′(αp) = Tpα(ρ(U)p)−
(
Lρ(U)α

)
p
∀p ∈ S,

where α ∈ Γ(C) and Lρ(U)αp is the vertical tangent vector to C at αp associated to(
Lρ(U)α

)
p
, see the proof of [39, Thm. 4.5]. So we have immediately that iU ′Λµ = 0

and hence iŨω = 0, which proves B ⊂ kerω.
Take g ∈ G(C). The fact that ω is multiplicative with associated IM 2-form µ,

implies that we have an explicit description for ωt(g) [11, Rem. 3.6]:

ωt(g)(X ⊕ α, Y ⊕ β) = 〈µ(α), Y 〉 − 〈µ(β), X〉+ 〈µ(α), π](β)〉,

where we are identifying TG(C)t(g) with Tt(g)S ⊕ Ct(g) and we are taking X ⊕
α, Y ⊕ β ∈ Tt(g)S ⊕ Ct(g). As a consequence, the injectivity of µ implies that
kerωt(g) ∩ kerTt(g)s = 0 and hence

kerωg ∩ kerTgs ∼= kerωt(g) ∩ kerTt(g)s = 0 (7)

for all g ∈ G(C) [11, Lem. 3.1]. If V ∈ kerωg and W ∈ Ts(g)G, then for (any)
X ∈ TgG(C) composable with W we have that

ωs(g)(Ts(V ),W ) = ωg(V, Tm(W,X))− ωg(V,X) = 0

and so Tgs(v) ∈ kerωs(g). But Tgs restricted to kerωg is injective by (7), so
dim kerωg ≤ dim kerωs(g) = dimB = dimB. Therefore, B = kerω.

Step 5: t∗Γω − s∗Γω = 0.
We have to show that the linear 2-form corresponding to the multiplicative 2-

form t∗Γω−s∗Γω on Γ vanishes. But this linear 2-form is nothing but d(α∗λ−pr∗2λ) ∈
Ω2(G×M C) [9, Ex. 2.6] and we have that α∗λ−pr∗2λ = 0. Therefore, ω is Γ-basic
and it descends to a multiplicative symplectic form on the quotient G(C)/G.

Finally, if (S/G, σ) is integrable, then its pullback Dirac structure L along the
projection map S → S/G is integrable; see Remark 2.7 and [11, Ex. 6.3]. Since C
can be identified with a Lie subalgebroid of L, it is also integrable [40]. �
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Step 4: The G-orbits are tangent to kerω.



identify points on the same s-fiber, therefore G(C)/G is also source-simply-con-
nected and so the fact that it is symplectic also follows from the integration of
Poisson manifolds [11], [36]. If G is source-connected, then the G-orbits on G(C)
are also connected and so the fact that ω is basic with respect to the quotient map
G(C) → G(C)/G can be deduced more easily by observing that Λµ is basic with
respect to the quotient map Q : C → T ∗(S/G) defined as in (3) and by applying
[12, Thm. 3.10].

Integrability of quotients of Poisson actions.
A Lie group is a Poisson (or Poisson-Lie) group if it is endowed with a Poisson

structure such that the multiplication map is a Poisson morphism [20]. A Poisson
action of a Poisson group on a Poisson manifold is a Lie group action which is a
Poisson morphism [43].

Corollary 2.15. Let G be a Poisson group and suppose that there is a Poisson
G-action on a Poisson manifold S. Suppose G acts freely and properly on S. If S
is integrable, then the induced Poisson structure on the quotient S/G is integrable.

Proof. In this situation, C as in Theorem 2.11 is the conormal bundle of the G-
orbits on S and is a Lie subalgebroid of the cotangent Lie algebroid of S. Therefore,
C is integrable if S also is and hence the result follows from Theorem 2.11. �

Remark 2.16. Notice that, in principle, we can apply Theorem 2.11 even when S
is not integrable by considering only the Lie subalgebroid C ↪→ T ∗S. In the case
that G is complete, this result appears in [23].

Let us describe explicitly the integration of the quotient S/G as in Corollary
2.15 provided by Theorem 2.11. Let Σ(S) ⇒ S be the source-simply-connected
integration of S. There is a Poisson map µ : Σ(S) → G∗, which is also a Lie
groupoid morphism lifting the Lie algebroid morphism given the dual of the action
map T ∗S → g∗. So there is an infinitesimal g-action on Σ(S) which is not complete
in general unless G is complete [23]. Since the g-action is locally free, µ is a
submersion and so µ−1(1) ↪→ Σ(S) is a Lie subgroupoid integrating the Lie
subalgebroid C ↪→ T ∗S. Let µ−1(1)◦ be the source-connected subgroupoid inside
µ−1(1). Theorem 2.11 tells us that the g-action on G(C), which is given by the
composition of the canonical Lie groupoid morphism G(C) → µ−1(1)◦ with the
inclusion µ−1(1)◦ ↪→ Σ(S), integrates to a G-action and that the quotient G(C)/G
is a symplectic groupoid integrating S/G (in fact, G(C)/G = Σ(S/G); see Remark
2.14). From the previous discussion, it follows in particular that the g-action on
µ−1(1)◦ is complete without any additional assumption on G; see [23, Thm. 2.7].

Integrability of quotients of q-Poisson G-manifolds.
If (S, π) is a q-Poisson g-manifold, then there is a nonobvious but canonical Lie

algebroid structure on T ∗S (see [27, Thm. 1]); we shall denote it by (T ∗S)g. It is
immediate that C as before is a Lie subalgebroid of (T ∗S)g (provided the g-action
is locally free). For the sake of making the analogy with the previous situation
more evident, we shall also say in this case that S is integrable if (T ∗S)g is. If the
g-action on S is integrable to a G-action such that π is invariant, (S, π) is called a
q-Poisson G-manifold.
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Remark 2.14. A closer look at the G-action on G(C) reveals that it does not



Let us illustrate more precisely the integration of quotients of q-Poisson G-
manifolds provided by Theorem 2.11 and let us compare it with the results of [27]
about the integration of q-Poisson G-manifolds.

Let (S, π) be a q-Poisson G-manifold [3] and suppose that G acts freely and
properly on S. Take the source-simply-connected integration G(C) of C. Theorem
2.11 implies that the G-action on S lifts to a G-action by automorphisms on G(C)
such that G(C)/G is a symplectic groupoid which integrates the Poisson structure
on S/G. On the other hand, [27, Thm 1] states that the dual of the action map
T ∗S → g∗ composed with the isomorphism g ∼= g∗ induced by the bilinear form
gives us a Lie algebroid morphism (T ∗S)g → g. If (T ∗S)g is integrable, then this
morphism can be lifted to a moment map Φ : G(T ∗S)g → G which makes G(T ∗S)g
into a q-Hamiltonian g-manifold (groupoid); see [27, Thm 4]. We have that Φ−1(1)
is a Lie groupoid. Indeed, [2, Rem. 3.3] says that there is a 2-form $ ∈ Ω2(g)
such that, if we take a neighborhood U of 1 ∈ G covered diffeomorphically by a
neighborhood of 0 ∈ g using exp : g → G, then Ω := ω − Φ∗ log∗$ is symplectic
on Φ−1(U) and µ := log ◦Φ is a classical moment map for the g-action. The fact
that (kerTµ)Ω = gM implies that µ is a submersion on Φ−1(U) then so is Φ.
Since Lie(Φ−1(1)) = C, there is a canonical surjective Lie groupoid morphism
G(C) → Φ−1(1)◦, where Φ−1(1)◦ is the source-connected subgroupoid of Φ−1(1).
Just as in the case of a Poisson action, we have then that the g-action on Φ−1(1)◦

induced by Φ is complete. Therefore, if G is 1-connected, we have that Φ−1(1)◦/G
is also a symplectic integration of S/G.

Example 2.18. The most important examples of q-Poisson G-manifolds are the
spaces of representations of fundamental groups of surfaces [2], [3]. For instance,
the q-Poisson G-manifold associated to an annulus is G itself and the integrability
of the Lie algebroid structure on (T ∗G)g is automatic, being an action Lie algebroid
[7]. The difficulty in dealing with these spaces lies in the fact that the G-action on
them is not free; see [4].

3. Double symplectic groupoids and gauge Poisson groupoids

A Lie subgroup H ⊂ G of a Poisson group is coisotropic if it is coisotropic as a
submanifold of G1; if G is connected, this is equivalent to the annihilator h◦ ⊂ g∗

being a Lie subalgebra. If a Poisson group acts in a Poisson fashion on a Poisson
manifold, then the quotient of the manifold by a coisotropic subgroup is a Poisson
manifold again, provided it is smooth [43, Thm. 6].

Let (G, πG) be a Poisson group acting in a Poisson fashion on a Poisson manifold
(M,πM ). If the G-action is free and proper, then M/G inherits a unique Poisson
structure such that the projection map is a Poisson morphism M →M/G [43]. Now
consider the Poisson manifold M ×M , which is the product M ×M endowed with
the Poisson bivector (πM ,−πM ). The action of the Poisson group G ×G = (G ×

1Let (M,π) be a Poisson manifold. A submanifold C of M is coisotropic if π](T ◦C) ⊂
TC, where T ◦C is the annihilator of TC.
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Corollary 2.17. Let (S, π) be a q-Poisson G-manifold. Then the Poisson struc-
ture induced on S/G is integrable if S is integrable.



G,− G

a coisotropic subgroup. Therefore, the quotient by the diagonal action (M×M)/G
is a Poisson manifold again. For a manifold M , the associated pair groupoid is
M ×M ⇒ M with source and target the projections on M , the multiplication
is m((x, y), (y, z)) = (x, z), the unit map M → M ×M is the diagonal inclusion,
and the inversion is given by (x, y) 7→ (y, x). Since G acts by automorphisms on
M ×M ⇒M , the quotient

((M ×M)/G,Π) ⇒M/G (8)

is a Lie groupoid again, called a gauge groupoid [21]. It turns out that the Poisson
structure on this Lie groupoid is compatible with the groupoid structure in the
following sense.

Definition 3.1 ([46]). A Poisson groupoid is a Lie groupoid G ⇒ M with a
Poisson structure on G such that the graph of the multiplication map is a coisotro-
pic submanifold of G×G×G, where G denotes G with the opposite Poisson structure.

Poisson groups and symplectic groupoids (seen as Poisson manifolds) are ext-
reme examples of Poisson groupoids. The pair groupoid M ×M ⇒ M gives us
another family of examples. Since the projection map M ×M → ((M ×M)/G,Π)
is a Lie groupoid morphism and a Poisson morphism, the bivector field Π makes
(8) into a Poisson groupoid, this fact was first observed by J.-H. Lu and her
collaborators [29]. Since we are dealing with Poisson groupoids, we can ask a
more refined integrability question about this gauge Poisson groupoid: some of
the symplectic integrations of a Poisson groupoid may carry a double symplectic
groupoid structure.

Double symplectic groupoids.

Definition 3.2 ([8], [33]). A groupoid object in the category of topological grou-
poids is called a double topological groupoid and it is denoted by a diagram of the
following kind

G ////

�� ��

H

�� ��
K //// S

,

where each of the sides represents a groupoid structure and the structure maps
of G over H are groupoid morphisms with respect to G ⇒ K and H ⇒ S. A
double topological groupoid as in the previous diagram is a double Lie groupoid
if the following conditions are met: (1) each of the side groupoids is a smooth
groupoid, (2) H and K are Lie groupoids over S, and (3) the double source map
(sH , sK) : G → H ×S K is a surjective submersion (the superindices H , K denote
the groupoid structures G ⇒ H, G ⇒ K, respectively).

Definition 3.3 ([32]). A double Lie groupoid G with sides K and H over S is a
double symplectic groupoid if there is a symplectic structure on G making it into a
symplectic groupoid over both K and H.
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G, (πG,−πG)) on M×M is Poisson again and the diagonal subgroup G ↪→ G×G is



them into Poisson groupoids over S; see [34]. If the Poisson structure on a Poisson
groupoid is integrable by a double symplectic groupoid, we say that the Poisson
groupoid is integrable.

3.1. Integrability of gauge Poisson groupoids in the complete case

A Poisson group G is complete if the dressing action of g∗ on G is complete [28].
Now we shall see that a gauge Poisson groupoid as in (8) is integrable by a double
symplectic groupoid if G is complete.

Theorem 3.4. Let G be a complete Poisson group acting freely and properly on
a Poisson manifold M . If M is integrable, then the gauge Poisson groupoid (M ×
M)/G⇒M/G is integrable by a double symplectic groupoid.

The basic idea behind this proof already appears in [23, Thm. 3.11]. Take a
locally free Poisson action of a complete Poisson group G on a Poisson manifold S
and let H ⊂ G be a coisotropic subgroup which acts freely and properly on S. If
the annihilator of h integrates to a closed subgroup H⊥ ⊂ G∗ of the 1-connected
integration of g∗, then we can integrate S/H as follows. There is a Poisson groupoid
morphism µ : Σ(S)→ G∗ which is a moment map for the lifted G-action on Σ(S)
given by [23, Thm. 2.7]. In this situation, the quotient µ−1(H⊥)/H is a symplectic
groupoid integrating S/H.

Proof of Theorem 3.4. Let G be a Poisson group acting freely and properly on a
a Poisson manifold M by a Poisson action and suppose that M is integrable. Let
Σ(M) ⇒M be the source-simply-connected integration of M . Then we have a Lie
groupoid morphism µ : Σ(M)→ G∗ which is a moment map for a Poisson g-action
on Σ(M). In other words, µ is a Poisson groupoid morphism which integrates the
Lie bialgebroid morphism T ∗M → g∗ given by the dual of the action map g→ TM ,
see [10, Prop. 5.1.3]. In that case, (µ, µ) : Σ(M)× Σ(M)→ G∗ ×G∗ is also a Lie
groupoid morphism and a moment map for a g× g-action.

Let B be the canonical pairing between g and g∗. Since the diagonal g∗∆ ↪→
g∗ × g∗ is orthogonal to the diagonal g∆ ↪→ g × g with respect to the pairing
B 	B between g× g and g∗ × g∗, we can identify G⊥∆ with the diagonal subgroup
G∗∆ ↪→ G∗×G∗. Then (µ, µ)−1(G∗∆) is a double Lie groupoid with sides Σ(M) and
M ×M , where G∗∆ ↪→ G∗ × G∗ is the diagonal inclusion. If G is complete, then

the g× g-action on Σ(M)×Σ(M) is already integrable by a G×G-action; see [23,
Thm. 1]. So we can consider the diagonal action restricted to (µ, µ)−1(G∗∆). We
know that (µ, µ)−1(G∗∆)/G ⇒ (M ×M)/G is a symplectic groupoid integrating
the Poisson structure Π; see the proof of [23, Thm. 3.11]. On the other hand, the
diagonal G-action on Σ(M)× Σ(M) clearly preserves the pair groupoid structure
Σ(M)× Σ(M) ⇒ Σ(M), so we have a double Lie groupoid:

(µ, µ)−1(G∗∆)/G ////

�� ��

Σ(M)/G

�� ��
(M ×M)/G //// M/G

.
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In the previous definition, the Poisson structures induced on K and on H make



∆

respect to (µ, µ)−1(G∗∆)/G⇒ Σ(M)/G, since this is just a symplectic reduction of
a pair symplectic groupoid. Therefore, we get a double symplectic groupoid over
the gauge Poisson groupoid (8) as desired. �

Remark 3.5. We do not know if we can remove the completeness condition on G in
the previous theorem. If we knew that the g×g-action on Σ(M)×Σ(M) restricted
to the diagonal g integrates to a G-action on (µ, µ)−1(G∗∆), then we could conclude
that the quotient (µ, µ)−1(G∗∆)/G is a double symplectic groupoid integrating the
gauge Poisson groupoid (8). Unfortunately, we cannot adapt Theorem 0.1 to this
situation since it only tells us how to produce G-actions by automorphisms and, in
the complete case, the G-action on (µ, µ)−1(G∗∆) is twisted by the moment map;
see [23].

Remark 3.6. As a consequence of [6, Prop. 7], we have that the orbits of the units
in Σ(M)/G and in (M ×M)/G, which are given by the action of (µ, µ)−1(G∗∆)/G
on each side groupoid, are symplectic groupoids themselves. So in this way we get
in this way a number of nontrivial examples of symplectic groupoids. Notice that
the symplectic leaves of the units in (M ×M)/G⇒M/G also give us symplectic
groupoids even when M/G is not integrable [6, Prop. 12].

Remark 3.7. The crucial fact in the proof of Theorem 3.4 is that (µ, µ) : Σ(M)×
Σ(M)→ G∗×G∗ is a morphism of double Poisson groupoids, where Σ(M)×Σ(M)
is seen as a double symplectic groupoid with sides Σ(M) and M×M and G∗×G∗ ⇒
G∗ is seen as a Poisson 2-group [14]. So we could formulate and prove a more
general result about the integrability of quotients of Poisson groupoids by actions of
coisotropic Lie 2-subgroups of Poisson 2-groups. Due to a certain lack of examples
in this generality, we limit ourselves to the current formulation.

The simplest examples of double symplectic groupoids associated with gauge
Poisson groupoids are the following.

Example 3.8. Let Q be a closed Poisson subgroup of a complete Poisson group G.
Then the quotient by the diagonal action by left translations (G×G)/Q ⇒ G/Q
is a gauge Poisson groupoid. Since G is complete, its source-simply-connected
integration is the action groupoid G∗ × G ⇒ G associated to the dressing action
(u, x) 7→ ug, where G∗ is the 1-connected integration of g∗. The lift of the G-action
on G by left translations to G∗×G is given by a·(u, b) = (au, aub); see [23, Example
3.12]. The moment map µ : G∗×G→ G∗ is the projection on the first factor. Since
Q is a Poisson subgroup of G, the annihilator q◦ ⊂ g∗ is an ideal and so there is
a Lie group morphism p : G∗ → Q∗ integrating the projection g∗ → q∗ ∼= g∗/q◦.
Then the moment map for the lifted Q-action to G∗ ×G is p ◦ µ : G∗ ×G→ Q∗.
As a consequence of Theorem 3.4, (p ◦ µ, p ◦ µ)−1(Q∗∆)/Q is a double symplectic
groupoid integrating the gauge Poisson groupoid (G×G)/Q⇒ G/Q.

More generally, we can do the following. Let G be an arbitrary Poisson group
and let Q ↪→ G be a closed Poisson subgroup. Suppose that there is a (left) Poisson
action of Q on a Poisson manifold Y . Then the action (G×Y )× (Q×Q)→ G×Y
given by (g, y, a, b) 7→ (ga, b−1y) is a Poisson action, where Q denotes Q with
the opposite Poisson structure. Since the diagonal subgroup Q∆ ↪→ Q × Q is
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Finally, the symplectic structure on (µ, µ)−1(G∗∆)/G is also multiplicative with



For instance, if Qi ⊂ G is a closed Poisson subgroup for i = 1 . . . n, then the
quotient G×Q1

× · · · ×Qn−1
G/Qn is integrable; see [31] for a detailed description

of this family of examples. In order to apply Theorem 3.4, we can take M =
G×Q × · · · ×Q G as before. Now consider the residual Q-action on the last factor.
If Q is complete, then Theorem 3.4 implies that (M ×M)/Q⇒M/Q is integrable
by a double symplectic groupoid; see [30] for Poisson groupoids related to this
example.
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