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Abstract. Let X be an algebraic variety isomorphic to the complement of a closed
subvariety of dimension at most n − 3 in Ank. We find some conditions under which an
isomorphism of two closed subvarieties of X can be extended to an automorphism of X.
We also study the similar problem for subvarieties of affine quadrics and SL(n,k).

Introduction

Let X be a smooth quasi-affine variety over an algebraically closed field k
of characteristic zero and Y1 and Y2 be closed subvarieties of X. We study the
following extension problem:

Under what restrictions on Yi and TYi an isomorphism Y1 → Y2 extends to an
automorphism of X?

This question makes sense when X itself possesses a large automorphism group
Aut(X) which leads to the notion of a flexible variety [AFKKZ]. Recall that it is a
quasi-affine algebraic variety of dimension at least 2 on which the group SAut(X)
(generated by elements of all one-parameter unipotent subgroups of Aut(X)) acts
m-transitively for every m > 0. The simplest example of a flexible variety is X =
Ank and the extension problem was studied extensively for such an X.

The starting point (and an inspiration) of that research was, of course, the
Abhyankar–Moh–Suzuki theorem [AMo], [Su] which states that given two plane
curves isomorphic to a line one can be transferred to the other by an automorphism
of A2

k. Then, disproving an Abhyankar’s conjecture, Jelonek [Je] established that if
one requires that 4 dim Y1 +2 6 n then one gets a positive answer to the extension
problem in Ank for the case of smooth Yi

1. In the non-smooth case we have to take
into consideration dim TYi and the more general result established by the author
[Ka] and Vasudevan Srinivas [Sr] states the following:
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Theorem 0.1. Let ϕ : Y1 → Y2 be an isomorphism of two closed subvarieties of
Ank such that n > ED(Y1) + 1 where ED(Y1) = max(2 dimY1 + 1, dimTY1). Then
ϕ extends to an automorphism of Ank.

The first result in the case of a flexible variety different from Ank is due to Van
Santen (formerly Stampfli) [St] who proved that given two curves isomorphic to a
line in an algebraic variety X isomorphic to the special linear group SL(n,k) over
k one can be transferred to the other by an automorphism of X provided that
n > 3 (in particular, any such curve is an orbit of a Ga-action). This theorem was
generalized later in the paper of Van Santen and Feller [FS] where they showed
that the same is true if one considers two curves isomorphic to a line in a connected
linear algebraic group modulo some exceptions. Then Van Santen jointly with J.
Blanc showed (among other facts) that there are closed surfaces isomorphic to
A2

k in SL(2,k) which cannot be transferred to each other by an automorphism of
SL(2,k) (as an algebraic variety).

In the present paper besides SL(n,k) we study smooth quadrics in Ank and the
case of X equal to the complement to a codimension at least 2 subvariety in Ank (we
call it the Gromov–Winkelmann case since these authors established the flexibility
of such an X [Wi], [Gr]). The main results of our paper are the following.

Theorem 0.2. Let Z, Y1, and Y2 be closed subvarieties of Ank such that Y1 ∩Z =
Y2∩Z = ∅, dimZ 6 n−3 and ED(Y1) 6 n−2. Let ϕ : Y1 → Y2 be an isomorphism
and X = Ank \ Z. Suppose also that either

(a) dimZ + dimY1 6 n− 3, or
(b) dimY1 = 1 and dimZ 6 n− 3.

Then there exists an automorphism γ ∈ SAut(X) for which γ|Y1
= ϕ.2

Theorem 0.3. Let m > 6 and X be a hypersurface in Amk that is a nonzero fiber
of a non-degenerate quadratic form. Suppose that ϕ : Y1 → Y2 is an isomorphism
of two closed subvarieties of X. Let ED(Yi) + dimYi 6 m− 2. Then ϕ extends to
an automorphism of X which belongs to SAut(X).

Theorem 0.4. Let X = SL(n,C) and ϕ : Y1 → Y2 be an isomorphism of two
closed subvarieties of X such that either

(i) ED(Yi)+dimYi 6 n−2, Hi(Y1) = 0 for i > 3 and H2(Y1) is a free abelian
group; or

(ii) Y1 is a curve and ED(Yi) 6 n− 2, or;
(iii) Y1 is a once-punctured curve and ED(Y1) 6 2n− 3.

Then there exists a holomorphic automorphism β of X such that β|Y1 = ϕ.

Theorem 0.5. Let ϕ : Y1 → Y2 be an isomorphism of two closed subvarieties of
X ' SL(n,k) with n > 3 such that Yi is isomorphic to Akk. Suppose that either
k 6 n/3− 1 or k = 1. Then there exists α ∈ SAut(X) such that α|Y1

= ϕ.

The paper is organized as follows. In the first six sections we develop some
technique which is valid for a wide class of flexible varieties. More precisely, in

2If ED(Z) 6 n − 1 then there is no need for this theorem. Indeed, one can consider
the isomorphism ψ : Y1 ∪Z → Y2 ∪Z such that ψ|Y1

= ϕ and ψ|Z = idZ . Then Theorem
0.1 implies that ψ extends to an automorphism of Ank as soon as ED(Y1) 6 n− 1.
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Section 1 we consider a morphism κ : X → P of smooth irreducible varieties such
that X is equipped with an action of a group G ⊂ Aut(X) which preserves every
fiber κ−1(p), p ∈ P and acts transitively on it. We describe some conditions under
which one can find an algebraic family A of automorphisms of X contained in G
such that for two subvarieties Y and Z of X and a general element α ∈ A the
varieties Y and α(Z) are transversal (this is a relative version of the transversality
theorem from [AFKKZ] that dealt with the case when P was a singleton). In
Section 2 we recall some facts about flexible varieties and in Section 3 we prove
a relative version of a theorem from [AFKKZ] which yields automorphisms of a
given flexible variety with prescribed jets at a finite number of points.

Sections 4–6 are crucial. Namely, the proof of Theorem 0.1 is heavily based on
the fact that for a general linear projection θ : Ank → An−1

k the variety θ(Yi) is
closed in An−1

k and the restriction of θ yields an isomorphism Yi → θ(Yi). Note that
θ can be viewed as the composition of a fixed projection θ0 and a general linear
automorphism of Ank. Hence, in Section 4 we imitate this idea for a morphism
% : X → Q over P as above but with each fiber of κ being a G-flexible variety.
We show that when the morphism % and the variety Q are smooth and Z is a
closed subvariety of X with ED(Z) 6 dimQ then for a general element α of
some algebraic family A contained in G the morphism %|α(Z) : α(Z) → Q is an
injection and, furthermore, the induced morphism Tα(Z) → TQ of the Zariski
tangent bundles is also an injection. However, a priori this map is not proper and
in Section 5 we describe some conditions under which the morphism %|α(Z) is also
proper and, therefore, % ◦ α(Z) is closed in Q and %|α(Z) : α(Z) → % ◦ α(Z) is an
isomorphism. These facts are already sufficient for the proof of Theorem 0.2 in
Section 7. Section 6 is devoted to the independently interesting case when % is a
partial quotient morphism of a Ga-action on X. In this situation we cannot claim
that % and Q are smooth and cannot guarantee the properness of %|α(Z). However,
we establish that for any given finite subset S ⊂ Z and a general α ∈ A one can find
a neighborhood V ′ of %(α(S)) in %(α(Z)) ⊂ Q such that for V = %−1(V ′) ∩ α(Z)
the restriction of %|α(Z) yields an isomorphism V → V ′. Applications of this result
go beyond the present paper (e.g., see [KKT]).

Section 8 contains Theorem 0.3 and in Sections 9 and 10 we prove some technical
results that enable us to obtain Theorems 0.4 and 0.5 in Section 11 where we also
present an example of a topological obstruction for the extension problem in the
case of general flexible varieties.

Acknowledgements. The author is deeply indebted to his referee for catching
mistakes in the original version of this manuscript and for an unusually thorough
review which was a great help to the author.

1. Algebraically generated groups of automorphisms

Let X be an irreducible algebraic variety and Aut(X) be the group of its
algebraic automorphisms. Recall the following terminology introduced by Rama-
nujam [Ra].

Definition 1.1. (1) Given an irreducible algebraic variety A and a map ϕ : A →
Aut(X) we say that (A, ϕ) is an algebraic family of automorphisms on X if the
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induced map A×X → X, (α, x) 7→ ϕ(α).x is a morphism.
(2) If we want to emphasize additionally that ϕ(A) is contained in a subgroup

G of Aut(X) then we say that A is an algebraic G-family of automorphisms of X.
(3) In the case when A is a connected algebraic group and the induced map

A × X → X is not only a morphism but also an action of A on X we call this
family a connected algebraic subgroup of Aut(X).

Definition 1.2. Following [AFKKZ, Def. 1.1] we call a subgroup G of Aut(X)
algebraically generated if it is generated as an abstract group by a family G of
connected algebraic subgroups of Aut(X).

We have the following important fact [AFKKZ, Thm. 1.15] (which is the analo-
gue of the Kleiman transversality theorem [Kl] for algebraically generated groups).

Theorem 1.3 (Transversality Theorem). Let a subgroup G ⊆ Aut(X) be algeb-
raically generated by a system G of connected algebraic subgroups closed under
conjugation in G. Suppose that G acts with an open orbit O ⊆ X.

Then there exist subgroups H1, . . . ,Hm ∈ G such that for any locally closed
reduced subschemes Y and Z in O one can find a Zariski dense open subset U =
U(Y, Z) ⊆ H1 × · · · × Hm such that every element (h1, . . . , hm) ∈ U satisfies the
following:

(a) The translate (h1 · · · · · hm).Zreg meets Yreg transversally.
(b) dim(Y ∩ (h1 · · · · · hm).Z) ≤ dimY + dimZ − dimX.3

In particular, Y ∩ (h1 · · · · · hm).Z = ∅ if dimY + dimZ < dimX.

We need to generalize [AFKKZ, Thm. 1.15] further.

Theorem 1.4 (Collective Transversality Theorem). Let X and P be smooth ir-
reducible algebraic varieties and κ : X → P be a smooth morphism (in particular
X×P X is smooth and dimX×P X = 2 dimX−dimP ). Let a group G ⊆ Aut(X)
be algebraically generated by a system G of connected algebraic subgroups closed
under conjugation in G. Suppose that the G-action transforms every fiber κ−1(p)
into itself and, furthermore, the restriction of the G-action to κ−1(p) is transitive
for every p ∈ P .

Then there exist subgroups H1, . . . ,Hm ∈ G such that for any locally closed
reduced subschemes Y and Z in X one can find a Zariski dense open subset U =
U(Y, Z) ⊆ H1 × · · · × Hm so that every element (h1, . . . , hm) ∈ U satisfies the
following:

(i) dim(Y ∩ (h1 · · · · · hm).Z) ≤ dim(Y ×P Z) + dimP − dimX.
In particular, when dimY ×P Z 6 dimY + dimZ − dimP one has

(ii) dim(Y ∩ (h1 · · · · · hm).Z) ≤ dimY + dimZ − dimX.
Furthermore, suppose that the inequality dimY ×P Z 6 dimY + dimZ −
dimP holds and also that Z, Y ×P Z, and Y ×P X are smooth. Then

(iii) (h1 · · · · · hm).Z meets Y transversally.

The proof of Theorem 1.4 is an adjustment of the proof of [AFKKZ, Thm. 1.15].
Hence, following the latter we establish first three facts which in the case of a
singleton P are nothing but Propositions 1.5, 1.8, and 1.16 in [AFKKZ].

3We put the dimension of empty sets equal to −∞.
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Proposition 1.5 (Analogue of [AFKKZ, Prop. 1.5]). Let the assumptions of The-
orem 1.4 hold. There are (not necessarily distinct) subgroups H1, . . . ,Hm ∈ G such
that for every p ∈ P and each x ∈ κ−1(p) one has

κ−1(p) = H1.(H2. · · · .(Hm.x). (1)

Proof. Let us introduce the partial order on the set of sequences in G such that
for H = (H1, . . . ,Hm) and H′ = (H ′1, . . . H

′
s) one has

H < H′ ⇐⇒ ∃i1 < · · · < is : (H ′1, . . . ,H
′
s) = (Hi1 , . . . ,His) .

Assuming first that κ has a section λ : P → X with S = λ(P ) we considerH.S =⋃
x∈S H.x where H.x = H1.(H2. · · · .(Hm.x). Then such a set H.S is constructible

(since it is the image of the algebraic variety H1×· · ·×Hm×S under a morphism).
In particular, XH := X \ H.S is a constructible set. Furthermore, the following
property holds:

if H < H′, then H′.S ⊂ H.S and, therefore, XH ⊂ XH′ .

By [AFKKZ, Prop. 1.8] for every point p0 ∈ P we can find a sequence H in G
such that the morphism

H1 × · · · ×Hm → κ−1(p0), (h1, . . . , hm) 7→ h1 · · · · · hm.λ(p0)

is surjective and smooth. Since smoothness is an open condition the morphism

H1 × · · · ×Hm ×X → X given by ((h1, . . . , hm), x) 7→ (h1 · · · · · hm).x

is smooth on (e, . . . , e) × (S ∩ κ−1(P0)) where e is the identity element of the
group G and P0 = P0(H) is a Zariski neighborhood of p0 in P . Consequently, H.S
contains a Zariski neighborhood of S ∩κ−1(P0) in X, since smooth morphisms are
open. Suppose that P0(H) is the largest neighborhood of p0 with this property
and R = R(H) is the complement of P0(H) in P . For a given p′ ∈ R choose again
a sequence H′ = (H ′1, . . . H

′
s) such that the morphism H ′1 × · · · ×H ′s → κ−1(p′) is

smooth and surjective. Consider H′′ = (H′,H) and note that R(H′′) is a proper
subvariety of R(H) since H′′.S ⊃ H.S and H′′.S ⊃ H′.S. Thus, increasing H, we
can reduce the dimension of irreducible components of R(H). The induction by
dimension implies now that we can suppose from the beginning that H.S contains
a Zariski neighborhood of S in X.

Because of transitivity for every y ∈ X we can find a sequence H1 such that
y ∈ H1.S. Hence, y ∈ H̃.S for any sequence H̃ of the form H̃ = (H1,H2) where H2

extends the sequence H as before. In particular, choosing y in any given irreducible
component C of XH2 we guarantee C is not contained in XH̃. Furthermore, H̃.S
contains a Zariski neighborhood of y, since H2.S contains a Zariski neighborhood
of S. That is, dimXH̃ ∩ C < dimC.

Thus, enlarging H we can reduce the dimension of XH and continuing this
process we can make XH = ∅. In particular, for every p ∈ P and x = λ(p) one has

H.x = κ−1(p). Let Ht = (Hm, Hm−1, . . . ,H1) and H̃ = (H,Ht), i.e., x ∈ Ht.y for
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every y ∈ κ−1(p). Then one has H̃.y = κ−1(p), i.e., we get the desired conclusion
in the presence of a section λ.

In the general case consider an étale neighborhood W of a point p ∈ P and
suppose that V ⊂ P is the image of W under the natural morphism. Since κ is
smooth one can suppose that for an appropriate choice of W the natural projection
τ : X ×P W → W has a section. Consider the induced G-action on X ×P W . By
the previous argument there is a sequence H such that for every w ∈ W and
z ∈ τ−1(w) one has H.z = τ−1(w). Applying the natural projection X×P W → X
we see that for every p ∈ V and every y ∈ κ−1(p) we have H.y = κ−1(p). Choosing
now a finite number of étale neighborhoods that cover X, we can enlarge H so
that it works for each of these neighborhoods. This implies the desired conclusion.
�

Proposition 1.6 (Analogue of [AFKKZ, Prop. 1.8]). Let the assumptions of The-
orem 1.4 hold. Assume that the generating family G of connected algebraic sub-
groups is closed under conjugation in G, i.e., gHg−1 ∈ G for all g ∈ G and H ∈ G.
Then there is a sequence H = (H1, . . . ,Hm) in G such that for all p ∈ P and
x ∈ κ−1(p) the tangent space Txκ

−1(p) is spanned by the tangent spaces

Tx(H1.x), . . . , Tx(Hm.x)

to the orbits H1.x, . . . ,Hm.x at x.

Proof. Let H = (H1, . . . ,Hm) be a sequence in G satisfying the conclusion of
Proposition 1.5. Consider the map

ΦH : H1×· · ·×Hm×X → X×PX given by ((h1, . . . , hm), x) 7→ ((h1 ·· · ··hm).x, x).

The fiber τ−1(x) of the second projection τ : X×P X → X over x ∈ X is naturally
isomorphic to κ−1(p) where p = κ(x). Hence, by Proposition 1.5 ΦH is a surjective
map while the assumptions of Theorem 1.4 imply that τ is a smooth morphism.
Let us consider the map of relative tangent bundles

dΦH : T (H1 × · · · ×Hm ×X/X)→ Φ∗H(T ((X ×P X)/X))

and its restriction to {(e, . . . , e)}×X ∼= X (where e is the identity in the group G),

dΦH : TeH1 × · · · × TeHm ×X → Φ∗H(T ((X ×P X)/X)) .

The set UH of points in X where this map is surjective is, of course, open. By
[AFKKZ, Prop. 1.8] for every p ∈ P and x ∈ κ−1(p) the tangent space Txκ

−1(p)
is spanned by the tangent spaces Tx(H.x), where H ∈ G. Hence,

⋃
H UH coincides

with X. Since an increasing union of open subsets stabilizes, we obtain that
X = UH for H sufficiently large (with respect to the partial order introduced
in Proposition 1.5). This yields the desired conclusion. �

Proposition 1.7 (Analogue of [AFKKZ, Prop. 1.16]). Let the assumption of The-
orem 1.4 hold. Then there is a sequence H1, . . . ,Hm in G so that for a suitable
open dense subset U ⊆ Hm × · · · ×H1, the map

Φm : Hm×· · ·×H1×X → X×PX with (hm, . . . , h1, x) 7→ ((hm ·· · ··h1).x, x) (2)

is smooth on U ×X.
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Proof. By Proposition 1.5 there are subgroups H1, . . . ,Hm ⊆ G in G such that Φm
is surjective. Let Um ⊂ Hm×· · ·×H1×X be the set of points where Φm is smooth.
Then Um is non-empty by [Ha, Chapter III, Corollary 10.7] and it is open by [SGA1,
Exp. II, Prop. 1.1]. Consider the complement Am = (Hm×· · ·×H1×X)\Um. Let us
study the effect of increasing the number m of factors in the product Hm×· · ·×H1.

Suppose that H is an element of G and Φ′ plays the same role for the sequence
H1, . . . ,Hm, H as Φm for the sequence H1, . . . ,Hm. Note that for a fixed h ∈ H the
restriction of Φ′ yields the morphism {h}×Hm×· · ·×H1×X → X×PX that is the
composition of Φm and the automorphism ϕ of X ×P X given by (x, y)→ (h.x, y)
which implies smoothness of Φ′ on H × Um. Thus, Um+1 ⊇ Hm+1 × Um and
Am+1 ⊆ Hm+1 × Am. Increasing the number of factors by Hm+1, . . . ,Hm+k in a
suitable way, we can achieve that

dimAm+k < dim(Hm+k × · · · ×Hm+1 ×Am) . (3)

Indeed, if (hm, . . . , h1, x) ∈ Am and y = (hm · · · · · h1).x then by Proposition 1.6
for suitable Hm+k, . . . ,Hm+1 the map

Hm+k×· · ·×Hm+1×X → X×PX, (hm+k, . . . , hm+1, z) 7→ ((hm+k ·· · ··hm+1).z, z)

is smooth in all points (e, . . . , e, y) where e is the identity of the group G. In
particular, Φm+k is smooth in all points (e, . . . , e, hm, . . . , h1, x) with x ∈ X, i.e.,

{(e, . . . , e)} ×Am ∩Am+k = ∅.

Now (3) follows.
Thus increasing the number of factors suitably we can achieve that

dimAm < dim(Hm × · · · ×H1) .

That is, the image of Am under the projection

π : Hm × · · · ×H1 ×X → Hm × · · · ×H1

is nowhere dense. Hence, there is an open dense subset U ⊆ Hm × · · · ×H1 such
that Φm : U ×X → X ×P X is smooth. �

Remark 1.8. Let Φm, H1, . . . ,Hm and U ⊂ Hm × · · · × H1 be as in Proposition
1.7 and let H be an element G. Suppose that Φ′ (resp. Φ′′) plays the same role
for the sequence H1, . . . ,Hm, H (resp. H,H1, . . . ,Hm) as Φm for the sequence
H1, . . . ,Hm. Then Φ′ is smooth on H × U ×X, since Φ′|H×U×X is the following
composition of smooth morphisms

H × U ×X idH×Φm|U×X−−−−−−−−−→H ×X ×P X
(h,x,y) 7→(h.x,y)−−−−−−−−−−→ X ×P X.

Similarly, Φ′′ is smooth on U ×H ×X, since Φ′′|U×H×X is the composition of the
following smooth morphisms:

U ×H ×X
(u,h,x) 7→(h,u,h.x)

∼
// H × U ×X

idH×Φm|U×X // H ×X ×P X

(h,x,y) 7→(x,h−1.y)

��
X ×P X

.
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Proof of Theorem 1.4. By Proposition 1.7 there are subgroups H1, . . . ,Hm in G
such that Φm : U×X → X×PX is smooth for some open subset U ⊆ Hm×· · ·×H1.
Let C = Φ∗m(Y ×P Z) ∩ (U ×X).

Consider first the case in (i) when Y ×P Z is smooth. Then C is smooth. By
[Ha, Chap. III, Cor. 10.7] the general fibers of the projection πC : C → U are
smooth as well. Suppose that πC is dominant (otherwise the general fibers of πC
are empty). Shrinking U we may now assume that all fibers of πC are smooth.
Then the dimension of every fiber of Φm is dimU − dimX + dimP . Thus dim C =
dimU + dimP − dimX + dimY ×P Z and the dimension of every fiber π∗C(h) of
πC is

dimY ×P Z + dimP − dimX. (4)

Observe now that for a point h = (hm, . . . , h1) ∈ U the fiber π∗C(h) maps bijectively
via {h} ×X → X, (h, x) 7→ (hm · · · · · h1).x onto Y ∩ (h1 · · · · · hm).Z which yields
(i) (and therefore (ii)) in the case of smooth Y ×P Z.

In the general case stratifying Z and Y we can find Zariski dense open subsets
Z0 ⊂ Z and Y0 ⊂ Y such that Y0×P Z0 is smooth. By formula (4) we see that for a
general h ∈ U the dimension of Y0∩(h1 ·· · ··hm).Z0 is at most dimY ×PZ+dimP−
dimX. Let Z ′ = Z \ Z0 and Y ′ = Y \ Y0 and consider, say, the pair (Y0, Z

′). We
can suppose that Y0 ×P Z ′ is smooth (otherwise stratify further). Then the same
argument with formula (4) implies that the dimension of Y0∩ (h1 · · · · ·hm).Z ′ is at
most dimY0×P Z ′+dimP−dimX 6 dimY ×P Z+dimP−dimX. Repeating this
procedure for the pairs (Y ′, Z0) and (Y ′, Z ′) we get (i) and (ii) in full generality.

For (iii) consider Z = U × Z and Y = Φ∗m(Y ×P X) ∩ (U × X), i.e., C (as a
scheme) is the intersection of Z and Y. As before, shrinking U we can suppose
that all fibers of the natural projections πY : Y → U and πZ : Z → U are smooth.
Observe also that π∗Z(h) = {h}×Z ⊂ {h}×X and π∗Y(h) = {h}×(h−1

1 ·· · ··h−1
m ).Y ⊂

{h} ×X4. It remains to note that if these two smooth subvarieties of {h} ×X do
not meet transversely and the dimension of their intersection π∗C(h) is dimY +
dimZ − dimX then π∗C(h) cannot be smooth (as a scheme). Indeed, the absence
of transversality implies that at some closed point of x ∈ π∗C(h) the dimension
of the intersection of the tangent spaces Txπ

∗
Y(h) and Txπ

∗
Z(h) is greater than

dimY + dimZ−dimX. Note that this intersection coincides with the intersection
of kernels of the differentials of all functions from the defining ideals of π∗Z(h) and
π∗Y(h), and, therefore, from the defining ideal of π∗C(h). However, for a smooth π∗C(h)
this dimension must be equal to dim Y + dimZ − dimX. Hence, the smoothness
of π∗C(h) established before yields (iii) which concludes the proof. �

Remark 1.9.
(1) Suppose that κ(Y ) is dense in P and all fibers of κ|Y are of the same

dimension (say, κ|Y is flat). That is, the dimension of each of these fibers is dim Y −
dimP . Then dimY ×PZ = dimY +dimZ−dimP and we are under the assumption
of (ii) in Theorem 1.4, i.e., the dimension of Y ∩ (h1 · · · · ·hm).Z is at most dimY +
dimZ − dimX.

(2) Let us emphasize the following fact, the first part of which follows from the
argument in the proof of Theorem 1.4.

4In particular, the last equality implies that Y is smooth under the assumption of (ii).
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Proposition 1.10. If a sequence H1, . . . ,Hm ∈ G satisfies the conclusions of
Proposition 1.7 then it satisfies also the conclusions of Theorem 1.4. Furthermore,
for any element H of G the sequence H1, . . . ,Hm, H (resp. H,H1, . . . ,Hm) satisfies
the conclusions of Theorem 1.4 as well.

Proof. The second statement is true because by Remark 1.8 the sequence H1, . . .
. . . , Hm, H (resp. H,H1, . . . ,Hm) satisfies the conclusions of Proposition 1.7. �

Remark 1.11.
(1) Let us consider an application of Proposition 1.10. Suppose that X and P

are smooth irreducible algebraic varieties and κ : X → P is a morphism which is
not in general smooth or even dominant. Let a group G ⊆ Aut(X) be algebraically
generated by a system G of connected algebraic subgroups closed under conjugation
in G. Suppose that the G-action transforms every fiber κ−1(p) into itself and,
furthermore, the restriction of the G-action to κ−1(p) is transitive for every p ∈ P .

By the Generic Smoothness theorem (e.g., see [Ha, Chap. III, Cor. 10.7]) we
can present κ(X) as a disjoint union

⋃n
k=1 Pk of smooth varieties such that for

Xk = κ−1(Pk) the morphism κ|Xk
: Xk → Pk is smooth. For Y and Z as in

Theorem 1.4 let Yk = Xk ∩ Y and Zk = Xk ∩Z. Then by Theorem 1.4 there exist
subgroups Hk

1 , . . . ,H
k
mk
∈ G such that one can find a Zariski dense open subset

Uk = U(Yk, Zk) ⊆ Hk
1 × · · · × Hk

mk
so that for every element (hk1 , . . . , h

k
mk

) ∈ Uk
we have the inequality

dim(Yk ∩ (hk1 · · · · · hkmk
).Zk) ≤ dim(Yk ×Pk

Zk) + dimPk − dimXk .

Consider now a general element α in

H1
1 × · · · ×H1

m1
×H2

1 × · · · ×Hn
1 × · · · ×Hn

mn
.

Then Proposition 1.10 implies that one has

dim(Y ∩ α.Z) ≤ max{dim(Yk ×Pk
Zk) + dimPk − dimXk | k = 1, . . . n}.

(2) Let us consider now the case when in (1) all nonempty fibers of the morphism
κ|Y : Y → P are of the same dimension and all morphisms κ|Yk

: Yk → Pk are
dominant. By Remark 1.9 (1) we have dim(Yk×Pk

Zk) = dimYk+dimZk−dimPk
for every k = 1, . . . , n. Hence,

dim(Y ∩ α.Z) ≤ max{dimYk + dimZk − dimXk | k = 1, . . . n}.

Furthermore, if, additionally, all nonempty fibers of κ : X → P are of the same
dimension then dim Yk − dimXk = dimY − dimκ−1(κ(Y )) and we have the
following.

Proposition 1.12. Let X and P be smooth irreducible algebraic varieties and κ :
X → P be a flat morphism. Let a group G ⊆ Aut(X) be algebraically generated by a
system G of connected algebraic subgroups closed under conjugation in G. Suppose
that the G-action transforms every fiber κ−1(p) into itself and, furthermore, the
restriction of the G-action to κ−1(p) is transitive for every p ∈ P . Let Y and Z
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be locally closed reduced subschemes of X such that all the assumptions of Remark
1.11(2) for Y and κ are satisfied (i.e., the nonempty fibers of the morphism κ|Y :
Y → κ(Y ) are of the same dimension and every morphism κ|Yk

: Yk → Pk is
dominant). Then there exist subgroups H1, . . . ,Hm ∈ G such that for any Y and Z
as above one can find a Zariski dense open subset U = U(Y,Z) ⊆ H1 × · · · ×Hm

so that for every element (h1, . . . , hm) ∈ Uk we have the inequality dim(Y ∩ (h1 ·
· · · · hm).Z) ≤ dimY + dimZ − dimκ−1(κ(Y )).

2. Flexible varieties

Definition 2.1.
(1) A derivation σ on the ring A of regular functions on a quasi-affine algebraic

variety X is called locally nilpotent if for every 0 6= a ∈ A there exists a natural n
for which σn(a) = 0. For the smallest n with this property one defines the degree
of a with respect to σ as degσ a = n − 1. This derivation can be viewed as a
vector field on X which we also call locally nilpotent. The flow of this vector field
is an algebraic Ga-action on X, i.e., the action of the group (k,+) which can be
viewed as a one-parameter unipotent group U in the group Aut(X) of all algebraic
automorphisms of X. In fact, every Ga-action is generated by a locally nilpotent
vector field (e.g., see [Fr]).

(2) A smooth quasi-affine algebraic variety X of dimension at least 2 is called
flexible if for every x ∈ X the tangent space TxX is spanned by the tangent vectors
to the orbits of one-parameter unipotent subgroups of Aut(X) through x.

(3) The subgroup SAut(X) of AutX generated by all one-parameter unipotent
subgroups is called special.

We have the following [AFKKZ, Thm. 01] and [FKZ, Thm. 2.12].

Theorem 2.2. For every irreducible smooth quasi-affine algebraic variety X of
dimension at least 2 the following are equivalent:

(i) the special subgroup SAut(X) acts transitively on X;
(ii) the special subgroup SAut(X) acts infinitely transitively on X (i.e., for

every natural m the action is m-transitive 5);
(iii) X is flexible.

Definition 2.3.
(1) For every locally nilpotent vector field σ and each function f ∈ Kerσ from its

kernel the field fσ is called a replica of σ. Recall that such a replica is automatically
locally nilpotent.

(2) Let N be a set of locally nilpotent vector fields on X. Then GN ⊂ SAut(X)
denotes the subgroup that is generated by all flows of elements of N . We say that
GN is the subgroup of SAut(X) that is generated by N .

(3) A collection of locally nilpotent vector fields N is called saturated if N is
closed under conjugation by elements in GN and for every σ ∈ N each replica of
σ is also contained in N .

5Recall that a group G acts m-transitively on a space Y if for any two m-tuples
(y1, . . . , ym) and (y′1, . . . , y

′
m) of distinct points in Y there is an element α ∈ G such that

α(yi) = y′i for every i = 1, . . . ,m.
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Definition 2.4. Let N be a saturated set of locally nilpotent vector fields on X
and G = GN be the subgroup of SAut(X) that is generated by N . Then X is
called G-flexible if for any x ∈ X the vector space TxX is generated by the values
of locally nilpotent vector fields from N at x.

Remark 2.5. A priori the notion of G-flexibility depends on N while N is not
determined uniquely by the group G = GN . However, the following generalization
of Theorem 2.2 ( see [FKZ, Thm. 2.12]) shows that this notion depends on G only.

Theorem 2.6. Let X be an irreducible smooth quasi-affine algebraic variety of
dimension at least 2 and G be the subgroup generated by a saturated set N of
locally nilpotent vector fields on X. Then the following are equivalent:

(i) G acts transitively on X;
(ii) G acts infinitely transitively on X;

(iii) X is G-flexible.

The next fact is a straightforward consequence of Theorem 2.6.

Proposition 2.7. Let X be a G-flexible variety where G is as in Definition 2.4
and ∆ be the diagonal in X × X. Then the natural action of G on the variety
X ×X \∆ is transitive.6

The following result will be very useful later in this paper.

Theorem 2.8 ([AFKKZ, Thm. 4.14 and Rem. 4.16]). Let x1, . . . , xm be distinct
points in a G-flexible variety X of dimX = n where G is generated by a saturated
set N of locally nilpotent vector fields on X. Then there exists an automorphism
α ∈ G ⊂ SAut(X) such that it fixes the points x1, . . . , xm and for every i the linear
map dα|Txi

X coincides with a prescribed element βi of SL(n,k). Furthermore, let
k ∈ N and γi be a k-jet of an isomorphism between two étale neighborhoods of xi
in X which preserves xi and a local volume form at xi. Then α can be chosen so
that for every i = 1, . . . ,m the k-jet of α at xi coincides with γi.

By the Rosenlicht Theorem (e.g., see [PV, Thm. 2.3]) for X, A, and U as in
Definition 2.1 (1) one can find a finite set of U -invariant functions a1, . . . , am ∈ A,
which separate general U -orbits in X. They generate a morphism % : X → Q into
an affine algebraic variety Q (in particular, dimQ = dimX − 1 because general
U -orbits are one-dimensional). Note that this set of invariant functions can be
chosen so that Q is normal (since X is normal).

Definition 2.9. Such a morphism % : X → Q into a normal Q is called a partial
quotient. In the case when a1, . . . , am generate the subring AU of U -invariant
elements of A such a morphism is called the categorical quotient.7

Proposition 2.10. Let G ⊂ SAut(X) be generated by a saturated set N of locally
nilpotent vector fields on a smooth quasi-affine algebraic variety X which is G-
flexible. Suppose that N0 is a nontrivial subset of N which is also saturated and
closed under conjugation by elements of G. Then X is G0-flexible where the group
G0 is generated by N0.

6Precaution: this natural action of G on X ×X \∆ is not infinitely transitive.
7However, in general AU is not finitely generated by Nagata’s example. That is, why,

following [FKZ], we prefer to formulate some results for partial quotients.
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Proof. By Theorem 2.8 for any point x ∈ X where σ ∈ N0 does not vanish we
can find α1, . . . , αn ∈ G where n = dimX such that αi(x) = x and the values of
the fields α1∗(σ), . . . , αn∗(σ) at x generate TxX. That is, TxX is generated by the
values of the fields from N0. Since G acts transitively on X we can guarantee the
same for every x ∈ X using conjugation by elements in G. Thus, X is G0-flexible
which is the desired conclusion. �

Definition 2.11. Let δ1 and δ2 be a pair of locally nilpotent vector fields on X.
Suppose that Ker δ1 and Ker δ2 are finitely generated algebras (in particular, δi
admits the categorical quotient morphism % : X → Qi). We say that (δ1, δ2) is a
compatible pair if

(i) the vector space Span(Ker δ1 · Ker δ2) generated by elements from Ker δ1 ·
Ker δ2 contains a nonzero ideal in k[X] (so-called associated ideal of the pair) and

(ii) some element a ∈ Ker δ2 is of degree 1 with respect to δ1, i.e., δ1(a) ∈
Ker δ1 \ {0}.

Remark 2.12.

(1) In [KK] the vector field δ2 was also allowed to be semi-simple, but we do
not consider this case here.

(2) For every locally nilpotent vector field δ on X its nonzero replica fδ has
the same kernel and for each a ∈ k[X] the degree of a with respect to δ coincides
with its degree with respect to fδ. Hence, for a compatible pair (δ1, δ2) and fi ∈
Ker δi \ {0}, i = 1, 2 the pair (f1δ1, f2δ2) is also compatible. Furthermore, the
conjugation by any element of Aut(X) transfers (δ1, δ2) into another compatible
pair.

(3) The assumption that Ker δ1 and Ker δ2 are finitely generated was unfortu-
nately missed in [KK].

(4) It is worth mentioning that in (ii) the field aδ1 is complete and, furthermore,
(ii) holds for any commuting pair of nontrivial non-equivalent8 locally nilpotent
derivations.

Notation 2.13. For every affine algebraic variety X we denote by AVF(X) the
space of all algebraic vector fields on X. If K is an ideal in k[X] then AVFK(X) is
the subspace of AVF(X) generated by all fields of the form fσ where f ∈ K and
σ ∈ AVF(X). Given a saturated set N of locally nilpotent vector fields on X and
a closed subvariety Z in X we denote by LieNalg(X,Z) the Lie algebra generated
by the complete vector fields vanishing on Z that are of the form bδ where δ ∈ N
and b ∈ k[X] has degree degδ b 6 1. If x ∈ X then µx is its vanishing maximal
ideal in k[X] and for every k[X]-module M its localization at µx will be denoted
by (M)µx .

Lemma 2.14. Let X and Z be as in Notation 2.13 and I ⊂ k[X] be the vanishing
ideal of Z. Let M be a k[X]-submodule of AVF(X) such that for every x ∈ X \ Z
the localization (M)µx

coincides with the localization of M̆ = AVF(X) at µx. Then
there exists k > 0 such that M contains AVFIk(X).

8Recall that two locally nilpotent derivations δ and σ on k[X] are equivalent if Ker δ =
Kerσ.
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Proof. Since X is affine the k[X]-module M̆ is finitely generated, i.e., we have
M̆ =

∑m
i=1 M̆i where M̆i = k[X]σi for some vector field σi ∈ AVF[X]. Let Mi =

M ∩ M̆i. Note that M̆i has a natural structure of the ring k[X] and Mi can be
viewed as an ideal Ki in k[X]. Since the operations of localization and intersection
commute we have (Mi)µx

= (M̆i)µx
for every x /∈ Z. Hence, the zero locus of Ki is

contained in Z. By Nullstellensatz there exists ki for which Iki ⊂ Ki and, therefore,
IkiM̆i ⊂Mi. Letting k = max{ki|i = 1, . . . ,m} we get the desired conclusion. �

Theorem 2.15. Let X, Z and N be as in Notation 2.13 and I ⊂ k[X] be the
vanishing ideal of Z. Let G ⊂ SAut(X) be the group generated by N and let X \Z
be G-flexible. Suppose that X admits a pair of compatible locally nilpotent vector
fields δ1 and δ2 ∈ N . Then for some k > 1 the algebra LieNalg(X,Z) contains the
space AVFIk(X).

Proof. Let %i : X → Qi := Spec Ker δi be the quotient morphism associated with
δi, let Zi be the closure of %i(Z) in Qi, and let a be as in Definition 2.11. Choose a
nonzero function hi ∈ Ker δi ' k[Qi] that vanishes on Zi and note that for every
fi ∈ Ker δi, i = 1, 2 the fields f1h1δ1, af2h2δ2, af1h1δ1, and f2h2δ2 are contained
in LieNalg(X,Z). Hence,

[f1h1δ1, af2h2δ2]− [af1h1δ1, f2h2δ2] = f1f2h1h2δ1(a)δ2 (5)

also belongs to LieNalg(X,Z). By condition (i) in Definition 2.11 Span(Ker δ1·Ker δ2)
contains a nonzero ideal J . Hence, J2 := h1h2δ1(a)J ⊂ J ∩I is also a nonzero ideal
in k[X]. By formula (5) one has J2δ2 ⊂ LieNalg(X,Z).

Let Ñ be the set {δ′′} of locally nilpotent vector fields δ′′ ∈ N such that for some
δ′ ∈ N the pair (δ′, δ′′) is compatible. By Remark 2.12 (2) this set is saturated

and closed under conjugation by elements of G. By Proposition 2.10 Ñ generates
a subgroup G̃ of SAut(X \ Z) such that X \ Z is G̃-flexible. Let σ1, . . . , σm ∈ Ñ ,
σ2 = δ2 and Ji plays the same role for σi as J2 above for δ2, i.e., Jiσi ⊂ LieNalg(X,Z).
Applying [AFKKZ, Prop. 1.8] (with Hi being the one-parameter unipotent group
associated with σi) we can suppose that for every x ∈ X \Z the values of the fields
σ1, . . . , σm generate TxX. Set L1 = J1 · · · · · Jm, i.e., L1σi ⊂ LieNalg(X,Z) for every
i and L1 is contained in I.

Let M̆ = AVF(X) and W1 be the zero locus of L1. Then M =
∑m
i=1 L1σi is

a k[X]-submodule of M̆ such that for every point x ∈ X \W1 and every nonzero
v ∈ TxX there exists a vector field σ ∈ M whose value at x is v. Hence, we have
(M̆)µx

= µx(M̆)µx
+ (M)µx

for all x ∈ X \W1 and the Nakayama lemma [AM,

Cor. 2.7] implies that (M)µx
= (M̆)µx

. By Lemma 2.14 M contains AVFK1
(X)

where K1 is some power of the vanishing ideal of W1. In particular, AVFK1
(X) ⊂

LieNalg(X,Z).

Using conjugations by elements of G̃, we can transform K1 into a sequence of
ideals K1, . . . ,Kk ⊂ I such that for every x ∈ X \ Z there exists i for which x

is not in the zero locus of Ki. Consider the k[X]-module N =
∑k
i=1 AVFKi

(X).
By construction (N)µx

coincides with the localization of AVF(X) at µx for every
x ∈ X \ Z. Hence, by Lemma 2.14 N contains AVFIk(X) for some k > 0. Since
AVFKi(X) ⊂ LieNalg(X,Z) for every i, we see that N ⊂ LieNalg(X,Z) which yields
the desired conclusion. �
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Remark 2.16.
(1) Let the assumptions of Theorem 2.15 hold with the following exception:

we do not assume that the fields from N are tangent to Z and that X \ Z are
G-flexible, but we suppose that X is G-flexible. Then the conclusion of Theorem
2.15 remains valid. Indeed, consider the saturated subset NZ of N that consists
of all fields that vanish on Z and let GZ ⊂ SAut(X) be the group generated by
NZ . Then X \ Z is GZ-fleixible by [FKZ]. Hence, replacing N and G by NZ and
GZ respectively we get the assumptions and, therefore, the conclusion of Theorem
2.15.

(2) If N is the set of all locally nilpotent vector fields on X and for some k > 1
the algebra LieNalg(X,Z) contains the space of all algebraic vector fields on X that
vanish on Z with multiplicity at least k then we say that the pair (X,Z) has the
algebraic density property. In this terminology Theorem 2.15 is a generalization
of [KK, Thm. 4] which established the algebraic density property for pairs of the
form (Cn, Z) where Z is a closed subvariety of Cn with dimZ 6 n − 2. The
algebraic density property in the complex case has some remarkable consequences.
In particular, as in [KK] we get two interesting facts which will not be used in the
sections below.

Theorem 2.17 (cf. [F2, Thm. 4.10.6]). Let X be a complex affine flexible variety
and Z be a closed subvariety of X whose codimension is at least 2. Suppose that
X admits a pair of compatible vector fields. Let Φt : Ω0 → Ωt = Φt(Ω0) ⊂ X \
Z (t ∈ [0, 1]) be a C1-isotopy consisting of injective holomorphic maps between
Runge domains9 with Φ0 = IdΩ0

. Suppose also that each Ωt is Stein. Then Φ1 can
be approximated uniformly on compacts of Ω0 by holomorphic automorphisms of
X identical on Z.

Proof. Consider generators f1, . . . , fm of the vanishing ideal I ⊂ k[X] of Z. These
functions have no common zeros on any Ωt. By the weak Nullstellensatz for
Stein spaces (e.g., see [On, Thm. 4.25]) there are holomorphic functions gt1, . . . , g

t
m

on Ωt for which
∑m
i=1 fig

t
i = 1 on Ωt. Since Ωt is a Runge domain on every

compact Kt ⊂ Ωt these functions gt1, . . . , g
t
m can be uniformly approximated by

global holomorphic functions on X, i.e., we get a holomorphic function h on X
vanishing on Z which is as close to 1 on Kt as we wish. Furthermore, replacing
h by hk for a given k > 1 we can suppose that h is contained in Ĩk where Ĩ
is the vanishing ideal of Z in the algebra Hol(X) of holomorphic functions on
X. Hence, every holomorphic vector field νt on Ωt can be approximated in the
compact-open topology by holomorphic fields from HVFĨk(X) where HVF(X) is
the space of all holomorphic vector fields on X. Since X is affine every holomorphic
function (resp. vector field) on X can be approximated by regular functions (resp.

algebraic vector fields) on X in the compact-open topology and also Ĩ is generated
by I over Hol(X) (e.g., see [Ka, Thm. 4]). Hence, νt can be approximated in the
compact-open topology by elements of AVFIk(X) and, therefore, by Theorem 2.15
by elements of LieNalg(X,Z). Let ν̃t be an element of LieNalg(X,Z) uniformly close

9Recall that an open subset Ω of a Stein manifold Y is called a Runge domain if
every holomorphic function on Ω can be approximated in the compact-open topology by
holomorphic functions on Y .
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to νt on Kt and let ψs and ψ̃s be the flows of νt and ν̃t respectively with s being
the time parameter. Suppose that for some s0 > 0 both of these flows are defined
for every x ∈ Kt. Recall that all generators of LieNalg(X,Z) can be chosen as

complete algebraic vector fields that vanish on Z. By [F2, Cor. 4.8.4] ψ̃s0 can be
approximated by compositions of flows of these generators. Hence, we have the
following

the element ψs0 of the flow of νt can be uniformly approximated

on Kt by global holomorphic automorphisms of X identical on Z.
(∗)

To make use of (∗) following the proof of [F2, Thm. 4.9.2] we consider the trace

Ω̃ = {(t, z) | t ∈ [0, 1], z ∈ Ωt} of the isotopy {Φt} in R×X and we treat Φt as the
flow of the continuous time dependent vector field

V (t, z) = Φ̇t(Φ
−1
t (z))

where dot denotes the derivative on t. The field V is continuous on Ω̃ and holomor-
phic on Ωt for every fixed t ∈ [0, 1]. Divide the interval [0, 1] into N subintervals
[tk, tk+1] of length 1/N for a given natural N and consider the locally constant ho-

lomorphic vector field Ṽ (t, z) which is equal to V (tk, z) on every interval [tk, tk+1].

Let ϕt be the flow of Ṽ . Similarly to the estimates in the proof of [F2, Thm. 4.8.2]
one can check that as N → +∞ the flow ϕt converges to Φt uniformly on compacts
in Ω for all t ∈ [0, 1]. Since by (*) ϕt can be approximated by global holomorphic
automorphisms of X identical on Z so can Φt. This yields the desired conclusion.
�

Corollary 2.18. Let X be a complex affine flexible variety of dimension n and Z
be a closed subvariety of X whose codimension is at least 2. Suppose that X admits
a pair of compatible vector fields. Then every x ∈ X \ Z has a neighborhood Ω in
X \ Z that is a Fatou–Bieberbach domain (i.e., U is biholomorphic to Cn).

Proof. Since X \Z is flexible it suffices to prove this statement for some point x0 in
X\Z only. Choose a dominant morphism ϕ : X → Cn and choose x0 ∈ X\Z so that
for a ball B0 ⊂ Cn with center at ϕ(x0) the component B of the preimage ϕ−1(B0),
containing x0, is naturally biholomorphic to B0. Taking B small enough we can
suppose that there are regular functions g1, . . . , gm ∈ C[X] such that each |gi| does
not exceed 1 on B while it is greater than 1 at each point of ϕ−1(B0) \ B. This
implies that B is Hol(X)-convex. Hence, it is a Runge domain in X by the Oka-
Weil theorem [F2, Thm. 2.2.5]. For an analytic coordinate system (z1, . . . , zn) on B
with the origin at x0 consider the homothety Φ : (z1, . . . , zn) → (z1/2, . . . , zn/2).
By Theorem 2.17 Φ can be approximated by a global holomorphic automorphism
F of X identical on Z. Since F (B) ⊂ B by the Brouwer fixed point theorem F has
a fixed point in B. Without loss of generality we can suppose that this point is x0

and reducing the size of B we can suppose that B contains no other fixed point
but x0. The eigenvalues λ1, . . . , λn of the map dF at x0 must be close to those
of dΦ which are 1/2. In particular, we can suppose that |λ1| > |λ2| > . . . > |λn|
and |λ1|2 < |λn|. In particular, these eigenvalues satisfy the assumptions of [RR,
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Thm. 9.1] and we can copy the argument of Rosay and Rudin. Namely, consider the
basin Ω of attraction of F , i.e., x ∈ Ω if there exists N > 0 such that FN (x) ∈ B.
By continuity for every y in a small neighborhood of x one has FN (y) ∈ B.
Thus Ω is open (in the standard topology). Treating B as a neighborhood of
the origin in Tx0

X ' Cn and letting A = dF we can consider an injective map
A−M ◦ FM : F−N (B) → Cn where M > N . Choose positive constants β > |λ1|
and α < |λn| such that β2 < α. Since the local Jacobi matrix of the map A−1 ◦ F
at x0 is the identity matrix the computation in [RR, Thm. 9.1]10 implies that for
every compact K ⊂ F−N (B) there exist some M0 > N and a positive real number
b such that for every x ∈ K one has

||A−M ◦ FM (x)−A−M−1 ◦ FM+1(x)|| = ||A−M (FM (x)−A−1 ◦ F (FM (x)))||
6 b(β2/α)M

where M >M0. Hence, we have a well-defined holomorphic map Φ : Ω→ Cn where
Ψ = limM→∞A−M ◦ FM . Since at every point of F−N (B) the local Jacobian of
A−M ◦ FM does not vanish we have the following alternative: either the local
Jacobian of Ψ does not vanish or it is identically zero. However, the local Jacobian
of Ψ at x0 is 1 and we have the former, i.e., Ψ is an open map. Furthermore, it is
injective since otherwise the maps A−M ◦ FM are not injective for large M . Note
also that Ψ = A−1 ◦ Ψ ◦ F , i.e., Ψ and A−1 ◦ Ψ have the same range. Since the
linear operator A−1 is an expansion it follows that Ψ(Ω) = Cn. Thus the basin Ω
of attraction of F is biholomorphic to Cn and we have the desired conclusion. �

Remark 2.19. For X = Cn the question about Fatou–Bieberbach domains in the
complement of subvariety of codimension 2 was posed by Siu and answered by
Buzzard and Hubbard [BH] (see also [F1]).

3. Relative version of Theorem 2.8

Let us prove first the following analogue of [AFKKZ, Thm. 3.1].

Theorem 3.1. Let % : X → Q be a dominant morphism of quasi-affine algebraic
varieties, Q0 be a Zariski open dense subset of Q, and X0 = %−1(Q0). Let every
fiber %−1(q), q ∈ Q0 be G-flexible where G ⊂ SAut(X0) is a subgroup generated by
a saturated set N of locally nilpotent vector fields on X0 which are tangent to the
fibers of %. Suppose that q1, . . . , qm are distinct points in %(X0) and αi ∈ G|%−1(qi).
Then there exists an automorphism α of X over Q such that α|%−1(qi) = αi for
every i = 1, . . . ,m and α|X0

∈ G.

Proof. Suppose first that Q = Q0. For a locally nilpotent vector field σ denote by
exp(tσ) the element of the one-parameter group associated with σ at time t ∈ k.
By definition αi is of the form

exp(t1,iσ1,i) ◦ · · · ◦ exp(tn(i),iσn(i),i)|%−1(qi)

10See the formula immediately after formula (9) in [RR, Thm. 9.1]. Formally, this
formula is proven for X = Cn but it works in our case as well without change.
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where n(i) is a natural number depending on i and tj,i ∈ k. Choose regular
functions fi on Q such that fi(qi) = 1 and fi(qj) = 0 for every j 6= i. Using
the natural embedding k[Q] ⊂ k[X] we treat fi as a function on X. Then by the
assumption fi ∈ Kerσ for every σ ∈ N , i.e., the replica fiσ ∈ N . It remains to
put

α = exp(t1,1f1σ1,1) ◦ · · · ◦ exp(tn(1),1f1σn(1),1) ◦ · · ·
◦ exp(t1,mfmσ1,m) ◦ · · · ◦ exp(tn(m),mfmσn(m),m)

and we are done in the case of Q = Q0.
In the general case this α is only an automorphism of X0 and its extension to

X may have poles on X \X0. However, one can choose fi from the above so that
they vanish on Q \ Q0 with sufficiently high multiplicity. That is, we can assume
that each fiσj,i is a regular vector field on X that vanishes on X \X0. Then the
extension of α becomes a regular automorphism on X whose restriction to X \X0

is the identity map. �

Remark 3.2.
(1) Let Q be affine. Then Theorem 3.1 remains valid with the same proof when

the finite set q1, . . . , qm is replaced by a collection of m disjoint closed suvarieties
of Q which are contained in Q0.

(2) One can consider a more general situation when every αi is the restriction
of an element of G to a k-infinitesimal neighborhood Vi of %−1(qi).

11 Then we can
still find α ∈ G for which α|Vi

= αi, i = 1, . . . ,m. For this it suffices to require
that each fi vanishes with multiplicity at least k at qj (where j 6= i) and takes the
value 1 with multiplicity at least k at qi.

Notation 3.3. Further in this section X is a smooth algebraic variety of dimen-
sion n, G ⊂ SAut(X) is a subgroup generated by a saturated set N of locally
nilpotent vector fields on X, Gz ⊂ G is the isotropy group of a point z ∈ X, mz
is the maximal ideal in the local ring OX,z at z, and Am(X, z) = mz/m

m+1
z (in

particular, A1(X, z) coincides with the cotangent space T ∗zX). We consider the
set Aut(Am(X, z)) of k-algebra isomorphisms f : Am(X, z)→ Am(X, z) satisfying
the following condition:

the Jacobian J(f) = 1 mod mm+1
z . (6)

Let u1, . . . , un ∈ µz be such that they generate the cotangent space. Then we
call the n-tuple (u1, . . . , un) a local coordinate system at z (indeed, if the ground
field k = C then u1, . . . , un form a local analytic coordinate system in a small
neighborhood of z in the standard topology). In terms of this local coordinate
system elements of Aut(Am(X, z)) can be described as follows. The k-algebra Am
is contained in the quotient A/mm+1

A of the local ring A = k[[u1, . . . , un]] of formal
power series with respect to the power of its maximal ideal mA. Therefore, we

11For every reduced subvariety Y of X with a defining ideal I ⊂ k[X] one can treat
an automorphism of the k-infinitesimal neighborhood of Y as an automorphism of the
ring k[X]/Ik.

533



SHULIM KALIMAN

treat any map f ∈ Aut(Am(X, z)) as an n-tuple of polynomials (F1, . . . , Fn) ∈
(A/mm+1

A )n in n variables u1, . . . , un of degree at most m such that they vanish
at the origin and the determinant of the matrix [∂Fi/∂xj ]i,j is 1 modulo terms of
degree higher than m. In particular, each Fi is the sum of homogeneous k-forms
where k runs from 1 to m. Let F ′i be the m-form present in this sum and θz,m be
the linear map from Aut(Am(X, z)) to the space of n-tuples of m-forms given by

θz,m(f) = (F ′1, . . . , F
′
n).

Suppose also that λ(f) is the n-tuple of linear parts of f . In particular, λ(f) ∈
SL(n,k) (because of the assumption on the Jacobian). Note that SL(n,k) admits
different natural actions on the space θz,m(Aut(Am(X, z))) of n-tuples F (ū) of m
forms in n variables (i.e., ū = (u1, . . . , un)) for which we use the following notations

λ.lF (ū) = λ(F (ū)), λ.rF (ū) = F (λ(ū)), and λ.F (ū) = λ−1(F (λ(ū))).

Lemma 3.4. Let Notation 3.3 hold and Autm−1(Am(X, z)) be the subgroup of
the group Aut(Am(X, z)) consisting of those automorphisms f for which f ≡ id
mod mmz (i.e., (f − θz,m(f))(ū) coincides with the n-tuple (u1, . . . , un)). Then we
have the following.

(a) For every f ∈ Autm−1(Am(X, z)) and g ∈ Aut(Am(X, z)) one has

g−θz,m(g)=f ◦ g−θz,m(f ◦ g)=g ◦ f−θz,m(g ◦ f),

θz,m(g◦f)=λ(g).l(θz,m(f))+θz,m(g) and θz,m(f ◦g)=λ(g).r(θz,m(f))+θz,m(g),

g−1◦f ◦g∈Autm−1(Am(X, z)) and θz,m(g−1◦f ◦g)=λ(g).θz,m(f).

In particular, if g is also in Autm−1(Am(X, z)) then θz,m(g ◦ f) = θz,m(f ◦ g) =
θz,m(f) + θz,m(g).

(b) For m > 2 the set Fz,m := θz,m(Autm−1(Am(X, z))) is the linear space of
n-tuples F (ū) of m-forms in n variables of divergence zero and the SL(n,k)-action
on Fz,m given by λ.F (ū) is irreducible.

(c) There is a natural homomorphism Jz,m : Gz → Aut(Am(X, z)) such that
in the case when X is G-flexible one has Jz,1(Gz) = Aut(A1(X, z)) ' SL(n,k) =
SL(T ∗zX).

(d) If ∂ is a locally nilpotent vector field on X with a zero of order m ≥ 2 at z
then θz,m(Jz,m(exp(t∂))) = tθz,m(Jz,m(exp(∂))).

Proof. Statement (a) is straightforward (see also [AFKKZ, Lem. 4.12]). The first
clause in statement (b) can be found in [AFKKZ, Lem. 4.13] and the second in [Pr,
IX.10.2]. Define Jm,z(α) as the operation of taking the m-jet of α ∈ Gz. Since α ∈
SAut(X) we see that the Jacobian J(α) ≡ 1. Hence, Jz,m(Gz) ⊂ Aut(Am(X, z)).
The fact that Jz,1(Gz) ' SL(T ∗zX) when X is G-flexible follows from [AFKKZ,
Cor. 4.3] which concludes (c).

For (d) note (as in [AFKKZ, Lem. 4.12]) that exp(∂) ∈ Gz,m and it induces the

map id + ∂̂ ∈ Autm−1(Am) where ∂̂ denotes the derivation on Am induced by ∂.

Hence, exp(t∂) induces id + t∂̂ which is (d) and we are done. �
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Notation 3.5. In addition to Notation 3.3 suppose that % : X → Q is a smooth
morphism of smooth quasi-affine algebraic varieties such that every fiber Y =
%−1(q), q ∈ Q is of dimension at least 2 and G-flexible (i.e., we are under the
assumptions of Theorem 3.1 and G is generated by a saturated set N of locally
nilpotent vector fields such that every δ ∈ N is tangent to the fibers of %).
In particular, for every z ∈ X and q = %(z) a local coordinate system can be
chosen in the form (ū, v̄) := (u1, . . . , uk, v1, . . . , vn−k) where ui and vi are regular
functions on X such that v1, . . . , vn−k are the lifts of functions on Q that form a
local coordinate system at q ∈ Q while the restriction (u1, . . . , uk) yields a local
coordinate system at z ∈ Y .

Note that in such a coordinate system for every α ∈ Gz its image Jz,m(α) ∈
Aut(Am(X, z)) is of the form

Jz,m(α) = (F1(ū, v̄), . . . , Fk(ū, v̄), v1, . . . , vn−k) (7)

where Fi is a polynomial of degree at most m and the determinant of the matrix
[ ∂Fi

∂uj
]i,j is 1 up to terms of degree higher than m.

Lemma 3.6. Let δ ∈ N and δq be the restriction of δ to Y = %−1(q) for q ∈ Q.
Then a partial quotient morphism τ : X → P (resp. τq : Y → Pq) of δ (resp. δq)
can be chosen so that % factors through τ and τ |Y factors through τq (i.e., % = θ◦τ
and τ |Y = κq ◦ τq for some morphisms θ : P → Q and κq : Pq → P ).

Proof. The quasi-affine variety Q is contained as an open subset in an affine variety
Q̆. Under the natural embedding k[Q̆] ↪→ k[X] generators of k[Q̆] can be treated
as elements of Ker δ. Thus we can choose τ so that k[P ] contains these generators
which implies that % factors through τ , i.e., % = θ◦τ . Similarly, we can choose τq so
that k[Pq] contains generators of the ring of regular functions on an affine variety
in which θ−1(q) is an open subset. This implies that τ |Y factors through τq. �

Lemma 3.7. Let Z be a finite subset of Y = %−1(q) and z ∈ Z. Suppose that
there exists δ ∈ N such that δ|Y 6= 0 and partial quotient morphisms τ and τq
from Lemma 3.6 can be chosen so that

κq(Pq) is dense in θ−1(q). (8)

Then such a field δ and a coordinate system (ū, v̄) as in Notation 3.5 can be
chosen so that the following holds:

(i) δ induces a trivial derivation on Am(X,w) for every w ∈ Z \ {z};
(ii) ui belongs to the kernel Ker δ for every i > 2;

(iii) the derivation σ on Am(X, z) ⊂ A/mm+1
A (where A = k[[ū, v̄)]]) induced by

δ coincides with σ := ∂/∂u1.

Proof. Treating δ as a derivation δ : k[X] → k[X] consider its conjugate δ̃ =

g∗ ◦ δ ◦ (g∗)−1 : k[X]→ k[X] for g ∈ G. Similarly, let δ̃q = g|∗Y ◦ δq ◦ (g|∗Y )−1. Note

that Ker δ̃ = g∗(Ker δ) and Ker δ̃q = g|∗Y (Ker δq). Therefore, for τ̃ = τ ◦ g : X → P

and τ̃q = τq ◦ g|Y : Y → Pq one has τ̃∗(k[P ]) ⊂ Ker δ̃ and τ̃∗q (k[Pq]) ⊂ Ker δ̃q.

Hence, these morphisms are invariant under the Ga-actions associated with δ̃ and
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δ̃q respectively. Each fiber of τ̃ (resp. τ̃q) is the image of a fiber of τ (resp. τq) under
the action of g. This implies that the general fibers of τ̃ and τ̃q are isomorphic to

lines and these morphisms are partial quotient morphisms for δ̃ and δ̃q respectively.
Furthermore, one can see that % = %◦g = θ◦τ◦g = θ◦τ̃ and, similarly, τ̃ |Y = κq◦τ̃q.
In particular, the assumption (8) holds for the locally nilpotent vector field δ̃. Since

N is saturated δ̃ ∈ N and we can replace δ by δ̃ while trying to achieve (i)-(iii)
for the finite set Z.

Note that the validity of (i)-(iii) for the pair (δ̃, Z) is equivalent to the validity
of these conditions for the pair (δ, g−1(Z)). Indeed, (i) is obvious and for the rest
let (u1, . . . , uk, v1, . . . , vn−k) be a local coordinate system at z such that (i)-(iii) are

true for the pair (δ̃, Z). Let (û1, . . . , ûk, v1, . . . , vn−k) be a local coordinate system
at g−1(z) such that ûi = ui ◦ g, i.e., the local form of g is

(û1, . . . , ûk, v1, . . . , vn−k)→ (û1 ◦ g−1, . . . , ûk ◦ g−1, v1, . . . , vn−k).

Since ui ∈ Ker δ̃i for i > 2 and δ̃ = g∗ ◦ δ ◦ (g∗)−1 we see that ûi ∈ Ker δ, i.e.,
we have (ii) for the pair (δ, g−1(Z)). Condition (iii) is equivalent to the fact that

modulo t2 the exponent exp(tδ̃), t ∈ k has the following local form at z

(u1, . . . , uk, v1, . . . , vn−k)→ (u1 + t+ tf(ū, v̄), u2 . . . , uk, v1, . . . , vn−k)

where f is a function vanishing at the origin with multiplicity m + 1 or higher.
Since exp(tδ̃) = g∗ ◦ exp(tδ) ◦ (g∗)−1 the local form of exp(tδ) is

(û1, . . . , ûk, v1, . . . , vn−k)→ (û1 + t+ tf(û1, . . . , ûk, v̄), û2 . . . , ûk, v1, . . . , vn−k)

and we have (iii) for the pair (δ, g−1(Z)).
Therefore, we replace Z by g(Z) while keeping δ intact. By virtue of infinite

transitivity (Theorem 2.6) we can suppose now that Z consists of general points
{wi} of Y with z = w1. Hence, p′i = τq(wi) are distinct general (and, therefore,
smooth) points p′i of Pq such that for some neighborhood Ui ⊂ Pq of p′i one has
a natural Ui-isomorphism τ−1

q (Ui) ' Ui × Ak. Furthermore, we can suppose also
that δ is nontrivial on τ−1

q (p′1).
Let pi = κq(p

′
i). By (8) we can suppose that {pi} are general points of θ−1(q),

i.e., there is a function f ∈ k[P ] that vanishes at each pi, i > 2 with multiplicity
at least m but has f(p1) = 1 also with multiplicity at least m. Then replacing δ
by its replica fδ ∈ N we get (i).

Since p1 is a smooth point of θ−1(q) a local coordinate system at p1 ∈ P can
be chosen in the form (u2, . . . , uk, v1, . . . , vn−k) where each ui, i > 2 is a regular
function on P . Taking u1 as an appropriate extension to X of a coordinate function
on the Ga-orbit τ−1

q (p′1) ' Ak we can treat (u1, u2, . . . , uk, v1, . . . , vn−k) as a local
coordinate system at z ∈ X. This is the desired coordinate system with δ being a
desired derivation which concludes the proof. �

Remark 3.8. Condition (8) is very mild and it is automatically true when q is a
general point of Q.
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Lemma 3.9. Let z ∈ Z ⊂ Y and (ū, v̄) be as in Lemma 3.7. Suppose that
GZ =

⋂
w∈Z Gw and GmZ,z is the subgroup of GZ such that it induces the identity

map on the m-th infinitesimal neighborhood of every point w ∈ Z \ {z}. Then
the image Im := Jz,m(GmZ,z) contains all automorphisms of Am(X, z) with the
following coordinate form

(ū, v̄) :=(u1, . . . , uk, v1, . . . , vn−k)→(u1+`m1 (v̄), . . . , uk+`mk (v̄), v1, . . . , vn−k) (9)

where every `mi (v̄) is an m-form in variables v1, . . . , vn−k. Furthermore, for every
λ(ū) = (λ1(ū), . . . , λk(ū)) in SL(T ∗z Y ) and each k-tuple (`11(v̄), . . . , `1k(v̄)) of 1-
forms the subgroup I1 contains the following automorphism of T ∗zX

(ū, v̄)→ (λ1(ū) + `11(v̄), . . . , λk(ū) + `1k(v̄), v1, . . . , vn−k). (10)

Proof. Let σ be as in Lemma 3.7. Then for every h ∈ Ker δ the automorphism
exp(hδ) ∈ GmZ,z induces the automorphism exp(h′σ) on Am(X, z) (where h′ is the
image of h in Am(X, z)) of the following coordinate form

(ū, v̄)→ (u1 + h′, u2, . . . , uk, v1, . . . , vn−k). (11)

In particular, choosing h so that h′ is equal to an m-form lm1 (v̄) we see that the
automorphism

(ū, v̄)→ (u1 + `m1 (v̄), u2, . . . , uk, v1, . . . , vn−k) (12)

is contained in Im. Note the variety (Y \ Z) ∪ {z} is GmZ,z-flexible by [FKZ].
Therefore, by Theorem 2.8 for every λ(ū) ∈ SL(T ∗z Y ) the subgroup I1 contains an
automorphism as in formula (10) for certain 1-forms `1i (v̄).

Using notations of Lemma 3.4 we suppose that f and g ∈ GZ,z are such that
Jz,1(g) is given by formula (10) and Jz,m(f) is given by formula (12). In particular,
Jz,m(f) ∈ Autm−1(Am(X, z)) and θz,m(Jz,m(f)) = (`m1 (v̄), 0, . . . , 0) while

θz,1(Jz,m(g)) = (λ1(ū) + `11(v̄), . . . , λk(ū) + `1k(v̄), v1, . . . , vn−k).

By Lemma 3.4(a) Jz,m(g−1 ◦ f ◦ g) ∈ Autm−1(Am(X, z)) and θz,m(Jz,m(g−1 ◦ f ◦
g)) is obtained from θz,m(Jz,m(f)) via conjugation by θz,1(Jz,m(g)). Using such
conjugations we see that automorphisms of the form

(ū, v̄)→ (u1, . . . , ui−1, ui + `mi (v̄), ui+1, . . . , uk, v1, . . . , vn−k) (13)

are also contained in Im. Taking the product of automorphism in formula (13)
with i running from 1 to k we obtain every automorphism from formula (9) as an
element of Im. This implies in turn that any automorphism from formula (10) is
contained in I1 regardless of the choice of `1i (v̄) which concludes the proof. �

Now we can formulate the main result of this section.
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Theorem 3.10. Let Notation 3.5 hold and V (Am(X, z)) be the subset of the group
Aut(Am(X, z)) which consists of automorphisms as in formula (7) satisfying the
assumption on the determinant of [∂Fi/∂uj ]i,j in formula (6). Let Z be a finite
subset of X such that for every q ∈ %(Z) there exists δ ∈ N (where δ may depend
on q) for which condition (8) in Lemma 3.7 holds. Suppose that GZ =

⋂
z∈Z Gz

and JZ,m : GZ →
∏
z∈Z V (Am(X, z)) is the natural homomorphism. Then JZ,m

is surjective (in brief, one can choose an element α ∈ G so that for every z ∈ Z
the m-jet of α at z coincides with a prescribed jet from formula (7) satisfying the
assumption on the determinant ).

Proof. By Theorem 3.1 and Remark 3.2(2) it suffices to consider the case when
%(Z) is a singleton q ∈ Q. Furthermore, assume that for every z ∈ Z we can
find an element αz in the subgroup GmZ,z ⊂ GZ from Lemma 3.9 such that
at z this automorphism has a prescribed m-jet from formula (7) satisfying the
assumption on the determinant. Recall that for every w ∈ Z \ {z} the m-jet of
αz at w is the identity map in the m-th infinitesimal neighborhood of w. Hence,
the composition of such automorphisms αz with z running over Z (in any order)
yields an automorphism α ∈ GZ such that at every point of Z it has a prescribed
m-jet from formula (7) satisfying the assumption on the determinant. Therefore,
it is enough to consider the case when Z is a singleton z, which we do below.

We shall use induction on m with the case of m = 1 provided by Lemma 3.9.
Assume now that the statement is true for m − 1. Let h ∈ V (Am(X, z)). Then

h − θz,m(h) = h̃ ∈ V (Am−1(X, z)). By the assumption there exists α ∈ GZ for

which Jz,m−1(α) = h̃. Let JZ,m(α) = g and let λ(g) be as in Notation 3.3. Consider

the n-tuple f̃ = θz,m(h) − θz,m(g) of m-forms and let f ∈ Autm−1(Am(X, z)) be

such that θz,m(f) = λ(g)−1.rf̃ . Then by Lemma 3.4 (a) we have f ◦g = h. That is,
it suffices to show that f belongs to Jz,m(GZ), or, equivalently θz,m(f) is contained
in

I := θz,m(Jz,m(GZ) ∩Autm−1(Am(X, z))).

Note that since h and g are in V (Am(X, z)) the last n − k coordinates of the

n-tuple f̃ (and, therefore, θz,m(f)) are equal to zero for m > 1. Note also that
any element of I (and, thus, θz,m(f)) is of the form

∑
µ µpµ(ū) where µ is a

monomial in coordinates v̄ (with (ū, v̄) from Notation 3.5) and pµ(ū) is an n-tuple
of homogeneous polynomials in ū of degree l = m− deg µ such that the last n− k
coordinates of this n-tuple are equal to zero and its divergence is also zero (the
latter fact follows from the assumption of the Jacobian, see [AFKKZ, Lem. 4.13]).
Thus applying Lemma 3.4(a) again we see that it suffices to show that µpµ(ū)
belongs to I. Furthermore, we can suppose that l > 0 since the case of l = 0 is
taken care of by Lemma 3.9.

Recall that δ can be chosen so that conditions (i)-(iii) from Lemma 3.7 are
satisfied. In particular, u2 belongs to the kernel Ker δ as well as every vj and,
therefore, µ. Since N is saturated the replica µul−1

2 δ belongs to N . Thus, we have
exp(µul−1

2 δ) ∈ GZ , and

e := Jz,m(exp(µul−1
2 δ))

belongs to Jz,m(GZ) ∩ Autm−1(Am(X, z)). Consider a finte set {γi} in GZ and
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gi = Jz,m(γi). Then

ei := Jz,m(γ−1
i ◦ exp(µul−1

2 δ) ◦ γi) ∈ Jz,m(GZ) ∩Autm−1(Am(X, z))

and θz,m(ei) = λ(gi).θz,m(e) is the result of the natural action of λ(gi) ∈ SL(TzX)
from Lemma 3.4(b). Consider the projection κ of the space of n-tuples of m-forms
in ū and v̄ to the space of k-tuples forgetting the last n− k coordinates. Note that
κ(θz,m(e)) belongs to µθz,l(Autl−1(Al(Y, z))). Recall also that by Lemma 3.9 we
can suppose that λ(gi) is given by

(ū, v̄)→ (λ1(ū), . . . , λk(ū), v1, . . . , vn−k)

where (λ1(ū), . . . , λk(ū)) is a prescribed element of SL(TzY ) ' SL(k,k). Therefore,
κ(θz,m(ei)) ∈ µθz,l(Autl−1(Al(Y, z))) and by Lemma 3.4(b) we can suppose that
these elements generate the vector space µFz,l where Fz,l = θz,l(Autl−1(Al(Y, z)) is
the space of k-tuples of l-forms in ū whose divergence is zero. Lemma 3.4(d) implies
that tiλ(gi).θz,m(e) is also contained in I for every ti ∈ k. Applying Lemma 3.4(a)
again we see that every linear combination of the elements λ(gi).θz,m(e) belongs to
I and, therefore, κ(I) contains the space µFz,l. Hence, µp(ū) ∈ I which concludes
the proof. �

Corollary 3.11. Let Notation 3.5 hold and condition (8) in Lemma 3.7 be valid
for every q ∈ Q. Suppose that Z is a finite subset of X, and m is a natural number.
Let S′z and S′′z be étale sections of % : X → Q through z ∈ Z. Then there exists
an automorphism α ∈ G such that for every z ∈ Z one has α(z) = z and α(S′z) is
tangent to S′′z at z with multiplicity at least m.

4. General projections for flexible varieties. I

Notation 4.1.
(1) If κ : X → P is a morphism of algebraic varieties then we denote by

Aut(X/P ) (resp. SAut(X/P )) the subgroup of Aut(X) (resp. SAut(X)) that
preserves each fiber of κ.

(2) If κ : X → P is a smooth morphism of smooth varieties we denote by
T (X/P ) the relative tangent bundle (which is the kernel of the induced map TX →
κ∗(TY )). Furthermore, if Z is a subvariety of X then we still denote by T (Z/P ) the
intersection of the Zariski tangent bundle TZ with T (X/P ). Similarly, for every
z ∈ Z we let Tz(Z/P ) = TzZ ∩ T (Z/P ).

The aim of this section is to describe analogues of general linear projections of
Ank for flexible varieties. More precisely, we shall prove the following fact.

Theorem 4.2. Let X and P be smooth algebraic varieties and Q be a normal
algebraic variety. Let % : X → Q and τ : Q → P be dominant morphisms such
that κ : X → P is smooth for κ = τ ◦ %. Suppose that Q0 is a non-empty Zariski
open smooth subset of Q so that for X0 = %−1(Q0) the morphism %|X0

: X0 →
Q0 is smooth. Let G ⊂ Aut(X/P ) be an algebraically generated group acting 2-
transitively on each fiber of κ : X → P and Z be a locally closed reduced subvariety
in X.
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(i) Let dimZ ×P Z 6 2 dimZ − dimP and dimQ > dimZ + m where m > 1.
Then there exists an algebraic G-family A of automorphisms of X (see Definition
1.1) such that for a general element α ∈ A one can find a constructible subset R of
α(Z)∩X0 of dimension dimR 6 dimZ−m for which %(R)∩%(α(Z)\R) = ∅ and
the restriction %|(α(Z)∩X0)\R : (α(Z)∩X0)\R→ Q0 of % is injective. In particular,
if dimQ > 2 dimZ + 1 and Z̄ ′α is the closure of Z ′α = % ◦ α(Z) in Q then for a
general element α ∈ A the map %|α(Z)∩X0

: α(Z) ∩X0 → Z ′α ∩ Q0 is a bijection,
while in the case of a pure-dimensional Z and dimQ > dimZ + 1 the morphism
%|α(Z)∩X0

: α(Z) ∩X0 → Z̄ ′α ∩Q0 is birational.
(ii) Let dimZ ×P Z 6 2 dimZ − dimP , dimQ > dimZ + 1 and F be a closed

subvariety of Z such dimF ×P Z < dimQ − dimP (which is the case when F is
a finite set and P is a singleton ). Then for a general element α in the algebraic
family A from (i) and every z ∈ α(F ) ∩X0 one has %−1(%(z)) ∩ α(Z) = z.

(iii) Suppose that G is generated by a saturated set N of locally nilpotent vector
fields on X (in particular, every fiber of κ is G-flexible ). Let P0 = τ(Q0), Z0 =
Z∩κ−1(P0) and dimT (Z0/P0) 6 dimQ−dimP 12. Then there exists an algebraic
family A of G-automorphisms of X such that for a general element α ∈ A, every
z ∈ α(Z0) ∩ X0 the induced map %∗ : Tzα(Z0) → T%(z)Q of the tangent spaces is
injective.

(iv) Suppose that G is again generated by a saturated set N of locally nilpotent
vector fields on X. Let dimZ ×P Z 6 2 dimZ − dimP , 2 dimZ + 1 6 dimQ
and dimT (Z0/P0) 6 dimQ− dimP . Then the algebraic family A from (i) can be
chosen so that for a general element α ∈ A the morphism %|α(Z)∩X0

: α(Z)∩X0 →
Z ′α ∩Q0 is bijective and it induces an injective map of the Zariski tangent bundle
of α(Z) ∩X0 into the Zariski tangent bundle of Q0.

Proof. For every variety X over P denote by SX the variety SX = (X ×P X ) \∆X
where ∆X is the diagonal in X ×X . Then every automorphism in Aut(X/P ) can
be lifted to an automorphism of SX . In particular, we have a G-action on SX
and by the assumption this action is transitive on every fiber of the projection
SX → P . Consider the subvariety Y ⊂ SX that is the intersection of X0 ×Q0 X0

and SX in X×P X. The codimension of Y in SX is dimQ−dimP and, because of
smoothness, all non-empty fibers of the natural morphism Y → P are of the same
dimension. Hence, by Remark 1.9(1) dim Y ×P SZ = dimY + dimSZ − dimP . By
Theorem 1.4(ii) we can choose algebraic subgroups H1, . . . ,Hm of G such that for
a general element (h1, . . . , hm) ∈ H1 × · · · ×Hm one has

dimW 6 dimY + dimSZ − dimSX = dimSZ − dimQ+ dimP 6 2 dimZ − dimQ

where W = Y ∩ α(SZ) for α = h1 · · · · · hm. Hence, in case (i) the dimension of
W is at most dimZ −m. Let R be the image of W under one of the two natural
projections X ×Q X → X. In particular, R is a constructible set by Chevalley’s
theorem, R ⊂ α(Z)∩X0 and dimR 6 dimZ−m. Note that for z ∈ α(Z)∩X0 one
has %−1(%(z)) ∩ α(Z) = z iff z /∈ R. Hence, the restriction of % to (α(Z) ∩X0) \R
is injective. Therefore, letting A = H1 × · · · ×Hm, we get (i).

12In particular, when P is a singleton the latter inequality can be written as dim TZ 6
dimQ.
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In (ii) we let SF,Z = (F×PZ)∩SX . By the assumption of (ii) we have dimSF,Z <
dimQ−dimP . By Theorem 1.4(i) for a general element (h1, . . . , hm) ∈ H1×· · ·×
Hm the dimension of the intersection of α(SF,Z) (where α = h1 · · · · · hm) with Y
is at most dimSF,Z + dimY − dimSX = dimSF,Z + dimP − dimQ < 0, i.e., this
intersection is empty. It remains to note that the fact that α(SF,Z) ∩ Y = ∅ is
exactly the statement that for every z ∈ α(F )∩X0 one has %−1(%(z))∩α(Z) = z.

In (iii) for every variety X and a subvariety Y of the tangent bundle TX let
Y∗ = Y \ S where S is the zero section of the natural morphism TX → X .
Every automorphism α ∈ Aut(X/P ) generates an automorphism of T (X/P ). In
particular,G acts on T (X/P )∗ and by Theorem 2.8 this action is transitive on every

fiber of T (X/P )∗ → X
κ→ P . Note that the codimension of Y ∗ = T (X0/Q0)∗ in

T (X/P )∗ is equal to dimQ−dimP and all fibers of the natural projection Y ∗ → P0

are of the same dimension. Hence, by Remark 1.9

dimY ∗ ×P T (Z0/P0)∗ = dimY ∗ + dimT (Z0/P0)∗ − dimP.

By Theorem 1.4 and the inequality dim T (Z0/P0) 6 dimQ−dimP we can choose

one-parameter unipotent algebraic subgroups H̃1, . . . , H̃m̃ of G such that for a
general element (h̃1, . . . , h̃m̃) ∈ H̃1 × · · · × H̃m̃ and Z ′′ = (h̃1 · · · · · h̃m̃)(Z0) one
has dimY ∗ ∩ T (Z ′′/P0)∗ 6 0. Note that if Y ∗ ∩ T (Z ′′/P0)∗ contains a point then
dimY ∗ ∩ T (Z ′′/P0)∗ must be at least 1 (since this point is a vector in TZ ′′ and
then Y ∗ ∩T (Z ′′/P0)∗ contains all nonzero vectors proportional to that one). That
is, Y ∗ ∩T (Z ′′/P0)∗ = ∅. This implies that for every z ∈ Z ′′ ∩X0 the restriction of
%∗ to Tz(Z

′′/P0) is injective. Consequently, the restriction of %∗ to TzZ
′′ is injective

i.e., we have (iii).
In the last statement we note that (i) and (iii) in combination with Proposition

1.10 imply that for a general element α of H1 × · · · × Hm × H̃1 × · · · × H̃m̃ the
restriction of % to α(Z) ∩ X0 is bijective and it induces an injective map of the
Zariski tangent bundle of α(Z) ∩X0 into the Zariski tangent bundle of Q0. Thus
we have (iv). �

Remark 4.3.
(1) Since the algebraic family A of automorphisms of X in Theorem 4.2 is the

product of connected groups we see that A is irreducible and contains the identity
map.

(2) Let P̃ be a smooth subvariety of P and let X̃ = κ−1(P̃ ) be also smooth. Let

V be either X̃, or SX̃ or T (X̃/P̃ )∗. That is, in any case the natural action of G on

V is transitive on every fiber of the natural morphism V → P̃ . Then Proposition
1.7 yields one-parameter unipotent subgroups H1, . . . ,Hm of G and an open dense
subset U ⊆ H1 × · · · ×Hm such that the natural map

Ψ : H1 × · · · ×Hm × V → V ×P̃ V (14)

is smooth on U×V . Note that the proof of Theorem 4.2 implies that the statements
(i)–(ii) are true for general elements of an algebraic G-family A of automorphisms
of X of the form A = H1×· · ·×Hm as soon as the map Ψ is smooth on U×V in the
case of V = SX . Similarly, the conclusions of Theorem 4.2(iii) for general elements
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of a similar family A = H1 × · · · ×Hm are true as soon as the map Ψ is surjective
and smooth on U ×V for V = (TX/P )∗. Suppose that Vi, i = 1, . . . , n are smooth
varieties over smooth subvarieties Pi ⊂ P satisfying the same description as V . Let
Pi be any statement about the G-action on Vi which is true for general elements
of any algebraic G-family of the same form A = H1 × · · · × Hm as soon as for a
suitable open dense subset U ⊆ H1 × · · · ×Hm, the natural map

Ψi : H1 × · · · ×Hm × Vi → Vi ×Pi
Vi (15)

is smooth on U×Vi. Then Remark 1.8 and Proposition 1.12 imply that such family
A can be chosen so that the statements P1, . . . ,Pn are true for a general element
of A simultaneously.

(3) Let P be a singleton and X be G-flexible. Under the assumption of (iv) we
can find α ∈ A such that for a given z0 ∈ Z one has z := α(z0) ∈ X0. In particular,
for a general α the morphism %|α(Z) : α(Z) → Z̄ ′α induces the injective map
%∗ : Tzα(Z)→ T%(z)Q. Note also that under the assumption of (iv) we can suppose
that for some neighborhood U of z in α(Z) the morphism %|U : U → Q induces an
injective map of the Zariski tangent bundles. However, even if %|α(Z) : α(Z) → Q
induces an injective map of the Zariski tangent bundles it may not be proper (and,
in particular, Z ′α may not be closed in Q). As a counterexample one can consider
a bijective morphism of C∗ onto a polynomial curve which has only one singular
point and this singularity is a node.

(4) Note that the natural morphism T (X/P ) → P (resp. Y ∗ → P0) in the
proof of Theorem 4.2(iii) has equidimensional fibers. Hence, by Proposition 1.12
we conclude that the assumption that % and τ are dominant and κ is smooth can
be omitted in the formulation of Theorem 4.2(iii).

(5) Similarly, if κ is not smooth or even dominant we can suppose as in Remark
1.11 that κ(X) as a disjoint union

⋃n
k=1 Pk of smooth varieties such that for

Xk = κ−1(Pk) the morphism κ|Xk
: Xk → Pk is smooth. Letting Yk = Xk ∩ Y

and Zk = Xk ∩ Z and using further stratification we can assume that for every
k the morphism κ|Zk

: Zk → Pk has all fibers of the same dimension (and, in
particular dimZk ×Pk

Zk = 2 dimZk − dimPk
13). Suppose that for every k and

Qk = τ−1(Pk) one has

dimQk > dimZk +m. (16)

By Theorem 4.2 (i) (with X,Q,P and Z replaced by Xk, Qk, Pk and Zk) there
exists an algebraic family Ak of G-automorphisms of Xk such that for a general
element α ∈ Ak one can find a subvariety Rk of α(Zk)∩X0 of dimension dimRk 6
dimZk−m for which %(Rk)∩%(α(Zk)\Rk) = ∅ and the morphism %|(α(Zk)∩X0)\Rk

:
(α(Zk) ∩ X0) \ Rk → % ◦ α(Zk) ∩ Q0 is injective. More precisely, by (2) this is
true for an algebraic G-family Ak = H1 × · · · ×Hm of automorphisms satisfying
the following assumption: for a suitable open dense subset U ⊆ H1 × · · · × Hm,
the natural map H1 × · · · × Hm × SXk

→ SXk
×Pk

SXk
is smooth on U × SXk

.
Furthermore, as we mentioned, one can choose A such that the latter assumption is
true for all k = 1, . . . , n simultaneously. Thus we see that the conclusion of Theorem

13Of course, this does not imply that dimZ ×P Z 6 2 dimZ − dimP .
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4.2 (i) (and, similarly, (iv)) remains valid even in the case when κ is not dominant
provided that one replaces the assumption that dimZ ×P Z 6 2 dimZ − dimP
and dimQ > dimZ +m by the inequalities in formula (16).

Corollary 4.4. Let the assumptions of Theorem 4.2(iv) hold with Q = Q0 being
quasi-affine. Suppose that Z is a once-punctured curve14. Then there exists an
algebraic G-family A of automorphisms of X such that for a general α ∈ A the
set %(α(Z)) is a closed curve in Q and the restriction of % yields an isomorphism
between α(Z) and %(α(Z)).

Proof. By Theorem 4.2(iv) there is an algebraic family A such that for a general
α ∈ A the restriction of % yields an injective map of the Zariski tangent bundle
of α(Z) into the Zariski tangent bundle of %(α(Z)). Note also that, being an
injective image of Z, %(α(Z)) is closed in Q since any once-punctured curve in
a quasi-affine algebraic variety is automatically closed. Therefore, the bijective
morphism %|α(Z) : α(Z) → %(α(Z)) is proper. This yields the finiteness of %|α(Z).
Furthermore, since the map Tzα(Z)→ TqQ is injective, [Ka, Prop. 7]) implies that
%|α(Z) : α(Z)→ %(α(Z)) is an isomorphism which is the desired conclusion. �

We shall need later the following fact.

Proposition 4.5. Let X be a G-flexible variety for a group G ⊂ SAut(X) gene-
rated by a saturated set of locally nilpotent vector fields, % : X → Q be a dominant
morphism into another algebraic variety Q and Z be a locally closed reduced sub-
variety in X. Suppose that F is a finite subset of Z such that dimTz0Z 6 dimQ
for every z0 ∈ F . Then one can find an automorphism α0 ∈ G with the following
property: for any irreducible algebraic G-family A of automorphisms of X con-
taining α0 and any general element α ∈ A there is a neighborhood Vα of α(F ) in
α(Z) such that for every z ∈ Vα and q = %(z) the induced map %∗ : Tzα(Z)→ TqQ
of the tangent spaces is injective.

Proof. By flexibility and Theorem 2.8 there is an automorphism α0 of X such that
for every z0 ∈ F and z′0 = α0(z0) the variety Q (resp. the morphism %) is smooth
at (resp. over) q′0 = %(z′0) and the induced map Tz′0α0(Z) → Tq′0Q of the tangent
spaces is injective. In the case when α0 is contained in an irreducible algebraic
family A of automorphisms put z1 = α(z0), Z1 = α(Z) and q1 = %(z1) for a
general α ∈ A. Then by continuity the variety Q (resp. the morphism %) is smooth
at (resp. over) q1 and the induced map %∗|Tz1

Z1 : Tz1Z1 → Tq1Q of the tangent
spaces is also injective. That is, the kernel of %∗|Tz1

Z1
is zero. Hence, for every z

in some neighborhood of z1 in Z1 the kernel of the induced map TzZ1 → T%(z)Q
is also zero. This yields the desired conclusion. �

We shall also need a parametric version of Theorem 4.2(iii).

Proposition 4.6. Let the assumptions and notations of Theorem 4.2(iii) hold
with Q0 = Q and let U be a smooth algebraic variety. Let Z = U ×Z, P = U ×P ,
X = U ×X, Q = U × Q, κ̌ = (id, κ) : X → P and τ̌ = (id, τ) : Q → P. Suppose
that %̌ : X → Q is a smooth morphism such that κ̌ = τ̌ ◦ %̌. Consider the G-action
on X such that the natural projection X → X is G-equivariant.

14That is, Z is the complement to a smooth point in a complete curve.
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(1) Then there exists an algebraic G-family A of automorphisms of X such that
for a general element α ∈ A, a general u ∈ U and every z ∈ α(u× Z) the induced
map %̌∗ : Tzα(u× Z)→ T%̌(z)(u×Q) is injective.

(2) Suppose that the assumptions of Theorem 4.2(iv) are satisfied as well. Then
the morphism %̌|α(u×Z) : α(u × Z) → u × Q in (1) is also injective for general
α ∈ A and u ∈ U .

(3) Furthermore, suppose that W is a subvariety of X such that dimW ×P Z +
dimP < dimX (resp. dimW ×P Z+dimP 6 dimX). Let W = U ×W . Then one
can suppose additionally that W ∩Xu does not meet α(Zu) (resp. W ∩Xu ∩α(Zu)
is finite) for a general u ∈ U .

Proof. Let T (X/P )∗ , T (Z/P )∗ and Y ∗ be as in the proof of Theorem 4.2(iii).
Let T ∗ = U × T (X/P )∗, Y∗ = U × Y ∗ and E = U × T (Z/P )∗. Then G acts
on T ∗ and by Theorem 2.8 this action is transitive on every fiber of T ∗ →
X κ̌→ P. Note that dim E∗ = dimT (Z/P ) + dimU 6 dimQ − dimP + dimU
(because dimT (Z/P ) 6 dimQ − dimP by the assumption). Since all fibers of
the natural projection Y∗ → P are of the same dimension, by Remark 1.9 (1)
one has dimY∗ ×P E∗ = dimY∗ + dim E∗ − dimP. Since the codimension of Y∗
in T ∗ is equal to dimQ − dimP , by Theorem 1.4 we can choose one-parameter
unipotent algebraic subgroups H1, . . . ,Hm of G such that for a general element
α = (h̃1, . . . , h̃m̃) ∈ H1×· · ·×Hm and E ′′ = α∗(E∗) one has dimY∗ ∩E ′′ 6 dimU .
Hence, for a general u ∈ U the fiber Eu of E ′′ ∩ Y∗ over u is at most finite. Note
that up to the zero vector the set (Tα(u × Z)) ∩ Y∗ is the kernel of the natural
projection Tα(u× Z)→ T (u×Q). This implies that Eu is empty and, therefore,
the map (Tα(u× Z)) ∩ E∗ → T (u×Q) is injective. Consequently, this yields (1).

As in Remark 4.3(2) we observe that the subgroups H1, . . . ,Hm fit this descrip-
tion if the following assumption is satisfied: for a suitable open dense subset U ⊆
H1 × · · · ×Hm, the natural map

H1 × · · · ×Hm × T (X/P)∗ → T (X/P)∗ ×P T (X/P)∗ (17)

is smooth on U × T (X/P)∗.
The similar argument works in the case of Theorem 4.2(i) with dimQ > 2 dimZ

+ 1. That is, choose again an algebraic G-family A of automorphisms of X of
the form A = H1 × · · · × Hm such that for a suitable open dense subset U ⊆
H1 × · · · ×Hm, the natural map

H1 × · · · ×Hm × SX → SX ×P SX

is smooth on U × SX . Then by Remark 4.3 (2) and Theorem 4.2(i) for a general
α ∈ A the morphism %̌|α(Z) is injective outside a constructible subset of dimension
less than dimU . Hence, %̌|α(u×Z) : α(u×Z)→ u×Q is injective for a general u ∈ U .
By Proposition 1.10 we can suppose that such A satisfies also the assumption for
formula (17), i.e., %̌|α(u×Z) is an injective immersion for a general u ∈ U which
yields (2).

For (3) note that W ×P Z is a fiber of the natural morphism W ×P Z → U
and, hence, by Chevalley’s semi-continuity the general fibers of this morphism are
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at most of dimension dimW ×P Z. In particular, replacing U by its Zariski dense
open subset, we can suppose that dimW ×P Z 6 dimW ×P Z + dimU . Theorem
1.4 implies that for a general α in some family A (of the same form as before)
α(Z) meets W along a subvariety of dimension

d := dimW ×P Z + dimP − dimX 6 dimW ×P Z + dimU + dimP − dimX.

By the assumption d < dimU (resp. d 6 dimU). Hence, for a general u ∈ U the
set W ∩Xu does not meet α(Zu) (resp. W ∩Xu ∩ α(Zu) is finite). By Remark 4.3
(2) we can suppose, additionally, that %̌|α(u×Z) is still an injective immersion. This
yields the desired conclusion. �

Remark 4.7. By Remark 4.3 (4) one can drop the assumption that κ is dominant in
the first statement of Propostion 4.6. Similarly, this assumption can be dropped in
the second statement if one replaces the inequality dimZ×P Z 6 2 dimZ−dimP
and dimQ > dimZ +m by the ones in formula (16).

5. General projections for flexible varieties. II

Notation 5.1. In this section X and P are smooth algebraic varieties, P is a
closed affine subvariety of Amk , κ : X → P is a surjective morphism, and Z is a

closed subvariety of X. We suppose that P̂ is a completion of P , X̂ is a completion
of X, D̂ = X̂\X, and κ̂ : X̂ 99K P̂ is a rational extension of κ. Let f̂ be the rational

extension of a regular function f ∈ k[X] to X̂. Denote by R(f̂) the subvariety of

D̂ that consists of points which are either indeterminacy points of f̂ or points
at which f̂ is regular and takes finite values. Given any morphism of the form
λ = (f1, . . . , fN ) : X → ANk we let R(λ̂) =

⋂N
i=1R(f̂i) where λ̂ is the extension

of λ to X̂. In particular, since κ is given by m coordinate functions we can define
R(κ̂).

The aim of this section is to describe some conditions under which the morphism
κ|Z : Z → P is proper and, in particular, κ(Z) is closed in P .

Proposition 5.2. Let Z̆ be the intersection of D̂ with the closure of Z in X̂. If
Z̆ ∩R(κ̂) = ∅ then κ|Z : Z → P is proper.

Proof. Using a resolution π : X̄ → X̂ of the indeterminacy points of κ̂ one gets
a morphism κ̄ = κ̂ ◦ π : X̄ → P̂ . Treat X as a subvariety of X̄ and denote
by Z̄ the closure of Z in X̄. Note that κ|Z : Z → P is proper if and only if

(κ̄−1(P ) \ X) ∩ Z̄ = ∅. Note also that π(κ̄−1(P ) \ X) consists of all point in D̂
where either κ̂ has indeterminacy or where κ̂ is regular and takes values in P . Since
P is closed in Amk the latter means that all coordinate functions of κ̂ take finite

values and, therefore, π(κ̄−1(P ) \ X) is contained in R(κ̂). Furthermore, if Ẑ is

the closure of Z in X̂ the properness of π implies that (κ̄−1(P ) \ X) ∩ Z̄ = ∅ if

π(κ̄−1(P ) \X)∩ Ẑ = ∅. Since π(κ̄−1(P ) \X)∩ Ẑ = Z̆ ∩R(κ̂) we have the desired
conclusion. �

Remark 5.3. One may have properness of κ|Z : Z → P even if Z̆ ∩ R(κ̂) 6= ∅.

Indeed, consider X = A2
k ⊂ P2

k = X̂, P = A1
k and the map X → P given by
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(x, y)→ x for a coordinates system (x, y) on A2
k. Let Z ⊂ X be the parabola given

by y = x2. Then κ|Z : Z → P is proper but Z̄ meets D̂ at an indeterminacy point
of x̂.

Corollary 5.4. Let D̂ be irreducible and I(f̂i) be the set of indeterminacy points

of f̂i for κ = (f1, . . . , fm). Suppose that every fi is non-constant on Z and Z̆ ∩⋂m
i=1 I(f̂i) = ∅. Then the morphism κ|Z : Z → P is proper and κ(Z) is closed in

P .

Proof. Let x ∈ Z̆. By the assumption at least for one index i the rational function
f̂i yields a regular morphism into P1 in a neighborhood of x. Note the value of f̂i
at x is ∞ (indeed, f̂−1

i (∞) ⊂ D̂ and, therefore, f̂−1
i (∞) must be equal to D̂ since

the latter is irreducible). Thus Z̆ ∩ R(κ̂) is empty and Proposition 5.2 yields the
desired conclusion. �

Theorem 5.5. Let κ̂ : X̂ → P̂ be regular and κ̃ : X̃ → P be its restriction to
X̃ = κ̂−1(P ). Suppose that H is an algebraically generated group acting on X̃ so

that it transforms every fiber of κ into itself. Let D̃ = D̂ ∩ X̃ be a finite disjoint
union of irreducible smooth subvarieties {Ti} such that every set κ̃(Ti) is a smooth
variety and κ̃|Ti : Ti → κ̃(Ti) is a smooth morphism with each fiber being an
orbit of H. Let θ : X → P × ANk be a morphism of the form θ = (κ, λ) and let

Si = R(λ̂) ∩ Ti and Zi = Z̆ ∩ Ti where Z̆ from Proposition 5.2. Suppose that for
every i either Si is empty or dimZi×P Si + dim κ̃(Ti) < dimTi. Then there exists
an algebraic H-family A of automorphisms of X such that for a general element
h ∈ A the morphism θ|h(Z) : h(Z)→ P × ANk is proper.

Proof. Since P is closed in Ank the description of X̃ implies that for every point

x ∈ D̂ \ D̃ there is a coordinate function f of κ for which f̂ has a regular value ∞
at x. Thus (D̂ \ D̃)∩R(κ̂) = ∅ and Z̆ ∩R(θ̂) ⊂ Z̆ ∩R(λ̂)∩ D̃. Applying Theorem
1.4 to the morphism κ̃|Ti

: Ti → κ̃(Ti) in the case of a non-empty Si we see that
for a general element h of some algebraic family A ⊂ H the variety h(Zi) ∩ Si
is empty when dimZi ×P Si + dim κ̃(Ti) < dimTi. Hence, by Proposition 1.10

h(Z̆) ∩R(λ̂) ∩ D̃ = ∅ and we are done by Proposition 5.2. �

Corollary 5.6. Let κ̃ : X̃ → P , H, Ti, θ = (κ, λ) and Si be as in Theorem 5.5.
Suppose that for every i either Si is empty or κ̃|Si : Si → κ̃(Ti) is a flat morphism
with fibers of dimension li. Let k = dimZ and mi be the dimension of the fibers
of κ̃|Ti

: Ti → κ̃(Ti). Suppose that for every i one has li + k − 1 < mi. Then for a
general element h ∈ H the morphism θ|h(Z) : h(Z)→ P × ANk is proper.

Proof. Let Zi be as in Theorem 5.5. By the same theorem we can assume that Si
is not empty. Since κ̃(Si) = κ̃(Ti) Remark 1.9 (1) implies that Zi×P Si = dimSi+
dimZi − dim κ̃(Ti), i.e., the desired inequality from Theorem 5.5 can be rewritten
as dimZi + dimSi < dimTi. By the assumption we have li + dim κ̃(Ti) + k − 1 <
mi + dim κ̃(Ti). Note that dimSi = li + dim κ̃(Ti), dimTi = mi + dim κ̃(Ti), and
dim Z̆ = k − 1. Hence, we have this inequality dimSi + dim Z̆ < dimTi which
concludes the proof. �
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Notation 5.7. From now on by ED(X) we denote ED(X) = max(2 dimX +
1, dimTX).

Corollary 5.8. Let the assumptions of Theorem 5.5 or Corollary 5.6 hold with θ
being a dominant morphism. Suppose also that X is a G-flexible variety where G ⊂
SAut(X) is generated by a saturated set of locally nilpotent derivations and that
ED(Z) 6 dimP +N . Then there exists an algebraic G-family A of automorphisms
of X such that for a general α ∈ A the morphism θ|α(Z) : α(Z) → P × ANk is a
closed embedding.

Proof. Consider Theorem 4.2(iv) with P in its formulation being a singleton unlike
P in the formulation above. Applying this special case one can see that there exists
an algebraic G-family A0 of automorphisms of X such that for a general β ∈ A0

the morphism θ|β(Z) : β(Z)→ P ×ANk is an embedding. By Proposition 1.10 this
property remains valid if one replaces A0 by A = H ×A. Hence, by Theorem 5.5
for a general h ∈ H and α = h ◦ β ∈ A the morphism θ|α(Z) : α(Z)→ P × ANk is
also proper. Repeating now the argument from Corollary 4.4 we conclude that it
is a closed embedding which is the desired conclusion. �

Remark 5.9. Suppose that unlike in Notation 5.1 P is not an affine variety but
only a quasi-affine one and let R be an affine variety containing P as an open
subset. Assume additionally that κ(Z) is closed in R. Then the conclusion about
the properness of θ|h(Z) : h(Z) → P × ANk in Theorem 5.5 remains valid. For a
more general setting we need the following.

Notation 5.10. Let % : X → P be an affine morphism of smooth quasi-affine
varieties and P =

⋃m
j=1 Pj , where each Pj is an affine Zariski dense open subset

of P. Let Xj = %−1
i (Pj), %j = %|Xj

: Xj → Pj and %̃j : X̃j → Pj be an extension

of %j to a proper morphism, where X̃j is a smooth variety and D̃j = X̃j \ Xj .
Suppose that for every j = 1, . . . ,m there is a set Nj of locally nilpotent vector
fields on Xj tangent to the fibers of %j and extendable to complete vector fields

on X̃j . Let Hj be the group of automorphisms of Xj (and X̃j) generated by the
elements of the flows of the vector fields from Nj . Let λ : X → ANk be a morphism,
Θ = (%, λ) : X → P×ANk , Z be a closed subvariety of X and Zj = Z∩Xj . Suppose
also that for every j = 1, . . . ,m the assumptions (and, therefore, the conclusion) of

Theorem 5.5 are true if κ : X → P , κ̃ : X̃ → P , Z, D̃, H and θ in the formulation
of that theorem are replaced with %j : Xj → Pj , %̃j : X̃j → Pj , Zj D̃j , Hj and
θj = Θ|Xj

.

Theorem 5.11. Let Notation 5.10 hold. Then there exists an algebraic family A
of automorphisms of X over P such that for a general element h ∈ A the morphism
Θ|h(Z) : h(Z)→ P × ANk is proper.

Proof. Let Ij ⊂ k[P] be the defining ideal of the variety P \ Pj . For every δ ∈ Nj
one can find f ∈ Ij such that fδ is a locally nilpotent vector field on X tangent
to the fibers of %. Furthermore, for a given point p ∈ P such f can be chosen
so that f(p) = 1. Consider the set N ′j of all locally nilpotent vector fields of this
form fδ. The elements of their flows generate a group H ′j ⊂ SAut(X/P). Without
loss of generality we can suppose that for every σ ∈ Nj and each r ∈ k one has
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rσ ∈ Nj . Then for every point p ∈ Pj the restrictions of Nj and N ′j to %−1
j (p)

(resp. %̃−1
j (p)) coincide. Hence, the restriction of the H ′j-action to %−1

j (p) (resp.

%̃−1
j (p)) is the same as the Hj-action. Thus, we can replace Hj in Notation 5.10 by
H ′j . In particular, from the beginning we can assume that Hj ⊂ SAut(X/P). By
Theorem 5.5 there exists an algebraic Hj-family Aj of automorphisms of X such
that for a general element h ∈ Aj the morphism Θ|h(Zj) : h(Zj) → Pj × ANk is
proper. Arguing as in Remark 4.3(2) we can find an algebraic SAut(X/P)-family
A of automorphisms of X such that for a general element α ∈ A the morphism
Θ|α(Zj) : α(Zj)→ Pj×ANk is proper for every j which yields the desired conclusion.
�

6. General projections for partial quotient morphisms of
flexible varieties

In the case of partial quotients of Ga-actions one can get local properness under
much milder assumptions than in Theorem 5.5. It is reflected in the following fact
which plays an important role in [KKT].

Theorem 6.1. Let X be a smooth quasi-affine algebraic variety, N be a saturated
set of locally nilpotent vector fields on X, and G ⊂ SAut(X) be the group generated
by N . Suppose also that X is G-flexible. Let %0 : X → Q be a partial quotient
morphism associated with a nontrivial δ0 ∈ N , Z be a locally closed reduced
subvariety of X of codimension at least 2 and F be a finite subset of Z such
that dimTz0Z 6 dimQ for every z0 ∈ F . Then there exists a connected algebraic
G-family A of automorphisms of X such that for a general element α ∈ A and the
closure Z̄ ′α of Z ′α = %0 ◦ α(Z) in Q one can find a neighborhood V ′0 of %0(α(F ))
in Z̄ ′α such that for V0 = %−1

0 (V ′0) ∩ α(Z) the morphism %0|V0
: V0 → V ′0 is an

isomorphism.

The proof consists mostly of recalling some results from [FKZ].

Proposition 6.2 ([FKZ, Prop. 2.15]). Let X, G, and N be as in Theorem 6.1.
Then for any locally nilpotent derivation δ0 ∈ N one can find another one δ1 ∈ N
such that the subgroup H ⊂ G generated by δ0, δ1 and all their replicas acts with
an open orbit on X.

Remark 6.3. In fact we have more. It follows from the proof of [FKZ, Prop. 2.15])
that δ1 can be chosen so that the open orbit of H contains a given finite subset of
X.

Notation 6.4.

(a) Let δ0 and δ1 be as in Proposition 6.2 and U i be the one-parameter unipotent
subgroup of SAut(X) associated with δi. Any function f ∈ ker δ0\ ker δ1 yields
the one-parameter group U0

f associated with the replica fδ0, and similarly g ∈
ker δ1\ ker δ0 yields the one-parameter group U1

g associated with the replica gδ1.

(b) To any sequence of invariant functions

F={f1, . . . , fs, g1, . . . , gs}, where fi∈ker δ1\ ker δ0 and gi∈ker δ0\ ker δ1, (18)
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we associate an algebraic family of automorphisms defined by the product

UF = U1
fs · U

0
gs · · · · · U

1
f1 · U

0
g1 ⊆ H . (19)

More generally, given a tuple κ = (ki, li)i=1,...,s ∈ N2s the product

Uκ = UFκ = U1
fks
s
· U0

glss
· · · · · U1

f
k1
1

· U0

g
l1
1

⊆ H (20)

is as well an algebraic family of automorphisms.

Proposition 6.5 ([FKZ, Cor. 5.4]). There is a finite collection of invariant func-
tions F as in (18) such that for any sequence κ = (ki, li)i=1,...,s ∈ N2s the algebraic
family of automorphisms Uκ as in (20) has an open orbit O(Uκ) that coincides with
O(H) and so does not depend on the choice of κ ∈ N2s.

Notation 6.6. We keep the notation and assumptions from 6.4(a).
(a) Let %0 : X → Q0 and %1 : X → Q1 be partial quotient morphisms with

respect to the unipotent subgroups U0 and U1, respectively. It is proven in [FKZ,
Lem. 3.3] that there are open embeddings X ↪→ X̄, Q0 ↪→ Q̄0, and Q1 ↪→ Q̄1 into
normal projective varieties such that the following conditions are satisfied.

(i) %0 and %1 extend to morphisms %̄0 : X̄ → Q̄0 and %̄1 : X̄ → Q̄1.
(ii) The unique “horizontal” divisors D0 ⊂ X̄ \ X and D1 ⊂ X̄ \ X, that

are mapped birationally (by %̄0 and %̄1) onto Q̄0 and Q̄1 respectively, are
smooth.

(iii) The completion X̄ satisfies some other conditions which we assume to
be true but omit because they are not needed for the formulation of
Proposition 6.7 below.

(b) Given a closed subscheme Y ⊆ X of codimension at least 2 we call

∂0Y = Ȳ ∩D0 and ∂1Y = Ȳ ∩D1

the partial boundaries.
(c) For a one-parameter group U we let U∗ = U\{id} and for Uκ = U1

fks
s
·U0

glss
·

· · · · U1

f
k1
1

· U0

g
l1
1

as in (20) we let

U∗κ = U1∗
fks
s
· U0∗

glss
· · · · · U1∗

f
k1
1

· U0∗
g
l1
1

.

Proposition 6.7 ([FKZ, Prop. 5.11]). Let (Yα)α∈A be a flat family of proper clo-
sed subsets of X. Assume that the partial boundaries ∂iYα are contained in Eα,i,
where the (Eα,i)α∈A, i = 0, 1, form flat families of proper closed subsets of Di.
Then one can find an open dense subset Ao of A, flat families of proper, closed
subsets (Eoα,i)α∈Ao of Di (i = 0, 1), and a sequence κ = (k1, l1, . . . , ks, ls) ∈ N2s

such that for any element h ∈ U∗κ we have

∂i(h.Yα) ⊆ Eoα,i , i = 0, 1 , ∀α ∈ Ao .
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Proof of Theorem 6.1. Let Q0 be a smooth Zariski open dense subset of Q such
that for X0 = %−1

0 (Q0) the morphism %0|X0
: X0 → Q0 is smooth. Since the

G-action on X is m-transitive for every m replacing Z by g(Z) for some g ∈ G
we can suppose that F ⊂ X0 ∩ O(H) where O(H) is the open orbit of H from
Proposition 6.2. Let Z̄ be the closure of Z in X. By Theorem 4.2(i)–(ii) there
exists an irreducible algebraic G-family A of automorphisms of X such that for a
general α ∈ A one has

(a) %0|α(Z̄) : α(Z̄)∩X0 → %0◦α(Z̄) is birational and %−1
0 (%0(α(F ))∩α(Z̄) = α(F )

(here we use the fact that α(F ) ⊂ X0 ∩O(H) since F ⊂ X0 ∩O(H)).
Recall that by Remark 4.3 (1) we can suppose that A is irreducible and it

contains the identity map e. By the definition of SAut(X) any automorphism
α0 ∈ SAut(X) is an element of an algebraic family H1×· · ·×Hm of automorphisms
on X as in Theorem 1.3 where every Hi is a unipotent one-parameter group. Using
the way to enlarge A as in Remark 4.3 (2) we can replace A by H1×· · ·×Hm×A
where the last family is still irreducible and contains e but it contains also α0 now.
Hence, since dimTz0Z 6 dimTQ for every z0 ∈ F , choosing α0 as in Proposition
4.5 we also have

(b) a neigborhood Ṽα of α(F ) in α(Z) such that for every z ∈ Ṽα the induced
map Tzα(Z)→ T%0(z)Q of the tangent spaces is injective.

Let Uκ be from Proposition 6.7 and let β = h ◦ α be a general element of the
family Uκ ·A. By Proposition 1.10 and Remark 4.3 (1) we still have conditions (a)
and (b) for this bigger family. By Proposition 6.7 the partial boundary ∂0(β(Z̄)) =
∂0(h.α(Z̄)) ⊆ Eoα,0 where Eoα,0 is a proper subvariety of D0 from Notation 6.6. This

implies that the morphism %0|β(Z̄) : β(Z̄)→ Q is proper over Q\ %̄0(Eoα,0) where %̄0

is again from Notation 6.6. On the other hand, by Proposition 6.5 β(z0) = h.α(z0)
runs over the open set O(H) when h runs over Uκ. Hence, %0 ◦β(F ) does not meet
%̄0(Eoα,0) for a general β. Therefore, the morphism %0|β(Z̄) : β(Z̄) → Q is proper
over an neighborhood of F ′ = %0 ◦ β(F ) in Q.

Assume that there is an irreducible subvariety Y ′ ⊂ %0 ◦ β(Z) ∩ Q0 such that
dimY ′ < dimY where Y is an irreducible component of %−1

0 (Y ′)∩β(Z) with some
z′0 = %0(β(z0)) from F ′ contained in the closure of %0(Y ). Then by Chevalley’s
theorem [EGA, 13.1.3] dim %−1

0 (z′0)∩Y > 1 (this fiber cannot be empty because of
properness) contrary to the fact that by (a) %−1

0 (z′0)∩β(Z) = β(z0). Hence, we can
suppose that %0|β(Z) is not only birational but also quasi-finite over a neighborhood
V ′0 ⊂ %0 ◦ β(Z) of F ′ which in combination with properness implies finiteness by
the Grothendieck theorem [EGA, Thm. 8.11.1].

If for a sufficiently small V ′0 and V0 = %−1
0 (V ′0)∩β(Z) the morphism %0|V0 is not

injective then for some curve C ′ ∈ V0 through a point z′0 ∈ F ′ and C = %−1
0 (C ′) ∩

β(Z) the finite morphism %0|C : C → C ′ must be ramified at β(z0). However,
this is contrary to the fact that the induced map Tβ(z0)T (β(Z)) → Tz′0Q of the
tangent spaces is injective by (b). That is, we can suppose that %0|V0

: V0 → V ′0 is
injective and proper. Since it is also finite, condition (b) implies that this map is
an embedding (e.g., see [Ka, Prop. 7]) which yields the desired conclusion. �

Remark 6.8.
(1) Note that by Remark 4.3 (1) and construction the family A from Theorem

6.1 is a Zariski open subset in a larger family of automorphisms which contains
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the identity map.
(2) Similar to Remark 4.3 (2) we also note that the family A from Theorem 6.1

does not depend on the choice of the subvariety Z.
(3) Let X, Z, F , N and G be as in Theorem 6.1, S = {δ1, . . . , δs} ⊂ N and

%i : X → Qi be a partial quotient morphism associated with δi for i = 1, . . . s. Then
an easy adjustment of the proof yields the following generalization of Theorem 6.1.

There exists a connected algebraic G-family A of automorphisms of X such that
for a general element α ∈ A, every i = 1, . . . , s, and the closure Ziα := %i ◦ α(Z)
of %i ◦α(Z) in Qi the following holds: one can find a neighborhood V ′i of %i(α(F ))
in Ziα such that for Vi = %−1

i (V ′i ) ∩ α(Z) the morphism %i|Vi : Vi → V ′i is an
isomorphism.

7. The case of Gromov–Winkelmann flexible varieties

The aim of this section is to prove the following statement.

Theorem 7.1. Let Z, Y1, and Y2 be closed subvarieties of Ank such that Y1 ∩Z =
Y2 ∩ Z = ∅, dimZ 6 n− 3 and ED(Y1) 6 n− 2 (where ED(Y1) is as in Notation
5.7). Let ϕ : Y1 → Y2 be an isomorphism and X = Ank \Z. Suppose also that either

(a) dimZ + dimY1 6 n− 3, or
(b) dimY1 = 1 and dimZ = n− 3.

Then there exists an automorphism γ ∈ SAut(X) for which γ|Y1 = ϕ.

The proof requires some preparations.

Notation 7.2. Further in this section we write An instead of Ank and the symbol
Anu1,...,un

means that An is equipped with a fixed coordinate system ū=(u1, . . . , un).
In particular, this system induces an embedding An ↪→ Pn into a projective space.
We also suppose that Z, Y1 and Y2 are closed subvarieties of Anu1,...,un

such that
dimZ 6 n − 3, ED(Y1) 6 n − 2, Y1 and Y2 are disjoint from Z, and there exists
an isomorphism ϕ : Y1 → Y2.

The following result will be important in this section: in the case when Z is of
codimension at least 2 Gromov [Gr] observed that An \ Z is a flexible variety and
Winkelmann [Wi] showed that SAut(An \ Z) acts transitively on An \ Z which is
equivalent by virtue of Theorem 2.2. (In particular, for a finite Y1 Theorem 7.1 is
valid even when dimZ = n− 2.)

The next fact is well known (e.g., see [Ka]).

Proposition 7.3. Let ED(Z) 6 k 6 n and Lin(An,Ak) be the affine variety of
surjective linear maps An → Ak. Then for a general element % ∈ Lin(An,Ak) the
restriction %|Z : Z → Ak is a closed embedding.

Proposition 7.4. Let % : An → Ak be a general element of Lin(An,Ak).

(1) If k 6 dimZ then %|Z : Z → Ak is surjective and for every w ∈ Ak the fiber
F = %−1(w) ∩ Z is of dimension dimZ − k.

(2) If k = dimZ then %|Z : Z → Ak is finite.
(3) Let Tz(Z/Ak) be as in Notation 4.1 and E be a finite subset of Z. Then for

every z ∈ E and every k 6 dimTzZ one has dimTz(Z/Ak) 6 dimTzZ − k.
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Proof. Let % = (f1, . . . , fk) be the coordinate form of % and %̄ = (f̄1, . . . , f̄k)

be the rational extension of % to Pn. Let R(%̄) =
⋂k
i=1R(f̄i) be the same as in

Notation 5.1. Since % is surjective (i.e., f1, . . . , fk are linearly independent) R(%̄)
is of codimension k in D = Pn \An. The natural action of SL(n,k) on An extends
to an action to Pn whose restriction to D is transitive. In particular, replacing %
by % ◦h where h is a general element of SL(n,k), by virtue of Theorem 1.3 we can
assure that the intersection Z̄ ∩R(%̄) is of dimension dimZ − 1− k where Z̄ is the
closure Z̄ of Z in Pn (and, therefore, Z̄ ∩R(%̄) = ∅ when dimZ = k).

Assume that there exists a fiber F of %|Z with dimF > dimZ − k. Then the
closure F̄ of F meets D along a subvariety of dimension at least dimZ−k. However,
F̄ ∩D ⊂ Z̄ ∩ R(%̄) which yields a contradiction. Thus dimF = dimZ − k (since
it cannot be less than dimZ − k [Sh, Chap. 1, Sec. 6, Thm. 7]). In particular,
%|Z : Z → Ak is quasi-finite when dimZ = k. Since Z̄ ∩ R(%̄) = ∅ in the latter
case the morphism %|Z : Z → Ak is proper by Proposition 5.2 and, therefore, it
is finite by [EGA, Thm. 8.11.1]. Hence, we have (2) and, in particular, this map
is surjective. This implies that when k < dimZ we have also surjectivity for a
general % which is (1).

In (3) we treat TzZ as a vector subspace of An and denote by Vz (resp. V ′z )
the closure of TzZ (resp. Tz(Z/Ak)) in Pn. Then for every z ∈ E, a general %
and R(%̄) as above the dimension of Vz ∩ R(%̄) is equal to dimTzZ − k − 1. It
remains to note that V ′z ∩D is contained in V ∩ R(%̄) (indeed, if v ∈ Ker %∗ then
f1(v) = . . . = fk(v) = 0 and the closure of every line {tv| t ∈ k} in Pn meets
D at a point of R(%̄)). That is, dim V ′z ∩ R(%̄) 6 dimTzZ − k − 1 and, thus,
dimV ′z 6 dimTzZ − k which concludes the proof. �

Notation 7.5. For every group G acting on an algebraic variety X and every
subscheme W of X we denote by GW the subgroup of G such that the action of
every element of GW yields the identity map on W .

Lemma 7.6. Let X = P × AN+1 where P is a smooth affine algebraic variety,
% : X → P be the natural projection, and m > 0. Suppose that G = SAut(X/P )
and Xp := %−1(p), p ∈ P . Let Lin(AN+1,AN ) be the variety of surjective linear
maps AN+1 → AN and Z be a closed subvariety of X such that for every p ∈ P one
has dimZ ∩Xp 6 N − 1 and for a general λ ∈ Lin(AN+1,AN ) and θ = (%, λ) the
morphism θ|Z : Z → P × AN is proper. Then each variety Xp \ Z is GZm

-flexible
where Zm is the m-th infinitesimal neighborhood of Z in X and GZm

has the same
meaning as in Notation 7.5.

Proof. Let ψ : P × AN → P be the natural projection, i.e., θ(Z ∩ Xp) = θ(Z) ∩
ψ−1(p). Let x be any point in Xp \ Z. Since dimZ ∩ Xp 6 N − 1 we see that
θ(x) /∈ θ(Z ∩Xp) for a general λ and hence θ(x) /∈ θ(Z). Note also that θ can be
treated as a quotient morphism of a locally nilpotent vector δ field on X whose
value at x is a general vector ν in TxXp (since λ is general). Note also that the
kernel of δ coincides with k[P ×AN ] where we treat k[P ×AN ] as a subring of k[X]
under the natural embedding. Hence, for every regular function f on P ×AN that
vanishes on θ(Z) but not at θ(x) (which exists since θ(Z) is closed in P ×AN ) the
vector field fmδ is locally nilpotent and its value at x coincides with this general
vector ν up to a nonzero factor. Furthermore, the flow of fmδ is a one-parameter
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group in GZm . Hence, Xp \Z is GZm flexible by the definition of flexibility and we
are done. �

Notation 7.7. Further in this section by X we denote X = Anu1,...,un
\ Z.

Lemma 7.8. Let κ : An→As be the natural projection (u1, . . . , un)→(u1, . . . , us)
where s 6 ED(Y1). Let κ = κ ◦ ϕ, dimZ 6 n − s − 2 and F ⊂ Y1 be a finite
set for which ϕ(y) = y for every y ∈ F . Then for every m > 0 there exists an
automorphism β of X ⊂ An over As such that for each y ∈ F the m-jet of ϕ at y
coincides with the restriction of the m-jet of β.

Proof. By Lemma 7.6 every fiber of κ|X is GZ-flexible. By Theorem 3.10 we can
suppose now that the tangent spaces of Y1 and Y2 at every y ∈ F coincide and the
isomorphism of these tangent spaces induced by ϕ is the identity map. Without
loss of generality we can also suppose that TyY1 is contained in {uk+1 = . . . =
un = 0} where k > s and y is the origin 0̄ of An. Then the m-jet ϕm of ϕ at y
can be chosen in the following form (u1, . . . , un) → (u1 + h1, . . . , un + hn) where

h1, . . . , hn are polynomials in u1, . . . , uk without free and linear terms. Let h̃n =
∂h1/∂u1+· · ·+∂hk/∂uk. Then the m-jet (u1, . . . , un−1, un)→ (u1+h1, . . . , un−1+

hn−1, un − unh̃n) is of divergence 0 and, hence, it satisfies the assumption on the
Jacobian in Notation 3.5 (e.g., see the proof of [AFKKZ, Lem. 4.13]). By Theorem
3.10 we can find an automorphism β1 ∈ GZ of X over As with such precise jets
at every point of F . Hence, ϕm is a composition of β1 with an m-jet ψm of the
form (u1, . . . , un−1, un) → (u1, . . . , un−1, un + h) where a priori h depends on
u1, . . . , un. However, restricting ψm to the étale germ of Y1 at y we can replace h
with a function of u1, . . . , uk, i.e., we can view ψm as the restriction of the m-jet
of an automorphism β2 ∈ GZ . Letting β = β2 ◦ β1 we get the desired conclusion.
�

Lemma 7.9. Let % : An→Ak be the natural projection (u1, . . . , un)→(u1, . . . , uk)
with k > max(dimZ+1,ED(Y1)). Assume that for the closure Z ′ of %(Z) in Ak the
set Y1 ∩ %−1(Z ′) is finite. Let %|Y1

: Y1 → Ak be a closed embedding and ϕ(y) = y
for every y ∈ Y1 ∩ %−1(Z ′). Then there exists m > 0 such that whenever the m-th
jets of ϕ are equal to the jets of the identity map for all y ∈ Y1 ∩ %−1(Z ′), one has
an automorphism α of An over Ak for which the following holds:

(a) α(z) = z for every z ∈ Z (in particular, α is an automorphism of X =
An \ Z) and

(b) after replacing Y1 by α(Y1) and ϕ by ϕ ◦ α−1 one has ui|Y1
= ui ◦ ϕ for

every ui with i > k + 1.

Proof. Let I ′ ⊂ k[Ak] be the vanishing ideal of Z ′, Y ′1 = %(Y1), I ⊂ k[Y ′1 ] be the
image of I ′ under the natural morphism k[Ak] → k[Y ′1 ] and J ⊂ k[Y ′1 ] be the
vanishing ideal of Y ′1 ∩ Z ′. By Nullstellensatz one has Jm ⊂ I for some m > 0.
Let gi = ui ◦ ϕ − ui|Y1

for i > k + 1. Since and Y1 and Y ′1 are isomorphic we can
consider gi as a function on Y ′1 . Note that it always belongs to J and, furthermore,
under the assumption it belongs to Jm. Thus gi is the restriction of a polynomial
g̃i on Ak which vanishes on Z ′. Consider the automorphism ψi of X given by
ui → ui+g̃i(u1, . . . , uk) and uj → uj for j 6= i. Then the composition ψk+1◦. . .◦ψn
yields the desired automorphism α. �
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Remark 7.10. Since m in the proof above can be chosen as large as we wish one
can suppose that the extension g̃i vanishes not only on Z ′ but also on the m-
th infinitesimal neigborhood of Z ′. This implies that the automorphisms {ψi} in
the proof are elements of the flows of locally nilpotent vector fields that vanish
on Z with multiplicity m. Since α from Lemma 7.9 is a composition of such
automorphisms we can suppose that the restriction of α to the m-th infinitesimal
neigborhood Zm of Z is the identity map. The same is true for β from Lemma 7.8
since by Lemma 7.6 Xp \ Z is not only GZ-flexible but also GZm

-flexible.

Proof of Theorem 7.1(a). Let H = SL(n,k) act naturally on An, %k : An → Ak
be the natural projection given by (u1, . . . , un) → (u1, . . . , uk) and %k,h be the
composition %k ◦h where h ∈ H. By Propositions 7.3 and 7.4 we have the following
for a general h ∈ H.

(1) For k = dimZ the morphism %k,h|Z : Z → Ak is finite.
(2) For every k < dimY2 the morphism %k,h|Y2

: Y2 → Ak is surjective with
the dimension of each fiber equal to dim Y2 − k; for k = dimY2 the morphism
%k,h|Y2 : Y2 → Am is finite.

Let us show inductively that for every k 6 dimY1 and a general h in H one can
also assume the following.

(3) %k,h ◦ϕ = %k,h|Y1 and, in particular, by (2) if k < dimY1 then %σ,k|Y1 : Y1 →
Ak is surjective with the dimension of each fiber equal to dim Y1−k, if k = dimY1

then %k,h|Y1
: Y1 → Am is finite.

(4) %n−2,h|Y1
: Y1 → An−2 is a closed embedding.

(5) %n−2,h(Y1) does not meet %n−2,h(Z).
For k = 0 the assumption (3) is automatically true while (4) follows from

Proposition 7.3. Note that (5) is equivalent to the fact that Y1 does not meet
%−1
n−2,h(%n−2,h(Z)) where the latter variety is of dimension dimZ + 2 which is less

than n− dimY1 by the assumption of Theorem 7.1. Hence, replacing, if necessary,
Y1 (resp. Y2) by h̃(Y1) (resp. h̃(Y2)) for a general h̃ ∈ H we see that Theorem 1.3
implies that neither Y1 nor Y2 meets %−1

n−2,h(%n−2,h(Z)). This yields (5) for k = 0
without violating (1)–(4).

Let us assume that (3)–(5) are valid for k − 1 and let us establish that this
implies their validity for k. Since (4) and (5) hold for k − 1, by Lemma 7.9 we
obtain an automorphism β ∈ SAut(X) over An−2 such that after replacing Y1 by
β(Y1) one has ui|Y1

= ui ◦ ϕ for i = n − 1 and i = n. Consider the element σ of
H such that σ∗(uk) = un, σ∗(un) = −uk while the remaining coordinates remain
intact. Note that since h is general we can suppose that σ ◦ %k,h is still of the form
%k,h1 where h1 is a general element of H. Hence, replacing %k,h with σ ◦ %k,h we
get (3) while keeping (1) and (2).

Treat now %k,h : X → Ak (resp. %n−2,h : X → An−2) as κ : X → P (resp.
% : X → Q)) in Theorem 4.2. Note the assumptions of Theorem 4.2 are valid for
the group G = SAut(X/P ) and the subvariety Y1 of X (indeed, the fibers of κ is
G-flexible by Lemma 7.6 while dim Y1×P Y1 6 2 dimY1−dimP by Remark 1.9 and
the fact that the fibers of κ|y1 : Y1 → P are equidimensional because of (3)). By
Theorem 4.2(i) and (iii) we can find an algebraic G-family A1 of automorphisms
of X (a priori depending on h) such that for a general element α1 ∈ A1 the
morphism %|α1(Y1) : α1(Y1)→ Q is injective and generates an injective map of the
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Zariski tangent bundles. Similarly, since %−1(%(Z)) is of dimension dimZ + 2 <
dimX − dimY1 by Theorem 1.4 we can find an algebraic family A2 ⊂ G (also
depending on h) such that for a general element α2 ∈ A2 the variety α2(Y1) does
not meet %−1(%(Z)) which is equivalent to (5). By Remark 4.3 (2) we can suppose
that A1 = A2.

Hence, in order to prove (4) and (5) one needs to show that the morphism
%|α(Y1) : α(Y1)→ Q can be made proper.

Let H ′ be the subgroup of H consisting of all elements whose action on the
first summand of An = Aku1,...,uk

⊕ An−k−2
uk+1,...,un−2

⊕ A2
un−1,un

is the identity map.
Consider Proposition 4.6 with U = H ′ and %̌ : H ′ ×X = X → Q = H ×Q given
by (h′, x) → (h′, %n−2,h′h(x)). Then Proposition 4.6 implies that we can find a
family A1 as above which provides the injectivity condition for general h′ in H ′

simultaneously. Note that the composition of the H ′-action with the projection
An → Auk+1,...,un−2

can be viewed as the variety Lin(An,An−k−2) of surjective
linear maps %′n−k−2,h′h : An → An−k−2 and, hence, Proposition 7.4 implies that

%′n−k−2,h′h|Y1
: Y1 → An−k−2 is proper for a general h′ because dimY1 < n− k− 2

(the latter inequality follows from the fact that k 6 dimY and by the assumption
of Theorem 7.1 2 dimY1 + 1 6 ED(Y1) 6 n− 2). Since for a general h′ the element
h′h is still general in H, replacing h by h′h we get (4) without ruining (1)-(3) while
the third statement of Proposition 4.6 provides us with (5).

Now we shall establish by induction conditions (3)–(5) for a general h and
k = k1 + 1, . . . , n where k1 = dimY1. Since %h,k1 |Y1

: Y1 → Ak1 is finite by (3) we
can suppose now every %h,k|Y1

: Y1 → Ak is proper. Assume that (4) and (5) hold
for k − 1. Applying Lemma 7.9 as above we can achieve (3) for k without ruining
this properness (but may be violating (4) and (5)). Using notation κ : X → P and
% : X → Q in the same meaning as before we observe that though the assumption
dimY1 ×P Y1 6 2 dimY1 − dimP does not hold we can still apply Theorem 4.2(i)
and (iv) by virtue of Remark 4.3 (5) and finiteness of κ. Hence, the same argument
as above yields an algebraic G-family A of automorphisms of X over Ak such that
for a general α ∈ A the morphism %n−2,h|α(Y1) : α(Y1) → Q is injective and
generates an injective map of the Zariski tangent bundles, and, furthermore, α(Y1)
does not meet %−1

n−2,h(%n−2,h(Z)). The latter fact is (5) and in combination with
the properness the former one yields (4).

Note that this process of replacing Y1 by its automorphic image in X in the
case of k = n yields the equality Y1 = Y2 and, hence, the desired conclusion. �

Lemma 7.11. Let m > 0 and L be a finite collection of 3m distinct lines in P2

such that the intersection of any three of them is empty. Then for every finite
subset F ⊂ P2 of cardinality m there is a line L ∈ L such that L ∩ F = ∅.

Proof. Let us use induction by m. For m = 1 the claim follows from the definition
of L. Suppose that the statement is true for m − 1 and L is a collection of 3m

lines with the desired property. Present L as a disjoint union L1 ∪ L2 ∪ L3 where
each collection Li consists of 3m−1 lines. Let F = F0 ∪ {x} ⊂ P2 be of cardinality
m, i.e., F0 is of cardinality m − 1. By the assumption we can find lines L1 ∈ L1,
L2 ∈ L2 and L3 ∈ L3 such that Li ∩ F0 = ∅ for every i. Since L1 ∩ L2 ∩ L3 = ∅
one of these lines does not contain x and we are done. �
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Proof of Theorem 7.1(b). Let ū = (u1, . . . , un) and %k,h : An → Ak have the same
meaning as in the proof of Theorem 7.1(a) where h ∈ H = SL(n,k). We can
suppose again that (1) as in the proof of Theorem 7.1(a) holds.

Let us show inductively that for k 6 n − 3 and some general h (depending on
k) we can also assume

(2) %k,h ◦ ϕ = %k,h|Y1 .
(3) %n−2,h|Y1

: Y1 → An−2 is a closed embedding.
(4) %n−2,h(Y1) meets %n−2,h(Z) at a finite number of points and, furthermore,

these points are the images of smooth points of Y1.
(5) For every singular point y of Y1 the image of TyY1 in TAk under the map

induced by %k,h is of dimension min(k, dimTyY1) (which implies the inequality
dimT (Y1/Ak) 6 dimTY1 − k) and the cardinalities of E := Sing Y1 and Y1 ∩
%−1
n−2,h(%n−2,h(E)) are the same.

Step 1 (condition (5) and the case of k = 0). Let k = 0 and h be a general element
of H. Then the assumption (2) is automatic and (3) follows from Proposition
7.3. Since X is SAut(X)-flexible, replacing Y2 by its automorphic image in X we
can suppose by Theorem 2.6 that E is also the set of singular points of Y2 and
ϕ(y) = y for every y ∈ E. Replacing, if necessary, Y1 and Y2 by h̃(Y1) and h̃(Y2)

respectively, where h̃ is a general element of H, we can suppose that E does not
meet %−1

n−2,h(%n−2,h(Z)) and, in particular, the sets %n−2,h(E) and %n−2,h(Z) are
disjoint. Furthermore, for a general h ∈ H one has always the second clause of
(5), i.e., Y1 ∩ %−1

n−2,h(%n−2,h(E)) = E (indeed, otherwise, since h is general almost
every line through some point of E meets another point of Y1 contrary to the
fact that Y1 is a curve). By Theorem 2.8 we can also suppose that for every
y ∈ E and every k > 0 the image of TyY2 in TAk under the map induced by
%k,h is of dimension min(k, dimTyY2). Applying now an automorphism of X to Y1

we can suppose also that ϕ∗ : TyY1 → TyY2 is the identity map. Let G be the
subgroup of SAut(X) whose restriction to the second infinitesimal neighborhood
E2 of E is the identity map. From now on we are going to use replacements of
Y1 and Y2 by their images under the actions of some elements of G. Note that
this quarantees (5) for all k > 0. Returning to the case of k = 0 we observe that
dimY1 + dim %−1

n−2,h(%n−2,h(Z)) 6 dimX. Hence, since X ′ = X \ E is G-flexible,
applying to Y1 an element of G we get (4) by Theorem 1.4 which concludes Step 1.

Step 2. Now let us assume that (1)–(4) are valid for k− 1 and proceed with the
case of k 6 n− 3.

Let F1 = Y1 ∩ %−1
n−2,h(%n−2,h(Z)) and F2 = ϕ(F1). Since %k−1,h ◦ ϕ = %k−1,h|Y1

we see that the sets %−1
k−1,h(w)∩F1 and %−1

k−1,h(w)∩F2 are of the same cardinality

for every point w ∈ Ak−1. Since by Lemma 7.6 every fiber of %k−1,h|X′ is G-flexible,
by Theorems 2.8 and 3.1 we can find an automorphism α1 ∈ G such that replacing
Y2 by α1(Y2) one has F1 = F2 and ϕ|F1

= id|F1
. Suppose that m is as in Lemma 7.9

(with % replaced by %n−2,h). Choose β as in Lemma 7.8 and replace Y2 by β(Y2),
i.e., the m-jet of ϕ at any point of F1 is now the m-jet of the identity map15. By
Lemma 7.9 we can find α2 ∈ G such that after replacement of Y1 by α2(Y1) one

15By flexibility such β can be chosen as an element of G since the finite sets E and
F1 are disjoint.
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has un|Y1 = un ◦ ϕ. Consider σ ∈ H such that σ∗(uk) = un, σ∗(un) = −uk while
the remaining coordinates remain intact. Since we started with a general h one
has σ ◦ %k,h = %k,h1

where h1 is a general element of H. Thus, replacement of h
by h1 leaves (1) valid while providing us with (2).

If we want to apply Theorem 4.2 further we need to guarantee the condition
(16) in Remark 4.3 (5) with %k,h as κ. For k = 1 we can get this condition by
choosing a couple of points y1 and y2 in each irreducible component of Y2 and
requiring that for α1 as above one has additionally %1,h(α1(y1)) 6= %1,h(α1(y2)).
Then %1,h|Y2 : Y2 → A1 is a quasi-finite morphism (after the replacement of Y2

by α1(Y2)) and we have (16) for Y2. By (2) we have it also for Y1. Furthermore,
this condition will survive for k > 1 provided that in further replacements of h by
another general h̃ ∈ H one has %2,h = %2,h̃.

As in the previous proof we treat %k,h : X ′ → Ak (resp. %n−2,h : X ′ → An−2)
as κ : X → P (resp. % : X → Q)) in Theorem 4.2. By Theorem 4.2(i) and (iii) we
can find an algebraic G-family A3 of automorphisms of X such that for a general
element α3 ∈ A3 the morphism %|α3(Y1\E) : α3(Y1 \ E) → Q is injective and
generates an injective map of the Zariski tangent bundles. By (5) this is also true
for the morphism %|α3(Y1) : α3(Y1)→ Q. Similarly, since %−1(%(Z)) is of dimension
dimZ + 2 6 dimX − dimY1 by Theorem 1.4 we can find an algebraic G-family
A4 of automorphisms of X such that for a general element α4 ∈ A4 the variety
α4(Y1) meet %−1(%(Z)) at a finite number of points which is equivalent to (4). By
Remark 4.3 (2) we can suppose that A3 = A4. We need to show that the morphism
%|α(Y1) : α(Y1)→ Q can be made proper for which we need to change our general
element h ∈ H.

Let H ′ be the subgroup of H as in the proof of Theorem 7.1(a). Applying the
same argument as in that proof (i.e., using Proposition 4.6(1)) we see that for a

general h′ ∈ H ′ the replacement of h by h̃ = h′h provides us with properness of
the morphism %′n−k−2,h′h|Y1 : Y1 → An−k−2 as soon as n − k − 2 > dimY1 = 1
(i.e., k 6 n− 3) while preserving the injectivity of these morphism and injectivity
of the induced morphism of the Zariski tangent bundles (as well as (1), (2), and
(5)). This yields (3) and, similarly, by Proposition 4.6(3) we get (4). Thus we have
%n−3,h ◦ ϕ = %n−3,h|Y1

which concludes Step 2.

Step 3. Let us show that replacing Y1 and Y2 with their automorphic images in X
and replacing h by another general element of H we can suppose that %n−2,h ◦ϕ =
%n−2,h|Y1

while keeping the morphism %n−2,h|Y1
: Y1 → An−2 finite.

Consider the embedding An = P × A3
un−2,un−1,un

⊂ P × P3 =: W where P =

An−3
u1,...,un−3

. Let D̃ = W \ An = P × P2 and for every closed subvariety Y of An

denote by Y̆ the intersection of D̃ with the closure of Y in W . Note that if Y
is a curve then Y̆ consists of no more than l points where l is the number of
punctures of Y (that are the points in the complement to a normalization of Y
in a smooth completion of this normalization). Furthermore, let V ⊂ An be given
by un = 0. Then V̆ = P × L where L is a line in P2 and the natural morphism
Y → A1

un
is finite if and only if Y̆ does not meet P × L. Consider the natural

action of H ′′ = SL(3,k) on A3
un−2,un−1,un

and extend this action to the action on

An = An−3 ⊕ A3 such that it is trivial on the first summand (this enables us to
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treat this H ′′ as a subgroup of H = SL(n,k) acting naturally on An). Consider
general elements h′′1 , . . . , h

′′
3l of H ′′ where l is the same as above but for Y = Y1.

Let Vi be the zero locus of un ◦ (h′′i h). Then V̆i = P × Li where L1, . . . , L3l are
general lines in P2 and, hence, the intersection of any three of them is empty.

Consider F i1 = Y1∩%−1
n−2,h′′i h

(%n−2,h′′i h
(Z)) and F i2 = ϕ(F i1). As before replacing

Y2 by its automorphic image one has F i1 = F i2 and ϕ|F i
1

= id|F i
1

for every i.

Furthermore, for every point in
⋃
F i1 we can suppose that the m-jet of ϕ coincides

with the m-jet of the identity map where m is as in Lemma 7.9. By Lemma 7.11
for one of the lines, say L1, the intersection Y̆2 with P ×L1 is empty and thus for
u′′n = un ◦ (h′′1h) the morphism Y2 → A1

u′′n
is finite. Applying Lemma 7.9 we can

replace Y1 by its automorphic image such that u′′n|Y1 = u′′n ◦ ϕ. Exchanging the
role of un−2 and un we can suppose that %n−2,h′′1 h

◦ ϕ = %n−2,h′′1 h
|Y1

. Since h′′1h is
a general element of H, after the replacement of h by h′′1h we still have (1) and
(5). The finiteness of the morphism Y2 → A1

u′′n−2
implies also that the morphism

%n−2,h′′1 h
|Y1

: Y1 → An−2 is finite which concludes Step 3.

Step 4. To finish the proof let us treat %n−2,h : X ′ → An−2 (resp. %n−1,h :
X ′ → An−1) as κ : X → P (resp. % : X → Q)) in Theorem 4.2. By Theorem
4.2(i) and (iii) (in combination with (5)) we can find an algebraic G-family A5

of automorphisms of X such that for a general element α5 ∈ A5 the morphism
%|α5(Y1) : α5(Y1) → Q is injective and generates an injective map of the Zariski
tangent bundles. Being also finite (since κ|Y1

: Y1 → P is finite and α5 is in
Aut(X/P )) it is a closed embedding. Furthermore, by Theorem 1.4 we can suppose
that α5(Y1) does not meet %−1(%(Z)) since the sum of the dimensions of these
varieties is less than dimX. Consider the natural action of H ′′′ = SL(2,k) on
A2
un−1,un

and extend this action to the action on An = An−2 ⊕ A2 such that
it is trivial on the first summand (i.e., H ′′′ is again a subgroup of H acting
naturally on An). By Proposition 4.6 for a general h′′′ ∈ H ′′′ the morphism
%n−1,h′′′h|α5(Y1) : α5(Y1)→ Q is still a closed embedding with α5(Y1) not meeting

%−1
n−1,h′′′h(%n−1,h′′′h(Z)). Since h′′′ is general the same is true for the replacement of
h by σ′′′h′′′h where σ′′′ ∈ H ′′′ is up to a sign the transposition of coordinates un−1

and un. By Lemma 7.9 (with k = n − 1) replacing Y1 by its automorphic image
we can suppose that for u′′′n = un ◦ (h′′′h) one has u′′′n |Y1 = u′′′n ◦ϕ. Exchanging the
role of un−1 and un we can suppose that %n−1,σ′′′h′′′h ◦ ϕ = %n−1,σ′′′h′′′h|Y1 . The
assumptions of Lemma 7.9 are true with % in that lemma equal to %n−1,σ′′′h′′′h.
Thus, after additional replacement of Y1 by its automorphic image we can make
Y1 = Y2 which is the desired conclusion. �

Remark 7.12.

(1) The assumption that Y1 and Y2 are closed in An (and not in An \Z) cannot
be dropped. Indeed, consider Z that does not admit nontrivial automorphisms,
and let L1 ' A and L2 ' A be disjoint curves in An each of which meets Z at one
point only. Then Y1 = L1 \Z and Y2 = L2 \Z are isomorphic but there is no way
to extend this isomorphism to an automorphism of An \ Z.

(2) We constructed an automorphism γ ofX such that γ|Y1
= ϕ as a composition

of elements of GZ . However, Remark 7.10 implies that we can choose γ as a
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composition of elements of GZm . More precisely, the proof of Theorem 7.1 yields
the following fact.

Proposition 7.13. For every m > 0 the automorphism γ from Theorem 7.1 can
be chosen as a composition of elements of the flows of locally nilpotent vector fields
that vanish on Z with multiplicity m. In particular, the restriction of γ to the m-th
infinitesimal neighborhood Zm of Z is the identity map.

It is interesting to understand how sharp is Theorem 7.1. Therefore, we would
like to pose the following.

Question. Let Z be a closed subvariety in An of codimension 2, and let Y1 and
Y2 be two smooth closed isomorphic curves in An disjoint from Z. Can one always
find an automorphism of An \ Z transforming Y1 onto Y2?

8. The case of quadrics

Notation 8.1. In this section m > 6 and X is a hypersurface in Amk that is a
nonzero fiber of a non-degenerate quadratic form. That is, when m = 2n (resp. m =
2n+1) we can suppose thatX is given by u1v1+· · ·+unvn = 1 (resp. u2

0+u1v1+· · ·+
unvn = 1) in a suitable coordinate system (ū, v̄) = (u1, . . . , un, v1, . . . , vn)(resp.
(u0, ū, v̄)). Recall that such an X is a homogeneous space of a special orthogonal
group G := SO(m,k) acting linearly on Amk . In particular, it is flexible since
homogeneous spaces of any semi-simple group are flexible [AFKKZ]. Furthermore,
the coordinate system determines an embedding Amk ↪→ Pmk such that the action
of G extends to Pmk . The closure X̄ of X in Pmk yields a completion of X for which
X̄ ∩H is a quadric in H = Pmk \ Amk ' Pm−1

k .

Lemma 8.2. Let Notation 8.1 hold. Then G acts transitively on X̄ ∩H.

Proof. Making a linear coordinate change we can suppose that the coordinate
system (w1, . . . , wm) on Amk is such that X is given by w2

1 + · · · + w2
m = 1. Then

Pmk is equipped with the coordinate system (w̃0 : w̃1 : . . . : w̃m) so that wi = w̃i/w̃0

for i = 1, . . . ,m and H is given by w̃0 = 0. Hence, the equation of X̄ ∩H in H is
w̃2

1 + · · ·+ w̃2
m = 0.

Let Zi = X̄ ∩H ∩ {w̃i = 0} and Z ′i = (X̄ ∩H) \Zi. Note that Z ′i is isomorphic
to a nonzero fiber of a non-degenerate quadratic form on Am−1

k and, therefore, the
subgroup Gi ' SO(m−1,k) of G that preserves the coordinate wi acts transitively
on Z ′i. On the other hand, for a point z ∈ Zm at least one of the coordinates
w̃1 : . . . : w̃m−1 is nonzero (say w̃1). Furthermore, applying an element of Gm we
can make w̃2 also different from zero. Hence, the subgroup G2 can transform z
into a point of Z ′m since the action of G2 on Z ′2 can switch coordinates w̃1 and
w̃m (and change the sign of one of them). This yields the desired statement about
transitivity because X̄ ∩H = Zm ∪ Z ′m. �

The aim of this section is to prove the following theorem.

Theorem 8.3. Let Notation 8.1 hold and ϕ : Y1 → Y2 be an isomorphism of two
closed subvarieties of X. Let ED(Yi) + dimYi 6 m − 2. Then ϕ extends to an
automorphism of X which belongs to SAut(X).
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Proof. Consider the case of m = 2n, i.e., X ⊂ Amk is given by u1v1+· · ·+unvn = 1.
Note that for m > 6 the assumption that ED(Yi) + dimYi 6 m − 2 implies that
k := dimYi+2 6 n. Let (u1, . . . , un, vk+1, . . . , vn) be a coordinate system on Am−kk

and % : Amk → Am−kk be the natural projection. Suppose that %̄ : X̄ 99K Am−kk is
the rational extension of %|X . Then R(%̄) as in Notation 5.1 has dimension k − 1.
Note also that if Ȳj is the closure of Yj in X̄ then dim Ȳi ∩ H < m − k − 2
since ED(Yi) 6 m − k. Hence, dim Ȳj ∩ H + dimR(%̄) < dim X̄ ∩ H. Lemma
8.2 implies that Corollary 5.8 is applicable and for a general element α of some
algebraic family A of automorphisms of X the morphism %|α(Yj) : α(Yj)→ Am−kk

is a closed embedding. Furthermore, by Theorem 1.3 we can suppose that α(Yj)
does not meet the subvariety F of X given by u2 = . . . = uk = 0 since dimYj <
k− 1 = codimX F . Hence, replacing each Yj by its automorphic image we suppose
that %|Yj : Yj → Am−kk is a closed embedding and Yj ∩ F = ∅. This implies

that Y ′j := %(Yj) is isomorphic to Yj and it does not meet the subspace of Am−kk

given by the same system of equations u2 = . . . = uk = 0. In particular, we can
treat v1|Yj

as the lift of a function fj on Y ′j and by the Nullstellensatz one has

1− fj =
∑k
i=2 uigj,i for some regular functions gj,2, . . . , gj,k on Y ′j .

Claim. For every Yj as in the statement of the Theorem there exists an automor-
phism of X that sends Yj onto a subvariety of the hypersurface S in X given by
v1 = 1 (in particular, S is isomorphic to Am−2

k ).

Indeed, let δi, i = 2, . . . , k be the locally nilpotent vector fields on X given by
δi = ui ∂/∂v1− u1 ∂/∂vi. Let ψj,i be the flow of gj,iδi at time t = 1. Note that the
automorphism ψj,2 ◦ . . . ◦ ψj,k transforms Yj into a subvariety of X on which the
restriction of v1 is identically 1. This concludes the proof of the Claim.

Thus we can suppose from the beginning that Y1 and Y2 are contained in S. By
Theorem 0.1 there is an automorphism β of S that transforms Y1 into Y2. Since
X \{v1 = 0} ' A∗k×S we can suppose that β is the restriction of an automorphism
of X \ {v1 = 0}. Thus by Theorem 3.1 β can be extended to an automorphism of
X which concludes the case of m = 2n.

If m = 2n+1 then we treat (u0, u1, . . . , un, vk+1, . . . , vn) as a coordinate system
on Am−kk and consider the natural projection % : Amk → Am−kk . The rest of the
proof works without change and we are done for the case of m = 2n + 1 as well.
�

The assumption on ED(Yi) implies that in the smooth case (i.e., in the case
when ED(Yi) = 2 dimYi + 1) we have the following.

Corollary 8.4. Let X be a nonzero fiber of a non-degenerate quadratic form in
Amk . Suppose that ϕ : Y1 → Y2 is an isomorphism of two closed smooth subvarieties
of X such that dimYi does not exceed m/3−1. Then ϕ extends to an automorphism
of X.

9. Comparable morphisms

Definition 9.1.

(1) Let X (resp. X ′) be a smooth algebraic variety and % : X → X ′ be a
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morphism. Consider a family F of closed subvarieties of X. Suppose that, given Y1

and Y2 ∈ F isomorphic over X ′ and such that %|Yi
: Yi → X ′ is a closed embedding,

there is an automorphism α ∈ Aut(X/X ′) of X over X ′ that transforms Y1 onto
Y2. In this case we say that % is comparable on F .

When the ground field k is C we also say that % is holomorphically comparable
on F if one can find a holomorphic automorphism of X over X ′ that transforms
Y1 onto Y2.

(2) Let X (resp. X ′) be a smooth algebraic variety with a group G ⊂ Aut(X)
(resp. G′ ⊂ Aut(X ′)) acting on it. We say that a morphism % : X → X ′ is (G,G′)-
comparable if for every g′ ∈ G′ there exists g ∈ G such that % ◦ g = g′ ◦ %.

The next fact follows from Definition 9.1.

Proposition 9.2. Let % : X → X ′ be (G,G′)-comparable. Let Y1 and Y2 be closed
subvarieties of X and ϕ : Y1 → Y2 be an isomorphism. Suppose that each morphism
%|Yi

: Yi → X ′ is a closed embedding, Y ′i = %(Yi), and ϕ′ : Y ′1 → Y ′2 is the
isomorphism for which ϕ′ ◦%|Y1

= %|Y2
◦ϕ. Let ϕ′ extend to an automorphism g′ of

X ′ which is an element of G′. Then there exists an element g ∈ G such that g(Y1)
is naturally isomorphic to Y2 over X ′. Furthermore, if % is also comparable (resp.
holomorphically comparable ) on a family F containing Y1 and Y2 then there exists
an algebraic (resp. holomorphic ) automorphism α of X for which α|Y1

= ϕ.

Proposition 9.3. Let % : X → X ′ be a principal bundle for some algebraic group
H and let h.x be the action of h ∈ H on x ∈ X. Let ϕ : Y1 → Y2 be an isomorphism
of closed subvarieties of X over X ′ such that %|Yk

: Yk → X ′ is a closed embedding.
Then there exists a morphism θ : Y ′ → H from Y ′ = %(Yk) such that

(a) ϕ(y1) = θ(%(y1)).y1 for every y1 ∈ Y1 and

(b) ϕ extends to an automorphism of X over X ′ if θ extends to a morphism
X ′ → H.

Furthermore, if the ground field k is C then

(c) ϕ extends to a holomorphic automorphism of X over X ′ if θ extends to a
holomorphic map X ′ → H.

Proof. Let y2 = ϕ(y1), and y′ = %(yk). Since y1 and y2 are in %−1(y′) ' H we
have a unique element h ∈ H for which y2 = h.y1. Letting θ(y′) = h we get (a).
If θ extends to Θ : X ′ → H then the desired extension of ϕ in (b) is given by
Θ(%(x)).x for x ∈ X. �

Corollary 9.4. Let % : X → X ′ be a principal bundle for some algebraic group H
and X ′ be quasi-affine.

(i) Suppose that Faff is the family of closed subvarieties of X isomorphic to
Akk with k = 1, 2, . . .. Then % is comparable on Faff .

(ii) Suppose that H is isomorphic as an algebraic variety to Ank. Consider the
family F of closed subvarieties Z of X such that %(Z) is closed in an affine
variety X ′′ containing X ′ as an open subvariety. Then % is comparable
on F .
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Proof. Let Y1 and Y2 ∈ Faff be as in Definition 9.1(1), i.e., Y ′ = %(Yi) ' Akk is
closed in X ′. Consider a morphism g : X ′ → Akk whose restriction to Y ′ is the
identity map (such a g exists since X ′ is quasi-affine). Let θ be as in Proposition
9.3. Then θ◦g yields an extension of θ to X ′ which by Proposition 9.3 concludes (i).

In (ii) note that since Z ′ := %(Z), Z ∈ F is closed in the affine variety X ′′ this
morphism θ extends to a morphism Θ : X ′′ → Ank ' H and again Proposition 9.3
yields (ii). �

Remark 9.5. Let % : X → X ′ be an affine morphism of smooth varieties and
G ⊂ Aut(X) (resp. G′ ⊂ Aut(X ′)).

(1) Note that if % is (G,G′)-comparable and G′ acts transitively on X ′ then all
fibers of % are isomorphic and, furthermore, % : X → X ′ is a locally trivial fiber
bundle in étale topology (it follows from the fact that any affine morphism W → V
of algebraic varieties with pairwise isomorphic general fibers is locally trivial over
an étale neighborhood of a general point of V [KR]).

(2) Let G (resp. G′) be generated by a set N (resp. N ′) of complete algebraic
vector fields on X (resp. X ′). In order for % to be (G,G′)-comparable it suffices to
require that for every δ′ ∈ N ′ there exists δ ∈ N such that for every x ∈ X and
x′ = %(x) one has

%∗(δx) = δ′x′ (21)

where δx (resp. δ′x′) is the value of the field δ at x (resp. δ′x′ at x′).

Definition 9.6. We call a pair δ, δ′ of vector fields (on X and X ′ respectively)
comparable if they satisfy formula (21). Similarly, we call the pair (N ,N ′) from
Remark 9.5 (2) comparable if for every δ′ ∈ N ′ there exists δ ∈ N so that the pair
δ, δ′ is comparable.

Example 9.7. Let X = SL(n,k), thus dimX = n2 − 1. Let A = [ai,j ]
n
i,j=1 be a

matrix from SL(n,k) and let k 6 n− 1 and m 6 n. Consider the (m× k)-matrix
A′ obtained from A by removing all rows starting with (m+ 1)-st and all columns
starting with (k+1)-st. Then one has the natural morphism of % : X → X ′, A→ A′

into the space X ′ ' Akmk of (k ×m)-matrices. Let 1 6 i 6= j 6 n and

δij =

n∑
l=1

al,i
∂

al,j
,

i.e., δij is a locally nilpotent vector field on X whose flow is the addition of multiples
of the i-th column in A to the j-th column. Note that

δ′ij =

m∑
l=1

al,i
∂

al,j
, i, j 6 k

is a locally nilpotent vector field on X ′ for which formula (21) is valid. Similarly,

the locally nilpotent vector fields σij =
∑n
l=1 ai,l ∂/aj,l and σ′ij =

∑k
l=1 ai,l ∂/aj,l

on X and X ′ respectively also satisfy formula (21).
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Notation 9.8. Suppose that % : X → X ′ is a smooth morphism of smooth
algebraic varieties. Let N (resp. N ′) be a set of locally nilpotent vector fields on
X (resp. X ′) such that the pair (N ,N ′) is comparable. Furthermore, we suppose
that X is a closed subvariety of X ′×Amk with % being the restriction of the natural
projection %̂ : X ′×Amk → X ′. That is, for every δ and δ′ satisfying formula (21) we
can write δ = δ′ + δ′′ where δ′′ is tangent to each fiber %̂−1(x′) ' Amk of %̂ (where
by abuse of notation we identify δ′ with its natural lift to X ′ × Amk ).

Recall that a vector field on Amk (with a fixed coordinate system ū=(u1, . . . , um))
is a linear vector field if it is of the form ẋ = Ax + b where x and b are vectors
in Amk and A is a square (m×m)-matrix (i.e., it is a non-homogeneous system of
linear differential equations).

Proposition 9.9. Let Notation 9.8 hold. Suppose that for every comparable pair
(δ, δ′) ∈ N ×N ′ the following condition is true:

(A) the restriction of the field δ′′ = δ−δ′ to every fiber %̂−1(x′) ' Amk is a linear
vector field (depending on x′ ∈ X ′).

Let Ñ ′ be the smallest saturated set of locally nilpotent vector fields on X ′ such
that it contains N ′. Suppose that L′ is the Lie algebra generated by the fields of
the form aδ′ where δ′ ∈ Ñ ′ and a ∈ k[X ′]. Then there exists a Lie algebra L of
vector fields on X such that for every complete (resp. locally nilpotent ) vector field
σ′ ∈ L′ there exists a complete (resp. locally nilpotent ) vector field σ ∈ L such that
the pair (σ, σ′) is comparable.

Proof. Note that for every a ∈ k[X ′] and every comparable pair (δ, δ′) ∈ N×N ′ the
pair (aδ, aδ′) is comparable and satisfies condition (A). Furthermore, let (δi, δ

′
i), i =

1, 2, . . . , s be a collection of comparable pairs satisfying condition (A) and let ` be
a linear form in s variables. Let κ′ = `(δ′1, . . . , δ

′
s) (resp. κ = `(δ1, . . . , δs)). Then

the pair (κ, κ′) is also comparable and satisfies condition (A).
For the Lie brackets δ0 = [δ1, δ2] and δ′0 = [δ′1, δ

′
2] the pair (δ0, δ

′
0) is, of course,

comparable. Let us check condition (A) for this pair. Note that

[δ1, δ2] = [δ′1, δ
′
2] + [δ′′1 , δ

′′
2 ] + [δ′1, δ

′′
2 ] + [δ′′1 , δ

′
2]

where the first term belongs to L′ and the restriction of the second one to every
fiber of %̂ is a linear vector field. Consider, say, the third term [δ′1, δ

′′
2 ]. Since the

restriction of δ′′2 to %̂−1(x′) ' Amk is of the form ẋ = Ax + b we see that [δ′1, δ
′′
2 ]

is of the form δ′1(A)x + δ′1(b) and, in particular, it is again a vector field whose
restriction to %̂−1(x′) is linear. Thus the pair (δ0, δ

′
0) satisfies condition (A).

Now, a comparable pair (δ, δ′) of complete vector fields induces flows ϕt : X →
X and ϕ′t : X ′ → X ′ (where t ∈ k) so that % ◦ ϕt = ϕ′t ◦ %. Hence, ϕt tranforms a
fiber %−1(x′0) ' Amk to the fiber %−1(ϕ′t(x

′
0)) ' Amk . When condition (A) is satisfied

this map of fibers is an element of the flow of a linear non-autonomous vector field
which is automatically an affine map. Hence, for every comparable pair (σ, σ′) of
complete vector fields the conjugation by ϕt and ϕ′t yields a comparable pair (σ̃, σ̃′)
of complete vector fields such that condition (A) is satisfied.

Applying these operations of taking Lie brackets, conjugations, and linear com-
binations we construct the desired saturated set Ñ ′ so that the pair (Ñ , Ñ ′) is
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comparable for some set Ñ of locally nilpotent vector fields on X. Let L′ (resp.

L) be the Lie algebra generated by the fields of the form aδ′ where δ′ ∈ Ñ ′ and

a ∈ k[X ′] (resp. aδ where δ ∈ Ñ and a ∈ k[X ′] ⊂ k[X]). By construction for
every element σ′ ∈ L′ there is an element of σ ∈ L so that the pair (σ, σ′) is also
comparable and satisfies condition (A).

Suppose now that σ′ is complete and O′ is an integral curve of this field (in
particular, O′ is isomorphic to either Ak or A∗k). To show that σ is complete it
suffices to prove that O′ admits a lift to an integral curve O ⊂ %̂−1(O′) ' O′×Amk
of the field σ = σ′+σ′′. The restriction of σ′′ to O′×Amk is of the form ẋ = Ax+b
where the matrix A and the vector b depend on the parameter t ∈ O′. That is, we
are dealing with a non-autonomous system of linear equations. Such a system has
a solution for all values of t which yields the desired lift of O′ to an integral curve
of σ.

If σ′ is locally nilpotent then in order to show that σ = σ′+σ′′ is locally nilpotent
one needs to prove that for every b ∈ k[X] there exists n for which σn(b) = 0.
This is true when b ∈ k[X ′] ⊂ k[X] since in this case σ(b) = σ′(b). Since k[X] is
generated over k[X ′] by the coordinate functions on Amk it suffices to prove that
if b is a coordinate on Amk then σn(b) = 0 for n >> 0. Note that in this case
σ(b) = σ′′(b) and by condition (A) one has σ′′(b) ∈ k[X ′]. This yields the desired
conclusion. �

10. Holomorphic extension of θ

In this section the ground field k is C and its aim is to describe conditions
under which θ : Y ′ → H from Proposition 9.3 admits a holomorphic extension
Θ : X ′ → H.

Proposition 10.1. Let the assumption of Proposition 9.3 hold and X ′ be Stein.
Suppose that the map θ is homotopy equivalent to a constant map from Y ′ to H.
Then θ admits a holomorphic extension Θ : X ′ → H.

Proof. By the Oka–Grauert principle [F2, Thm. 5.4.4] it suffices to construct a

continuous extension of θ. Let θ̃(t) : Y ′ → H, t ∈ [0, 1] be a homotopy of θ to a

constant map, i.e., θ̃(∗, 0) = θ and θ(∗, 1) sends Y ′ to a point h0 ∈ H.
The argument is rather simple in the case of a smooth Y ′ since one can consider

its closed tubular neighborhood U . Note that U admits a continuous map g :
U → [0, 1] such that g−1(0) = Y ′ and g−1(1) is the boundary ∂U of U . Define a

continuous extension θ′ : U → H of θ via the formula θ′(u) = θ̃(p(u), g(u)) where
u ∈ U and p : U → Y ′ is the natural projection. Then we can extend θ′ further to
θ′′ : X ′ → H by putting Θ(x′) = h0 for x′ ∈ X ′ \ U .

In the general case we recall that complex algebraic varieties admit triangulation
[Lo]. That is, one can view Y ′ as a subcomplex in a complex X ′. Then the second
baricentric derived neighborhood U of Y ′ is regular (e.g., see [Hi]). This means,
that Y ′ is a deformation retract of U and the map U → Y ′ (which is identity
on Y ′) can be constructed via a sequence of collapses Ui−1 ↘ Ui, i = 1, . . . , k
where each Ui is a subcomplex of the second baricentric subdivision, U0 = U , Uk
coincides with the second baricentric subdivision of Y ′, and Ui−1 ↘ Ui = {σi, τi}
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where σi is an l-dimensional simplex and τi is the only (l − 1)-dimensional face
of σi that is not contained in Ui (viewed as a complex). In particular, the union⋃k
i=1 τi contains the boundary of U0. Let us establish the following.

Claim. A continuous map θi : Ui → H, admitting a homotopy θ̃i to the constant
map h0 and such that θ̃i(∂τi) = h0, can be extended to a similar continuous

map θi−1 : Ui−1 → H with a homotopy θ̃i−1 to the constant map h0 such that

θ̃i−1(τi) = h0.
Let ∂σi (resp. ∂τi) be the boundary of σi (resp. τi). Then there is a homotopy g :

σi× [0, 1]→ σi such that g(∗, 1) = id|σi
, Im g(∗, 0) = ∂σi ∩Ui−1, and for every t ∈

[0, 1] the restriction g(∗, t)|∂σi∩Ui−1 is the identity map on ∂σi∩Ui−1. In particular,
each collapse Ui−1 ↘ Ui induces a strong deformation retract fi : Ui−1 → Ui.
Furthermore, g can be chosen so that it yields a natural homeomorphism between
σi \ ∂τi and τ̇i × [0, 1] where τ̇i = τi \ ∂τi is the interior of τi.

16 Hence, we
can now define the extension θi−1 of θi so that every u ∈ τ̇i and t ∈ [0, 1] one

has θi−1(g(u, t)) = θ̃i(fi(u), t). By construction θi−1(τi) = h0 and the extension

is homotopic to a constant map (indeed, define the homotopy θ̃i−1(g(u, s)) on

Ui−1 \ ∂τi via θ̃i(fi(u), t+ s(1− t))). This yields the the Claim.

It remains to show that for such extensions one has θ̃i|∂U = h0 as soon as
Ui ∩ ∂U 6= ∅. First note that if σi is one-dimensional and meets Y ′ then τi is a
singleton (i.e., ∂τi = ∅) and, therefore, θ̃i(τi) = h0. Let S be the collection of
σi /∈ Uk such that each of them has a face contained in Uk. For every σi ∈ S there
is the only one vertex not in Uk. Suppose that T is the set of such vertices. Since
each of σi ∈ S collapses before the one-dimensional simplexes mentioned above we
can suppose that θ̃i|T = h0. Let Sm be the collection of m-dimensional simplexes
σj /∈ S that have faces in

⋃
σi∈S σi. For every σj ∈ S2 we have a one-dimensional

τj such that ∂τj ∈ T . Thus by the Claim we can suppose that the restriction of

θ̃j to
⋃
σj∈S2

τj is the constant map to h0. Similarly, for every σk ∈ S3 we have

∂τk in
⋃
σj∈S2

τj . Hence, proceeding by induction we see that the restriction of

every θ̃i to
⋃
j>2

⋃
σk∈Sj

τk is h0. Consequently, for every σi /∈ S ∪
⋃
j>2 Sj we

have θ̃i(τi) = h0. Since we deal with the second baricentric subdivision we have⋃
σi∈S τi ∩ ∂U = ∅ which yields the desired conclusion. �

Lemma 10.2. Let m > 2 and Z be a complex affine algebraic variety such that
Hi(Z) = 0 for i > m + 1. Then Z can be embedded into a contractible topological

space Ẑ such that Ẑ \Z is a union of components each of which is homeomorphic
to a ball B whose real dimension is between 2 and m+ 2.

Proof. Since any algebraic variety is a finite CW-complex, Z has a finitely gene-
rated fundamental group. Gluing Z with discs along generators of this group we
obtain a topological space Z1 ⊃ Z such that Z1 is simply connected. Furthermore,
the Mayer–Vietoris sequence implies that the embedding Z ↪→ Z1 induces an
isomorphism Hi(Z) ' Hi(Z1) for i > 3. By the Hurewicz theorem π2(Z1) is

16In order to see this, treat σi as a closed l-dimensional ball, τi as the upper (l − 1)-
dimensional semi-sphere in its boundary, ∂σi ∩Ui−1 as the lower semi-sphere and ∂τi as
its equator.
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naturally isomorphic to H2(Z1). Thus, we can choose a nontrivial element ω of
H2(Z1) presented by a two-dimensional cell in the CW-complex which is homeo-
morphic to a two-sphere. Glue Z1 with a three-dimensional ball along this sphere
and let V1 = Z1∪B1 be the resulting simply connected topological space. Consider
the Mayer–Vietoris sequence

· · · → Hk+1(V1)
dk+1−−−→ Hk(Z1 ∩B1)→ Hk(Z1)⊕Hk(B1)

→ Hk(V1)
dk→ Hk−1(Z1 ∩B1)→ · · · .

Note that if ω generates a free group then the map H2(Z1 ∩ B1) → H2(Z1) is
a monomorpism and, therefore, d3 sends H3(V1) to zero. That is, after such a
gluing Hi(V1) = Hi(Z1) for i > 3 while the rank of H2(V1) is less than the rank
of H2(Z1) since ω induces the zero element in H2(V1). Continuing this procedure
we can embed Z1 into a simply connected V2 such that Hi(V2) = Hi(Z1) for i > 3
while H2(V2) is finite. Let V3 be the result of gluing a three-ball to V2 along ω as
before and V3 = V2∪B2 be the resulting simply connected topological space. In this
case ω is of finite order l and the kernel of H2(V2∩B2)→ H2(V2) in the associated
Mayer–Vietoris sequence is isomorphic to lZ ⊂ Z ' H2(V2 ∩ B2). In particular,
the image of the map Hk+1(V3) → Hk(V2 ∩ B2) ' Z is lZ. Since the latter is a
free Z-module the map Hk+1(V3) → lZ has a right inverse. Thus it follows from
the Mayer–Vietoris sequence that H3(V3) is naturally isomorphic to H3(V2) ⊕ Z
while Hi(V3) = Hi(V2) for i > 4. Since the number of elements in H2(V3) is less
than the number of elements in H2(V2), continuing this procedure we embed Z1

into a simply connected Z2 such that H2(Z2) = 0, Hi(Z2) = Hi(Z1) = Hi(Z)
for i > 4, and H3(Z2) is naturally isomorphic to the direct sum of H3(Z) and a
finitely generated free Z-module.

In the same manner we can embed Z into a simply connected Zm such that
Hi(Zm) = 0 for i 6 m, Hi(Zm) = Hi(Z) = 0 for i > m + 2, and Hm+1(Zm)
is naturally isomorphic to the direct sum of Hm+1(Z) and a finitely generated
free Z-module. That is, Hm+1(Zm) is a finitely generated free Z-module since
Hm+1(Z) = 0. Gluing Zm with balls of real dimension m + 2 we can obtain a

simply connected Ẑ with Hi(Ẑ) = 0 for i 6 m+ 1. Furthermore, as we saw before,
since Hm+1(Zm) is free, this procedure does not affect the i-homology groups with

i > m + 2. Hence, Hi(Ẑ) = 0 for i > 1 and by the Hurewicz theorem πi(Ẑ) = 0

for i > 1. By the Whitehead theorem Ẑ is contractible which yields the desired
conclusion. �

Remark 10.3. It follows from the proof that if in Lemma 10.2 the group Hm(Z) is

free, then in order to construct Ẑ one needs only balls of real dimension at most
m+ 1.

Proposition 10.4. Let % : X → X ′ be a principal bundle for some algebraic
group H and Y ′ be a closed subvariety of X ′. Let X ′ be Stein and H be simply
connected with Hi(H) = 0 for i 6 m where m > 2. Suppose also that Hi(Y

′) = 0
for i > m + 1 and Hm(Y ′) is free. Then any morphism θ : Y ′ → H admits a
holomorphic extension Θ : X ′ → H.
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Proof. By Lemma 10.2 we can embed Y ′ into a contractible topological space Y .
Furthermore, by Remark 10.3 we can suppose that each component of Y \ Y ′ is a
ball B whose real dimension k is at most m+ 1 and whose boundary is an image
of a (k − 1)-dimensional sphere in Y ′. Composition with θ yields a continuous
map of this sphere to H. Since πk−1(H) = 0 we can extend any continuous map
of a (k − 1)-dimensional sphere in H to a map from a closed k-ball. Hence, we

can extend the morphism θ : Y ′ → H to a continuous map θ̂ : Y → H. Let
ψ : Y × [0, 1]→ Y be a contraction of Y , i.e., ψ(∗, 0) = id|Y and ψ(∗, 1) = yo ∈ Y .

Then θ̃ = θ̂ ◦ ψ is a homotopy of θ to a constant map. Hence, we are done by
Proposition 10.1. �

11. The case of SL(n, k)

Notation 11.1. Let us fix notation for the rest of the paper. From now on X
will be always an affine algebraic variety isomorphic to SL(n,k) with n > 3, i.e.,
dimX = n2 − 1. We treat points in X as matrices A = [ai,j ]

n
i,j=1 from SL(n,k)

and denote by {Aij} the cofactors of this matrix. For m 6 n let Pm be the space
of (m × n)-matrices, P 0

m be its subvariety consisting of matrices of rank m and
%m : X → Pm be the natural projection that sends A to the matrix consisting of
the first m rows of A. Consider also the natural projection % : X → Q where Q is
the quadric given by the equation

a11A11 + a12A12 + · · ·+ a1nA1n = 1 (22)

in the affine space A2n
k equipped with coordinates (a1,1, . . . , a1,n, A1,1, . . . , A1,n).

Suppose that the group H = SL(n,k) × SL(n,k) acts on X so that (B,C) ∈
SL(n,k) × SL(n,k) sends A ∈ X to BAC. Note that H contains the subgroup
Hm = SL(m,k) × SL(n,k) that acts naturally on Pm, while H1 acts naturally
on Q. Under these actions the morphism %m (resp. %) is Hm-equivariant (resp.
H1-equivariant).

Lemma 11.2. Let Notation 11.1 hold. Then the Hm-action (resp. H1-action) on
P 0
m (resp. Q) is transitive.

Proof. Since any finite sequence of column and row operations on a matrix D ∈ Pm
coincides with the action of some element of Hm on this matrix we see that for
D ∈ P 0

m there is an element h ∈ Hm for which h.D = [di,j ] where di,i = 1 for every
i = 1, . . . ,m, while di,j = 0 for i 6= j. This yields the transitivity of the Hm-action
on P 0

m.
Similarly, an elementary column operation induced by an element of H1 yields

an automorphism of Q such that

a1,j → a1,j + ta1,i and A1,i → A1,i − tA1,j (23)

(where t ∈ k is a multiple), while it keeps the rest of coordinates the same. Since
a1,1, . . . , a1,n cannot vanish simultaneously we can send an arbitrary point q in Q
via such automorphism to a point q1 with

a1,1 = 1 and a1,2 = · · · = a1,n = 0. (24)
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In this case A1,1 = 1 because of formula (22). Let us use now the similar automor-
phisms which send a1,1 → a1,1 + ta1,j and A1,j → A1,j − tA1,1, while preserving
the rest of coordinates on Q. Then we can send q1 to a point q0 with A1,2 = . . . =
A1,n = 0, while keeping formula (24) valid. That is, we can send an arbitrary point
q to this given point q0 which yields the transitivity of the H1-action on Q and
the desired conclusion. �

Notation 11.3. Let Ik be the identity (k × k)-matrix for k > 1. Consider the
following subgroups of block matrices in SL(n,k).

F ′n−m =

[
Im 0̄
M SL(n−m,k)

]
, resp. F ′′ =

[
I1 0̄
0̄ SL(n− 1,k)

]
where M is the set of (n−m)×m matrices. Then we have the subgroup H ′n−m =
F ′n−m × In of H acting on X and the subgroup H ′′ = F ′′ × In acting on X.

Proposition 11.4. Let Notations 11.1 and 11.3 hold and n−m > 2. Then

(i) %m : X → P 0
m is a principal H ′n−m-bundle over P 0

m;
(ii) % : X → Q is a principal H ′′-bundle over Q.

Proof. Note that the action of H ′n−m on X is free and it preserves every fiber of the
morphism %m. Therefore, the fibers of %m are of dimension at least dimH ′n−m =
m(n−m)+(n−m)2−1 = n(n−m)−1. Furthermore, the action of Hm transforms
each orbit of H ′n−m into another orbit. Hence, the fibers of %m are of the same
dimension because %m is Hm-equivariant and the Hm-action on P 0

m is transitive.
Since dimP 0

m = nm and dimX = n2 − 1, observing the equality and n2 − 1 =
nm+n(n−m)−1 we see that the fibers of %m are nothing but the orbits of H ′n−m
which shows that %m : X → P 0

m is a principal H ′n−m-bundle. Thus we have (i).
Similarly, the H ′′-action on Q is free, it preserves every fiber of the morphism

% and it commutes with the H1-action from Notation 11.1. Hence, the fibers of
% are of dimension at least dim SL(n − 1,k) = (n − 1)2 − 1. All these fibers are
again of the same dimension because % is H1-equivariant and the H1-action on Q
is transitive by Lemma 11.2. On the other hand, the dimension of Q is 2n − 1.
Observing the equality dim SL(n,k) = n2−1 = (n−1)2−1+(2n−1) we conclude
that the dimension of each fiber is (n− 1)2− 1. That is, the fibers of % are nothing
but the orbits of the H ′′-action which yields (ii) and the desired conclusion. �

Notation 11.5.
(1) Let N = {δi,j | 1 6 i 6= j 6 n}

⋃
{σi,j | 1 6 i 6= j 6 n} be the set of locally

nilpotent vector fields on X given by

δi,j =

n∑
l=1

al,i
∂

al,j
and σi,j =

n∑
l=1

ai,l
∂

aj,l
,

N ′m = {δ′i,j | 1 6 i 6= j 6 n}
⋃
{σ′i,j | 1 6 i 6= j 6 m} be the set of locally nilpotent

vector fields on Pm given by

δ′i,j =

m∑
l=1

al,i
∂

al,j
and σ′i,j =

n∑
l=1

ail
∂

aj,l
,
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and N ′′ = {δ′′i,j |1 6 i 6= j 6 n} be the set of locally nilpotent vector fields on Q
given by

δ′′i,j = a1,i
∂

a1,j
−A1,j

∂

A1,i
.

(2) Let Ñ ′m (resp. Ñ ′′) be the smallest saturated set of locally nilpotent vector

fields on Pm containing N ′m (resp. on Q containing N ′′). In particular, Ñ ′m gene-

rates a group G′m of automorphisms of Pm and Ñ ′′ generates a group G′′ of
automorphisms of Q.

Lemma 11.6. Let Notation 11.5 hold, n > 3 and 1 6 m 6 n− 2.

(1) The pair (N ,N ′m) (resp. (N ,N ′′)) is comparable for the morphism %m (resp.
%).

(2) Every element of (N ,N ′m) (resp. (N ,N ′′)) satisfies Condition (A) in Pro-
position 9.9.

(3) The variety P 0
m is G′m-flexible and the variety Q is G′′-flexible.

(4) Let L′m be the Lie algebra of vector fields on Pm generated by all fields of

the form a′δ′ where δ′ ∈ Ñ ′m and degδ′ a
′ 6 1. Then L′m contains the space

of all algebraic vector fields on Pm that vanish at Z = Pm \ P 0
m with some

multiplicity s > 0.
(5) Let L′′ be the Lie algebra of vector fields on Q generated by all fields of the

form a′′δ′′ where δ′′ ∈ Ñ ′′ and degδ′′ a
′′ 6 1. Then L′′ coincides with the

space of all algebraic vector fields on Q.

Proof. The first and second statements follow from Notation 11.5 and Definition
9.6. For (3) note that all elementary row and column operations on Pm can be
viewed as elements of flows of fields from N ′m. Since such operations generate the
action of the group Hm we see that G′m contains Hm. By the similar reason G′′

contains H ′′. Since by Lemma 11.2 Hm acts transitively on P 0
m (resp. H1 acts

transitively on Q) we have (3) by Theorem 2.6.
The vector fields δ′1,2 and δ′3,2 commute, i.e., we have a compatible pair of

locally nilpotent vector fields in Ñ ′m. Since P 0
m = Pm \ Z is G′m-flexible Theorem

2.15 implies that the Lie algebra L′m contains all algebraic vector fields AVF(Pm)
on Pm vanishing on Z with some multiplicity s > 0, i.e., we have (4).

The same argument and the commutativity of δ′′1,2 and δ′′3,2 imply (5). �

Proposition 11.7. Let G̃ = SAut(X), G̃′′ = SAut(Q) and let G̃′m = SAutZs
(Pm)

be the subgroup of SAut(Pm) generated by the elements of the flows of locally
nilpotent vector fields on Pm whose restriction to the s-infinitesimal neighborhood
Zs is zero, where s is as in Lemma 11.6. Then %m : X → P 0

m is a (G̃, G̃′m)-

comparable morphism and % : X → Q is a (G̃, G̃′′)-comparable morphism.

Proof. By Lemma 11.6(4) the group G̃′m is generated by elements of the flows of
locally nilpotent vector fields from L′m. Since Condition (A) is satisfied by Lemma

11.6(2) we see that %m is (G̃, G̃′m)-comparable by Proposition 9.9. Similarly, by

Lemma 11.6 the group G̃′′ is generated by elements of the flows of locally nilpotent
vector fields from L′′ and the same reasoning yields the second statement. �
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Lemma 11.8. Let Notation 11.1 hold. Then the codimension of the subvariety
Z = Pm \ P 0

m in Pm is n−m+ 1.

Proof. A matrix A ∈ Pm does not belong to P 0
m if and only if its rank k is at most

m− 1. Applying some element of Hm to A = [ai,j ] with k 6 m− 1 we can suppose
that A = [aij ] has ai,j = 1 where i = j and i 6 k, while ai,j = 0 in all other cases.
Note that the isotropy subgroup F of A in Hm consists of all elements (B,C) such
that B is a block (m×m)-matrix of the form[

A′ B′

0̄ D′

]
and C is a block (n× n)-matrix of the form[

(A′)−1 0̄
C ′ E′

]
where A′ ∈ GL(k,k), D′ ∈ GL(m− k,k), E′ ∈ GL(n− k,k) with detD′ = 1

detA′

and detE′ = detA′, while B′ (resp. C ′) is an aribrary matrix of size k × (m− k)
(resp. (n− k)× k). Hence, the dimension of F is k(m− k) + (m− k)2 + (n− k)2 +
k(n−k)+k2−1. Since the subvariety of matrices of rank k in Pm is isomorphic to
Hm/F we see that its dimension is dimHm−dimF = m2−1+n2−1−(k(m−k)+
(m−k)2 +(n−k)2 +k(n−k)+k2−1) = m(m−k)+k(n−k)−k2−1. For k running
from 1 to m− 1 the maximum of latter expression is achieved for k = m− 1 and it
is equal to m+(m−1)(n−m+1)−(m−1)2−1 = (n+1)(m−1) = nm−n+m−1.
Since dimPm = nm we see that the codimension of Z in Pm is n −m + 1 which
is the desired conclusion. �

Lemma 11.9. Let Notation 11.1 hold, 0 < m < n and Y be a closed subvariety
of X of dimension at most m. Suppose that H̆ ' SL(n,k) acts on X via left
multiplications. Then for a general element h ∈ H̆ the morphism %m|h(Y ) : h(Y )→
Pm is proper.

Proof. Suppose that the variety X = An2

k is equipped with the coordinate system
(a1,1, . . . , an,n) and, thus, X contains X as a closed subvariety. Present X as X =∏n
i=1 Xi0 where Xi0 = Ank has the coordinate system (a1,i, . . . , an,i). Let X̄i '

Pn be a completion of Xi0, i.e., X̄i = Xi0 t Xi1 (where Xi1 ' Pn−1) and X̄ =∏n
i=1 X̄i is a completion of X . Note that the H̆-action on X extends naturally

to an H̆-action on X (resp. X̄ ) and we have also the transitive H̆-action on each
Xi0 with an extension to an action on X̄i for which Xi1 is an H̆-orbit and the
natural projection X → Xi (resp. ψi : X̄ → X̄i) is H̆-equivariant. Let J be the
set {0, 1}n without the element (0, . . . , 0). Note that the boundary X̄ = X̄ \ X
can be presented as

⋃
j̄∈J Cj̄ where Cj̄ =

∏n
i=1 Xiji and j̄ = (j1, . . . , jn) ∈ J .

In particular, for the closure Ȳ of Y in X̄ one has Ȳ \ Y =
⋃
Y̆j̄ where Y̆j̄ =

(Ȳ \ Y ) ∩ Cj̄ . Let, say, j′1 = 1 for some j̄′ ∈ J and, hence, ψ1(Cj̄′) ⊂ X11. Since

Ȳ \ Y is of dimension m − 1 we see that ψ1(Y̆j̄′) is of dimension at most m −
1. Note that the set R(a1,1, . . . , am,1) of common indeterminacy points of the
functions a1,1, . . . , am,1 on X̄1 is a subset of X11 of codimension m. By Theorem

1.3 for a general h ∈ H̆ the intersection of h(ψ1(Y̆j̄′)) with R(a1,1, . . . , am,1) is
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empty. Since ψ1 is H̆-equivariant we have h(Y̆j̄′) ∩ ψ−1
1 (R(a11, . . . , am,1)) = ∅

where ψ−1
1 (R(a1,1, . . . , am,1)) is the intersection of Cj̄′ with the set of common

indeterminacy points of a11, . . . , am,1 in X̄ . Note that the similar claims are true

for all j̄ ∈ J . Hence, for a general h ∈ H̆ the variety h(Ȳ ) does not meet the
set of common indeterminacy points of the functions a1,1, . . . , am1, a1,2, . . . , am,n.
Furthermore, the boundary X̄ \ X does not contain points where these functions
are regular and take finite values. Therefore, the desired conclusion follows now
from Proposition 5.2. �

Proposition 11.10. Let the assumptions of Lemma 11.9 hold and ED(Y ) 6 m
where m 6 n − 2. Then for some element β ∈ SAut(X) the morphism %m|β(Y ) :
β(Y )→ Pm is a closed embedding.

Proof. By Proposition 11.4 we have X/H ′n−m ' P 0
m. Note that the H ′n−m-action

on X is generated by elements of the flows of some set S of locally nilpotent
vector fields on X. Let S̃ be the smallest saturated set of locally nilpotent vector
fields on X containing S and tangent to the fibers of %m. Then S̃ generates a
group F of automorphisms of X over Pm such that it contains H ′n−m and every
fiber of %m is F -flexible. By Theorem 4.2(iv) there exists an algebraic F -family
A of automorphisms of X such that for a general element α ∈ A the morphism
%m ◦ α : Y → Pm is injective and it induces an injective map of tangent bundles.
By Proposition 4.6 the same is true for a morphism (%m ◦ h) ◦ α : Y → Pm where
h is a general element of H̆. By Lemma 11.9 the latter morphism is proper. Thus,
letting β = h ◦ α we get the desired conclusion. �

Theorem 11.11. Let X = SL(n,C) and ϕ : Y1 → Y2 be an isomorphism of two
closed subvarieties of X such that either

(i) ED(Yi)+dimYi 6 n−2, Hi(Y1) = 0 for i > 3 and H2(Y1) is a free abelian
group; or

(ii) dimY1 is a curve and ED(Yi) 6 n− 2; or
(iii) Y1 is a once-punctured curve and ED(Y1) 6 2n− 3.

Then there exists a holomorphic automorphism β of X such that β|Y1
= ϕ.

Proof. Let m = ED(Yi). By Proposition 11.10 we can suppose that %m|Yi
: Yi →

Pm is a closed embedding. Let ϕ′ : Y ′1 → Y ′2 be the isomorphism induced by
ϕ, where Y ′i = %m(Yi). By Lemma 11.8 one has dimZ = nm − (n − m + 1),
where Z = Pm \ P 0

m. Therefore, the assumption m + dimYi 6 n − 2 implies that
dimY ′i +dimZ 6 dimPm−3 in case (i). Hence, by Theorem 7.1(a) and Proposition
7.13 ϕ′ can be extended to an automorphism α′ ∈ SAutZs

(Pm) for any s > 1. By
Proposition 11.7 s can be chosen so that %m is (SAut(X), SAutZs(Pm))-comparable
and, hence, by Proposition 9.2 we can suppose that Y ′1 = Y ′2 and ϕ′ is the identity
map.

By Proposition 9.2 it suffices to establish now that %m is holomorphically
comparable on a family of algebraic varieties containing Yi. By Proposition 11.4
%m is a principal H ′n−m-bundle. Consider the morphism θ : Y ′1 → H ′n−m as in
Proposition 9.3 (with H and Y ′ replaced by H ′n−m and Y ′1). In order to prove
holomorphic comparability it suffices to show that θ extends to a holomorphic
map Θ : Pm → H ′n−m. Note that as an affine variety H ′n−m is isomorphic to the
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direct product of Cm(n−m) and SL(n−m,C). Hence, π1(H ′n−m) = π2(H ′n−m) = 0
and the existence of an extension Θ is provided by Proposition 10.4 which yields
the desired conclusion in (i).

For (ii) exactly the same argument works with Theorem 7.1(a) replaced by
Theorem 7.1(b).

For (iii) we recall that % : X → Q is a principal H ′′-bundle by Proposition
11.4. Arguing as in the proof of Proposition 11.10 we can find a subgroup F ⊂
SAut(X/Q) containing H ′′ such that every fiber of % is F -flexible. Hence, by
Corollary 4.4 we can suppose that each %|Yi

: Yi → Q is a closed embedding.
Let Y ′′i = %(Yi) and ϕ′′ : Y ′′1 → Y ′′2 be the isomorphism induced by ϕ. Since
ED(Y1) 6 2n − 3 we see that ϕ′′ extends to an automorphism α′′ ∈ SAut(Q) by
Theorem 8.3. By Proposition 11.7 % is (SAut(X), SAut(Q))-comparable. Hence,
by Proposition 9.2 we can suppose that Y ′′1 = Y ′′2 and ϕ′′ is the identity map. As
before we have a morphism θ′′ : Y ′′1 → H ′′ as in Proposition 9.3 which extends to
a holomorphic map Θ′′ : Q → H ′′. Thus we have holomorphic comparability of %
which yields (iii) and concludes the proof. �

Corollary 11.12. Let X = SL(n,C) and ϕ : Y1 → Y2 be an isomorphism of two
smooth closed subvarieties of X such that dimYi 6 n/3− 1, Hi(Y1) = 0 for i > 3
and H2(Y1) is a free abelian group. Then there exists a holomorphic automorphism
β of X such that β|Y1

= ϕ.

Proof. Since dimYi 6 n/3− 1 the smoothness assumption implies that ED(Yi) +
dimYi 6 n− 2. Hence, Theorem 11.11 implies the desired conclusion. �

Theorem 11.13. Let ϕ : Y1 → Y2 be an isomorphism of two closed subvarieties
of X ' SL(n,k) with n > 3 such that Yi is isomorphic to Akk. Suppose that either
k 6 n/3− 1 or k = 1. Then there exists α ∈ SAut(X) such that α|Y1

= ϕ.17

Proof. Let k 6 n/3− 1, m = ED(Y1) and let Y ′i = %m(Yi), i = 1, 2. Repeating the
argument in the proof of Theorem 11.11 we can suppose that %m|Yi

: Yi → Y ′i is
a closed embedding, Y ′1 = Y ′2 and the induced isomorphism ϕ′ : Y ′1 → Y ′2 is the
identity map. Since %m is a principal H ′n−m-bundle, %m is comparable on the family
Faff as in Corollary 9.4. The desired conclusion follows now from Proposition 9.2.

Similarly, if k = 1 then as in Theorem 11.11(iii) we can suppose that %|Yi
: Yi →

Q is a closed embedding and for Y ′′i = %(Yi) the induced isomorphism ϕ′′ : Y ′′1 →
Y ′′2 is the identity map. Since % is a principal H ′′-bundle, % is comparable on the
family Faff . The desired conclusion follows again from Proposition 9.2. �

The following necessary condition for the positive solution of the extension
problem is straightforward.

Proposition 11.14. Let a group G ⊂ Aut(W ) act on an algebraic variety W
and ϕ : Y1 → Y2 be an isomorphism of closed subvarieties of W . Suppose that
ιk : Yk ↪→ W is the natural embedding. Suppose also that for every α ∈ G there
exists k > 1 such that the homomorphism πk(Y1) → πk(W ) induced by α ◦ ι1 is
different from the similar homomorphism induced by ι2. Then ϕ cannot be extended
to an automorphism from G.

17The case of k = 1 is, of course, the theorem of Van Santen [St] which we prove by
other means.
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Remark 11.15. In the complex case note that if ι1 : Y1 ↪→ W induces a trivial
homomorphism πk(Y1) → πk(X) for some k while the similar homomorphism
induced by ι2 : Y2 ↪→ W is nontrivial then ϕ cannot be extended even to a
homeomorphism of W . Furthermore, if G is contained in the connected component
of identity in Aut(X) then the extension problem does not have a positive solution
for the group G if there is no homotopy of ϕ to the identity map via closed
embeddings of Y1 into W .

In the rest of this section we present a concrete (and more or less obvious)
example illustrating Proposition 11.14 in the case of X ' SL(n,C).

Lemma 11.16. There is a closed embedding of Y ' SL(2,C) into X ' SL(n,C)
such that it generates an isomorphism π3(Y ) ' π3(X) of the homotopy groups.

Proof. Let % : X → Q be as in Notation 11.1, i.e., by Proposition 11.4 it is a
principal H ′′-bundle with fiber F ' SL(n− 1,C). Since Q is a complexification of
a real (2n− 1)-dimensional sphere it has a homotopy type of this sphere.18 Hence,
πk(Q) = 0 for 1 6 k 6 2n−2 and π2n−1(Q) = Z. Now the exact homotopy sequence
for the fiber bundle % : X → Q implies that the natural embedding of SL(n−1,C) '
F ↪→ X ' SL(n,C) induces an isomorphism πk(X) ' πk(F ) for k < 2n − 2.
Choosing a natural sequence SL(2,C) ⊂ SL(3,C) ⊂ . . . ⊂ SL(n− 1,C) ⊂ SL(n,C)
of closed embeddings we get the desired conclusion. �

Theorem 11.17. Let X be an affine algebraic variety isomorphic to SL(n,C) with
n > 3. There are two closed subvarieties Y1 and Y2 in X isomorphic to SL(2,C)
and such that there is no automorphism α of X for which α(Y1) = Y2.

Proof. By Lemma 11.16 we can suppose that the natural embedding Y1 ↪→ X
generates an isomorphism π3(Y1) ' π3(X). By Proposition 11.14 and Remark
11.15 in order to prove Theorem 11.17 it suffices to present an embedding Y2 ↪→
X such that the induced homomorphism sends π3(Y2) into the zero element of
π3(X). Treat a point in X as a matrix A = [ai,j ]. Let A′ be the (n − 1) ×
(n − 1) matrix obtained from A by removing the first row and the first column.
Consider the subvariety X0 of X that consists of matrices A such that A′ is the
identity matrix. Note that X0 is naturally isomorphic to C2n−1 with coordinates
a1,2, . . . a1n, a21, . . . , an1 since a1,1 can be expressed as function of these coordinates
because of the equation detA = 1. Choose in X0 the quadric Y2 ' SL(2,C) given
by a1,2a1,3 − a2,1a3,1 = 1 and a1,k = ak,1 = 0 for all k > 4. Then the embedding
Y2 ↪→ X induces the zero map π3(Y2)→ π3(X) since it factors through Y2 ↪→ X0

and X0 is contractible. This yields the desired conclusion. �
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