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Abstract. We consider several vertex operator algebras and superalgebras closely related
to V−1(sl(n)), n ≥ 3 : (a) the parafermionic subalgebra K(sl(n),−1) for which we
completely describe its inner structure, (b) the vacuum algebra Ω(V−1(sl(n))), and (c) an
infinite extension U of V−1(sl(n)) obtained from certain irreducible ordinary modules with
integral conformal weights. It turns out that U is isomorphic to the coset vertex algebra
psl(n|n)1/sl(n)1, n ≥ 3. We show that V−1(sl(n)) admits precisely n ordinary irreducible
modules, up to isomorphism. This leads to the conjecture that U is quasi-lisse. We present
evidence in support of this conjecture: we prove that the (super)character of U is quasi-
modular of weight one by virtue of being the constant term of a meromorphic Jacobi
form of index zero. Explicit formulas and MLDE for characters and supercharacters are
given for g = sl(3) and outlined for general n. We present a conjectural family of 2nd
order MLDEs for characters of vertex algebras psl(n|n)1, n ≥ 2. We finish with a theorem
pertaining to characters of psl(n|n)1 and U-modules.

1. introduction

Orbifolding, coset constructions and simple current extensions are standard
methods for producing new examples of vertex algebras. For irrational vertex
algebras it is also important to consider infinite simple current extension. For
instance, lattice vertex algebras are infinite simple current extensions of the Heisen-
berg vertex algebras. Infinite simple current extensions are also important in
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logarithmic conformal field theory. As demonstrated by the authors, the triplet
vertex algebra W(p) (which is C2-cofinite) is indeed an infinite simple current
extension of the non C2-cofinite singlet vertex algebra [4].

This paper aims to provide a study of the simple affine vertex operator algebra of
level −1 for sl(n), denoted by V−1(sl(n)), and some of its subalgebras and infinite
extensions. This vertex algebra is known to be irrational and non C2-cofinite,
and has been studied from several points of view. Early work [25] was focused
primarily on various properties of characters of representations. The first author
and Perše obtained a complete classification of ordinary (atypical) irreducible
V−1(sl(n))-modules and fusion rules of ordinary modules [12] (see also [11]). They
also showed that V−1(sl(n)) admits a generic (or typical) series of irreducible
representations. Kac and Wakimoto recently obtained a Weyl–Kac type character
formula [26] involving higher rank partial theta series (cf. also [15]). Asymptotic
and modular-type properties of characters of V−1(sl(n))-modules were studied
recently in the work of Bringmann, Mahlburg and the second author [17]. Although
these characters are mixed quantum modular forms [15], [17], it seems difficult to
formulate and prove a continuous version of the Verlinde formula of characters
even for the ordinary modules.

Instead of studying the vertex algebra V−1(sl(n)), here we focus on two some-
what better behaved objects: (i) the parafermionic algebra(s) and (ii) a certain
infinite (simple current) extension which we denote by U . Both vertex algebras
have interesting properties from algebraic and number theoretic standpoints; we
explore both aspects in great depth.

Let us outline the content and the main results. Throughout we assume that n ≥
3. We first review the construction of the simple affine vertex algebra V−1(sl(n)).
Here we utilize the rank n symplectic fermion vertex algebra A(n) [1], a certain
lattice vertex algebra VL, and the beta-gamma system (or the Weyl vertex algebra)
W(n). Then V−1(gl(n)) (and then of course V−1(sl(n))) is embedded inside the zero

“charge” subalgebra W
(0)
(n) ⊂ A(n) ⊗ VL. Similarly, we obtain explicit realizations

of irreducible ordinary V−1(sl(n))-modules denoted by Vs, s ∈ Z (see Proposition
2.3).

Then we move on to study parafermionic and vacuum subalgebras. Recall that
the parafermionic subalgebra K(sl(n),−1) is defined as

K(sl(n),−1) := {v ∈ V−1(sl(n)) : a(m)v = 0, a ∈M(1),m ≥ 0},

where M(1) is the Heisenberg subalgebra, and the vacuum algebra is similarly
defined as

Ωn := {v ∈ V−1(sl(n)) : a(m)v = 0, a ∈M(1),m > 0}.

Our next result pertains to the structure of these vertex algebras.

Theorem 1.1. We have

(1) K(sl(n),−1) ∼= M(1)
⊗n

, where M(1) is the singlet vertex algebra of central
charge −2 (cf. [1, 4, 33]), and
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(2) Ωn ∼= A(n)(0), the charge zero subalgebra of the symplectic fermion vertex
algebra.

Then we consider an infinite extension of V−1(sl(n)). We first prove that for
every n ≥ 3,

U (n) :=
⊕
s∈Z

Vs·n

has a simple vertex algebra structure for n even, and Z-graded vertex superalgebra
if n is odd. Then we can prove

Theorem 1.2.

(1) The vertex (super)algebra U := U (n) has precisely n ordinary irreducible
modules Ui, 0 ≤ i ≤ n− 1, up to equivalence, such that

Ui ∼=
⊕

s≡i mod n

Vs.

(2) For n ≥ 3, we have

U ∼=
psl(n|n)1

sl(n)1

.

Since our newly introduced vertex algebra has finitely many ordinary modules,
it is natural to ask whether it is quasi-lisse in the sense of [14]. As we are currently
unable to prove this property, instead, we investigate the (super)characters of U
and of its modules. If a vertex algebra is quasi-lisse, then necessarily characters and
supercharacters must be solutions of modular linear differential equation (MLDE)
[14]. In particular, solutions of such equations are known to be either modular (as
in the case of ordinary admissible representations) or quasimodular (as in the case
of Deligne’s series at non-admissible levels). We prove

Theorem 1.3. The characters and supercharacters of U are quasi-modular forms.
More precisely, for n even (resp. odd) the character ch[U ](τ) (resp. the supercha-
racter sch[U ](τ)) is a quasi-modular form (with a multiplier) of weight 1 and depth
1 on Γ0(n).

Motivated again by [14] we conjecture that the (super)character of U is a
component of a vector-valued logarithmic modular form coming from modular
linear differential equations (MLDEs). Compared to Deligne’s series where this
differential equation is of order two, here the situation is more complicated because
the order of the equation grows with n. We hope to return to vector-valuedness and
properties of MLDEs in our future publications. Here we only analyze an MLDE
corresponding to g = sl(3) (see Proposition 6.3).

The vertex algebras associated to psl(n|n) and gl(n|n) have recently attracted
much attention in the literature (cf. [3], [8], [9], [20], [19]). In the present paper we
identify the coset psl(n|n)1/sl(n)1 as a vertex algebra U , for n ≥ 3. We prove in
Theorem 7.2 that for every n ≥ 3, the supercharacter of the simple vertex algebra
V1(psl(n|n)) equals the supercharacter of the symplectic fermion vertex algebra,
which is known to be η(τ)2. In the case n = 3, we present a different proof by
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using the (super)character of U from the previous section together with branching
rules for conformal embeddings.

We have the following conjecture, based on the analysis in the case psl(n|n)1

and results from the paper [8] and [14].

Conjecture 1.4. For every even n ≥ 0, we have

sch[V−2(osp(n+ 8|n))](τ) = ch[V−2(so(8))](τ).

We should also mention that the vertex algebra V−2(osp(n+ 8|n)) has recently
appeared in the work of K. Costello and D. Gaiotto [19, Sect. 5] in the context of
SU(2)-gauge theory with N ≥ 4 flavors.

Acknowledgments. We would like to thank T. Creutzig and M. Gorelik for
valuable discussions. Moreover, we thank the anonymous referees for their helpful
comments.

2. The affine vertex algebra V−1(sl(n))

In Section 2 we recall the basic properties of the affine vertex algebra V−1(sl(n)).
Here we use the standard notation: V k(g) denotes the universal vertex algebra
of level k and Vk(g) is the corresponding simple vertex algebra. All affine vertex
algebras are equipped with the usual conformal structure (via Sugawara’s construc-
tion).

2.1. Symplectic fermions and the c = −2 singlet vertex algebra

The symplectic fermion vertex algebra A(n) (see [1] for more details) is the uni-
versal vertex superalgebra generated by odd fields/vectors ξi and ηi (i = 1, . . . , n)
with the following non-trivial λ-bracket

[(ξi)ληj ] = δi,jλ.

A(n) can be realized on the irreducible level one module for the Lie superalgebra
with generators

{K, ξi(n), ηi(n), n ∈ Z}

and relations

{ξi(n), ξj(m)} = {ηi(n), ηj(m)} = 0, {ξi(n), ηj(m)} = nδi,jδn+m,0K.

Here K is central and other super-commutators are trivial. As a vector space,

A(n) =
∧

span {ξi(−m), ηi(−m), m ∈ Z>0, i = 1, . . . , n} .

The fields ξi, ηj can be identified as formal Laurent series acting on A(n),

ξi(x) =
∑
n∈Z

ξi(n)x−n−1, ηi(x) =
∑
n∈Z

ηi(n)x−n−1.
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The vertex algebra A(n) has the following Virasoro element of central charge
c = −2n:

ωA(n) =

n∑
i=1

: ξiηi : .

There is a charge operator J ∈ End(A(n)) such that

[J, ξi(n)] = ξi(n), [J, ηi(n)] = −ηi(n),

which defines on A(n) the Z-gradation:

A(n) =
∑
`∈Z
A(n)(`), A(n)(`) = {v ∈ A(n) | Jv = `v}.

The character of A(n) is given by

ch[A(n)](τ, ζ) = tr|A(n) qL(0)−c/24ζJ

= qn/12
∞∏
i=1

(1 + qiζ)n(1 + qiζ−1)n (1)

=
∑
`∈Z

ch[A(n)(`)](τ)ζ`. (2)

Recall that the automorphism group of A(n) is Aut(A(n)) = Sp(2n,C) (cf.
[1]). Let gm = exp[(2πi/m)J ]. Then gm generates the subgroup of Aut(A(n))
isomorphic to Zm. One can show that

A(n)Zm =
∑
`∈Z
A(n)(m`). (3)

The vertex algebra A(1)(0) is isomorphic to the singlet vertex algebra M(1) of
central charge c = −2 (cf. [33], [2]). For every i ∈ {0, . . . , n} we set G0

i = 1, and
for m ∈ Z≥1 we define

Gmi = ξi(−m) · · · ξi(−1), G−mi = ηi(−m) · · · ηi(−1).

Each ur = Gri .1, r ∈ Z, is a singular vector for the singlet vertex algebra, which
generates an irreducible module πr (note that we drop the index i).

It was proven in [5] that these are simple current A(1)(0)-modules with the
following fusion rules:

πr × πs = πr+s.

2.2. The Clifford vertex algebra

The Weyl vertex algebra F(n) is the universal vertex algebra generated by the odd

fields Ψ±i and the following non-trivial λ-bracket:

[(Ψ+
i )λΨ−j ] = δi,j , (i, j = 1, . . . , n).
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The vertex algebra F(n) has the structure of the irreducible level one module for
Clifford algebra with generators {K,Ψ±(n+1/2) | n ∈ Z} and super-commutation
relations:

{Ψ+
i (r),Ψ−j (s)}=δi,jδr+s,0K, {Ψ±i (r),Ψ±j (s)}=0 (r, s ∈ 1

2 +Z, i, j=1, . . . , n),

where K is the central element. The fields Ψ±i act on F(n) as the following Laurent
series

Ψ±(z) =
∑
n∈Z

Ψ±
(
n+ 1

2

)
z−n−1.

2.3. The Weyl vertex algebra and its bosonization.

The Weyl vertex algebra W(n) is the universal vertex algebra generated by the

even fields a±i and the following non-trivial λ-bracket:

[(a+
i )λa

−
j ] = δi,j (i, j = 1, . . . , n).

The vertex algebra W(n) has the structure of the irreducible level one module
for the Lie algebra with generators {K, a±(n + 1/2) | n ∈ Z} and commutation
relations:

[a+
i (r), a−j (s)] = δi,jδr+s,0K, [a±i (r), a±j (s)] = 0 (r, s ∈ 1

2 + Z, i, j = 1, . . . , n),

where K is central element. The fields a±i acts on W(n) as the following Laurent
series

a±(z) =
∑
n∈Z

a±
(
n+ 1

2

)
z−n−1.

For i = {1, . . . , n} and r ∈ Z , we define

Xr
i := a+

i (−1/2)r, r ≥ 0 and Xr
i := a−i (−1/2)−r1, r < 0.

Let VL = Mn(1)⊗C[L] be the lattice vertex superalgebra associated to the lattice

L = Zϕ1 ⊕ · · · ⊕ Zϕn

with products:

〈ϕi, ϕj〉 = −δi,j (i, j = 1, . . . , n).

Here Mn(1) denotes the level one module for the Heisenberg vertex algebra asso-

ciated to the Heisenberg Lie algebra ĥn = C[t, t−1]⊗hn⊕CK, where hn = C⊗ZL.
We have the embedding

W(n) → A(n)⊗ VL

such that

a+
i =: ξie

ϕi : , a−i = − : ηie
−ϕi :

6
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2.4. Realization of V−1(sl(n)) and its ordinary modules

Define c := −(ϕ1 + · · ·+ ϕn). Then c(0) defines on W(n) the natural Z-gradation:

W(n) =
⊕
`∈Z

W
(`)
(n).

Let Mc(1) be the Heisenberg vertex algebra of level 1 generated by c. Let Mc(1, r)
be the irreducible Mc(1)-module on which c(0) acts as rId.

The vertex subalgebra of W
(0)
(n) generated by the vectors

{ei,j = − : a+
i a
−
j : | i, j = 1, . . . , n}

is isomorphic to the simple affine vertex algebra V−1(gl(n)) at level −1 (cf. [12]).
We also have for i 6= j:

ei,j :=: ξiηje
ϕi−ϕj : . (4)

Then we have:

Theorem 2.1. W
(0)
(n) is a simple vertex algebra and the following holds:

• ([27]) For n = 1, W
(0)
(n) is a W1+∞-algebra at central charge c = −1.

• ([21, Thm. 5.2]) For n = 2, W
(0)
(n)
∼= W ⊗ Mc(1), where W is a certain

W -algebra of type W (1, 1, 1, 2, 2, 2) at central charge c = −3 (conjecturally
isomorphic to W−5/2(sl(4), fsh) (cf. [21], [6]) where fsh is a short nilpotent
element of sl(4).

• ([12]) For n ≥ 3: W
(0)
(n)
∼= V−1(sl(n))⊗Mc(1).

We need the following result on fusion rules.

Proposition 2.2. [12] Assume that n ≥ 3. For s ∈ Z≥0, let

Vs := Lsl(n)(−(1 + s)Λ0 + sΛ1), V−s := Lsl(n)(−(1 + s)Λ0 + sΛn−1).

• The set {Vs | s ∈ Z} provides a complete list of irreducible V−1(sl(n))-modules
in the category KL−1 (= the category of ordinary modules).

• The following fusion rules hold in the category KL−1.

Vs1 × Vs2 = Vs1+s2 (s1, s2 ∈ Z). (5)

Let us now present a realization of irreducible V−1(sl(n))-modules. Let

Qn = {z1ϕ1 + · · ·+ znϕn | zi ∈ Z, z1 + · · ·+ zn = 0}

be the root lattice of sl(n) with negative-definite signature. Since V−1(sl(n)) ⊂
A(n)⊗VQn , we have that for every λ ∈ Q0

n (= the dual lattice of Qn), A(n)⊗Vλ+Qn

is a V−1(sl(n))-module. Let

ω1 =
1

n
((n− 1)ϕ1 − ϕ2 − · · · − ϕn), ωn−1 =

1

n
(ϕ1 + · · ·+ ϕn−1 − (n− 1)ϕn).

We set v(0) = 1. For j ∈ Z>0 we define

v(j) = b1(−j) · · · b1(−1)1⊗ ejω1 ,

v(−j) = cn(−j) · · · cn(−1)1⊗ ejωn−1 .
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Proposition 2.3. For s ∈ Z, we have:

Vs ∼= V−1(sl(n)).v(s).

Proof. First we notice that v(s) is a singular vector for ŝl(n). Then the space Ũs =
V−1(sl(n)).v(s) is a highest weight V−1(sl(n))-module, having the same highest
weight as Vs. By using the bosonization of the Weyl vertex algebra, we show that

as a V−1(gl(n)) = V−1(sl(n))⊗Mc(1)-module, we have W
(s)
(n)
∼= Ũs⊗Mc(1, s). Since

W
(s)
(n) is an irreducible V−1(gl(n))-module, we conclude that Ũs is an irreducible

V−1(sl(n))-module, and thus Ũs ∼= Vs. �

3. Parafermionic algebra and the vacuum of V−1(sl(n))

Recall the definition of the parafermion vertex algebra of level k:

K(g, k) := {v ∈ Vk(g) | (h⊗ tm).v = 0, m ∈ Z≥0}.

Theorem 3.1. Assume that n ≥ 3. Then

K(sl(n),−1) ∼= (A(1)(0))⊗n.

Proof. Let Mn−1(1) (resp. Mn(1) ) be the Heisenberg vertex algebra generated by
the Cartan Lie subalgebra of sl(n) (resp. gl(n)). Let gl(n) = sl(n)⊕Cc. As usual,
we identify x = x(−1)1 for x ∈ sl(n). Then Mn(1) = Mn−1(1) ⊗Mc(1), where
Mc(1) is the Heisenberg vertex algebra generated by c.

By [12], we have for n ≥ 3:

V−1(gl(n)) = V−1(sl(n))⊗Mc(1) ∼= W
(0)
(n) = KerW(n)

c(0).

A. Linshaw proved in [29, Thm. 7.2] that

Com(Mn(1),W(n)) ∼= (A(1)(0))⊗n.

(This corresponds to the case m = n in [29]).

Since c ∈ Mn(1), we have that Com(Mn(1),W(n)) ⊂ W
(0)
(n) , which implies that

for n ≥ 3:

Com(Mn(1),W(n)) = Com(Mn(1), V−1(gl(n))) ∼= Com(Mn−1(1), V−1(sl(n)).

Therefore (for n ≥ 3):

Com(Mn(1),W(n)) ∼= Com(Mn−1(1), V−1(sl(n))) ∼= K(sl(n),−1).

The proof follows. �

If M is any V−1(sl(n))-module, the (q, ζ)-character and q-character are defined
as

ch[M](τ, ζ) = tr|M qL(0)−c/24ζh(0),

ch[M](τ) = tr|M qL(0)−c/24.
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3.1. The vacuum space

The vacuum space is defined as

Ω(Vk(g)) = {v ∈ Vk(g) | h(j)v = 0 j ≥ 1, h ∈ h},

and it has the structure of a generalized vertex algebra [30], [23].

Theorem 3.2.

(1) Assume that n ≥ 2. The vacuum algebra

Ωn := Ω(V−1(sl(n))) = {v ∈ V−1(sl(n)) | h(j)v = 0 j ≥ 1, h ∈ h}

is isomorphic to a vertex subalgebra of A(n) generated by

{Zi,j =: ξiηj : | 1 ≤ i 6= j ≤ n}.

(2) Assume that n ≥ 3. Then Ωn ∼= A(n)(0).
(3) The q-character of Ωn is given by

ch[A(n)(0)](τ) = qn/12CTζ

∞∏
i=1

(1 + qiζ)n(1 + qiζ−1)n,

where CTζ denotes the constant term.

Proof. The proof uses the explicit realization, the bosonization and the formula
for Z-operators.

By using [30, Thm. 6.4], we see that Ω(V−1(sl(n)) is generated by the following
(generalized) vertex operators

Zi,j = YΩ(ei,j , z) := E−(−hi,j , z)ei,j(z)(z)E+(−hi,j , z)zhi,j(0),

where hi,j = ϕi − ϕj and

E±(α, z) = exp

( ∞∑
n=1

α(±n)

±n
z∓n

)
.

Using (4) we see that on Ωn = Ω(V−1(sl(n)) we have that

Zi,j =: ξiηj : .

Therefore Ωn is generated by {Zi,j =: ξiηj : | 1 ≤ i 6= j ≤ n}. This proves (1).
(2) Since Ωn is generated by Zi,j , i 6= j we have:

ui,j = (Zi,j)1Zj,i = (ξi(−1)ηj(−1)1)1ξj(−1)ηi(−1)1 =: ξiηi : + : xijηj :∈ Ωn.

This implies
(∗) : ξiηi :∈ Ωn

Since Ωn ⊂ A(n)(0), (2) will follow from the following claim:

(2′) For n ≥ 3, A(n)(0) is generated by the set {: ξiηj :, i, j = 1, . . . , n}.
The claim (2′) can be proved using completely analogous methods to those from

[21, Sect. 5]. We omit details.
The proof of assertion (3) follows from (2) and character formulas for A(n) from

(1)–(2). �
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Remark 1. In [21], the authors denoted the maximal vertex operator subalgebra
of the generalized vertex operator algebra Ω(Vk(g)) by Ek,g (see [21, Example 3]).
In our case, Ω(V−1(sl(n))) is a vertex algebra, so we have

E−1,sl(n)
∼= A(n)(0).

One can consider the V−1(sl(n))-module

U large =
⊕
s∈Z

Vs,

and show that it is a generalized vertex algebra.
On the other hand, one can prove the following theorem.

Theorem 3.3.

(1) The V−1(sl(n))-module

U (n) =
⊕
s∈Z

Vns,

carries the structure of a vertex operator algebra if n is even and a Z-graded
vertex operator superalgebra if n is odd.

(2) In the category of ordinary modules, U (n) has n non-equivalent irreducible
ordinary modules:

Ui :=
⊕
s∈Z

Vns+i (i = 0, . . . , n− 1)

with the following fusion rules

Ui × Uj = Ui+j mod n.

Proof. The proof of assertion (1) is based on the explicit realization discussed in
Section 2. Note that mnω1,mnωn−1 ∈ L and that emnω1 and emnωn−1 are even
vectors in VL.

Consider the vertex subalgebra Ũ of A(n) ⊗ VL generated by U0 and highest
weight vectors

v(n) = ξ1(−n) · · · ξ1(−2)ξ1(−1)⊗ enω1 ,

v(−n) = ηn(−n) · · · ηn(−2)ηn(−1)⊗ enωn−1 .

Note that the vector v(±n) has conformal weight n. Moreover, vectors v(±n) are
even (resp. odd) if n is even (resp. odd). Therefore, Ũ is a vertex operator algebra
if n is even, and a Z-graded vertex operator superalgebra if n is odd.

By Proposition 2.3 we have that m ∈ Z>0 modules V±mn are realized as V±mn =

V0.v
(±mn). Since v(±mn) ∈ Ũ , we get that Ũ ⊃ U (n). By using fusion rules (5), we

see that U (n) is a vertex subalgebra of Ũ . Since both vertex algebras are generated
by V0 and v(±n), we conclude that U (n) = Ũ . This proves the assertion (1).

10
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Let us now discuss the construction and classification of irreducible U (n)-mo-
dules. Clearly Li = U (n)v(i) =

⊕
s∈Z Vns+i is an irreducible U (n)-module for i =

0, . . . , n− 1.
Assume that M is an irreducible ordinary module for U (n). Then M is in the

category KL−1 as a V−1(sl(n))-module. Since the top component Ω(M) is a finite-
dimensional module for U(sl(n)), we conclude that Ω(M) contains a singular vector

for ŝl(n). Thus, M contains a V−1(sl(n))-submodule isomorphic to Vi for certain
i ∈ Z. By using the fusion rules (5) again, we conclude that M ∼=

⊕
s∈Z Vns+i = Ui.

The proof follows. �

Conjecture 3.4. The vertex algebra U (n) is quasi-lisse in the sense of [14].

Remark 2. In our paper we present some evidence for Conjecture 3.4.

• There are finitely many (ordinary) irreducible U (n)-modules.
• Characters and super-characters of (ordinary) U (n)-modules are quasi-modu-

lar forms. For g = sl(3), the supercharacters are solutions of an MLDE (see
Proposition 6.3).

• The vacuum space is a C2-cofinite vertex operator algebra.
For simplicity, let us discuss the case n = 3. Then we will see that the vacuum
space Ω(U (3)) is a Z3-orbifold of the symplectic fermion vertex algebra A(3).
Since every cyclic orbifold of a C2-cofinite vertex algebra is C2-cofinite (cf.
[32]), then the vacuum Ω(U (3)) is C2-cofinite.

Remark 3. Assume that V is a vertex operator (super) algebra containing a Hei-
senberg vertex subalgebra M(1). We believe that if the vacuum space Ω(V ) is
C2-cofinite, then V is quasi-lisse.

4. A decomposition of V−1(sl(n)) as a K(sl(n),−1)⊗Mn−1(1)-module

4.1. Decomposition of V−1(sl(3)) as a K(sl(3),−1) ⊗ M2(1)-module:
from the realization

Let Q be the root lattice of sl(3). For (r, s) ∈ Z2, we set γr,s = rϕ1+sϕ2−(r+s)ϕ3,
We have:

V−1(sl(3)) =
⊕

(r,s)∈Z2

(K(sl(3),−1)⊗M2(1)) .Pr,s

=
⊕

(r,s)∈Z2

(K(sl(3),−1)⊗M2(1)) .(vr,s ⊗ eγr,s)

=
⊕

(r,s)∈Z2

Kr,s ⊗M2(1).eγr,s ,

where
Pr,s = Xr

1X
s
2X
−r−s
3 1 = vr,s ⊗ eγr,s ,

and

Kr,s = {v ∈ V−1(sl(3)) | h(n)v = δn,0〈h, γr,s〉v ∀h ∈ h, n ∈ Z≥0}

11
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is an irreducible K(sl(3),−1)-module generated by the lowest weight vector

vr,s = Gr1Gs2G−r−sr 1.

We conclude that Kr,s = πr⊗πs⊗π−r−s. In this way we have proved the following
theorem:

Theorem 4.1. The vertex algebra V−1(sl(3)) is a simple current extension of
(A(1)(0))⊗3 ⊗M2(1), and

V−1(sl(3)) =
⊕

(r,s)∈Z2

πr ⊗ πs ⊗ π−r−s ⊗M2(1)eγr,s

4.2. Decomposition of V−1(sl(3)) as a K(sl(3),−1)⊗M2(1)-module II:
from character formulas

It is possible to prove Theorem 4.1 directly from the character formula (7). Recall
a well-known identity [13]

1∏
n≥1(1− zqn−1)(1− z−1qn)

=

∑
m∈Z Fm(q)zm∏
n≥1(1− qn)2

,

where
Fm(q) =

∑
r≥0

q(2r+1)r+2mr −
∑
r≥0

q(2r−1)r+m(2r−1), m ≥ 0

and
Fm(q) = qmF−m(q),m < 0

We use this formula to expand the character (three times). Then we extract the
coefficients of z1 and z2, which computes characters of modules for the vacuum
algebra. Finally, we use a well-known formula for ch[Kr,s] [18], where Kr,s is an
irreducible module for the tensor product of three copies of the singlet algebra.
This gives

ch[V−1(sl(3))](τ) =
∑

(r,s)∈Z2

ch[Kr,s](τ)ch[M2(1).eγr,s ](τ).

4.3. q-hypergometric formula for ch[V−1(sl(3))](τ )

Now we use the discussion from the last section to prove:

Proposition 4.2.

(q;q)2
∞q
−1/6ch[V−1(sl(3))](τ)

=
∑

k1,k2∈Z2

∑
n1,n2,n3≥0

qn
2
1+n2

2+n2
3+(|k1|+1)n1+(|k2|+1)n2+(|−k1−k2|+1)n3+

|k1|+|k2|+|−k1−k2|
2

(q; q)n1(q; q)n1+|k1|(q; q)n2
(q; q)n2+|k2|(q; q)n3

(q; q)n3+|−k1−k2|
,

where (q; q)∞ =
∏
i≥1(1− qi), (q; q)n =

∏n
i=1(1− qi).

12
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Proof. Follows directly from the q-hypergeometric representations for the p = 2
false theta functions, which are essentially characters of modules for the p = 2
singlet algebra (here k ∈ Z):

qk/2
∑
n≥0

(
q2n2+n(2k+1) − q2n2+n(2k+3)+k+1

)
(q; q)∞

=
∑
n≥0

qn
2+n(|k|+1)+|k|/2

(q; q)n(q; q)n+|k|
.

These relations are well-known and implicitly proven in [18, 34]. They generalize
a well-known Ramanujan’s identity corresponding to k = 0. �

4.4. The vacuum space Ω(U(3))

Let us again consider the case n = 3, so that U = U (3).
Moreover, for m ∈ Z>0, the modules V±3m are realized as V±3m = V0.v

(±3m),
where

v(3m) = ξ1(−3m) · · · ξ1(−1)⊗ e3mω1 ,

v(−3m) = η3(−3m) · · · η3(−1)⊗ e3mω2 .

Recall from Subsection 2.1 that the action of the cyclic group Z3 on A(3) is
generated by g3 = exp[πiJ/3].

Theorem 4.3. We have:
Ω(U) ∼= A(3)

Z3 .

Proof. Applying formula (3) for m = 3 we get

A(3)
Z3 ∼=

⊕
m1+m2+m3∈3Z

πm1
⊗ πm2

⊗ πm3

=
⊕

m1+m2+m3∈3Z

(
A(1)(0)

)⊗3

.Gm1
1 G

m2
2 G

m3
3 1.

(6)

Using realization we see that

• Ω(U) ⊂ A(3)
Z3 ;

• Gm1
1 G

m2
2 G

m3
3 1 ∈ Ω(U) for all (m1,m2,m3) ∈ Z3, m1 +m2 +m3 ∈ 3Z.

Now the claim follows by (6). �

4.5. Decomposition for the general case n ≥ 3

For s ∈ Z we define

Q(s)
n = {z = (z1, . . . , zn) ∈ Zn | z1 + · · ·+ zn = s}.

For z ∈ Q(s)
n we define

γz = z1ϕ1 + · · ·+ znϕn,

Pz = Xz1
1 · · ·Xzn

n 1 ∈W (0)
(n)
∼= V−1(sl(n)),

vz = Gz11 · · · Gznn 1 ∈ A(n)(s).

We have
Pz = νvz ⊗ eγz (ν = ±1).

Set Qn := Q
(0)
n .

13
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Theorem 4.4. The vertex algebra V−1(sl(n)) is a simple current extension of
(A(1)(0))⊗n ⊗Mn−1(1) and

V−1(sl(n)) =
⊕
z∈Qn

πz1 ⊗ πz2 · · · ⊗ πzn ⊗Mn−1(1)eγz .

For s ∈ Z we have:

Vs =
⊕
z∈Q(s)

n

πz1 ⊗ πz2 · · · ⊗ πzn ⊗Mn−1(1)eγz .

4.6. Decomposition in the case n = 2

Let us consider also the case n = 2.

Theorem 4.5. The vertex algebra W = Com(Mc(1),W(2)) (which is isomorphic
to the affine W -algebra W−5/2(sl(4), fsh)) is a simple current extension of the

algebra (A(1)(0))⊗2 ⊗M1(1), and

W =
⊕
m∈Z

πm ⊗ π−m ⊗M1(1)em(ϕ1−ϕ2).

Remark 4. A detailed study of the representation theory of the vertex algebra W
will be discussed in our forthcoming papers. In particular, we will analyze the
fusion algebra for W by using methods developed in [5], [7].

5. The character ch[U ] for g = sl(3)

We now discuss graded dimensions (or characters) of ordinary V−1(sl(3))-mo-
dules. These characters were thoroughly analyzed in [17] using different methods.

The next formula is a consequence of the explicit construction of Vs (here s ≥ 0):

ch[Vs](τ) = qhs+1/6Coeffζs
∞∏
n=1

(1− qn)

(1− ζqn−1)3(1− ζ−1qn)3
, (7)

where hs is the lowest conformal weight of Vs and we also used that c = −4. We
also have the full character formula of Kac and Wakimoto [25]

ch[Vs](τ ; z1, z2) = qhs+1/6

·Coeffζs
(q; q)∞

(ζ; q)∞(ζz2; q)∞(ζz1z2; q)∞(ζ−1z−1
1 z−1

2 q; q)∞(ζ−1z−1
2 q; q)∞(ζ−1q; q)∞

,

where (a; q)∞ =
∏
i≥0(1− aqi).

Very recently, Kac and Wakimoto [26] gave another Weyl–Kac type character
formula for ch[Vs], expressed as a rank two Jacobi false theta function (see also [17]
for a different formula). After a specialization (z1, z2)→ (1, 1) in their formula, we
easily get

F0(q) := (q; q)8
∞q
−1/6ch[V0](τ)

= 4
∑

n1∈N0,
n2∈Z

(
2n1 − n2 + 1

2

) (
2n2 − n1 + 1

2

)
(n1 + n2 + 1)q2n2

1+2n2
2−2n1n2+n1+n2 .

14
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We also have

Fs(q) : = (q; q)8
∞q
−1/6−hsch[Vs](τ)

= 4
∑

n1∈N0,
n2∈Z

(
2n1 − n2 +

s

2
+

1

2

)(
2n2 − n1 +

1

2

)(
n1 + n2 +

s

2
+ 1
)

· q2n2
1+2n2

2−2n1n2+(s+1)n1+n2 .

Observe that the summation over n1 is only over the set of non-negative integers.
On the other hand, it is easy to see that the sum over the integers vanishes (by
changing nj 7→ −nj − 1)∑

n1∈Z
n2∈Z

(
2n1 − n2 + 1

2

) (
2n2 − n1 + 1

2

)
(n1 + n2 + 1)q2n2

1+2n2
2−2n1n2+n1+n2 = 0.

Let

G(τ) := 4
∑

n1∈−N0
n2∈Z

(
2n1 − n2 + 1

2

) (
2n2 − n1 + 1

2

)
(n1 + n2 + 1)q2n2

1+2n2
2−2n1n2+n1+n2 .

Proposition 5.1. We have

G(τ) = q3F3(τ).

Proof. Straightforward computation with q-series. �

Corollary 5.2. We have

Fn2=0(q) = F0(q) + q3F3(q),

where
Fn2=0(q) := 4

∑
n1∈Z

(
2n1 + 1

2

) (
−n1 + 1

2

)
(n1 + 1)q2n2

1+n1 .

Moreover, this series is quasi-modular.

Proof. Follows directly from the previous proposition and vanishing of the sum over
the full lattice. Quasi-modularity is clear as this series is obtained by differentiating
a unary theta function. �

Next we combine the characters of modules appearing in the decomposition of
U in pairs:

q−1/6(q; q)8
∞ch[U ](τ) =

∑
m≥0

(q3m2/2+3m/2F3m(q) + q3(m+1)2/2+3(m+1)/2F3m+3(q)),

where (q; q)∞ =
∏∞
i=1(1 − qi). For each pair in the summation we have a similar

q-series identity (the proof is almost identical)

15
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Lemma 5.3. For every m ≥ 0,

q3m2/2+3m/2F3m(q) + q3(m+1)2/2+3(m+1)/2F3m+3(q)

= 4
∑
n1∈Z

(
2n1 +

1

2

)(
− n1 +

3m

2
+

1

2

)(
n1 +

3m

2

)
q2n2

1+n1+3m2/2+3m/2.

Theorem 5.4. We have
(i) The following equality holds:

ch[U ](τ) =
4

2η(τ)8

·
∑
n,m∈Z

(
2n+

1

2

)(
− n+

3m

2
+

1

2

)(
n+

3m

2
+ 1
)
q2(n+1/4)2+3(m+1/2)2/2.

(ii) Let U±1 =
⊕

n∈Z V3n±1. Then ch[U1](τ) = ch[U−1](τ) and

ch[U±1](q) =
4

2η(τ)8

·
∑
n,m∈Z

(
2n+

1

2

)(
− n+

3m

2
+

1

2
+

1

2

)(
n+

3m

2
+

1

2
+ 1
)
q2(n+1/4)2+3(m+5/6)2/2.

(iii) For the supercharacter we have

sch[U ](q) = trUσq
L(0)−c/24 =

4

η(τ)8

·
∑
n,m∈Z

(
2n+

1

2

)2(
− n+

3m

2
+

1

2

)(
n+

3m

2
+ 1
)
q2(n+1/4)2+3(m+1/2)2/2.

(iv) Both ch[U ] and sch[U ] are quasi-modular.

Proof. We only prove (i) here — formula (ii) can be proven using similar ideas.
Proof of (iii) is slightly different and is postponed for Section 8 (see Remark 7).

We first apply Lemma 5.3 to write

ch[U ](τ) = tr|UqL(0)+1/6 =
∑
m≥0

q1/3

(q; q)8
∞
F (m),

where F (m) := q3m2/2+3m/2F3m(q) + q3(m+1)2/2+3(m+1)/2F3m+3(q), in the form

ch[U ](τ)=
4

η(τ)8

∑
n∈Z,m≥0

(
2n+

1

2

)(
−n+

3m

2
+

1

2

)(
n+

3m

2
+1
)
q2(n+1/4)2+3(m+1/2)2/2.

Now observe that

ch[U ](τ)=
4

η(τ)8

∑
n∈Z,m<0

(
2n+

1

2

)(
−n+

3m

2
+

1

2

)(
n+

3m

2
+1
)
q2(n+1/4)2+3(m+1/2)2/2,
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hence taking the summation over m ∈ Z and dividing by 2 yields the formula (i).
In part (iv) we prove quasi-modularity only for ch[U ]. In other cases proof is

very similar. Using(
2n+

1

2

)(
− n+

3m

2
+

1

2

)(
n+

3m

2
+1
)

=−2(n+1/4)3+9/2(m+1/2)2(n+1/4),

we get ∑
n,m∈Z

(−2(n+ 1/4)3 + 9/2(m+ 1/2)2(n+ 1/4))q2(n+1/4)2+3(m+1/2)2/2

= −
∑
m∈Z

q3(m+1/2)2/2Θq

(∑
n∈Z

(n+ 1/4)q2(n+1/4)2
)

+ 3Θq

(∑
m∈Z

q3(m+1/2)2/2

)∑
n∈Z

(n+ 1/4)q2(n+1/4)2 ,

where Θq := q d/dq. As it is known, the Θq-derivative of weight 1/2 and 3/2 theta
functions gives quasi-modular forms. �

Remark 5. Observe that irreducible U -modules are also Z2-graded. Their super-
characters are given by

sch[U1] = −ch[V1] +
∑
i≥1

(−1)i−1(ch[V3i+1] + ch[V−3i+1]),

sch[U2] = ch[V2] +
∑
i≥1

(−1)i−1(ch[V3i+2] + ch[V−3i+2]).

Since ch[Vi] = ch[V−i], this easily implies that sch[U1] = sch[U2]. One can also show
that

sch[U1](τ) = sch[U2](τ) =
4

η(τ)8

·
∑
n,m∈Z

(
2n+

1

2

)2(
− n+

3m

2
+

1

2

)(
n+

3m

2
+ 1
)
q2(n+1/4)2+3(m+5/6)2/2.

Remark 6. The above approach to modularity is difficult to generalize to sl(n)
because it requires explicit formulae as in Theorem 5.4. But these formulae are
non-trivial to extract from [26]. In the remainder of the paper we show how to
solve the (quasi)-modularity problem via meromorphic Jacobi forms and explicit
construction.

6. Quasi-modularity of (s)ch[U ](τ )

In this part we prove the quasi-modularity of (s)ch[U ](τ), generalizing our
explicit computation for g = sl(3) in Section 6. Let

(a)∞ :=
∏
i≥1

(1− aqi−1).

17
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We will make use of a Jacobi theta function

ϑ(z; τ) := (−i)q1/8ζ−1/2(q)∞(ζ)∞(qζ−1)∞,

where ζ = e2πiz. Recall the elliptic and modular transformation formulae (here
λ, µ ∈ Z,

(
a b
c d

)
∈ SL2(Z)):

ϑ(z + λτ + µ; τ) = (−1)λ+µq−λ
2/2ζ−λϑ(z; τ),

ϑ

(
z

cτ + d
;
aτ + b

cτ + d

)
= χ

(
a b
c d

)
(cτ + d)1/2e(πicz2)/(cτ+d)ϑ(z; τ),

where χ is a certain multiplier. In particular,

ϑ

(
z

τ
;−1

τ

)
= −i

√
−iτeπiz

2/τϑ(z; τ).

As in the sl(3) case, from the explicit construction [25] we see that

c̃h(Vs) = Coeffζs
(q)∞

(ζ)n∞(qζ−1)n∞
, (8)

where c̃h(Vs) is the character of Vs up to a multiplicative q-shift. More precisely,
for s ≥ 0

c̃h(Vs) = dim(L(sω1)) +O(q)

and for s < 0
c̃h(Vs) = q−s(dim(L(sωn−1)) +O(q)),

where L(mωi) denotes an irreducible sl(3)-module of highest weight mωi. Thus in
order to compute the genuine character we must multiply with

qhVs−cn/24,

for s ≥ 0, and in addition shift with qs for s < 0. It is easy to see that for s ≥ 0,

hVs = hV−s =
s2

2n
+
s

2

and the central charge is
cn = −(n+ 1).

Combined, this yields

hVns −
cn
24

=
s2n

2
+
sn

2
+
n+ 1

24
.

Putting this together with (8), and taking into account the q-multiplicative shift
for s < 0, we get

18
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ch[U ](τ) = CTζ

∑
s∈Z q

s2n/2+sn/2+(n+1)/24ζ−sn
∏∞
i=1(1− qi)

(ζ)n∞(qζ−1)n∞
.

Next we multiply the numerator and the denominator with ζn/2qn/8(q; q)n∞ so that
in the denominator we have a power of θ(z, τ), a weight 1/2 Jacobi form of index
1/2. So we obtain

ch[U ](τ) = CTζ

∑
s∈Z q

s2n/2+sn/2+(n+1)/24ζ−sn−n/2qn/8(q; q)n∞(q; q)∞

ζ−n/2(ζ)n∞(qζ−1)n∞(q; q)n∞q
n/8

.

Continuing with the numerator, we have∑
s∈Z

qs
2n2/2+sn/2+(n+1)/24ζ−sn−n/2 =

∑
s∈Z

qn(s+1/2)2/2−n/8+(n+1)/24ζ−(s+1/2)n.

Notice that qn/8 cancels out, and an extra q(n+1)/24 term nicely combines with
(q; q)n+1

∞ giving η(τ)n+1. We conclude

ch[U ](τ) = inη(τ)n+1CTζ

∑
s∈Z q

n(s+1/2)2/2ζ−(s+1/2)n

ϑ(z, τ)n

= inη(τ)n+1CTζ

∑
s∈Z q

n(s+1/2)2/2ζ(s+1/2)n

ϑ(z, τ)n
,

where we also used the Jacob triple product identity in the denominator

ϑ(z, τ) = (−i)q1/8ζ−1/2(ζ)∞(qζ−1)∞

=
∑

s∈Z+1/2

qs
2/2e2πis(z+1/2) = i

∑
s∈Z

(−1)sq(s+1/2)2/2e2πi(s+1/2)z.

6.1. n is odd

In this case we have

ch[U ](τ) = εnη(τ)n+1CTζ

(
ϑ(nz + 1/2, nτ)

ϑ(z, τ)n

)
,

where εn = −in, for the character.

6.2. n is even

For n even we also have

ch[U ](τ) = εnη(τ)n+1CTζ

(
ϑ(zn+ 1/2, nτ)

ϑ(z, τ)n

)
6.3. Supercharacter

For n odd we can also compute the supercharacter

sch[U ](τ) = iεnη(τ)n+1CTζ

(
ϑ(zn, nτ)

ϑ(z, τ)n

)
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6.4. Characters of modules

Straightforward computation gives for 0 ≤ k ≤ n− 1,

ch[Uk](τ) = η(τ)n+1CTζ

∑
s∈Z q

n(s+(k+n)/2n)2/2ζ−(s+(n+k)/2n)n

ϑ(z, τ)n
.

For n even we can write this as

ch[Uk](τ) = εn,kη(τ)n+1CTζ

(
ϑ((z + k/2n)n, nτ)

ϑ(z, τ)n

)
,

where εn,k is a normalization constant as above. Similarly we compute sch[Uk](τ).

6.5. Quasimodularity

Here we prove a general theorem on quasimodularity of the (super)character of U ,
which extends our previous calculations for sl(3).

Theorem 6.1. The supercharacter of U (for n odd) and the character of U (for
n even) are quasi-modular forms (with multipliers) of weight one and depth one
on Γ0(n).

Proof. Case 1: n is odd.
First we observe that

G(τ, z) := η(τ)n+1

(
ϑ(zn, nτ)

ϑ(z, τ)n

)
is a meromorphic Jacobi form of weight (n+ 1)/2+1/2−n/2 = 1. After we multiply
with 1/η(τ)2, H(τ ; z) := G(τ ; z)/η(τ)2 we get a meromorphic Jacobi function of
weight zero.

Claim: G(τ, z) is a Jacobi form of index zero for the congruence group Γ0(n)
(transforming with a character).

We consider

[
a b
c d

]
∈ Γ0(n) (thus ad− cb = 1 and n|c). Then

ϑ

(
nz

cτ + d
;n
aτ + b

cτ + d

)
= ϑ

(
(nz)

(c/n)(nτ) + d
;
a(nτ) + nb

(c/n)(τn) + d

)
= χ′

(
a b
c d

)
(cτ + d)1/2e(πicnz2)/(cτ+d)ϑ(nz;nτ)

where we used that

[
a bn
c/n d

]
∈ Γ(1). For the denominator,

ϑ(z; τ)n|(τ→(aτ+b)/(cτ+d);z→z/(cτ+d)) = χn(cτ + d)n/2e(πicnz2)/(cτ+d)ϑ(z; τ)n.

For translations, for λ, ν ∈ Z, we have

ϑ(nz + nλτ + nµ, nτ) = (−1)n(λ+µ)q−nλ
2/2e−2πiλnzϑ(nz, nτ),
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ϑ(n+ λτ + µ, τ)n = (−1)n(λ+µ)q−nλ
2/2e−2πiλnzϑ(z, τ)n.

After taking the quotient this implies the claim.
Notice that H(τ ; z) is even with respect to z and has a pole of order n at z = 0,

so we can write the Laurent expansion [16] (see also [22])

H(τ ; z) =
Hn(τ)

(2πiz)n
+

Hn−2(τ)

(2πiz)n−2
+ · · ·+ H2(τ)

(2πiz)2
+H0(τ), (9)

where H2j(τ) is a modular form of weight −2j with respect to Γ0(n) (transforming
with the same character as the Jacobi form).

Then, by using [16], [22] we can write the ”finite” part as

HF (τ) := H0(τ) +

n/2∑
j=1

B2j

(2j)!
H2j(τ)E2j(τ), (10)

which is quasi-modular of weight zero. Here E2j(τ) denotes the Eisenstein series
and B2j are the Bernoulli numbers. Finally, the constant term is given by

sch[U ](τ) = η(τ)2HF (τ).

It is a modular form of weight one. The depth is one due to the appearance of
E2(τ).

Case 2: n is even.
For n is even we have to study

H(z; τ) := η(τ)n−1ϑ(zn+ 1/2, nτ)

ϑ(z, τ)n
.

Since

ϑ
(

(−z)n+
1

2
; τ
)

= ϑ
(
− zn+

1

2
; τ
)

= −ϑ
(
zn− 1

2
; τ
)

= ϑ
(
zn+

1

2
; τ
)

and n is even, H(z; τ) is an even function. It is easy to see that

ϑ
(
z +

1

2
+ λτ + µ

)
= (−1)µq−λ

2/2e−2πiλzϑ
(
z +

1

2
; τ
)

which implies

ϑ
(
nz + nλτ + nµ+

1

2
, nτ

)
= q−nλ

2/2e−2πiλnzϑ(nz, nτ).

Thus H (z + λτ + µ; τ) = H(z; τ). We also get

H

(
z

cτ + d
;
aτ + b

cτ + d

)
= χ′′

(
a b
c d

)
H(z; τ),

where χ′′ is a character. The rest follows as in the odd case. �
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DRAŽEN ADAMOVIĆ, ANTUN MILAS

6.6. Explicit example: case n = 3

Here we compute the constant term of

G(τ, z) := η(τ)4

(
ϑ(3z; 3τ)

ϑ(z, τ)3

)
.

The same method can be used to compute G(τ ; z) for every n. We have to
compute modular forms appearing inside the series (9). Here we use a standard
method of Laurent expansion following [16]. We write

ϑ∗(z; τ) :=
1

z
ϑ(z; τ),

where we suppress τ from the formula for brevity. Then we have

ϑ∗(z; τ) = ϑ∗(0; τ) + ϑ∗′′(0; τ)
z2

2!
+O(z4)

and

ϑ∗(3z; 3τ) = ϑ∗(0; 3τ) + ϑ∗′′(0)
9z2

2!
+O(z4),

hence

G(z) =
3z
(
ϑ∗(0; 3τ) + ϑ∗′′(0; 3τ)9z2/2! +O(z4)

)
z3(z

(
ϑ∗(0) + ϑ∗′′(0) + z2/2! +O(z4)

) . (11)

It is clear that

ϑ∗(0; τ) = −2πη3(τ) = −2π
∑
n∈Z

(−1)n(n+ 1/2)q(n+1/2)2/2

from the infinite expansion of ϑ(z; τ) and Euler’s theorem and

ϑ∗′′(0; τ) =
1

12
(2πi)2E2(τ)η3(τ).

Expanding (11) gives only even powers of z and in particular

H0(τ) +
H−2(τ)

(2πiz)2
+O(1).

Finally

CTz

{
η(τ)4

(
ϑ(3z; 3τ)

ϑ(z, τ)3

)}
= H0(τ) +

B2

2
H2(τ)E2(τ)

= −9

8
E2(τ)

η(τ)3η(3τ)3

η(τ)8
+

9

8

η(τ)3
∑
n≥0(−1)n(2n+ 1)3q3n(n+1)/2

η8(τ)

+
η3(3τ)

∑
n≥0(−1)n(2n+ 1)3qn(n+1)/2

η8(τ)

= −1

8
E2(τ)

η(τ)3η(3τ)3

η(τ)8
+

9

8

η(τ)3
∑
n≥0(−1)n(2n+ 1)3q3n(n+1)/2

η8(τ)

= −1

8
(E2(τ)− 9E2(3τ))

η(3τ)3

η(τ)5
.
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Remark 7. Observe that the above formulas, with η(τ)3 and η(3τ)3 expanded as
sums, immediately imply the relation (iii) in Theorem 5.4.

It is clear that E2(τ) is a quasi-modular form of weight 2 and depth 1 on Γ(1).
It is easy to show that E2,3(τ) := E2(3τ) is a quasi-modular form of weight 2 and
depth 1 on Γ0(3), i.e.

E2,3

(
aτ + b

cτ + d

)
= (cτ + d)2E2,3(τ) +

6c(cτ + d)

3iπ
.

As the index of Γ0(3) in Γ(1) is 4, E2,3(τ) combines into a vector-valued quasi-
modular form under the full modular group.

Lemma 6.2. η(τ/3)3 and η(3τ)3 form a 2-dimensional vector-valued modular
form of weight 3/2 under the full modular group.

Proof. Straightforward computation with Shimura’s theta series of weight 3/2 to-
gether with Jacobi’s identity for η(τ)3. �

Using this lemma and the previous discussion one can explicitly write down a
vector space of quasi-modular forms closed under the modular group, which also
contains the supercharacter. However, this space is difficult to analyze and does not
give much evidence for the quasi-lisseness of U conjectured earlier. As demonstrated
in [14], characters of quasi-lisse vertex algebras must satisfy a particular type of
linear modular differential equation whose coefficients are holomorphic Eisenstein
series (usually abbreviated as MLDE). For quasi-lisse Z≥0-graded vertex super-
algebras we expect the same property to hold for supercharacters. By analyzing
the leading behavior of the above function (which is quasi-modular) combined with
computer computations we can conclude:

Proposition 6.3. The supercharacter sch[U ](τ) satisfies a 5-th order MLDE

θ5(y(q))− 7

36
E4(τ)θ3(y(q)) +

19

216
E6(τ)θ2(y(q))− 5

324
E4(τ)2θ(y(q))

+
5

1944
E4(τ)E6(τ)y(q) = 0,

where Ramanujan–Serre’s n-th derivative is defined by

θn := ϑ2n ◦ · · · ◦ θ0; θk :=

(
q
d

dq
− kE2(τ)

12

)
.

As usual, the Eisenstein series appearing in the equation are given by

E2(τ) = 1− 24
∑
n≥1

nqn

1− qn

E4(τ) = 1 + 240
∑
n≥1

n3qn

1− qn

E6(τ) = 1− 504
∑
n≥1

n5qn

1− qn
.
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Two supercharacters (that are equal) of ordinary U -modules also satisfy this
modular equation. Two additional solutions are expected to come from σ-twisted
U -modules, not analyzed in this paper. These four solutions, together with a
logarithmic solution, form a fundamental system of solutions for this MLDE.

6.7. Explicit example: case n = 2

Here we essentially repeat the same procedure with a notable difference that

ϑ

(
2z +

1

2
; 2τ

)
admits Taylor expansion in even powers of the z variable:

ϑ

(
2z +

1

2
; 2τ

)
= ϑ

(
1

2
, 2τ

)
+O(z2)

so that
ϑ(2z + 1/2; 2τ)

ϑ(z; τ)2
=

1

z2
a0(τ) + a1(τ) +O(z2)

Repeating the same procedure as in the odd supercharacter case we get

ch[U ](τ) =
1

3

η(4τ)2

η(τ)3η(2τ)
(4E2(2τ)− E2(4τ)) .

7. Vertex superalgebra V1(psl(n|n)) and V−1(sl(n))

Let g = psl(n|n). We consider the simple vertex algebra V1(g). We have the
following result which identifies our vertex algebra U (n) = U0 as a coset subalgebra
in V1(g).

Proposition 7.1. Assume that n ≥ 3. Then we have:

(1) The vertex algebras U (n) and Lsl(n)(Λ0) form a Howe dual pair inside V1(g).
In particular,

psl(n|n)1

sl(n)1
:= ComV1(g)(Lsl(n)(Λ0)) ∼= U (n).

(2) K(g, 1) ∼= K(sl(n),−1) ∼= (A(1)(0))⊗n.

Proof. By using the decomposition of the conformal embedding sl(n)× sl(n) ↪→ g
(cf. [10]) we get

V1(g) =

n−1⊕
i=0

Ui ⊗ L(Λi), (12)

where for brevity we omit the superscript sl(n). Alternatively, relation (12) can
be directly proved by using the fusion rules resulting from Theorem 3.3 and the
well-known fact that all V1(sl(n))-modules are simple currents.

The first assertion follows directly from (12). The second assertion follows again
from (12) and from

K(sl(n), 1) ∼= C, ComU(n)(Mn−1(1)) = K(sl(n),−1). �
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The case n = 1 corresponds exactly to the symplectic fermion vertex algebra
A(1) of central charge c = −2. We will see that for n ≥ 2, the supertraces
sch[V1(g)](τ) are the same, and therefore they satisfy the same MLDE

θ2(y(τ)) +
1

144
E4(τ)y(τ) = 0. (13)

Theorem 7.2. We have:

sch[V1(g)](τ) = η(τ)2.

7.1. Proof of Theorem 7.2

The proof of Theorem 7.2 uses the explicit realization of V1(gl(n|n))-modules and
the relation between supercharacters Vk(psl(n|n)) and Vk(gl(n|n)).

Lemma 7.3. For every k we have:

sch[Vk(gl(n|n))](τ) =
sch[Vk(sl(n|n))](τ)]

η(τ)
=

sch[Vk(psl(n|n))](τ)]

η(τ)2
.

Proof. Follows from the definition of psl(n|n) = gl(n|n)/I, where I is a two-
dimensional abelian ideal. �

Lemma 7.4. For k = 1 we have

sch[Vk(gl(n|n)](τ) = 1.

Proof. Recall that V1(gl(n|n)) is realized as a charge-zero component of the vertex
algebra W(n) ⊗ F(n), where W(n) is the Weyl vertex algebra, F(n) is the Clifford
vertex algebra. and the charge operator is J(0) where

J =
n∑
i=1

(
: a+

i a
−
i : + : Ψ+

i Ψ−i :
)
.

Since

sch[W(n) ⊗ F(n)](τ) = sch[F(n)](τ) · ch[W(n)](τ)

=

(∏∞
m=1(1− qm−1/2z)((1− qm−1/2z−1)

)n(∏∞
m=1(1− qm−1/2z)((1− qm−1/2z−1)

)n
= 1,

we conclude that sch[V1(gl(n|n))](τ) = 1. �

Now Theorem 7.2 follows from the previous two lemmas.

Remark 8. Theorem 7.2 is also in agreement with the recent results on the Duflo–
Serganova functor [24].
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7.2. Second proof of Theorem 7.2 for n = 3.

In the case n = 3, we have a different proof which uses the branching rules for
conformal embeddings.

We have
V1(g) = U0 ⊗ L(Λ0)

⊕
U1 ⊗ L(Λ1)

⊕
U2 ⊗ L(Λ2).

This gives

sch[V1(g)](τ) =

n−1∑
i=0

sch[Ui](τ)ch[L(Λi)](τ).

Since both left and right hand side are (quasi)modular, in theory it would be
sufficient to compute the first few coefficients in the q-expansion. Here we present
a more conceptual proof.

Lemma 7.5.

ch[Λ0](τ) =

∑
m,n∈Z q

m2+n2−mn

η(τ)2
=

1

η(τ)3

(
3η(3τ)3 + η(τ/3)3

)
,

ch[Λ1](τ) = ch[Λ2](τ) =

∑
m,n∈Z q

m2+n2+n+1/3−mn

η(τ)2
=

3η(3τ)3

η(τ)3
,

Proof. The second identity is essentially the Macdonald denominator identity for
A2. By Lemma 6.2 we have that

V := Span

{
3η(3τ)3

η(τ)3
,

3η(τ/3)3

η(τ)3

}
is modularly invariant. On the other hand,

W := Span{ch[Λ0](τ), ch[Λ1](τ)}

is also a two-dimensional modular invariant subspace. Since ch[Λ1](τ) ∈ V , we
must have ch[Λ0](τ) ∈ V . This quickly gives the first formula by comparing the
leading coefficients in the q-expansion. �

Proposition 7.6. Theorem 7.2 holds for n = 3.

Proof. The above lemma gives

ch[Λ0](τ) =
1

η(τ)3

(
3η(3τ)3 + η(τ/3)3

)
,

ch[Λi](τ) =
3η(3τ)3

η(τ)3
.

As in the previous section, for 1 ≤ i ≤ 2 we get

sch[Ui](τ) = −
∑

n≥0;n≡±1 mod 6

ch[Vn] +
∑

n≥0;n≡±2 mod 6

ch[Vn]

=
1

6

η(τ)5

η(3τ)3
+

(E2(τ)− 9E2(3τ))(η(τ/3)3 + 3η(3τ)3)

48η(τ)5
.
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We previously derived the formula

sch[U0](τ) = −1

8
(E2(τ)− 9E2(3τ))

η(3τ)3

η(τ)5
.

Plugging in these q-series, we get

2∑
i=0

sch[Ui](τ)ch[L(Λi)](τ) = η(τ)2,

as desired. �

7.3. MLDE for the character of psl(n|n)1

We expect the following should be true.

Conjecture 7.7. For every n ≥ 2, the character of psl(n|n)1 satisfies the follow-
ing second order MLDE (of weight zero):(

q
d

dq

)2
y(τ)− 1

6
E2(τ)

(
q
d

dq

)
y(τ)+

(
− 6n2−5

720
E4(τ)+

n2

120
E4,2(τ)

)
y(τ)=0, (14)

where

E4,2(τ) = 1− 240
∑
m≥1

m3qm

1 + qm

is an Eisenstein series on Γ0(2).
We are able to prove this for a few low rank cases.

Proposition 7.8. The conjecture is true for 2 ≤ n ≤ 4.

Proof. For n even, we only comment on n = 2, as n = 4 is very similar. In the
former case the character is [16]

y(τ) := ch[psl(2|2)1](τ) =
η(2τ)4

η(τ)6

(
1

3
E2(τ)− 4

3
E2(2τ)

)
.

As the logarithmic derivative of the η-quotient contributes only with a linear
combination of E2(τ) and E2(2τ), plugging in y(τ) into the left-hand side of the
MLDE leaves us with the same η-quotient multiplied with a quasi-modular form
of weight 6. As we know this ring is generated by E2,2(τ), E4(τ) and E2(τ), so
in order to prove that y(τ) satisfies (14) we only have to compute the first three
coefficients in the q-expansion and show that they are zero (as there cannot be
such a form of weight 6 with the order of vanishing at i∞ greater than 3). This
can be easily checked with a computer.

For n = 3, the character is modular [16] and computing as before gives

y(τ) := ch[psl(3|3)1](τ) =
η(2τ)6

η(τ)10
E2,2(τ),

where E2,2(τ) = 1 + 24
∑
n≥1 nq

n/(1 + qn) is a modular form of weight 2 on Γ0(2)
with a character. Plugging this into (14) and applying the same argument as before
gives the claim. �
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The conjecture is also true for n = 1 (the case of symplectic fermions), with
y(τ) = q1/12

∏
n≥1(1 + qn)2. The degenerate case, n = 0, gives MLDE for η(τ)2

discussed earlier; see equation (13).
We note that the ”constant” coefficient in our MLDE can be rewritten as

−4n2F4(τ) +
1

144
E4(τ)

where F4(τ) = q + 8q2 + 28q3 + 64q4 + ... is the unique cusp form of weight 4 on
Γ0(2). An interesting feature of this family of MLDEs is that for every n there is
a unique vacuum solution of the form qa(1 + O(q)), where a must be 1/12. The
other (linearly independent) solution is logarithmic, though it can be expressed in
an integral form. Closely related families of MLDEs appeared in studies of rational
vertex operator superalgebras, e.g., N = 1 Ramond minimal models [31].

The method used in Proposition 7.8 cannot be used for all n. Instead, we propose
to attack this conjecture by emulating the approach in [28], which is based on
recursions among solutions of MLDEs.

8. The supercharacter of V−2(osp(n+ 8|n))

In [14], T. Arakawa and K. Kawasetsu proved character formulae for the vertex
operator algebras associated with the Deligne exceptional series at level k =
−h∨/6−1. In [8] and [9], the authors discovered a family of Lie superalgebras such
that the associated vertex algebras also have level k = −h∨/6−1 and share similar
properties with vertex algebras in the Deligne exceptional series. In particular,
vertex superalgebras V1(psl(n|n)) = V−1(psl(n|n)) belong to this series. Since we
have demonstrated in the previous section that the supercharacters of V1(psl(n|n)))
should not depend on the parameter n, one can ask if a similar situation can happen
in other cases. A natural example to investigate is V−2(osp(n + 8|n), which is a
super-generalization of the affine vertex algebra V−2(so(8)). We have the following
conjecture (which is also in agreement with [24]):

Conjecture 8.1. For every even n ≥ 0, we have

sch[V−2(osp(n+ 8|n))](τ) = ch[V−2(so(8))](τ) =
(q d/dq)E4(τ)

240η(τ)10
.

We plan to discuss its proof in our forthcoming paper.
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