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Abstract. In this note we show that if the automorphism group of a normal affine surface
S is isomorphic to the automorphism group of a Danielewski surface, then S is isomorphic
to the normalization of a Danielewski surface.

Introduction

Throughout this note we work over the field of complex numbers C and algebraic
varieties are always considered to be affine and irreducible. One of our main results
in [LRU20] is the proof that affine toric surfaces are uniquely determined by their
automorphism groups in the category of normal affine surfaces. In this note we
apply similar techniques to investigate how far this result can be extended to
other classes of affine surfaces with a large automorphism group.

A well-studied class of affine surfaces are Danielewski surfaces, i.e., surfaces of
the form 2 = {a2"y = p(z)} C A® for some polynomial p € C[z]. We denote

by @;} the normalization of 7. Recall that @; is always normal. These surfaces
were introduced by Danielewski in order to construct a counterexample to the
generalized Zariski cancellation problem ([Dan89]). Since then, numerous papers
have been published on the subject, in particular with regards to the rich structure
of their automorphism groups. The automorphism groups of two generic smooth
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Danielewski surfaces 2, and 2, are isomorphic, where 2, is generic if deg p(z) > 3
and no affine automorphism permutes the roots of p(z) in C. This follows from
[ML90, Thm. and Rem. (3) on p. 256], and more precisely from [KL16, Thm. 2.7].
Indeed, in this last reference, it is proven that for a generic Danielewski surface
9, , we have Aut(Z,) ~ (C[z] * Cly]) x (C* x Z/2Z) and the semidirect product
structure does not depend on p(z). A similar result holds for n > 1 where we have
Aut(Z;') ~ (Cz]) xC* for every generic polynomial p, see [MLO1]. This yields that
the automorphism group of a Danielewski surface does not determine the surface
in general. However, we prove the following result:

Theorem 1. Let S be a normal affine surface and @I’} be the normalization of a
Danielewski surface 9, for some p € C[z] and n € Zso. If Aut(S) and Aut(@g)

are isomorphic as groups, then S is isomorphic to the normalization :@;” of a
Danielewski surface 9, for some polynomial q € C[z] and some m € Zxq.
Moreover, if n =1 then S is isomorphic to _@; for some polynomial q € C[z].

Let Gy, and G, be the multiplicative and the additive group over C, respectively.
All Danielewski surfaces 7, and hence their normalizations ', admit a Gy,-
action given in the ambient space A3 viat: (z,y,2) — (tx,t~ "y, 2) for t € G,,. The
main idea of the proof of Theorem 1 is contained in Lemma 6, which characterizes

2, in terms of certain extensions of this Gp,-action by G,.

Remark 1. Tt is proved in [LR17] that for two polynomials p and ¢ with simple
roots, Aut(Z,) is isomorphic to Aut(Z;) as a so-called ind-group if and only if
@; is isomorphic to @Z} as a variety, as opposed to the case of abstract group
isomorphisms. The main reason for this comes from the additional rigidity of Lie
algebras. Indeed, the Lie algebra of Aut(@é) is isomorphic to the Lie algebra of
Aut(2,) if and only if &, is isomorphic to &, and ind-group isomorphisms induce
isomorphisms of the corresponding Lie algebras. Together with Theorem 1 this
gives us that a surface isomorphic to @; is determined by its automorphism group
seen as an ind-group in the category of smooth affine surfaces.
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Root subgroups of non-toric G,,-surfaces

Let S be a an affine surface and G be an algebraic group. A regular faithful
action of G on S induces an injective homomorphism from G to Aut(S). We say
that the image of G in Aut(S) is an algebraic subgroup of Aut(S). One can show
that an algebraic subgroup admits a canonical structure of algebraic variety [FK18,
Thm. 0.3.1].
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A Gy -surface is a surface S together with a given regular faithful Gp-action
on S. Let T C Aut(S) be the acting torus, i.e., the image of Gy, in Aut(S).
A root subgroup of S with respect to T is an algebraic subgroup U C Aut(S)
isomorphic to G, that is normalized by T. Let A\: G, — U be an isomorphism.
There exists a character x: T — Gy, not depending on the choice of A\ such that
toA(s)ot™ = A(x(t)s). This character is called the weight of U. Recall that the
set of characters x: T' — Gy, forms a group X(7') isomorphic to Z and such an
isomorphism is uniquely determined up to sign. In [FZ03] a classification of normal
affine Gy,-surfaces was given, followed by a classification of their root subgroups in
[FZ05]. We recall here the main features of the classification that we need in this
paper. This is a short version of our account of the subject in [LRU20, Sect. 4].

Definition 1. Surfaces endowed with a G,-action are classified in three dynamical
types [OWT7]: a Gy,-surface is elliptic if the G,-action has an attractive fixed point,
parabolic if the Gpy-action has infinitely many fixed points and hyperbolic if the
Gp-action has at most finitely many fixed points none of which is attractive.

A Gp-action a: G, X S — S on an affine surface S induces a X(T')-grading on
the algebra of regular functions. Under the isomorphism X(7T') ~ Z, it is customary
to denote this as a Z-grading of the algebra of regular functions given by

OS)=EPAi, where A;={fecO(S)|a"(f)="t""f}.

1€Z

The elements in A; are called semi-invariants of weight i € Z. A Gy,-surface
is hyperbolic if and only if there exist non-trivial semi-invariants whose weights
have different sign. In the hyperbolic case, generic orbit closures are isomorphic
to Al. If the surface is not hyperbolic, all semi-invariants that are not invariant
have the same sign. In this case, the normalizations of the generic orbit closures are
isomorphic to A'. The elliptic case corresponds to the case where the only invariant
functions are the constants. The parabolic case corresponds to the case where the
ring of invariant functions has transcendence degree 1 over C and therefore there
is a curve of points fixed by Gy, in the surface.

In algebraic terms, root subgroups are in one-to-one correspondence with homo-
geneous locally nilpotent derivations of the Z-graded algebra O(S). A homogeneous
locally nilpotent derivation is a C-linear map §: O(S) — O(S) that sends semi-
invariants to semi-invariants, satisfies the Leibniz rule §(fg) = fo(g) + go(f) for
all f,g € O(S) and for every f € O(S) there exists n € Z~¢ such that 6"(f) =
0, where §"™ denotes the composition of § with itself n-times. In particular, the
Leibniz rule implies that for every homogeneous locally nilpotent derivation §
there exists an integer ¢ such that d(A;) is contained in A, for any i € Z. We call
£ the degree of 4. Recall that under the isomorphism X(7') ~ Z, the degree of §
corresponds to a character of the acting torus T'. See [LRU20, Sect. 4.1] for a more
detailed description of root subgroups in terms of homogeneous locally nilpotent
derivations. The next theorem summarizes the results from [LRU20] as needed for
this paper.
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Theorem 2. Let S and S’ be normal surfaces with S non-toric. Assume that
Aut(S) contains algebraic subgroups T and U isomorphic to Gy, and G,, respecti-
vely. Let ¢: Aut(S) — Aut(S’) be a group isomorphism, then the following hold:

(1) The image (T) C Aut(S’) is an algebraic subgroup isomorphic to Gyy,.

(2) There exist root subgroups in Aut(S) and they are mapped to root subgroups
preserving weights, up to a torus isomorphism not depending on the root
subgroup.

(3) The surfaces S and S’ are of the same dynamical type.

Proof. The statements (a) and (b) are proven in [LRU20, Thm. 6.5]. Statement
(c) follows directly from [LRU20, Thm. 1.2]. O

We will also need the following lemma proven in [LRU20].

Lemma 3 ([LRU20, Lem. 4.16]). A non-toric Gy -surface S admits root subgro-
ups of different weights if and only if S is hyperbolic. Furthermore, in this case all
root subgroups have different weights.

The following theorem borrowed from [FZ03, Sect. 4.2] is the main classification
result for hyperbolic Gy,-surfaces.

Theorem 4. FEvery hyperbolic affine Gy,-surface is equivariantly isomorphic to
S = Spec A, where

A=@H(C,0(|-iD-])) & P H"(C,0(|iD+]))

<0 >0

where C' is the algebraic quotient of X by Gy, and Dy, D_ are two Q-divisors on
C satisfying Dy + D_ < 0. Moreover, S is uniquely determined by C and the
couple (D4, D_) up to linear equivalence. In other words, the couples of divisors
(Dy,D_) and (D', D’ ) on C give rise to equivariantly isomorphic Gy,-surfaces if
and only if Dy = D!, +div(h) and D_ = D’ —div(h), for some rational function
h on the curve C.

Example 1. In [FZ03, Example 4.10] it is proven that the normalization @;‘ of
the Danielewski surface 7 is given by the data Dy =0 and D_ = —(1/n)div(p)
on C = A'. Remark that any Q-divisor D in A! with negative coefficients gives
rise to a normalization of a Danielewski surface by taking D, =0 and D_ = D.

Lemma 5. Let S be a non-toric Gy, -surface that is given by the couple of divisors
(Dy,D_) in C. If there are two root subgroups with non-negative weights with
respect to T in Aut(S) whose weights differ by one then C = Al and D is integral.

Proof. Assume there are two root subgroups with respect to 7' in Aut(S) whose
weights differ by one. Since there exist root subgroups of different weights, by
Lemma 3, we have that S is hyperbolic. In the language of [FZ03], S is described
by the couple of Q-divisors Dy and D_ on a smooth affine curve C. By [FZ05,
Thm. 3.22], we have C' ~ Al, and up to linear equivalence, we can assume D, =
—(e’/d)-[0] and the weight e of a root subgroup must satisfy ee’ = 1 mod d, where
0 < ¢’ < d. But S admits root subgroups whose weights differ by 1. This yields
d =1 and so ¢’ = 0 or, equivalently, D4y = 0 up to linear equivalence. This yields
the lemma. O
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From Lemma 5 and Example 1 we deduce the following criterion characterizing
normalizations of Danielewski surfaces among normal G,-surfaces.

Lemma 6. Let S be a non-toric Gy, -surface. Then there are two root subgroups
with respect to T in Aut(S) whose weights differ by one if and only if S is the
normalization of a Danielewski surface.

Proof. Up to torus automorphism, we assume that both root subgroups have non-
negative weights. Now by Lemma 5 we obtain that D, is integral and so up to
linear equivalence, we can assume that D, = 0. Now, by Example 1, it follows
that S is isomorphic to the normalization of a Danielewski surface.

On the other hand, the Danielewski surface ;" admits a root subgroup U given
by the homogeneous locally nilpotent derivation § given by d(z) = 0, é(y) = p'(2)
and §(z) = z™ whose weight is n. Furthermore, since x is U-invariant and G,-semi-
invariant of weight 1, we conclude that x¢ is also a homogeneous locally nilpotent
derivation and its corresponding root subgroup has weight n + 1. This proves the
lemma since connected algebraic group actions lift to the normalization by the
universal property. U

Remark 2. For the proof of Theorem 1 we need to compute all the weights of root
subgroups in Aut(Z}). In general, the normalization ;' of the Danielewski surface
9y is given by the data D, =0 and D_ = —(1/n)div(p) on A" as in Example 1.
Applying [FZ05, Thm. 3.22] a routine computation yields that the non-negative
weights of root subgroups in Aut(@;) are exactly the integers greater than or
equal to n/l, where [ is the smallest order of a root of p(z). Hence, in the case of
Aut(.@;) we obtain that all positive integers appear as weights of root subgroups.
To compute the negative numbers that appear as weights of root subgroups,
we reverse the grading taking the automorphism ¢ — ¢t~ of G,,. This accounts
to exchanging D and D_. Now a similar application of [FZ05, Thm. 3.22] yields
that all negative numbers appear as the weight of a root subgroup in Aut(@%).

In the following lemma we show that the normalizations of & and @gy coincide.

Lemma 7. Let 9, and Z;" be two Danielewski surfaces and let @;‘ and @;”
be their normalizations respectively, where p(z),q(z) € Clz] and n,m € Zsq. If

A o~

n=d-m and p(z) = ¢*(2) for some d € Z~q then Dy and D" are isomorphic.

Proof. Let A= O(2}}) = Clx,y, z]/(z"y — p(2)). The field of rational functions of
A'is C(z,z). The element f = q(z)/2™ belongs to the normalization A of A since

it satisfies the equation y— f¢ = 0. This yields an inclusion of algebras A C B C E,
where B = C[z, 2, f]. The lemma follows since B ~ O(Z;"). O

Lemma 8. Assume @1’} has root subgroups of all weights different from zero. Then

Py is isomorphic to 9 for some q € C[z].

Proof. The surface @l’j is given by the combinatorial data Dy = 0 and D_ =
—(1/n)div(p) in the algebraic quotient A! = SpecC[z] of the G-action. By
reversing the grading we exchange the roles of Dy and D_. Since there are two
root subgroups with non-negative weights for the reverse grading, by Lemma 5
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we obtain that D_ is integral, which is equivalent to the fact that there exists
q(z) € C[z] such that D_ 4 div(q) = 0. It now follows that D_ = —(1/n)div(p) =
— div(g). This is equivalent to p(z) = ¢"(z). Finally, since p(z) is a regular function
on Al the same holds for q(z) and so q(z) € C[z]. By Lemma 7 we conclude that
@I’} is isomorphic to @;, the normalization of ;. A straightforward computation
shows that .@ql has only isolated singularities and so @ql is already normal by
[Har77, Chap. 2, Prop. 8.23]. This concludes the proof. O

Proof of Theorem 1

If .@g is toric, then the result follows directly from [LRU20, Thm. 1.3]. In
the sequel, we assume that .@; is not toric. Let ¢: Aut(@é") — Aut(S) be an
isomorphism of groups and let 7' C Aut(@;}) be the acting torus coming from the

Gu-surface structure on @;} Since @;} is a hyperbolic G,-surface, by Theorem 2,
S is hyperbolic, ¢(T') is an algebraic 1-dimensional torus and root subgroups are
mapped to root subgroups with the same weight up to torus automorphism. By
Lemma 6 there are two root subgroups with respect to 7" in Aut(%,') whose weights
differ by one. We conclude that there are two root subgroups with respect to ¢(T")
in Aut(S) whose weights differ by one. Again by Lemma 6 we conclude that S is
isomorphic to the normalization of a Danielewski surface Z;".

To prove the last statement of the theorem, recall first that .@; is always normal.
If Aut(S) is isomorphic to Aut(Z,) then S is isomorphic to the normalization of
a Danielewski surface. Since the isomorphism ¢: Aut(Z,) — Aut(S) preserves
weights of root subgroups, by Remark 2 we have that Aut(S) has root subgroups
with all possible non-zero weights. It follows from Lemma 8 that S is isomorphic
to 9 for some ¢(z) € C[z]. O
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