
Vol. , No. , 2021, pp. –26 1315 13294

Transformation Groups c©Springer Science+Business Media New York (2020)

ZARISKI’S FINITENESS THEOREM AND

PROPERTIES OF SOME RINGS OF INVARIANTS

R. V. GURJAR∗

Department of Mathematics
Indian Institute of Technology
Powai, Mumbai–400 076, India

gurjar@math.iitb.ac.in

S. R. GURJAR∗∗

Department of Mathematics
Indian Institute of Technology
Powai, Mumbai–400 076, India

sgurjar@math.iitb.ac.in

B. HAJRA∗∗∗

Department of Mathematics
Indian Institute of Technology
Powai, Mumbai–400 076, India

hajrabuddhadev92@gmail.com

Abstract. In this paper we will give a short proof of a special case of Zariski’s result
about finite generation in connection with Hilbert’s 14th problem using a new idea. Our
result is useful for invariant subrings of unipotent or connected semisimple groups. We
will also prove an analogue of Miyanishi’s result for the ring of invariants of a Ga-action
on R[X,Y, Z] for an affine Dedekind domain R using topological methods.

1. Introduction

In this paper k will be an algebraically closed field of characteristic 0. All
varieties and morphisms are defined over k, unless otherwise specified. When some
topological argument is used, k will be tacitly assumed to be the field of complex
numbers.

In this paper our aim is to prove the following Theorems 2, 3 and 4 by using
some topological ideas.

(1) We also prove a stronger form of a result of A. Tyc [19].

Theorem 1. Let Ga act regularly on the affine space An by automorphisms over k.
Assume that An//Ga exists as an affine variety and the induced quotient morphism
is a surjection. Then An//Ga is Gorenstein with at most rational singular points.
In particular, An//Ga has at worst canonical singularities [16].
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Our proof of this result shows that we need only that the singular locus of
An//Ga is in the image of the quotient morphism.

(2) From the above theorem we get the following.

Corollary 1.1. Let Ga act linearly on An such that An//Ga has an isolated sin-
gular point at its vertex. Then An//Ga has a Gorenstein canonical singularity at
the vertex.

In [19], it was proved that An//Ga is Gorenstein assuming that Ga acts linearly
on An, but without assuming surjectivity of the quotient morphism.

(3) O. Zariski’s result [20], in connection with his generalization of Hilbert’s
Fourteenth Problem, usually known as Zariski’s Finiteness Theorem, is the fol-
lowing.

Let T be an affine normal domain over k with quotient field L. Suppose K is a
subfield of L containing k such that tr. degkK is at most 2. Then T ∩K is finitely
generated over k.

We prove the following special cases of Zariski’s Finiteness Theorem.

Theorem 2. Let T be an affine normal domain over k with quotient field L.
Suppose k ⊂ K ⊂ L, where K is a field of transcendence degree 1 over k. Then
S := T ∩K is finitely generated as a k-algebra.

Theorem 3. Let T be an affine factorial domain over k. Let S be an inert subring
of T such that tr. degk S = 2. Then S is finitely generated over k.

(4) The above theorems prove the following.

Corollary 3.1. Let T be an affine factorial domain over k. Assume that G is
either a unipotent group, or a connected semisimple group defined over k. Let G
act on T regularly such that tr. degk(TG) ≤ 2. Then TG is finitely generated over k.

Remark 1. Note that it is a classical result that for an affine domain T with a
regular action of a semisimple algebraic group the ring of invariants is always
finitely generated.

(5) We further prove a sufficient criterion for the quotient A3
C//Ga, where C is

a smooth curve, to be a Zariski locally trivial A2-bundle over C.

Theorem 4. Let R be a regular affine domain of dimension 1 over C. Let Ga act
by R-automorphisms on R[X,Y, Z] and let S := R[X,Y, Z]Ga . Assume that a fiber
F0 of the morphism SpecS → SpecR is normal. Then F0 is isomorphic to A2 and
SpecS is a trivial A2-bundle over SpecR in a neighbourhood of F0.

(6) We get the following global analogue of M. Miyanishi’s result [12, Thm. 4].

Corollary 4.1. With the above notation, if every fiber of SpecS → SpecR is
normal then this morphism is a locally trivial A2-bundle.

Note that by a result of S. M. Bhatwadekar–D. Daigle the ring S in the above
result is finitely generated over R [2].

In [3], examples are given to show that in general F0 can be non-normal. In fact,
the embedding dimension of F0 at a singular point of F0 can be arbitrarily large.
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2. Preliminaries

(A) In some latter proofs we will use relative cohomology groups of a pair (X,Y )
where X is a paracompact simplicial complex of finite dimension and Y is a
subcomplex. In our applications, X will be an algebraic variety and Y a proper
closed subvariety of X (but not necessarily irreducible). In this article whenever
we write homologies or cohomologies without mentioning the coefficient ring it
would mean that the coefficient ring is the ring of integers. In other cases the
coefficient ring will always be mentioned appropriately. However in our context the
coefficient group will be either the group of integers or rational numbers. We refer
to [18, Chap. 6, §9] for results related to various cohomology theories with compact
supports, their connection with usual singular cohomology, and the duality result
stated below. Theorem 10 in the above reference is of special interest for us.

This cohomology has the following properties.

(1) For any variety X and a closed subvariety Y there is a long exact sequence

0→ H0
c (X,Y )→ H0

c (X)→ H0
c (Y )→ H1

c (X,Y )→ H1
c (X)→ H1

c (Y )→ · · ·

If X − Y is smooth of pure dimension d then Hi
c(X,Y ) ∼= H2d−i(X − Y ). This

duality is crucially used in the proof of Theorem 4.
In [18, Thm. 10, Chap. 6, §9] we will take A to be X and B to be Y . In our

situation since X − Y is smooth, the proof of the above theorem is valid.
(2) For an irreducible variety X of dimension d ≥ 1, we have H0

c (X) = 0.
Moreover, H2d

c (X) = Z.
These results can be proved by induction on d using (1), considering the follow-

ing stratification.
X ⊃ SingX ⊃ Sing (SingX) ⊃ · · · .

(Here SingV denotes the singular locus of an algebraic variety V .)

(B) The next three lemmas play a crucial role to show that a certain strictly
increasing sequence of normal affine domains stabilizes after a finite stage.

We will implicitly use the result that for any non-empty Zariski open subset
U of a normal irreducible variety V the induced homomorphism π1(U) → π1(V ),
and hence also H1(U) → H1(V ), is a surjection. If V is smooth and V − U has
codimension ≥ 2 in V then these homomorphisms are isomorphisms.

Lemma 5. Let V,W be normal irreducible algebraic varieties, and let f : W → V
be a dominant morphism. Then b1(W ) ≥ b1(V ), where b1 denotes the first Betti
number.

This can be proved by using the observation that there is a proper closed
subvariety S of V such that W − f−1(S)→ V − S is a differentiable fiber bundle,
and the long exact homotopy sequence of a fiber bundle.
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It is well known that a Stein space X of dimension d has the property that
Hi(X) = 0 for i > d and Hd(X) is torsion-free. We will use this implicitly in our
proofs.

Lemma 6. Let R1 ⊂ R2 ⊂ · · · be normal affine domains over an uncountable
field (not necessarily algebraically closed) k of characteristic 0, all contained in an
affine domain S. If each of the induced maps SpecRi+1 → SpecRi is quasi-finite,
then the above sequence stabilizes after a finite stage.

Proof. Let Vi = SpecRi for all i, and W = SpecS. The quotient fields of Ri form
an increasing chain, all contained in the quotient field of S. Hence without loss
of generality we can assume that all the Ri have the same quotient field. This
is because Q(Ri+1) is algebraic over Q(Ri) for large enough i and

⋃
i≥1Q(Ri) is

finitely generated over k since it is contained in Q(S) and S is affine. We can
redesignate the sequence of Ri suitably so that all have the same quotient field.
Now by Zariski’s Main Theorem, each Vi+1 is a Zariski-open subset of Vi. We want
to prove that Vi’s are equal for large i.

If this is false, then Vi’s are obtained by removing more and more divisors from
V1. Consider the image of W in V1. It is a constructible set which contains a non-
empty affine open set U . Then V1−U can contain only finitely many divisors. But
the image of W is contained in each Vi, hence disjoint from the infinite number of
divisors which are removed from V1, a contradiction. �

Lemma 7. Let Z be a complete algebraic variety of dimension d over k. Let
D1, D2, . . . be a sequence of distinct irreducible divisors in Z. Then b1(Z−(SingZ∪
D1 ∪ · · · ∪Dn)) tends to infinity with n.

Proof. By taking a resolution of singularities of Z such that the inverse image of
Sing Z is a union of divisors we can assume that Z is smooth. Consider the relative
cohomology sequence with rational coefficients of the pair

(
Z,
⋃n
i=1Di

)
. This has

the terms

· · · −→ H2d−2(Z;Q)→ H2d−2
( n⋃
i=1

Di;Q
)
→ H2d−1

(
Z,

n⋃
i=1

Di;Q
)
→ · · · .

By duality,

H2d−1
(
Z,

n⋃
i=1

Di;Q
)
∼= H1

(
Z −

n⋃
i=1

Di;Q
)
.

The vector space H2d−2(⋃n
i=1Di;Q

)
has rank n over Q. This shows that as n

tends to ∞ the result follows. �

Remark 2. We will use the above lemma for an affine variety V and divisors
D1, D2, . . . and deduce that b1(V − (SingV ∪ D1 ∪ · · · ∪ Dn)) tends to infinity
with n by taking a suitable compactification of V .

(C) Let Ga act regularly on an integral domain R. Then the ring of invariants
RGa is inert in R, i.e., if r ∈ RGa is written as r1 · r2 with ri ∈ R then r1, r2 are in
RGa . In particular, R and RGa have the same group of units. Also, if R is factorial
then so is RGa . This result follows from the fact that the group in question does
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not have a non-trivial algebraic homomorphism to k∗ = k − {0}. For some basic
properties of Ga actions, or equivalently locally nilpotent derivations on integral
domains, we refer the reader to [10, Chap. I].

Let Ga act regularly and linearly on a polynomial ring R := k[X1, . . . , Xn]. By
a well-known result of Weitzenböck the ring of invariants RGa is finitely generated
and positively graded over k. This defines an affine variety V := SpecRGa . The
irrelevant maximal ideal of RGa corresponds to a (closed) point of V . We call this
point the vertex of V .

Let Ga act regularly on an integral domain T . Suppose S is a multiplicative
subset of RGa of non-zero elements. Then (RGa)S = (RS)Ga . This observation is
used often to reduce the finite generation questions to suitable localizations.

We will implicitly use the following well-known result [6, Lem. 1.10].

Let Y be a factorial affine scheme with a regular action of Ga. Assume that
Y //Ga is an affine scheme having dimension more than 1. Then no fiber of the
quotient morphism contains a divisor.

3. On Zariski’s Finiteness Theorem

In this section first we prove a special case of Zariski’s Finiteness Theorem. The
proof of this result contains the germ of an idea which is used several times in later
proofs.

For simplicity we are assuming that the rings involved are always normal.

Theorem 8. Let T be an affine normal domain over k with quotient field L.
Suppose k ⊂ K ⊂ L, where K is a field of transcendence degree 1 over k. Then
S := T ∩K is finitely generated as a k-algebra.

Proof. Since T is normal, S is also normal. This follows from the definition of
S. Since S is a countable dimensional k-vector space we can find affine normal
domains R1 ⊂ R2 ⊂ . . ., each with quotient field Q(S) whose union is S. We will
prove that S = Ri for i � 0. Let Vi = SpecRi, for all i and W = SpecT . There
are dominant morphisms πi : W → Vi induced from Ri ⊂ T and fi : Vi+1 → Vi
induced from Ri ⊂ Ri+1 for all i with the following obvious commutativity of
diagrams:

W

Vi Vi+1

πi πi+1

fi

.

Since Vi’s are curves, all the maps fi : Vi+1 → Vi are quasi-finite. Since each Ri is
contained in T and T is normal, by Lemma 6, the above sequence of Ri stabilizes
after a finite number of steps. This completes the proof. �

Before going to our next result let us fix a notation which will be used in later
proofs.

Notation. We use the notation Γ(X) to denote the ring of global sections of the
structure sheaf of a variety X.
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Theorem 9. Let T be an affine factorial domain over k. Let S be an inert subring
of T such that tr. degk S = 2. Then S is finitely generated over k.

Proof. Let W := SpecT . Since T is factorial, T is a normal domain and S, being
an inert subring of T , is a normal domain too. Let K = Q(S). Thus tr. degkK = 2.

Since T has countable dimension over k, S is also countable dimensional over
k. Find R11 ⊂ S, a normal affine k-algebra with Q(R11) = K. Thus dimR11 = 2.
We have a dominant map π11 : W → SpecR11 induced from R11 ⊂ T . Then there
exist at most finitely many closed points, say, p1, p2, . . . , pr in SpecR11 each of
whose pre-image in W contains a divisor. Let these finitely many prime divisors
be ∆1, ∆2, . . . , ∆n. Each prime divisor in W corresponds to a height 1 prime ideal
in T and since T is factorial, every height 1 prime ideal is principal. So, each ∆i

in W is defined by a prime element, say, ti in T , for all i = 1, 2, . . . , n.

Without loss of generality assume that ∆1 ⊂ π−111 (p1). Let M1 be the maximal
ideal of R11 corresponding to p1. Thus t1T ∩R11 = M1 and hence M1 is contained
in the height 1 prime ideal t1T of T . Since S is inert in T , all the prime factors of
each generator of M1 in T lie in S. Adjoin all these prime factors to R11 and call
this new affine domain R12, which is clearly contained in S. We get the induced
dominant morphisms f11 : SpecR12 → SpecR11 and π12 : W → SpecR12 such
that f11 ◦ π12 = π11.

Observe that if there is a point, say, q in SpecR12 such that a prime divisor ∆ lies
in the fiber π−112 (q), then ∆ ∈ {∆1,∆2, . . . ,∆n}. Suppose that ∆1 ⊂ π−112 (q). Then
f11(q) = p1. Repeat the above process with the maximal ideal in R12 corresponding
to q ∈ SpecR12 to construct another affine domain, say, R13 contained in S, and
so on.

Claim. The above process stops after finitely many steps.

Proof of Claim. Let M1 = (a1, a2, . . . , an). Each ai is divisible by t1 in T . For
each i, let ai = t1 · a′i for some a′i ∈ T . Since S is inert in T every a′i ∈ S. So
R12 = R11[a′1, a

′
2 . . . , a

′
n]. Let M2 be a maximal ideal of R12 lying over M1 such

that t1T ∩ R12 = M2. Then for each i, a′i − λi = t1 · a′′i for some a′′i ∈ S, by
inertness of S in T . After substituting, and repeating this process we get that
each ai ∈ M1 is a power series in t1 with k-coefficients. This is a contradiction
since then R11M1

embeds in the power series ring k[[t1]]. But any two elements in
a system of parameters of R11M1

are analytically independent. Hence we can get
an affine domain R1` contained in S such that no fiber of the induced morphism
π1` : W → SpecR1` contains the prime divisor ∆1, for some ` ∈ N. Repeat the
same process for all other ∆j ’s to finally get an affine domain, say, R1 contained
in S such that no fiber of the induced morphism π1 : W → SpecR1 contains any
prime divisor. This completes the proof of the claim. �

Now by taking the normalisation of R1 in K we can assume that R1 is normal,
by abuse of notation. Let V1 := SpecR1. Clearly Q(R1) = K = Q(S) and thus
dimR1 = 2.

If R1 6= S, find a normal affine k-algebra R2 such that R1 ( R2 ⊂ S and let
V2 = SpecR2. Clearly, Q(R2) = K. This way we will have a chain R1 ( R2 (
R3 ( · · · ⊂ S of normal affine domains contained in S, all having the same quotient
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field K and S =
⋃
i≥1Ri. Note that dimRi = 2 for all i ≥ 1.

Let Vi = SpecRi for all i ≥ 1. We get the dominant morphisms fi : Vi+1 → Vi
and πi : W → Vi induced from Ri ⊂ Ri+1 and Ri ⊂ T respectively for all i ≥ 1
with the following commutative diagram:

W

Vi Vi+1

πi πi+1

fi

.

Suppose that there is a curve in V2 which maps to a point in V1 under f1. This
can happen for at most finitely many curves, say, C1, C2, . . . , Cr in V2 mapping to
finitely many points in V1. Let Excf1 :=

⋃r
i=1 Ci

Suppose that there exists a divisor ∆ in W which maps to Ci for some i.
Then ∆ maps to a point in V1, a contradiction. Hence there exists no divisor in W
mapping to any Ci. Then π−12 (Ci) has co-dimension ≥ 2. Let Σ :=

⋃r
i=1 π

−1
2 (Ci) =

π−12 (Excf1). Thus codimW (Σ) ≥ 2. Therefore, by a version of Hartog’s Theorem,2

we have
Γ(V2 − Excf1) ⊂ Γ

(
W − Σ

)
= Γ(W ) = T.

Thus Γ(V2 − Excf1) ⊂ K ∩ T . Since S is inert in T having quotient field K, we
have K ∩ T = S. Therefore Γ(V2 − Excf1) ⊂ S.

Suppose infinitely many fi are not quasi-finite, i.e., taking a subsequence we can
assume that not a single map fi is a quasi-finite morphism. Similarly as before, for
all i ≥ 1, denote by Excfi the union of all those finitely many curves in Vi+1 each
of which contracts to a point in Vi under fi and let Pi = fi(Excfi) be a finite set
of points in Vi.

Define,

V ′1 := V1 − P1,

V ′2 := V2 − Excf1 − P2,

V ′i+1 := Vi+1 −
⋃

1≤j<i

(fj+1 · · · fi)−1(Excfj)− Excfi − Pi+1 for all i ≥ 2.

Therefore we have,

V ′1
f1←−− V ′2

f2←−− V ′3
f3←−− · · · ,

such that each dominant map fi|V ′i+1
: V ′i+1 → V ′i is now quasi-finite for all i ≥ 1.

So by Zariski’s Main Theorem,

V ′1 ⊃ V ′2 ⊃ V ′3 ⊃ · · · ,

all inclusions are open immersions. Also note that each Γ(V ′i ) is contained in S by
what we observed above and Hartog’s Theorem, since codimViPi = 2. Now

Γ(V ′1) ⊂ Γ(V ′2) ⊂ Γ(V ′3) ⊂ · · · ⊂ S ⊂ T.
2Hartog’s Theorem. Let V be a normal complex algebraic variety with W a sub-

variety of codimension at least 2. Then every holomorphic function on V −W , extends
across V .

1321



R. V. GURJAR, S. R. GURJAR, B. HAJRA

Since dimVi = 2, the rings Γ(V ′i ) are again finitely generated k-algebras, by
Nagata’s result [15, Thm. 5, Chap. 5]. Since

⋃
i≥1Ri = S and Ri ⊂ Γ(V ′i ) ⊂ S for

all i, we have
⋃
i≥1 Γ(V ′i ) = S.

By taking a subsequence we can assume that all the inclusions Γ(V ′i ) ⊂ Γ(V ′i+1)
are strict (otherwise finite generation of S follows). This will lead to a contradiction
using Lemma 7, since b1(V ′i ) ≤ b1(W ) for all i.

This proves that there exists n ∈ N such that the morphism fi : Vi+1 → Vi is
quasi-finite for all i ≥ n.

So by Lemma 6, the chain of Ri’s must stabilize after a finite stage and thus S
is a finitely generated k-algebra. �

The above theorem has the following immediate consequence.

Corollary 9.1. Let T be an affine factorial domain over k. Assume that G is
either a unipotent group, or a connected semisimple group defined over k. Let G
act on T regularly such that tr. degk(TG) ≤ 2. Then TG is finitely generated over k.

Proof. Observe that for the group G as in the hypothesis, TG is an inert subring
of T . The rest follows from Theorem 9. �

4. Rationality of singularities of An//Ga

In this section we will prove the following stronger form of A. Tyc’s result [19].

Theorem 10. Let Ga act regularly on the affine space An such that the quotient
An//Ga exists as an affine variety. Assume that the image of the quotient morphism
An → An//Ga contains Sing

(
An//Ga

)
. Then An//Ga is Gorenstein with rational

singularities.
In particular, An//Ga has canonical singularities.

Proof. Since Ga has no non-trivial characters, V := An//Ga is an affine factorial
variety of dimension d. If d = 1 then we see easily that V ∼= A1. So we assume
that d > 1. It follows that the canonical divisor of V is trivial (which by definition
means V is quasi-Gorenstein). Moreover, it is well known that the inverse image
of any codimension > 1 subvariety of V in An contains no divisor. This follows
from the proof of [6, Lem. 1.10]. Then by the proof of [8, Lem. 2], applied to

the morphism Ṽ → V , any regular d-form on V − SingV extends as a regular
d-form on Ṽ , where Ṽ is a resolution of singularities of V . Now by [4, 1.3 Satz] it
follows that V has rational singularities. Thus, V is Cohen Macaulay with a trivial
canonical divisor. So V is Gorenstein. Finally, a Gorenstein rational singular point
is a canonical singularity by [16]. �

Remark 3. Alternatively, we can argue as follows. By Tyc’s result V is Cohen
Macaulay. By the above argument every regular d-form on the smooth locus of
V extends to a regular d form on a resolution of singularities of V . These two
properties are equivalent to rationality of singularities on V . Finally, since V is
factorial the canonical divisor of V is trivial. Hence V is Gorenstein with rational
singularities. Note that in the previous proof Cohen-Macaulayness of V was proved
indirectly without using Tyc’s result.
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Corollary 10.1. Let Ga act regularly and linearly on An. Assume that An//Ga has
an isolated singular point at its vertex. Then An//Ga has a Gorenstein canonical
singular point at its vertex.

Proof. By Weitzenböck’s theorem, V := An//Ga exists as an affine variety. Since
the action of Ga is linear the ring of invariants is positively graded. Clearly, the
vertex of V is the image of the origin in An. Now the result follows from the above
theorem. This completes the proof of the corollary. �

Remark 4.
(1) There is an example of Ga-action on A4 such that the quotient A4//Ga exists

as an affine variety but the morphism A4 → A4//Ga is not a surjection [1]. In this
example A4//Ga ∼= A3.

(2) Is Theorem 10 true if An//Ga exists as an affine variety but the image of the
quotient morphism does not contain Sing (An//Ga)?

5. A sufficient criterion for A3
C//Ga to be

a trivial A2-bundle over a smooth curve C

Theorem 11. Let R be a regular affine domain of dimension 1 over C. Let t
be a uniformizing parameter on R at a point p0 in C := SpecR. Let Ga act
by R-automorphisms on R[X,Y, Z] and S := R[X,Y, Z]Ga . Assume that F0 :=
Spec (S/tS) is normal. Then F0

∼= A2 and SpecS is a trivial A2-bundle over
SpecR in a neighbourhood of p0.

Proof. We know that S is finitely generated over R by [2]. Also, S is inert in
R[X,Y, Z]. By shrinking C we can assume that t is a prime element in R and
thus t is a prime element in S due to the inertness of S in R[X,Y, Z]. Let m
be the maximal ideal in R generated by t. Since Rm[X,Y, Z] is factorial, so is
Sm = Rm[X,Y, Z]Ga . Thus KSpecSm

is trivial.
Let F0 := Spec (S/tS). Since t is a prime element in S, the ring S/tS is an

integral domain. By inertness of S, we get S/tS ↪→ (R/tR)[X,Y, Z], with R/tR ∼=
C. Hence there is an induced dominant morphism π : A3 → F0. Note that SpecS
is a normal affine variety of dimension 3 over C.

If K = Q(R), then by combining Miyanishi’s result [12, Thm. 4] with Kamba-
yashi’s result [7],

K[X,Y, Z]Ga = K[U1, U2],

for suitable algebraically independent polynomials U1 and U2 in K[X,Y, Z]. Since
the rest of the proof is mainly topological, we will think of C as a small Euclidean
open disc ∆p0 in C around p0 ∈ C. Thus SpecS should be replaced by V :=
SpecS ×C ∆p0 and hence

V − F0
∼= ∆∗p0 × C2,

with ∆∗p0 the punctured disc ∆p0 − {p0} in C.
Here, we have used A. Sathaye’s result in [17] that if every fiber of an affine

morphism Y → D from a smooth affine 3-fold to a smooth affine curve is isomor-
phic to A2 then this map is a locally trivial A2-bundle.

Goal: Our aim is to prove that F0
∼= A2.
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Since SpecS − F0
∼= (C − {p0}) × A2, it is easy to see that S has a locally

nilpotent derivation δ which restricts to a locally nilpotent derivation δ|F0
on F0,

but δ|F0
can be identically zero. By considering ta · δ for a suitable integer a, we

can assume that, by changing the notation, δ|F0
6= 0.

Since F0 is assumed to be normal, F0 is a normal affine surface with a Ga-
action. Hence there is an A1-fibration F0 → D for some smooth affine curve D. By
Miyanishi’s result F0 has at worst cyclic quotient singularities [11, Chap. I, §6].

Recall that the canonical divisor KSpecSm
is trivial. Since F0 is defined by

a single function, F0 is a principal divisor, i.e., F0 corresponds to a trivial line
bundle. Hence

KF0 = (KSpecSm
+ F0)|F0

is also a trivial line bundle. This implies that the singular points of F0 are just
cyclic rational double points.

Recall that V is smooth outside F0. Since F0 is reduced and defined by {t = 0},
we see that every smooth point of F0 is a smooth point of V and hence V has only
isolated singular points which lie on F0. Let P := SingV = {q1, q2, . . . , qm}.

Since qi is a hypersurface singularity of V , there exists a contractible neighbour-
hood Ni of qi such that

π1(Ni − {qi}) = (1) for all i = 1, 2, . . . ,m.

For this we refer to [9]. Let N := tmi=1Ni. Thus N − P = tmi=1(Ni − {qi}).
Now we will prove that F0

∼= A2 through the following sequence of claims.

Claim 1.

(i) Hi(F0) = 0 for all i ≥ 3 and H2(F0) is torsion-free.

(ii) Hi(V ) = 0 for all i ≥ 4 and H3(V ) is torsion-free.

Proof. The claim follows since F0 and V are Stein spaces of dimensions 2 and 3,
respectively. �

Claim 2.

(i) H1(F0;Q) = 0.

(ii) H1(V − P ) = 0. In fact, π1(V − P ) = (1).

Proof. Recall that we have a dominant morphism π : A3 → F0. Therefore we have
H1(F0;Q) = 0.

The quotient morphism, say, ϕ : C ×A3 → SpecS = (C × A3)//Ga, restricts to
a holomorphic map ψ : (∆p0 ×C3)−ϕ−1(P )→ V −P . Also note that the general
fiber of ψ is connected. Since outside of F0, fibers of ϕ are A1, we can find a non-
empty Zariski open neighbourhood U ⊂ V − P such that ψ|ψ−1(U) : ψ−1(U)→ U
is a locally trivial fiber bundle with connected general fiber. Therefore the induced
map

(ψ|ψ−1(U))∗ : π1(ψ−1(U))→ π1(U)
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is surjective. We have the following commutative diagram

π1(ψ−1(U)) π1(U)

π1
(
(∆p0 × C3)− ϕ−1(P )

)
π1(V − P )

i∗

(ψ|ψ−1(U))∗

j∗

ψ∗

with both the vertical maps are onto induced from the inclusions i : ψ−1(U) ↪→
(∆p0 × C3) − ϕ−1(P ) and j : U ↪→ V − P respectively. Therefore from the above
commutative diagram we see that ψ∗ is onto.

Let m be the maximal ideal in R corresponding to the point p0 in C. Clearly
t generates m. Let W := Spec (Rm[X,Y, Z]). Since R is regular, Rm is a factorial
domain and so is Rm[X,Y, Z]. Consider the quotient morphism η : W → W//Ga.
By [6, Lem. 1.10], η−1Sing (W//Ga) does not contain any divisor in W .

Therefore codimϕ−1(P ) ≥ 2. Thus π1(V −P ) = (1) and hence H1(V −P ) = 0.
�

Claim 3.

(i) Hi
c(V, P ) ∼= Hi

c(V ) for all i ≥ 2.
(ii) Hi

c(F0, P ) ∼= Hi
c(F0) for all i ≥ 2.

Proof. Consider the relative cohomology sequences with compact support for the
pairs (V, P ) and (F0, P ), respectively. We have the following exact sequences for
all n ∈ N.

Hn
c (P )→ Hn+1

c (V, P )→ Hn+1
c (V )→ Hn+1

c (P ),

and
Hn
c (P )→ Hn+1

c (F0, P )→ Hn+1
c (F0)→ Hn+1

c (P ).

Since Hi
c(P ) = 0 for all i ≥ 1, the claim follows. �

Claim 4.

(i) Hi
c(V ) ∼= Hi

c(F0) for 0 ≤ i ≤ 3.
(ii) H4

c (V ) = 0.

Proof. Note that V − F0 is smooth. So by duality,

Hi
c(V, F0) ∼= H6−i(V − F0), for all 0 ≤ i ≤ 6.

Since V − F0
∼= ∆∗p0 × C2, thus V − F0 is homotopy equivalent to the unit circle

S1. So H0(V − F0) = H1(V − F0) = Z and Hi(V − F0) = 0 for all i ≥ 2. Hence

Hi
c(V, F0) =

{
0 for 0 ≤ i ≤ 4

Z for i = 5, 6.
(1)

Consider the relative cohomology sequences with compact support for the pairs
(V, F0). We have the following exact sequences for all n ∈ N:

Hn
c (V, F0)→ Hn

c (V )→ Hn
c (F0)→ Hn+1

c (V, F0).
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By (1), we get Hi
c(V ) ∼= Hi

c(F0) for i = 0, 1, 2, 3.
Since by (1), H4

c (V, F0) = 0 we have the following exact sequence:

0→ H4
c (V )→ H4

c (F0)→ H5
c (V, F0)→ H5

c (V ).

Using Claim 3 and duality we get H5
c (V ) ∼= H5

c (V, P ) ∼= H1(V − P ) and thus
H5
c (V ) = 0 by Claim 2. Moreover, since F0 is an irreducible surface over C,

H4
c (F0) ∼= Z. By (1), H5

c (V, F0) ∼= Z. Thus we conclude from the above exact
sequence that H4

c (V ) = 0. �

Claim 5.

(i) Hi(N − P ) = 0 for 1 ≤ i ≤ 4.
(ii) H3(V ) = 0.

Proof. Note that for each i, Ni − {qi} deformation retracts to the boundary ∂Ni
of Ni. Since π1(Ni − {qi}) = (1), we have H1(Ni − {qi}) ∼= H1(∂Ni) = 0 for all i
and thus H1(N − P ) = 0. Observe that ∂Ni is a compact, connected manifold of
real dimension 5. Therefore by duality we have

H4(Ni − {qi}) ∼= H4(∂Ni) ∼= H1(∂Ni)

and by the universal coefficient theorem,

H1(∂Ni) ∼= Ext1
(
H0(∂Ni),Z

)
⊕Hom

(
H1(∂Ni),Z

)
= 0,

since Ext1
(
H0(∂Ni),Z

)
= Ext1(Z,Z) = 0. Thus H4(N − P ) = 0.

Recall that H4(V ) = 0, by Claim 1. Also since V − P is smooth, we get

H2(V − P ) ∼= H4
c (V, P ) ∼= H4

c (V ) = 0,

by duality, Claim 3 and Claim 4 respectively. Thus we consider the following part
of the Mayer–Vietoris sequence for V = N ∪ (V − P ).

0→ H3(N − P )→ H3(V − P )→ H3(V )→ H2(N − P )→ 0.

Note that in the above sequence we have used H4(V ) = H2(V − P ) = 0.
Duality, Claim 3 and Claim 4 together yield

H3(V − P ) ∼= H3
c (V, P ) ∼= H3

c (V ) ∼= H3
c (F0).

Also H3
c (F0;Q) ∼= H1(F0;Q) = 0, by duality and Claim 2. Hence H3(V − P ) is a

torsion Z-module.
Thus from the above Mayer–Vietoris sequence, we can see that H3(N − P ) is

also a torsion Z-module. Again H3(N − P ) ∼=
⊕

iH3(Ni − {qi}) ∼=
⊕

iH3(∂Ni).
Since ∂Ni is compact, duality and the universal coefficient theorem together imply
that

H3(∂Ni) ∼= H2(∂Ni) ∼= Ext1(H1(∂Ni),Z)⊕Hom(H2(∂Ni),Z).
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Since H1(∂Ni) = 0 as we have observed earlier, we conclude that H3(∂Ni) is
torsion-free and hence H3(N − P ) is torsion-free. Also we observed earlier that
H3(N − P ) is a torsion Z-module. Hence H3(N − P ) = 0.

Therefore we get the following short exact sequence from the above Mayer–
Vietoris sequence.

0→ H3(V − P )→ H3(V )→ H2(N − P )→ 0.

Since H3(V − P ) is a torsion Z-module and H3(V ) is torsion-free by Claim 1, the
above short exact sequence yields H3(V − P ) = 0. Hence H3(V ) ∼= H2(N − P ).
Again H2(N − P ) ∼=

⊕
iH2(Ni − {qi}) ∼=

⊕
iH2(∂Ni). So H2(N − P ) and hence

each H2(∂Ni) is torsion-free.
Since ∂Ni is compact, duality and the universal coefficient theorem together

imply that

H2(∂Ni) ∼= H3(∂Ni) ∼= Ext1(H2(∂Ni),Z)⊕Hom(H3(∂Ni),Z).

Since H2(∂Ni) is a torsion-free finitely generated Z-module, H2(∂Ni) is a free
abelian group for all i = 1, 2, . . . ,m. Thus Ext1(H2(∂Ni),Z) = 0. Also we have
Hom(H3(∂Ni),Z) = 0, since H3(∂Ni) = 0 for all i = 1, 2, . . . ,m. So H2(∂Ni) = 0
for all i = 1, 2, . . . ,m and hence H2(N−P ) = 0. Therefore H3(V ) ∼= H2(N−P ) =
0. �

Claim 6. H2(F0) = 0.

Proof. By duality, H2(F0;Q) ∼= H2
c (F0;Q) and using Claim 4 we conclude that

H2(F0;Q) ∼= H2
c (V ;Q). Again by Claim 3 and duality, H2(F0;Q) ∼= H2

c (V, P ;Q) ∼=
H4(V − P ;Q). Consider the following part of the Mayer–Vietoris sequence for
V = N ∪ (V − P ):

H5(V )→ H4(N − P )→ H4(V − P )→ H4(V ).

Since H4(V ) = 0 = H5(V ) by Claim 1, we have H4(V −P ) ∼= H4(N−P ). Since the
latter group is trivial by Claim 5, we conclude that H2(F0;Q) = 0. This implies
that H2(F0) is a torsion Z-module. Claim 1 implies that H2(F0) = 0.

Recall that F0 is a normal affine surface with b1(F0) = 0 = b2(F0) by Claim 2
and Claim 6. We already observed that the singularities of F0 are cyclic rational
double points. These together imply that F0 is a logarithmic Q-homology plane.

This implies that the A1-fibration on F0 has A1 as a base and all the fibers are
irreducible, isomorphic to A1 if taken with reduced structure. We refer to [5, 4.15]
for this. �

Claim 7. H1(F0 − P ) = 0.

Proof. Note that F0 − P is smooth. By duality H1(F0 − P ) ∼= H3
c (F0, P ). Again

by Claim 3 and Claim 4 we get

H1(F0 − P ) ∼= H3
c (F0) ∼= H3

c (V ).
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Consider the following part of the Mayer–Vietoris sequence for V = (V − P )∪N :

H3(N − P )→ H3(V − P )→ H3(V )→ H2(N − P ).

Thus H3(V − P ) ∼= H3(V ), using Claim 5. Now use the duality on the pair (V, P )
and Claim 3 respectively to conclude that H3

c (V ) ∼= H3(V ).
Thus, H1(F0 − P ) ∼= H3

c (V ) ∼= H3(V ). The latter group is trivial by Claim 5.
�

Claim 8.

(i) Hi(F0) = 0 for all i > 0.
(ii) F0 is smooth.

Proof. Let M be a disjoint union of contractible neighbourhoods Mj in F0 around
the singular points qj ∈ F0. Therefore Hi(M − P ) ∼=

⊕
j Hi(Mj − {qj}) for all

i. Consider the following part of the Mayer–Vietoris sequence for the covering
F0 = (F0 − P ) ∪M :

H2(F0)→ H1(M − P )→ H1(F0 − P )→ H1(F0).

Note that the map H1(F0 − P )→ H1(F0) is always surjective, since F0 is normal
(see comment following (B) in the Preliminaries). Using Claim 6 and Claim 7, we
conclude that H1(M − P ) = 0 and H1(F0) = 0.

Therefore combining with Claim 1 we conclude, Hi(F0) = 0 for all i > 0. Also
H1(Mi−{qi}) = 0 for every singular point qi of F0. Since these are cyclic quotient
singular points of F0 by Mumford’s result [14], F0 is smooth. �

By the usual ramified covering trick [13, III, 3.2.1], we conclude that all the
fibers are reduced and isomorphic to A1. Hence F0 is isomorphic to A2.

Finally, by Sathaye’s result [17] V is an A2-bundle over C, and hence a trivial
A2-bundle if C is shrunk to a suitable Zariski open neighbourhood of p0.

This completes the proof of the theorem. �

Example 1. Daigle and Freudenburg found examples of Ga-actions on the poly-
nomial ring C[X1, X2, X3, X4] keeping X1 invariant such that C4//Ga need arbitra-
rily large number of generators. In fact the embedding dimension at some singular
point of C4//Ga can be arbitrarily large. We refer to [3] for this.

By our result, we conclude that {X1 = α} for some α ∈ C, treated as a
subscheme of the quotient, is non-normal for these examples.
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