
Vol. , No. 1, 2021, pp. –26 229 277

Transformation Groups Springer Science+Business Media New York (2019)

RELATIVE CELLULAR ALGEBRAS

M. EHRIG

School of Mathematics and Statistics
Beijing Institute of Technology

Beijing, Fangshan District
100488, China

micha.ehrig@outlook.com

D. TUBBENHAUER

Institut für Mathematik
Universität Zürich
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Abstract. In this paper we generalize cellular algebras by allowing different partial
orderings relative to fixed idempotents. For these relative cellular algebras we classify and
construct simple modules, and we obtain other characterizations in analogy to cellular
algebras. We also give several examples of algebras that are relative cellular, but not
cellular: most prominently, the restricted enveloping algebra and the small quantum group
for sl2, and an annular version of arc algebras.
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1. Introduction

Arguably the two main problems in the representation theory of, say, algebras
are the classification and the construction of simple modules. However, for most
algebras both problems — non-linear in nature — are out of reach.

In pioneering work [GL96] Graham–Lehrer introduced the notion of a cellular
algebra, i.e., an algebra equipped with a so-called cell datum. For example, of key
importance for this paper, the cell datum comes with a set X and a partial order <
on it; the latter plays an important role since it yields an “upper triangular way”
to construct certain “standard, easy” modules, called cell modules. The usefulness
of the cell datum comes from the fact that it provides a method to systematically
reduce hard questions about the representation theory of such algebras to problems
in linear algebra. In well-behaved cases these linear algebra problems can be solved,
giving, e.g., a parametrization of the isomorphism classes of simple modules via a
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subset of X, and a construction of a representative for each class. Thus, cellular
algebras provide a method to solve the classification and the construction problem.
Other upshots of cellular algebras are that they have certain reciprocity laws —
allowing to recover the multiplicities of simple modules in indecomposable projective
modules via the multiplicities of simple modules in cell modules — or that they
give various ways to study the blocks of the algebra in question.

After Graham–Lehrer’s paper appeared a lot of interesting algebras have found to
be cellular — among the more popular ones are various diagram algebras and Hecke
algebras of finite Coxeter type — and proving cellularity of algebras has turned out
to be a very useful tool in representation theory. In fact, another motivation for
studying cellular algebras is to understand these various examples of the theory by
putting them into an axiomatic framework, revealing hidden connections. However,
by far not all algebras are cellular since, e.g., their Cartan matrix has to be positive
definite.

In this paper we (strictly) generalize the notion of a cellular algebra to what
we call a relative cellular algebra, i.e., an algebra equipped with a relative cell
datum. For example, the relative cell datum comes with a set X, but now with
several partial orders <ε on it, one for each idempotent ε from a preselected set of
idempotents. Taking only one idempotent ε = 1, namely the unit, and only one
partial order <1=<, we recover the setting of Graham–Lehrer.

Surprisingly, most of the theory of cellular algebras still works in this relative
setup. Thus, relative cellular algebras generalize the useful framework of cellular
algebras to a larger class. For example, relative cellular algebras can have a positive
semidefinite Cartan matrix.

However, the proofs are fairly different from the original ones, carefully incorpo-
rating the various partial orders. The purpose of our paper is to explain this in
detail.

Along the way we give examples of algebras that are relative cellular, but not
cellular in the sense of Graham–Lehrer.

The papers content in a nutshell

Our exposition follows closely [GL96].

(i) In Section 2 we introduce our generalization of cellularity. The crucial new
ingredient hereby is (2.1.c) asking for a set E of idempotents and partial orders
<ε for each ε ∈ E. Then we define cell modules for relative cellular algebras, and
discuss a basis-free version of relative cellularity. Further, in Section 2E, we give
some first non-trivial examples of relative cellular algebras that are not cellular.

(ii) Section 3 is the main technical heart of the paper where we recover relative
versions of some of the facts that hold for cellular algebras. Most prominently,
the construction and classification of simple modules in Theorem 3.17, and some
reciprocity laws in Section 3E.

(iii) In the fourth section, see Section 4, we show that the restricted enveloping
algebras of sl2 in positive characteristic are relative cellular algebras. We recover
the entire (well known, of course) representation theory of these algebras from
the general theory of relative cellular algebras. We note that the case of the small
quantum groups for sl2 at roots of unity works mutatis mutandis, giving very
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similar statements.

(iv) Finally, in Section 5 we discuss another, and in some sense the motivating,
example for relative cellularity: an annular version of arc algebras. We think of
this section as being interesting in its own right since annular arc algebras have
potential connections to, e.g., homological knot theory, exotic t-structures, Springer
fibers and modular representation theory.

Moreover, we tried to make the paper reasonably self-contained, and we tried
to keep the exposition as easy as possible. In fact, throughout the text we have
included several remarks about potential further directions.

Remark 1.1. Note that any finite-dimensional algebra over an algebraically closed
field is standardly based (“cellular without involution”) in the sense of [DR98], cf.
[CZ19, Thm. 6.4.1]. However, the “naive” standard defining base which one can
produce via an algorithm can be fairly useless. We see relative cellular algebras as
being in between cellular and standardly based algebras, keeping some of the nice
properties of cellular algebras as, e.g., reciprocity laws, a symmetric Ext-quiver
and a more useful cell structure as we will see in our examples.

Conventions

We work over any field K and algebras, maps etc. are assumed to be over K, K-linear
etc., and ⊗ = ⊗K. Moreover, if not stated otherwise we work with finite-dimensional,
left modules. (Even for potentially infinite-dimensional algebras.) By an idempotent
ε we always understand a non-zero element in some algebra A with ε2 = ε.

We use some colors in this paper, none of which are essential, and reading the
paper in black-and-white is entirely possible.

Acknowledgements. We thank Gwyn Bellamy, Kevin Coulembier, Andrew Mathas,
Catharina Stroppel and Oded Yacobi for discussions and inspirations, and the
referees for a careful reading of the manuscript and helpful comments. M.E. likes
to thank Vinoth Nandakumar for making him aware of the annular arc algebra.
We acknowledge a still nameless toilet paper roll for visualizing the concept of a
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Institute for Mathematics (HIM) in Bonn, and the hospitality of the HIM during this
period is gratefully acknowledged. M.E. was partially supported by the Australian
Research Council Grant DP150103431 and by a BIT research grant.

2. Relative cellularity

2A. A generalization of cellularity

Following [GL96] we define:

Definition 2.1. A relative cellular algebra is an associative algebra R together
with a (relative) cell datum, i.e.,

(X,M,C, ?,E,O, ε) (2-1)

such that the following hold.

231



M. EHRIG, D. TUBBENHAUER

(a) We have a set X, and M = {M(λ) | λ ∈ X} is a collection of finite, non-empty
sets such that

C :
∐
λ∈X M(λ)×M(λ)→ R (2-2)

is an injective map with image forming a basis of R. For S, T ∈ M(λ) we
write C(S, T ) = CλS,T from now on.

(b) We have an anti-involution ? : R→ R such that (CλS,T )? = CλT,S .
(c) We have a set E of pairwise orthogonal idempotents, all fixed by ?, i.e.,

ε? = ε for all ε ∈ E. Further, O = {<ε| ε ∈ E} is a set of partial orders <ε

on X, and ε is a map ε :
∐
λ∈X M(λ)→ E sending S to ε(S) = εS such that

εRε CλS,T ∈ R(≤ελ), (2-3)

εCλS,T =

{
CλS,T , if εS = ε,

0, if εS 6= ε,
(2-4)

for all λ ∈ X, S, T ∈ M(λ) and ε ∈ E. Hereby, for ε ∈ E, we let

R(≤ελ) = K{CλS,T | µ ∈ X, µ ≤ελ, S, T ∈ M(µ)}, (2-5)

a notation which we also use for <ε rather than for ≤ε, having the evident
meaning.

(d) For λ ∈ X, S, T ∈ M(λ) and a ∈ R we have

aCλS,T ∈
∑
S′∈M(λ) ra(S′, S) CλS′,T + R(<εT λ)εT , (2-6)

with scalars ra(S′, S) ∈ K only depending on a, S, S′.

We call the set {CλS,T | λ ∈ X, S, T ∈ M(λ)} a relative cellular basis.

The first examples of relative cellular algebras are cellular algebras C in the
sense of [GL96, Def. 1.1]. As we will see in (2.8.b) below, the relative cell datum in
this case is (X,M,C, ?, {1}, {<1}, ε), with ε mapping everything to 1.

As in the cellular setup, a relative cell datum is not unique. Nevertheless, we
say that an algebra R is relative cellular if there exist some relative cell datum.
(Similarly, if we have already fixed part of the relative cell datum as, e.g., the
anti-involution ?.)

Remark 2.2. The basic properties of relative cellular algebras do not require
|X| <∞; an extra assumption equivalent to R being finite-dimensional, cf. (2.1.a).
However, numerous results later on, for example Theorem 3.17, will make this
additional assumption.

The following is our version of an observation from [GG11, Rem. 2.4].

Lemma 2.3. Let char(K) 6= 2. If R has a datum as in Definition 2.1 except that

(CλS,T )? = CλT,S + R(<εT λ) (2-7)

holds instead of (2.1.b), then R is relative cellular.
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Proof. The proof is the same as in [GG11, Rem. 2.4]: The condition (CλS,T )? =

CλT,S + R(<εT λ) implies that, for all λ ∈ X and S, T ∈ M(λ), we can find a

unique f(λ, S, T ) ∈ R(<εT λ) such that (CλS,T )? = CλT,S + f(λ, S, T ). Then the set

{CλS,T + 1
2f(λ, S, T ) | λ ∈ X, S, T ∈ M(λ)} can be taken as a relative cellular basis.

�

Remark 2.4. Note that Lemma 2.3 implies that imposing (CλS,T )? = CλT,S+R(<εT λ)

is equivalent to imposing (CλS,T )? = CλT,S unless char(K) = 2. However, in contrast

to the case of cellular algebras where ε is constant, (CλS,T )? = CλT,S + R(<εT λ) is
not symmetric (this comes from our choice to work with left modules) and some of
our arguments in Section 3 fail if we would only require (CλS,T )? = CλT,S + R(<εT λ)

instead of (CλS,T )? = CλT,S .

Further directions 2.5. We could also work more generally over rings instead
of the field K, as, e.g., Graham–Lehrer [GL96]. This could be useful to extend the
notion of relative cellularity to some affine setup as in [KX12]. However, most of
the results in Section 3 use the fact that we work over a field. So, for convenience,
we decided not to do so.

If not stated otherwise, fix a relative cellular algebra R in the following. Moreover,
let us introduce a notation that will appear throughout the paper: for a subset
I ⊂ X we fix the linear subspace

R(I) = K{CλS,T | λ ∈ I, S, T ∈ M(λ)} ⊂ R. (2-8)

Often these subspaces will be defined with respect to <ε; for this we abuse notation
and, for example, R(<ελ) can be understood as R({µ ∈ X | µ <ελ}) and similarly
for analogous expressions. Further, by an ideal I in the poset (X, <ε), <ε-ideal for
short, we understand a subset of ∅ 6= I ⊂ X such that I is a directed, lower set in
the order-theoretical sense. (For example, <ελ = {µ ∈ X | µ <ελ} is an <ε-ideal.)

2B. First properties

The (very basic) statements below will be crucial for the definition of cell modules.

Lemma 2.6. The following properties hold.

(a) For λ ∈ X, S, T ∈ M(λ), and ε ∈ E we have

CλS,T εRε ∈ R(≤ελ), CλS,T ε =

{
CλS,T , if εT = ε,

0, if εT 6= ε.
(2-9)

(b) If ε ∈ E and I ⊂ X, then εR(I) ⊂ R(I) ⊃ R(I)ε.
(c) For an <ε-ideal Iε we have that R(Iε)ε is a left and εR(Iε) is a right ideal

in R.
(d) For λ ∈ X, S, T ∈ M(λ), and a ∈ R we have

CλS,T a ∈
∑
T ′∈M(λ)ra?(T ′, T ) CλS,T ′ + εSR(<εS λ), (2-10)

with the same scalars ra?(T ′, T ) as in (2.1.d).
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Proof. (2.6.a). This follows by applying ? to (2.1.c).
(2.6.b). The first inclusion follows from (2.1.c) and the second by applying ?.
(2.6.c). For the left-ideal-statement let CλS,T ∈ R(Iε)ε. Then — by (2.1.d) — we

have

aCλS,T ε ∈
∑
S′∈M(λ) ra(S′, S) CλS′,T ε + R(<εT λ)εTε. (2-11)

But either εTε = 0 or they agree and the last term is inside the linear subspace.
The right-ideal-statement is again obtained using ?.

(2.6.d). By applying ? directly to (2.1.d). �

Combining (2.1.c) and (2.6.a) we obtain:

Corollary 2.7. Let a ∈ R such that εa = a = aε for ε ∈ E. Then

a ∈ K{CλS,T | λ ∈ X, S, T ∈ M(λ), εS = εT = ε}. (2-12)

The same holds for a? as well.

Additionally, Lemma 2.6 gives us a further relation to cellular algebras.

Proposition 2.8. Let R be a relative cellular algebra with cell datum given by
(X,M,C, ?,E,O, ε), and let C be a cellular algebra with cell datum (X,M,C, ?) and
order < on X.

(a) For all elements ε ∈ E, the algebra εRε is a cellular algebra with cell datum
(X,Mε,Cε,

?) and the partial order on X given by <ε,

Mε(λ) = {S ∈ M(λ) | εCλS,T = CλS,T for T ∈ M(λ)}, (2-13)

and Cε being the restriction of C to
∐
λ∈X Mε(λ)×Mε(λ).

(b) The algebra C is relative cellular with relative cell datum

(X,M,C, ?, {1}, {<1}, ε),

with ε mapping everything to 1.

Proof. (2.8.a). That Mε and Cε give a bijection with a basis of εRε follows by
combining (2.1.c) and (2.6.a). So we are left with checking the multiplication rule
for cellular algebras. For a ∈ R, λ ∈ X, and S, T ∈ M(λ) with εS = εT = ε, we use
(2.1.c) and get

εaε CλS,T ∈
∑
S′∈M(λ),εS′=ε rεaε(S′, S) CλS′,T + εR(<ε λ)ε ⊂ εRε. (2-14)

(2.8.b). By construction, (2.1.a) and (2.1.b) are part of the cell datum (X,M,C, ?).
Next, the set E for (2.1.c) can be taken to be E = {1} (with 1 being the unit of R)
satisfying 1? = 1. The partial ordering < of C is the partial ordering <1 for the
unit. Note hereby that (2-3) follows from (2.1.d), while (2-4) is automatic. �

Remark 2.9. For any cellular algebra C and any idempotent ε fixed by ?, εCε is
cellular, see [KX98, Prop. 4.3]. However, Proposition 2.8 is different since we do
not assume R to be cellular to begin with.
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Remark 2.10. As we have seen in the proof of (2.8.b), the two conditions (2-3)
and (2-4) are “invisible” in the non-relative setup. However, they are crucial for
our purposes, e.g., (2-3) is used in Lemma 3.12 — a crucial ingredient for proving
Theorem 3.17.

Note that the map ε is always surjective by (2.1.a) and (2.1.c). Furthermore,
only finitely many elements of E act non-trivially on a given element on R. Thus,
the following is immediate.

Lemma 2.11. If |X| < ∞, then R is unital with unit
∑

ε∈E ε. Otherwise R is
locally unital with set of local units being all finite sums of elements in E.

There is a quotient functor from the category of R-modules to modules over
R(E) =

⊕
ε∈E εRε. By Lemma 2.11, this gives a bijection between the isomorphism

classes of simples for both algebras. However, some properties of this quotient
functor depend on the choice of the set E, and, e.g., R is in general not a projective
R(E)-module since the projectives of both algebras might be fairly different. See
also Remark 2.22 below.

2C. Existence of cell modules

We proceed by defining cell modules.

Definition 2.12. For λ ∈ X and T ∈ M(λ) let ∆(λ;T ) = K{MλS,T | S ∈ M(λ)}. We
define an action � of R on ∆(λ;T ) by setting

a � MλS,T =
∑
S′∈M(λ) ra(S′, S) MλS′,T , (2-15)

with ra(S′, S) being defined by (2-6).

Lemma 2.13. The action from Definition 2.12 defines the structure of an R-mo-
dule on ∆(λ;T ). Further, there is an isomorphism of R-modules ∆(λ;T ) ∼= ∆(λ;T ′)
for any T, T ′ ∈ M(λ).

Proof. The coefficient ra(S′, S) is — by definition — additive with respect to a, and
one has r1(S′, S) = δS,S′ . Moreover, one also has

a′(aCλS,T ) ∈ a′
∑
S′∈M(λ) ra(S′, S) CλS′,T + a′R(<εT λ)εT

⊂
∑
S′,S′′∈M(λ) ra′(S

′′, S′)ra(S′, S) CλS′′,T + R(<εT λ)εT ,
(2-16)

where the inclusion is due to (2-6) and (2.6.c), and

(a′a)CλS,T ∈
∑
S′′∈M(λ) ra′a(S′′, S) CλS′′,T + R(<εT λ)εT . (2-17)

Thus, we have

ra′a(S′′, S) =
∑
S′∈M(λ) ra′(S

′′, S′)ra(S′, S) for a, a′ ∈ R. (2-18)

This in turn implies a′ � (a � MλS,T ) = (a′a) � MλS,T . Hence, we get a well-defined
R-module structure on ∆(λ, T ). Since ra(S′, S) is independent of the second index,
the assignment MλS,T 7→ MλS,T ′ gives an R-module isomorphism. �

Due to Lemma 2.13 we omit the T in the definition and notation of ∆(λ;T ).
We call ∆(λ) a cell module, and we denote the basis elements of ∆(λ) by MλS only.
Furthermore — having Lemma 2.13 — we can define right R-modules:
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Definition 2.14. We define the right R-module ∆(λ)? on the same vector space
as ∆(λ) by setting MλS � a = a? � MλS .

We get — by construction — the following identification:.

Lemma 2.15. The linear extension of the assignment

Θλ : ∆(λ)⊗∆(λ)? → R({λ}), Θλ(MλS , M
λ
T ) = CλS,T , (2-19)

is an isomorphism of vector spaces.

2D. A basis-free definition of relative cellularity

In this section we let A be an algebra with a fixed anti-involution ? and a set E of
pairwise orthogonal idempotents, all fixed by ?. Furthermore, denote by K[E] the
semigroup algebra generated by the elements of E. Following [KX98, Def. 3.2] we
define:

Definition 2.16. Let J ⊂ A denote a linear subspace, and let ∆ denote a finite-
dimensional, left A-module. Assume that the following hold:

(a) The linear subspace J is fixed under ?, i.e., J? = J.

(b) The linear subspace J is a K[E]-bimodule.

(c) There is a K[E]-bimodule isomorphism Θ−1 : J
∼=−→ ∆⊗∆? and a diagram

J ∆⊗∆?

J ∆⊗∆?,

Θ−1

? 	 x⊗y 7→y⊗x

(Θ−1)?

(2-20)

where ∆? is the right A-module on the same vector space as ∆ and right
action of A defined via x � a = a? � x.

Then we call J a cell space.

Proposition 2.17. A finite-dimensional algebra A is relative cellular with respect
to ? and E if and only if:

(a) The elements of E give a decomposition of the unit of A.

(b) There is some index set X with |X| <∞ and a vector space decomposition
of A into cell spaces, i.e., A =

⊕
λ∈X Jλ.

(c) For each ε ∈ E there is an enumeration X = {λ1, λ2, . . . , λm} such that

0 ⊂ J⊕λ1
ε ⊂ J⊕λ2

ε ⊂ · · · ⊂ J⊕λiε ⊂ · · · ⊂ J⊕λmε ⊂ Aε, (2-21)

is a chain of A-submodules J⊕λiε =
⊕i

j=1 Jλiε.

(d) The submodule J⊕λiε as in (2-21) is a right ε′Aε′-module for any ε′ ∈ E.
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Proof. Definition 2.1⇒Proposition 2.17. Fix ε ∈ E. Since <ε is a partial order on
X, we can inductively construct the linear subspaces Jλiε ⊂ Aε by starting with

Jλ1
ε = K{Cλ1

S,T | S, T ∈ M(λ1), εT = ε}
(2-4)
== K{Cλ1

S,T ε | S, T ∈ M(λ1), εT = ε}
(2-22)

for some <ε-minimal λ1 ∈ X. Then we set J⊕λiε =
⊕i

j=1 Jλiε, and the so constructed
linear spaces are submodules and satisfy the cell chain condition (2-21) by (2.1.d).
Moreover, orthogonality and the ?-version of (2-3) (see (2.6.a)) shows that (2.17.d)
holds as well.

Further, define Jλ =
⊕

ε∈E Jλε. These are cell spaces: By (2.1.b) and the fact
that εS = ε for some ε ∈ E we get (2.16.a), while (2.16.b) follows from (2-4).
Next — by virtue of construction — Jλ = A({λ}). Thus, we can set ∆λ

∼= ∆(λ),
whose properties – by Lemma 2.15 — give (2.16.c) by defining Θ−1(CλS,T ) = (MλS , M

λ
T ).

Finally — by (2.1.a), Lemma 2.11 and finite-dimensionality — we get (2.17.a) and
(2.17.b).

Proposition 2.17⇒ Definition 2.1. First, let X = {λ | Jλ is a cell space}. For any
cell space Jλ we first fix a basis {MλS} of its associated ∆λ. Note that — by finite-
dimensionality – we can choose this to be a basis consisting of common eigenvectors
for K[E], and we thus can demand that this basis satisfies either εMλS = MλS or
εMλS = 0 for each ε ∈ E. The λ, S, T play hereby the role of some indexes, where
we set M(λ) to be the set of all S, T ’s that appear in this enumeration. Next, use
(2.16.c) to define C(S, T ) = CλS,T = Θ−1(MλS ⊗ MλT ) for S, T ∈ M(λ). Since we have
already fixed ?, this defines the relative cell datum up to the part about idempotents.
To define the remaining data, first note that E is already given. Moreover, the cell
chain condition (2-21) gives rise to a partial ordering <ε on X for each ε ∈ E. Next,
observe that ε(S)CλS,T = CλS,T for precisely one ε(S) ∈ E due to the choice of the

basis {MλS}, orthogonality and (2.17.a). Thus, we can define εS = ε(S), and we get
the last part of the relative cell datum.

It remains to check that we have defined a relative cell datum. First, note that all
M(λ)’s are finite because — by assumption — the ∆λ’s are finite-dimensional, while
|X| <∞— also by assumption. Second — by (2.17.b) — we have an isomorphism of
vector spaces R ∼=

⊕
λ∈X Jλ, showing that (2.1.a) holds. That (2.1.b) holds on the

nose follows from the commutative diagram in (2.16.c), while (2.1.d) follows from
(2.16.b). Finally, it remains to show (2-3) and (2-4), where the latter is clear by
construction of ε. The remaining part follows then by applying ? to (2.17.d). �

Further directions 2.18. As explained in [KX98], the basis-free formulation of
cellularity is connected to ideals in the setting of quasi-hereditary algebras. In the
relative setup we lose the ideal structure (cf. (2.17.c) and (2.17.d)) and we do not
know what the relative version of the connection to quasi-hereditary algebras is.

2E. Examples of relative cellular algebras

Remark 2.19. For the following examples recall that the Cartan matrix C(A) of
some finite-dimensional algebra A is defined by counting the multiplicities of the
simples L in the indecomposable projectives P . Now, it follows from [KX99, Prop.
3.2] that C(C) is symmetric and positive definite in case C is a cellular algebra.
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Example 2.20. Consider the type An graphs with doubled edges (where we
exclude the case n = 2 because it requires a slightly different setup):

An = 1 2 3 · · · n , (i j)? = j i,

Relations:

All 2-cycles at the vertex i are equal, i.e., i j i = i k i;
Going two steps in one direction is zero, i.e., i j k = 0, for i 6= k.

(2-23)

We let C(An) be the quotient of the path algebra of An (multiplication ◦ being
composition of paths i j ◦ j k = i j k) with relations as in (2-23). Up to base
change one gets:

C(C(A3))=
(

2 1 0
1 2 1
0 1 2

)
, C(C(A4))=

(
2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

)
, C(C(A5))=

(
2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

)
, etc., (2-24)

all of which are positive definite. The algebra C(An) is known as the type An zigzag
algebra, cf. [HK01, Sect. 3]. Let us discuss the case n = 2 with respect to cellularity
in detail; the general case works mutatis mutandis.

First, the C(A3)-action on itself is given by pre-composition of paths, and the
algebra can be equipped with the anti-involution ? indicated in (2-23) that fixes the
vertex idempotents e1, e2, e3. Clearly, C(A3) has one-dimensional simple modules
L(i) for i ∈ {1, 2, 3} where ej acts by δij .

The algebra C(A3) is a relative cellular algebra with respect to ?. As a relative
cell datum we can take

X = {0 <1 1 <1 2 <1 3},
M(0) = {1 2}, M(1) = {e1, 2 1}, M(2) = {e2, 3 2}, M(3) = {e3},

CiS,T = S ◦ T ?,
E = {1}, ε(1 2 1) = ε(e1) = ε(2 1) = ε(e2) = ε(3 2) = ε(e3) = 1.

(2-25)

Note that E = {1} is the same choice as in (2.8.b), and C(A3) is actually cellular.
Now, the cellular basis and cell modules are given as follows, where we write i

on top of the columns containing ∆(λ;T )’s with εT = ei (in the notation from
Definition 2.12):

1 2 3

e1 2 1 e2 3 2 e3

1 2 1 1 2
2 1 2

=
2 3 2

2 3
3 1 3

=
3 2 3

∆(1)

∆(0)

<1

∆(2)

∆(1)

<1

∆(3)

∆(2)

<1
(2-26)

The left action is going in the indicated direction (or it stays within the ∆’s), as one

easily checks. Note the directedness: ∆(0)
<1←−− ∆(1)

<1←−− ∆(2)
<1←−− ∆(3), making
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the cell modules well-defined since they are obtained by modding out terms that
are <1-smaller.

Further, the indecomposable projectives are

P (1) = C(A3)e1

L(1)

L(2)

∆(1)

L(1)

∆(0)

,

P (2) = C(A3)e2

L(2)

L(3)

∆(2)

L(1)

L(2)

∆(1) ,

P (3) = C(A3)e3

L(3)

∆(3)

L(2)

L(3)

∆(2) (2-27)

which have the indicated ∆-filtrations. We will see in Proposition 3.19 that this
is a general feature, with partial order in the filtration being relative. See also
Examples 2.21 and 2.23 below.

Morally speaking, in the relative setup we can separate parts that are cellular
by using the idempotents in E. Here are two prototypical examples:

Example 2.21. (We use a notation similar to that in Example 2.20.) Consider
the following family of quivers, i.e., the cycles on n vertices with double edges:

Ãn =

1 2

n · · · 3

, (i j)? = j i,

Relations:

All 2-cycles at the vertex i are equal, i.e., i j i = i k i;
Going two steps in one direction is zero, e.g.1 n n−1=0.

(2-28)

(The case n = 2 is special and excluded.) As in Example 2.20, we let R(Ãn) be the

corresponding quotient of the path algebra of Ãn, with relations given in (2-28),
and anti-involution ? given by swapping the orientations of the arrows. Again, the
Cartan matrices are easy to calculate and up to base change:

C(R(Ã3))=
(

2 1 1
1 2 1
1 1 2

)
, C(R(Ã4))=

(
2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

)
, C(R(Ã5))=

(
2 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 2

)
, etc. (2-29)

The algebra R(Ãn) is known as the type Ãn zigzag algebra, and is for example
studied in the context of categorical actions; see, e.g., [GTW17, Sect. 3.1] or [MT16,

Sect. 2.3]. In contrast to C(An), the algebra R(Ãn) is not cellular (at least for even
n where the Cartan matrix is only positive semidefinite, cf. Remark 2.19, although
this holds in general, see [ET18, Thm. A]), but it is relative cellular as we discuss
now in the case n = 3, the general case again being similar.
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In this case we take the following relative cell datum. Let ε = e2 + e3 and let

X={2 <e1 3 <e1 1}={1 <ε 2 <ε 3},
M(1)={e1, 2 1}, M(2)={e2, 3 2}, M(3)={e3, 1 3}, CiS,T =S ◦ T ?,
E={e1, ε}, ε(e1)=ε(1 3)=e1, ε(e2)=ε(e3)=ε(2 1)=ε(3 2)=ε.

(2-30)

Next, the relative cellular basis and the cell modules:

1 2 3

e1 2 1 e2 3 2 e3 1 3

3 1
1 2 1

=
1 3 1

1 2
2 1 2

=
2 3 2

2 3
3 1 3

=
3 2 3

∆(1)

∆(3)

<e1
∆(2)

∆(1)

<ε

∆(3)

∆(2)

<ε
(2-31)

Hereby we like to stress the difference between ∆(1) in the left and middle column:
The one in the left column is ∆(1, e1), the other is ∆(1, 2 1), the first of which is
defined using the partial order <e1 , the second the partial order <ε.

The indecomposable projectives themselves are

P (1) = R(Ã3)e1

L(1)

L(2)

∆(1)

L(3)

L(1)

∆(3) ,

P (2) = R(Ã3)e2

L(2)

L(3)

∆(2)

L(1)

L(2)

∆(1) ,

P (3) = R(Ã3)e3

L(3)

L(1)

∆(3)

L(2)

L(3)

∆(2) (2-32)

which have order dependent cyclic patterns.

Remark 2.22. Note that Example 2.21 also shows the dependence of the homological
characterizations of cell modules on the choice of idempotents and their associated
partial orders. If one chooses the finer set of idempotents e1, e2, and e3 and partial
orders

X = {3 <e1 1 <e1 2} = {1 <e2 2 <e2 3} = {2 <e3 3 <e3 1}, (2-33)

one checks that R(Ã3) is also relative cellular with this choice. But, in contrast to
the choice in Example 2.21, the cell module ∆(i, ei) is now the maximal quotient of
P (i) with all composition factors L(j) satisfying i ≤ei j. This is reminiscent of the
properties of standard modules for quasi-hereditary algebras and was for example
used in [Xi02] to give homological characterizations of when a cellular algebra is
quasi-hereditary. In the relative cellular case these homological characterizations
depend decisively on the choice of idempotents and the partial orders.

We also stress that the R(Ã3)(E)-module structure of R(Ã3) depends on E. This
can be seen by comparing the cases with E being as in 2.21 and E being as in (2-33).

Moreover, in both cases the sets of the isomorphism classes of simples of R(Ã3)

and R(Ã3)(E) contain three one-dimensional modules, but the indecomposable

projectives of R(Ã3)(E) depend on the choice of E.
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Example 2.23. (We use a notation similar to that in Example 2.20.) As in Ex-

ample 2.21 we use the graphs Ãn to define a quiver algebra R′(Ãn). But we impose
the relations in (2-34) instead of those in (2-28). (We keep the anti-involution ?.)

Relations:

All 2-cycles at the vertex i are equal, i.e., i j i = i k i;
Going around the circle is zero, e.g., 1 2 · · · n 1 = 0.

(2-34)

The Cartan matrices are, up to base change, now

C(R′(Ã3))=
(

3 3 3
3 3 3
3 3 3

)
, C(R′(Ã4))=

(
4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

)
, C(R′(Ã5))=

(
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5

)
, etc., (2-35)

which are not positive definite giving us that the R′(Ãn) are, by Remark 2.19, not
cellular algebras. However, they are relative cellular, where we as before discuss
the n = 3 case in detail, the general case being similar. We can take

X={3 <e1 2 <e1 1}={1 <e2 3 <e2 2}={2 <e3 1 <e3 3},
M(1)={e1, 3 1, 2 3 1}, M(2)={e2, 1 2, 3 1 2}, M(3)={e3, 2 3, 1 2 3},

CiS,T =S ◦ T ?, E={e1, e2, e3}, ε(i ·)=ei.

(2-36)

The relative cellular basis and the cell modules are then

1

e1 3 1 2 3 1

2 1
1 2 1

=
1 3 1

3 1 2 1
=

3 1 3 1

3 2 1
2 3 2 1

=
2 1 2 1

1 2 3 2 1
=

1 2 1 2 1

∆(1)

∆(2)

∆(3)

<e1

<e1

2

∆(2)

∆(3)

∆(1)

<e2

<e2

3

∆(3)

∆(1)

∆(2)

<e3

<e3

(2-37)

with the cell modules in the second and third columns being analog.
The indecomposable projectives themselves are

P (1) = R′(Ã3)e1

L(1)

L(3)

L(2)

∆(1)

L(2)

L(1)

L(3)

∆(2)

L(3)

L(2)

L(1)

∆(3) ,

P (2) = R′(Ã3)e2

L(2)

L(1)

L(3)

∆(2)

L(3)

L(2)

L(1)

∆(3)

L(1)

L(3)

L(2)

∆(1) ,

P (3) = R′(Ã3)e3

L(3)

L(2)

L(1)

∆(3)

L(1)

L(3)

L(2)

∆(1)

L(2)

L(1)

L(3)

∆(2) (2-38)

which again have (quite heavy) cyclic patterns.
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Remark 2.24. In the above three examples we leave it to the reader to check that
(2.1.a) to (2.1.d) hold. (For Example 2.20: (2.1.d) is the most crucial thing to
be checked, with (2.1.c) then being automatic. See also the proof of (2.8.b) and
Remark 2.10. For Example 2.21: In this case (2-3) needs to be checked. It follows

since, e.g., e1R(Ã3)e1 equals the linear span of all 2-cycles at the vertex 1 that are
either e1 or act on everything except e1 as zero. For Example 2.23: Again, (2-3) is

non-trivial. However, it can be checked by keeping in mind that eiR
′(Ã3)ei equals

the linear span of all 2-cycles at the vertex i.)

Example 2.25. Let K be a field of positive characteristic p > 0. In Section 4
we show that the restricted enveloping algebra u0(sl2) is relative cellular, but
not cellular (except in case p = 2 where u0(sl2) is actually already cellular, see
Remark 4.6.)

Similarly, let K be any field and fix q ∈ K to be a root of unity, q 6= ±1. The
case of the so-called small quantum group uq (sl2) at q associated to sl2 (see, e.g.,
[Lus90]) works mutatis mutandis as for u0(sl2), i.e., uq (sl2) is relative cellular, but

not cellular as long as q 6= ±
√
−1.

Example 2.26. Another example is an annular version of arc algebras Arcann
n

that we discuss in detail in Section 5. Note that Arcann
n is again not a cellular

algebra, but only a relative cellular algebra, cf. Proposition 5.21.

Further directions 2.27. The most famous examples of cellular algebras are
coming from centralizer algebras as, e.g., Hecke, Temperley–Lieb or Brauer algebras.
These arise from fairly general constructions via the theory of tilting modules, see,
e.g., [AST18] or [BT17, Appendix A]. We do not know what the relative version of
this is.

3. Simple and projective modules

In the present section we discuss the representation theory of relative cellular
algebras, following [GL96, Sects. 2 and 3]. We stress hereby that some of the
statements, e.g., Theorems 3.17 and 3.23, hold verbatim as for cellular algebras.
However, our proofs here are, and have to be, quite different.

We continue to use the notation from Section 2. In particular, R denotes a
relative cellular algebra with relative cell datum as in (2-1).

3A. Simple quotients of cell modules

First, we define a bilinear form on cell modules to get a better handle on their
structure.

Lemma 3.1. Let λ ∈ X and a ∈ R. Then, for S, T, U, V ∈ M(λ), we have

CλU,S a C
λ
T,V ∈ φa(S, T )CλU,V + (εUR(<εU λ) ∩R(<εV λ)εV ) , (3-1)

where φa(S, T ) = rCλU,Sa(U, T ) = ra?CλV,T (V, S) ∈ K.

Proof. We apply (2-6), respectively (2-10), and compare coefficients. The statement
then follows immediately. �
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Thus, we can define φa(S, T ) as in Lemma 3.1 and this definition is independent
of U, V ∈ M(λ). Of special importance is the case where a = ελ is a local unit for
the set {CλS,T | S, T ∈ M(λ)}, where we observe that φελ(S, T ) is the same for any
such local unit.

Definition 3.2. For λ ∈ X we define a bilinear form φλ : ∆(λ) ×∆(λ) → K by
setting φλ(MλS , M

λ
T ) = φελ(S, T ) for S, T ∈ M(λ), and extending bilinearly.

For (3.3.c) of the following lemma recall Θλ as defined in Lemma 2.15. Its proof
is mutatis mutandis as in [GL96, Prop. 2.4] and omitted.

Lemma 3.3. For λ ∈ X we have the following.

(a) The bilinear form φλ is symmetric.

(b) For a ∈ R and x, y ∈ ∆(λ) we have φλ(a � x, y) = φλ(x, a? � y).

(c) For u, x, y ∈ ∆(λ) we have Θλ(u⊗ x) � y = φλ(x, y)u.

The main use of φλ is Corollary 3.5 below: Elements of ∆(λ) not contained in
the radical of φλ are cyclic generators for ∆(λ). Hereby, as usual, the radical of φλ

is linear subspace of ∆(λ) given by rad(λ) = {x ∈ ∆(λ) | φλ(x, y) = 0 for all y ∈
∆(λ)}.

Lemma 3.4. Let λ ∈ X and z ∈ ∆(λ). Then

R({λ}) � z = im(φλ(−, z))∆(λ) ⊂ R � z. (3-2)

In particular, if im(φλ(−, z)) = K, then we have ∆(λ) = R({λ}) � z = R � z.

Proof. Let y ∈ ∆(λ) and S, T ∈ M(λ). By (3.3.c) we have

CλS,T � z = Θλ(MλS ⊗ MλT ) � z = φλ(MλT , z)MλS ∈ im(φλ(−, z))∆(λ), (3-3)

and conversely

φλ(y, z)MλS = Θλ(MλS ⊗ y) � z ∈ R({λ}) � z. (3-4)

Hence, we have equality. The special case is then clear. �

Since we work over a field we get as a direct consequence:

Corollary 3.5. We have z ∈ ∆(λ) \ rad(λ) if and only if R({λ}) � z = ∆(λ).

Next, rad(λ) allows us to deduce that cell modules have either a trivial or a
simple head.

Proposition 3.6. Let λ ∈ X.

(a) The radical rad(λ) is a submodule of ∆(λ).

(b) If φλ is non-zero, then ∆(λ)/rad(λ) is simple.

(c) If φλ is non-zero, then ∆(λ)/rad(λ) is the head of ∆(λ).
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Proof. (3.6.a). This follows immediately from (3.3.b).
(3.6.b). By Corollary 3.5, any z ∈ ∆(λ) \ rad(λ) generates ∆(λ). Thus, the claim

follows.
(3.6.c). Again by Corollary 3.5, any z ∈ ∆(λ) \ rad(λ) generates ∆(λ). Hence,

any proper submodule of ∆(λ) is contained in rad(λ). Thus, rad(λ) is the unique
maximal submodule of ∆(λ) and so equal to the (representation theoretical) radical
Rad(∆(λ)). (Recall that Rad(∆(λ)) is the intersection of all proper, maximal
submodules of ∆(λ).) �

We write X0 = {λ ∈ X | φλ is non-zero}. Having Proposition 3.6 we can define:

Definition 3.7. For λ ∈ X0, we set L(λ) = ∆(λ)/rad(λ).

3B. Morphisms between cell modules

In contrast to the setup of cellular algebras, the existence of morphisms between
cell modules is a less useful tool as we will see.

Lemma 3.8. Let λ ∈ X0, µ ∈ X, and f ∈ HomR(∆(λ),∆(µ)/N) non-zero for
some submodule N ⊂ ∆(µ). Then there exists S ∈ M(λ) such that µ ≤εS λ.

Proof. Since φλ is non-zero there exists — by Corollary 3.5 — a generator z ∈ ∆(λ)
such that R({λ}) � z = ∆(λ). Then there exists a ∈ R({λ}) such that f(a � z) =
a � f(z) 6= 0, i.e., there exist U,U ′ ∈ M(µ) such that ra(U,U ′) 6= 0.

This implies that there exist S, T ∈ M(λ) such that for all V ∈ M(µ) the
expansion of CλS,T C

µ
U,V , using (2.6.d), contains a non-zero summand in R({µ}).

Thus, µ ≤εS λ. �

As can be seen in Lemma 3.8, it is possible to have morphism in both “directions”,
and obtain λ ≤εµ ≤ε′ λ. But we might still have λ 6= µ in case ε 6= ε′. This is in
contrast to the framework of cellular algebras.

Let us give an alternative formulation of Lemma 3.8.

Lemma 3.9. Let λ, µ ∈ X and S, T ∈ M(λ) such that CλS,T �∆(µ) 6= 0 for some

basis element CλS,T . Then µ ≤εS λ.

Proof. By assumption there exists U, V ∈ M(µ) such that the expansion of CλS,T C
µ
U,V ,

using (2.6.d), contains a non-zero summand in R({µ}). Thus, µ ≤εS λ. �

Despite the fact that hom-spaces between cell modules are not as useful as in
the case of cellular algebras, the following is surprisingly still true.

Proposition 3.10. If λ ∈ X0, then EndR(∆(λ)) = K.

Proof. We prove the following claim, which immediately implies the proposition.

3.10. Claim. Let λ ∈ X0 and let N ⊂ ∆(λ) be some submodule. Then any element
f ∈ HomR(∆(λ),∆(λ)/N) is of the form f(x) = rx+N for some r ∈ K.

Proof of 3.10. Claim. By assumption we can choose y, y′ ∈ ∆(λ) such that
φλ(y, y′) = 1. (Recall that we work over a field.) Fix u such that f(y′) = u+N and
set r = φλ(y, u). Then f(x) = f(φλ(y, y′)x) = Θλ(x⊗y) �f(y′) = Θλ(x⊗y) �u+N .
Hence, we get f(x) = φλ(y, u)x+N = rx+N . �
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3C. Projective modules

We have already seen in Section 3B that some statements from cellular algebras
are quite different in the relative setup. Even more, from now on the relative setup
needs some very careful treatment of the involved partial orders, all of which is
trivial for cellular algebras.

We start with some statements about idempotents. In the following we call an
idempotent e ∈ R an idempotent summand of ε ∈ E if εe = e = eε. In this case we
write e

]

ε.

Remark 3.11. By Lemma 2.11, at least in case |X| < ∞, we can restrict our
attention to e

]

ε: Since we get a(n orthogonal) decomposition of the unit, we can
find ε ∈ E for all indecomposable projectives P of R such that P ∼= Re for primitive
e

]

ε. Thus, up to isomorphism, it suffices to study the projectives of the form Re
for e

]

ε.

Lemma 3.12. Let e

]

ε and Iε an <ε-ideal. Then the following hold.

(a) One has eR({λ}) ⊂ R(≤ε λ) ⊃ R({λ})e.
(b) One has eR(Iε) ⊂ R(Iε) ⊃ R(Iε)e.

(c) One has R(Iε)e = R(Iε) ∩Re, and eR(Iε) = R(Iε) ∩ eR.

(d) One has e ∈ K{CλS,T | λ ∈ X, S, T ∈ M(λ), εS = εT = ε}.

Proof. (3.12.a). By (2-3) and (2.6.a), since εe = e = eε implies that e ∈ εRε.

(3.12.b). This follows from (3.12.a) since Iε is an <ε-ideal.

(3.12.c). We only prove the first statement, the second is obtained by applying ?.
By definition we get R(Iε)e ⊂ Re, and by (3.12.a) we get R(Iε)e ⊂ R(Iε). Hence,
the left-hand side is contained in the right-hand side. Let ae ∈ R(Iε) ∩ Re. We
expand and — by assumption — obtain ae =

∑
µ∈Iε,S,T∈M(µ) rµ,S,T C

µ
S,T for some

scalars rµ,S,T ∈ K. Thus,

ae = (ae)e =
∑
µ∈Iε,S,T∈M(µ) rµ,S,T C

µ
S,T e ∈ R(Iε)e. (3-5)

It follows that the right-hand side is also contained in the left-hand side.

(3.12.d). This follows immediately from Corollary 2.7 by assumption on e. �

Definition 3.13. For e

]

ε we define a partial order <e on X as being <ε.

We write <e=<ε etc. in the following.

If the partial order with respect to which an ideal in X is defined agrees with
the partial order <e for some e

]

ε, then we can define submodules inside the
corresponding projective module Pe = Re to obtain suitable filtrations.

Lemma 3.14. Let e

]

ε and Iε a <ε-ideal. Then R(Iε)e is a submodule.

In case |X| <∞, there exists a filtration Pe = P0 ⊃ P1 ⊃ · · · ⊃ Pr = {0} such
that Pi/Pi+1 = Pe({λi}) for some λi ∈ X.

Hereby, similarly to (2-8), we let Pe({λ}) = R(≤e λ)e/R(<e λ)e.
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Proof. For CλS,T ∈ R(Iε) we have

aCλS,T e =
∑
S′∈M(λ) ra(S′, S)CλS′,T e+ (†) (3-6)

with (†) ∈ R(<εT λ)εT e by (2.1.d). Then either εT e = 0 in case εT 6= ε, and the
extra terms just vanish, or <e=<εT and εT e = e. Hence, (†) ∈ R(Iε).

Finally, choose a maximal chain of <e-ideals — whose existence is guaranteed by
|X| <∞— and the statement about the filtration follows immediately. �

Analogously to Lemma 2.15, we let Γλ : ∆(λ)⊗ (∆(λ)? � e)→ Pe({λ}) defined
via Γλ(MλS ⊗ (MλT � e)) = CλS,T e. (Below we write MλS ⊗ MλT � e etc. for short.) Note that

the first step of the proof of Proposition 3.15 shows that Γλ is well defined.

Proposition 3.15. Let λ ∈ X and e

]
ε. Then Γλ is an R-module isomorphism.

If additionally λ ∈ X0, then HomR(Pe({λ}),∆(λ)) ∼= HomK(∆(λ)? � e,K).

Proof. Well-definedness of Γλ. Define Γλ(MλS , M
λ
T � e) = CλS,T e and extend bilinearly

to obtain Γλ : ∆(λ) × ∆(λ)? � e → Pe({λ}). If Γλ is well defined, then it is by
definition bilinear. So let

∑
T∈M(λ) rT (MλS , M

λ
T � e) = 0 for some scalar rT ∈ K and

some element [MλS , M
λ
T � e] ∈ ∆(λ)×∆(λ)? � e. Then∑

T∈M(λ) rT [MλS , M
λ
T � e] =

∑
T,T ′∈M(λ) rT re?(T ′, T )[MλS , M

λ
T ′ ]. (3-7)

Hence,
∑
T∈M(λ) rT re?(T ′, T ) = 0 for all T ′ ∈ M(λ), and we have

Γλ
(∑

T∈M(λ) rT [MλS , M
λ
T � e]

)
=
∑
T∈M(λ) rT C

λ
S,T e

=
∑
T,T ′∈M rT re?(T ′, T )CλS,T ′ + (†).

(3-8)

Hereby (†) ∈ R(<εS λ) by (2-10) and (†) ∈ R(≤e λ) by (3.12.b), together giving
(†) ∈ R(<e λ). Since we also have that (†) = (†)e, it follows that (†) ∈ Re. By

(3.12.c) we then get that (†) ∈ R(<e λ)e and so it vanishes in Pe(λ). Thus, Γλ is
well defined and consequently Γλ as well.

Surjectivity of Γλ. This is immediate by noting that – due to (3.12.c) —Pe({λ})
is generated by elements of the form CλS,T e for S, T ∈ M(λ) and these are in the

image of Γλ.

Injectivity of Γλ. Let
∑
S,T∈M rS,T M

λ
S ⊗ MλT � e be in the kernel of Γλ for some

scalars rS,T ∈ K, i.e.,
∑
S,T∈M(λ) rS,T C

λ
S,T e ∈ R(<e λ)e. By (3.12.c) we have

R(<e λ)e = R(<e λ) ∩Re and so expanding with (2-10) we obtain∑
S,T∈M(λ) rS,T C

λ
S,T e =

∑
S,T,T ′∈M(λ) rS,T re?(T ′, T )CλS,T ′ + (†), (3-9)

with (†) ∈ R(<e λ) by (2-10) and (3.12.b). Thus,
∑
S,T rS,T re?(T

′, T ) = 0 for all
T ′ ∈ M(λ), due to (3.12.c). This in turn implies that∑

S,T∈M(λ) rS,T M
λ
S ⊗ MλT � e =

∑
S,T,T ′∈M(λ) rS,T re?(T ′, T )MλS ⊗ MλT ′ = 0. (3-10)

246



RELATIVE CELLULAR ALGEBRAS

Hence, Γλ is injective.

Γλ is a R-module map. For Γλ to be a R-module map we observe that

aCλS,T e =
∑
S′∈M(λ) ra(S′, S)CλS′,T e+ (†)e, (3-11)

where (†)e ∈ R(<εS λ)εSe ⊂ R(<e λ)e, which is zero in Pe({λ}). Thus, Γλ is a
R-module map.

Finally, for the isomorphism, let λ ∈ X0. By the above

HomR(Pe({λ}),∆(λ)) ∼= HomR(∆(λ)⊗∆(λ)? � e,∆(λ))
∼= HomK(∆(λ)? � e,EndR(∆(λ)))
∼= HomK(∆(λ)? � e,K),

(3-12)

where the second isomorphism is the tensor-hom adjunction, and the last isomor-
phism follows from Proposition 3.10. �

In addition to statements about Pe({λ}), we will also need some knowledge
about slightly more general quotients of R(Iε)e.

Lemma 3.16. Let e

]
ε and Iε an <ε-ideal. Assume that Iε contains <ε-maximal

elements λ1, · · · , λr and let I′ε = Iε \ {λ1, · · · , λr}. Then

R(Iε)e/R(I′ε)e ∼= Pe({λ1})⊕ · · · ⊕ Pe({λr}), (3-13)

which is an isomorphism of R-modules.

Proof. Let I≤eλkε = {µ ∈ Iε | µ ≤e λk} for k = 1, · · · , r, and define I<eλkε

analogously. By assumption, we have R(Iε) =
∑r
k=1 R(I≤eλkε ) and R(I′ε) =∑r

k=1 R(I<eλkε ). Additionally, we clearly have R(I′ε)∩R(I≤eλkε ) = R(I<eλkε ). Thus —
using (3.12.c) — we obtain R(I′ε)e ∩R(I≤eλkε )e = R(I<eλkε )e. Hence, the image of
R(I≤eλkε )e in R(Iε)e/R(I′ε)e is isomorphic to Pe({λk}) = R(I≤eλkε )e/R(I<eλkε )e.

In addition, for 1 ≤ k, l ≤ r and k 6= l,

R(I≤eλkε )e ∩R(I≤eλlε )e = R(I≤eλkε ) ∩R(I≤eλlε ) ∩Re

= R(I<eλkε )e ∩R(I<eλlε )e.
(3-14)

Thus, the images of R(I≤eλkε )e and R(I≤eλlε )e in R(Iε)e/R(I′ε)e have trivial intersec-
tion. Together this gives the statement. �

3D. Classification of simples

Altogether we are now ready to prove the main statement of this section.

Theorem 3.17. Let |X| < ∞. The set {[L(λ)] | λ ∈ X0} gives a complete, non-
redundant set of isomorphism classes of simple R-modules.
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Proof. There are three statements to be proven: That the L(λ)’s are simple, that
all simples appear, and that L(λ) ∼= L(µ) if and only if λ = µ.

Simplicity. By Proposition 3.6, the L(λ) are simple R-modules.

Completeness. Let e

]

ε, with e being primitive. Then the head of its associated
indecomposable projective Pe is simple, and we can obtain every simple module by
considering the heads of the indecomposable projectives of R.

Let IP denote the <e-ideal in X generated by {λ ∈ X | Pe({λ}) 6= 0}. Thus,
Pe = R(IP )e and — by (3.12.c) and by applying ? — one has e, e? ∈ R(IP ).

Let λmax ∈ IP be <e-maximal. Then — by construction – Pe({λmax}) 6= 0.

3.17. Claim.a. The form φλmax is non-zero, i.e., λmax ∈ X0.

Proof of 3.17. Claim.a. Assume φλmax to be zero. By Lemma 3.4 we know that

Cλmax

U,V � M
λmax

T = φλmax(Mλmax

V , Mλmax

T )Mλmax

U = 0, (3-15)

for all T, U, V ∈ M(λmax).
Expanding e? =

∑
µ∈IP ,S,T∈M(µ) r(µ, S, T )CµS,T with r(µ, S, T ) ∈ K, we see

e?Cλmax

V,U =
∑
µ∈IP \λmax,S,T∈M(µ)r(µ, S, T )CµS,T C

λmax

V,U

=
∑
µ∈IP \λmax,S,T∈M(µ)

∑
T ′∈M(µ)r(µ, S, T )r

C
λmax
U,V

(T ′, T )CµS,T ′+(†µ),
(3-16)

where (†µ) ∈ εSR(<εS µ) by (2-10). Hence, e?(†µ) ∈ e?εSR(<εS µ). Recalling
that e

]

ε, this is either zero if εS 6= ε, or e?εSR(<εS µ) = e?R(<e µ) ⊂ R(<e µ),
with the final inclusion due to (3.12.a).

Multiplying the sum in (3-16) with e? we obtain an element inside e?R(IP \λmax)
that is contained in R(IP \λmax) by (3.12.a). Thus, e?Cλmax

V,U contains no summand in

R({λmax}) and we get e? �Mλmax

V = 0 for all V ∈ M(λmax), implying ∆(λmax)? �e = 0.
Since Pe({λmax}) ∼= ∆(λmax)⊗∆(λmax)? � e by Proposition 3.15, we thus obtain
Pe({λmax}) = 0. This is a contradiction to the choice of λmax being a <e-maximal
element. Thus, φλmax is non-zero.

3.17. Claim.b. ∆(λmax) is a quotient of Pe({λmax}).

Proof of 3.17. Claim.b. First, 3.17. Claim.a and Proposition 3.15 imply that

HomR(Pe({λmax}),∆(λmax)) ∼= HomK(∆(λmax)? � e,K) 6= 0. (3-17)

Using this identification, choose a linear form f on ∆(λmax)? � e and elements
xe ∈ ∆(λmax)? � e such that f(xe) = 1 (recalling that we work over a field).
Let now z ∈ ∆(λmax) be a generator (note that the existence of z follows from
Lemma 3.4). Then, using again Pe({λmax}) ∼= ∆(λmax)⊗∆(λmax)? � e, we obtain
that f corresponds to the map sending z ⊗ xe to f(xe)z = z. Hence, ∆(λmax) is a
quotient of Pe({λmax}).

By 3.17. Claim.b and Proposition 3.6, we get that L(λmax) is a quotient of
the module Pe({λmax}). With the choice of λmax being <e-maximal we have that
Pe({λmax}) is a quotient of Pe itself, and thus the head of Pe contains L(λmax).
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Since Pe is indecomposable, it has a simple head. Thus, it has to be L(λmax). So
the completeness will follow after we have established 3.17. Claim.c:

3.17. Claim.c. There are no primitive idempotents e with aea−1 6 ] ε for all ε ∈ E
and all units a ∈ R.

Proof of 3.17. Claim.c. This follows from Lemma 2.11, see also Remark 3.11.

Non-redundancy. We continue to use the notation from above.

3.17. Claim.d. The ideal IP has a unique <e-maximal element.

Proof of 3.17. Claim.d. Assume that IP has <e-maximal elements λ0, . . . , λr. Then
for each of these we know that Pe({λk}) 6= 0 and φλk is non-zero, i.e., ∆(λk) has a
simple quotient. (This is 3.17. Claim.a.) Then — by Lemma 3.16 — we have that

R(IP )e/R(IP \ {λ0, · · · , λr})e ∼= Pe({λ0})⊕ · · · ⊕ Pe({λr}). (3-18)

This in turn implies that Pe has L(λ0) ⊕ · · · ⊕ L(λr) as a quotient, which is a
contradiction to Pe being indecomposable. Hence, the ideal IP has a unique maximal
element that we denote by λmax.

Now, 3.17. Claim.e will establish non-redundancy, which will finish the proof.

3.17. Claim.e. L(λ) ∼= L(µ) implies λ = µ for λ, µ ∈ X0.

Proof of 3.17. Claim.e. Without loss of generality, assume that λ is a <e-maximal
element in an ideal IP for some indecomposable projective Pe corresponding to
e

]

ε primitive for some ε ∈ E. (This is sufficient since we already proved above
that simples obtained for these elements of X give a complete set of isomorphism
classes of simples.)

We first observe that we have a quotient map

πλ : Pe � L(λ)
∼=−→ L(µ), (3-19)

with zλ = πλ(e) being a generator of L(µ). Thus, one has e � zλ = zλ. Note now
that e ∈ R(≤e λ) since λ is unique <e-maximal by 3.17. Claim.d. Thus, (3.12.d)
implies that there exists η ≤e λ, S, T ∈ M(η) with εS = εT = ε and U, V ∈ M(µ)
such that the product

C
η
S,T C

µ
U,V ∈

∑
T ′∈M(η) rCµV,U (T ′, T )CηS,T ′ + ε?SR(<εS η), (3-20)

expanded using (2-10), contains a summand in R({µ}). Hence, with εS = ε (giving
<e=<εS ) it follows that µ ≤e η ≤e λ.

On the other hand — by Lemma 3.4 — we have ∆(µ) = R({µ}) � z for some
generator z ∈ ∆(µ) giving another quotient map

ψλ : ∆(µ)� L(µ)
∼=−→ L(λ). (3-21)

Fix now zλ as above and choose y ∈ ∆(µ) with ψλ(y) = zλ. Then there exists
a ∈ R({µ}) such that y = a � z, but

ψλ((εa) � z) = ε � ψλ(a � z) = ε � ψλ(y) = ε � zλ = e � zλ = zλ, (3-22)
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so we can assume that εa = a and a � ψλ(z) 6= 0. So there exist S, T ∈ M(λ) and
U, V ∈ M(µ) with εU = ε such that

C
µ
U,V C

λ
S,T ∈

∑
T ′∈M(η) rCλT,S (V ′, V )CµU,V ′ + ε?UR(<εU µ), (3-23)

expanded using (2-10), contains a summand in R({λ}). Thus, with εU = ε (giving
<e=<εU ) it follows that λ ≤e µ.

Hence, altogether we have λ = µ. �

Note that the primitive idempotent e such that Re has L(λ) as its head is not
unique. But if we demand the choice of an idempotent summand of some ελ ∈ E,
then ελ is unique. In particular, the associated partial order <ελ is independent of
the choice of e. Thus — having Theorem 3.17 — we can define:

Definition 3.18. Let |X| <∞ and λ ∈ X0. We denote by P (λ) the indecomposable
projective module corresponding to L(λ).

The partial order associated to P (λ) is denoted by <λ.

Proposition 3.19. Let λ ∈ X0. Then P (λ) has a filtration by cell modules ∆(µ)
such that µ ≤λ λ.

Proof. By the proof of Theorem 3.17 we know that P (λ) = R(≤λ λ)e for some
e

]

ελ primitive. The statement follows by Lemma 3.14 and the description of the
subquotients as direct sums of cell modules from Proposition 3.15. �

The examples in Section 2E illustrate Proposition 3.19.

3E. Reciprocity laws

Throughout the rest of the section assume |X| <∞. Let λ ∈ X0 and µ ∈ X.
We denote by dµ,λ = [∆(µ) : L(λ)] the Jordan–Hölder multiplicity of L(λ) in

∆(µ) and by D = D(R) = (dµ,λ)µ∈X,λ∈X0 the decomposition matrix of R. (We warn
the reader that D is, in contrast to the Cartan matrix, not necessarily a square
matrix.)

In contrast to [GL96, Prop. 3.6], the matrix D is not upper triangular, cf.
Example 3.24. But we have the following relative version.

Proposition 3.20. Let λ ∈ X0 and µ ∈ X. Then dµ,λ = 0 unless µ ≤λ λ.
Furthermore, we have dλ,λ = 1.

Proof. Assume that dµ,λ 6= 0. Then there exists a non-zero map f : ∆(λ)→ ∆(µ)/N
for some submodule N ⊂ ∆(µ). Corresponding to L(λ) there exists some ε ∈ E
and e

]

ε such that e acts non-trivially on L(λ). Hence, e acts also non-trivially
on ∆(λ), and furthermore e ∈ R(≤λ λ). Since f is an R-module map, e also
acts non-trivially on ∆(µ)/N , and hence also non-trivially on ∆(µ). Thus, there
exists η ≤λ λ, S, T ∈ M(η) with εS = ε such that C

η
S,T � ∆(µ) 6= 0. Thus — by

Lemma 3.9 — we have that µ ≤λ η ≤λ λ.
Assume now that λ = µ ∈ X0. Let f : ∆(λ)→ ∆(λ)/N for some submodule N

be a non-zero map. Then we know — by 3.10. Claim — that the map is a non-zero
K-multiple of the identity of ∆(λ) composed with the natural quotient map. Thus,
f is always surjective and only in case of N = rad(λ) is the image simple. This
gives dλ,λ = 1. �
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Lemma 3.21. Let λ ∈ X0 and e

]

ελ primitive. Then P (λ) ∼= Re if and only if
Iλ = {µ ∈ X | µ ≤λ λ} is the smallest <λ-ideal such that e ∈ R(Iλ).

Proof. ⇒. Assuming that P (λ) ∼= Re, we know that Iλ is an <λ-ideal such that
e ∈ R(Iλ), see the proof of Theorem 3.17. Assume now that I is another <λ-ideal
such that e ∈ R(I). If λ ∈ I we are done, since Iλ ⊂ I. So assume λ /∈ I and denote by
〈I ∪ λ〉 the <λ-ideal generated by I and λ. Then P ({λ}) = R(〈I ∪ λ〉)e/R(〈I ∪ λ〉 \
λ)e = 0 , since P (λ) = R(I)e. This is a contradiction to L(λ) being the quotient of
P (λ). Thus, Iλ is the smallest <λ-ideal with the desired property.

⇐. For Iλ being the smallest <λ-ideal with e ∈ R(Iλ), let µ ∈ X0 such that Re =
P (µ). Then Iµ is the smallest <λ-ideal containing e, and thus — by assumption —
equal to Iλ. Hence — by Theorem 3.17 —P (µ) has simple quotient L(λ), giving
µ = λ. �

Since for a primitive idempotent summand of ελ, the minimal <λ-ideal I such
that e ∈ R(I) is equal to the minimal <λ-ideal such that e? ∈ R(I), the following
is immediate.

Corollary 3.22. Let λ ∈ X0. If P (λ) ∼= Re for e

]

ελ, then P (λ) ∼= Re?.

For λ, µ ∈ X0 we denote by cλ,µ = [P (λ) : L(µ)] the Jordan–Hölder multiplicity
of L(µ) in P (λ), and by C = C(R) = (cλ,µ)λ,µ∈X0

the Cartan matrix of R. (By
Theorem 3.17 this coincides with the definition we used in Section 2E.)

Theorem 3.23. Let λ ∈ X0, µ ∈ X and e

]

ελ primitive such that P (λ) = Re.

(a) The multiplicity dµ,λ is equal to dim(∆(µ)?.e).
(b) If µ ∈ X0, then

[P (λ) : L(µ)] =
∑
ν∈X,ν≤λλ,ν≤µµ [∆(ν) : L(λ)][∆(ν) : L(µ)]. (3-24)

(Or C = DTD, written as matrices.)

Proof. (3.23.a). This is straightforward, since

dµ,λ = dim(HomR(P (λ),∆(µ))) = dim(HomR(Re?,∆(µ)))

= dim(e? �∆(µ)) = dim(∆(µ)? � e),
(3-25)

with the second equality due to Corollary 3.22.

(3.23.b). Choose a maximal <λ-ideal chain inside Iλ. Then we know for each
subquotient P ({ν}) ∼= ∆(ν)⊗∆(ν)? � e as left R-modules. Thus,

cλ,µ =
∑
ν∈X,ν≤λλ dim(∆(ν)? � e)dν,µ =

∑
ν∈X,ν≤λλ dν,λdν,µ, (3-26)

where — by Proposition 3.20 — any summand is zero unless ν ≤µ µ as well. �

Example 3.24. Coming back to the examples from Section 2E, we have for n = 3

C(C(A3)) =
(

2 1 0
1 2 1
0 1 2

)
=
(

1 1 0 0
0 1 1 0
0 0 1 1

)( 1 0 0
1 1 0
0 1 1
0 0 1

)
= D(C(A3))TD(C(A3)),

C(R(Ã3)) =
(

2 1 1
1 2 1
1 1 2

)
=
(

1 1 0
0 1 1
1 0 1

)(
1 0 1
1 1 0
0 1 1

)
= D(R(Ã3))TD(R(Ã3)),

C(R′(Ã3)) =
(

3 3 3
3 3 3
3 3 3

)
=
(

1 1 1
1 1 1
1 1 1

)(
1 1 1
1 1 1
1 1 1

)
= D(R′(Ã3))TD(R′(Ã3)),

(3-27)
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(up to base change) and analogously for general n. Note that the decomposition
matrices have an upper triangular shape for C(An) that is a cellular algebra.

As a direct corollary of (3.23.b) and the singular value decomposition, we get
a very easy to check, but weak, necessary criterion for an algebra to be relative
cellular.

Corollary 3.25. If R is relative cellular, then C is positive semidefinite.

As already discussed in detail in Section 2E, this is in contrast to the case of
cellular algebras where C is positive definite, cf. Remark 2.19.

3F. Further consequences

For the next proposition, we denote by D the (?-twisted) duality on R-modules
defined by D(M) = HomK(M?,K). Note that ∆(λ) is in general not isomorphic to
D(∆(λ)) as an R-module. But we have the following.

Proposition 3.26. Let λ, µ ∈ X0. Then DL(λ) ∼= L(λ) as R-modules. Further,
there are isomorphisms ExtiR(L(λ), L(µ)) ∼= ExtiR(L(µ), L(λ)) for all i ∈ Z≥0.

Proof. Let e

]

ελ primitive such that P (λ) = Re ∼= Re?. We claim that P (λ)
is a projective cover of the simple DL(λ). For ae? ∈ Re? we define θae? by
θae?(x) = x � (ae?) for x ∈ L(λ)?. Here x � (ae?) = ea? � x is an element in eL(λ)
that can be canonically identified with the endomorphism ring of L(λ) that — by
Proposition 3.10 — is K. Thus, θae? defines a linear form on L(λ)?. Clearly, the map
ae? 7→ θae? is not the zero map, hence it is surjective and so P (λ) is the projective
cover of DL(λ).

Using ExtiR(L(λ), L(µ)) ∼= Extimod−R(L(λ)?, L(µ)?), the latter being in right R-
modules, we obtain the statement about Ext-groups since vector space duality gives
a contravariant equivalence between left and right modules for a finite-dimensional
algebra. �

Remark 3.27. As a corollary of Proposition 3.26, the Ext-quiver of a relative cellular
algebra has a symmetric form. This is a well-known fact for cellular algebras.

Finally, the semisimplicity criterion for a relative cellular algebra is as in [GL96,
Thm. 3.8], and the proof — by using the results from Section 3E — is identical (and
omitted).

Proposition 3.28. Let R be a relative cellular algebra. Then the following are
equivalent.

(a) The algebra R is semisimple.

(b) The cell modules ∆(λ) for λ ∈ X0 are simple.

(c) The subspace rad(λ) = 0 for all λ ∈ X.

Example 3.29. None of the algebras from Section 2E, nor Arcann
n for n ∈ Z>0

(for the latter see Section 5) are semisimple. There are various ways to see this, but
using Proposition 3.28 this follows since the simples are all of dimension one, while
the cell modules are not.
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4. An extended example I: The restricted enveloping algebra of sl2

Throughout this section let K be any field with char(K) = p > 0.

4A. The algebra

We let Fp be the prime field of K, and we also use the set Fp = {0, 1, . . . , p−2, p−1} ⊂
Z≥0 underlying Fp. (Using the identification Fp = Fp, we will sometimes read
modulo p.)

Definition 4.1. The restricted enveloping algebra of sl2, denoted by u0(sl2), is the
associative, unital algebra generated by E ,F ,H subject to

HE − EH = 2E , HF − FH = −2F , EF − FE = H , (4-1)

Ep = F p = H p − H = 0. (4-2)

Said otherwise, u0(sl2) is the usual enveloping algebra of sl2 modulo (4-2).

Note that the prime p enters the definition of u0(sl2) in two ways: via the ground
field, but also via (4-2).

Remark 4.2. Our main source for the basics about u0(sl2) are [FP88] and [Jan04]:
e.g., Definition 4.1 is taken from therein. Note that uχ(sl2) can be defined for a
choice of χ ∈ sl∗2. But, as we will see below, cf. Remark 4.9, it is crucial for us that
χ = 0.

Recall the following PBW theorem, cf. [FP88, Sect. 1] or [Jan04, Sect. A.3]:

Theorem 4.3. The set

{F xH yEz | x, y, z ∈ Fp} (4-3)

is a basis of u0(sl2).

Our relative cellular basis for u0(sl2) will be an idempotent version of (4-3). For
this we need the following weight idempotents. Let λ ∈ Fp and define

1λ = −
∏
µ∈Fp,µ6=λ (H − µ). (4-4)

Lemma 4.4. The set {1λ | λ ∈ Fp} is a complete set of pairwise orthogonal
idempotents.

We stress that the 1λ’s are not primitive idempotents of u0(sl2), but rather the
primitive idempotents of the semisimple subalgebra spanned by the H ’s.

Proof. Observe that 1λ is a degree p− 1 polynomial in H and therefore determined
by its values in Fp. Now, substituting H with any element of Fp, we see — by
Wilson’s theorem — that 1λ is an idempotent. Similarly, orthogonality follows from
Fermat’s little theorem. Finally — by construction —

∑
λ∈X 1λ evaluates for any

substitution H 7→ µ ∈ Fp to 1. �

The following tedious calculations, which we will use throughout, are omitted.
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Lemma 4.5. Let λ ∈ Fp and S, T ∈ Fp.

(a) For k ∈ Fp we have

H kET = ET (H + 2T )k, H kF S = F S(H − 2S)k,

1λE = E1λ−2, E1λ = 1λ+2E , 1λF = F1λ+2, F1λ = 1λ−2F ,
H1λ = λ1λ = 1λH .

(4-5)

(b) We have

ETF S1λ =

min(S,T )∑
j=0

S!T !

(S − j)!(T − j)!

(
T−S+λ

j

)
F S−jET−j1λ,

F SET 1λ =

min(S,T )∑
j=0

S!T !

(S − j)!(T − j)!

(
S−T−λ

j

)
ET−jF S−j1λ,

(4-6)

with usual factorials and binomials taken modulo p.

Remark 4.6. For p = 2 it is — by Lemma 4.5 — not hard to see that u0(sl2) is
isomorphic to a direct sum of K[X,Y ]/(X2, Y 2) and a semisimple algebra. Thus,
u0(sl2) is already cellular, and we from now on assume that p > 2.

4B. The cell datum

Next, we want to define the relative cell datum for u0(sl2). To this end, we let
X = Fp and M(λ) = Fp for all λ ∈ X. Moreover — by Lemma 4.4 — we can let
E = {1λ | λ ∈ X} be our idempotent set.

Further, we let CλS,T = F S1λET , and set (F S1λET )? = F T 1λES . And finally, let
the partial orders O = {<1λ | λ ∈ X}, on X, be defined via

λ+ 2(p− 1) <1λ · · · <1λ λ+ 4 <1λ λ+ 2 <1λ λ, (4-7)

and εS = 1λ+2S for S ∈ M(λ). Note that these partial orders on X are well defined
since 2 generates Fp since we assume that p > 2.

To summarize, we have our cell datum

(X,M,C, ?,E,O, ε). (4-8)

A direct consequence of Lemma 4.5 is:

Lemma 4.7. Let CλS+1,T = CλS−1,T = CλS,T+1 = 0 in case S, T /∈ Fp. Then

E CλS,T = S(1− S + λ)CλS−1,T + Cλ+2
S,T+1,

F CλS,T = CλS+1,T ,

H CλS,T = (λ− 2S)CλS,T ,

(4-9)

Similar formulas hold for the right action of u0(sl2) on the CλS,T ’s.
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4C. p = 3 exemplified

Example 4.8. Let p = 3. Then 10 = −(H − 1)(H − 2), 11 = −(H − 0)(H − 2) and
12 = −(H − 0)(H − 1). Moreover, the partial orders are

X = { 1 <10 2 <10 0 } = { 2 <11 0 <11 1 } = { 0 <12 1 <12 2 }. (4-10)

Further, 1µu0(sl2)1µ consists of elements F S1λES such that λ = µ− 2S. Having
all this, it is easy to see that (4-8) defines a cell datum for u0(sl2).

We get projectives and cell modules (here exemplified in case λ = 0):

u0(sl2) 10

F 210 10 F10 10 1λ 10∆(0)

F 212E 10 F12E 10 12E 10∆(2)

F 211E2 10 F11E2 10 11E2 10∆(1)

∆(1) : C1
2,2 C1

1,2 C1
0,2

0

1

0

2

1

1

1

E→ F← Hy
(4-11)

These are either nine- or three-dimensional. The ∆’s are isomorphic to the so-called
baby Verma modules of highest weight λ. For example, the cell module ∆(1) in
u0(sl2)10 is the left u0(sl2)-module as displayed in (4-11).

In order to get the simples L, we calculate the radical and then we use
Theorem 3.17. Note that, the pairing φλ(F S1λ,F T 1λ) is zero unless S = T . For
S = T we get:

∆(0) :


1, if S=T =0,

0, if S=T =1,

0, if S=T =2,

∆(1):


1, if S=T =0,

1, if S=T =1,

0, if S=T =2,

∆(2):


1, if S=T =0,

2, if S=T =1,

1, if S=T =2.

(4-12)

Hence, using this and (4-11) we get in total

L(1) ↪→ ∆(0)� L(0) L(0) ↪→ ∆(1)� L(1) ∆(2) ∼= L(2) (4-13)

with L(λ) of dimension λ. Next, note that we get from Theorem 3.23 (up to base
change)

C(u0(sl2)) =
(

2 2 0
2 2 0
0 0 1

)
=
(

1 1 0
1 1 0
0 0 1

)(
1 1 0
1 1 0
0 0 1

)
= D(u0(sl2))TD(u0(sl2)) (4-14)

which — by (4-13) — actually gives us the indecomposable projectives P (λ)

∆(1) ↪→ P (0)� ∆(0) ∆(0) ↪→ P (1)� ∆(1) ∆(2) ∼= P (2) (4-15)

Finally, (4-14) also shows — by Remark 2.19 — that u0(sl2) is not cellular. However
— by Proposition 2.8 — the so-called core

Core(u0(sl2))=
⊕

λ∈X1λu0(sl2)1λ=10u0(sl2)10 ⊕ 11u0(sl2)11 ⊕ 12u0(sl2)12 (4-16)

is a cellular algebra. This recovers [BT17, Thm. 1.2]. It also follows from Proposition
3.28 that u0(sl2) is not semisimple.
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Remark 4.9. We stress that our assumption χ = 0 gives (4-2). This is crucial since,
e.g., Lemma 4.7 implies that

Ek CλS,T ∈
∑k
j=0 K C

λ+2j
S,T . (4-17)

Thus, if Ep would not be zero, then λ + 2p would appear in the above sum and
(2.1.d) would fail.

4D. Relative cellularity

The following is now the main statement in this section.

Theorem 4.10. The algebra u0(sl2) is relative cellular with cell datum as in (4-8).

Proof. (2.1.a). Up to the statement that the CλS,T form a basis, this is clear. To see
the basis statement use Theorem 4.3.

(2.1.b). This follows since ? is the Chevalley anti-involution.

(2.1.c). By construction, the 1λ’s are fixed by ?. To see (2-3) note that Lemma 4.4
and 4.5 show that

1µu0(sl2)1µ = K{F S1νES | ν = µ− 2S}. (4-18)

Thus — by Lemma 4.7 — all appearing basis elements in 1µu0(sl2)1µ CλS,T are smaller
than λ in the order for µ. The rest follows from Lemma 4.5 and 4.4.

(2.1.d). Directly by using Lemma 4.7 we get

CλS,T C
µ
U,V =F S1λET F U1µEV

∈r(T, U) F S1λ1µEV +
∑min(T,U)−1
j=0 KF S+T−j1µ+2(U−j)EU−j+V .

(4-19)

Thus, (2.1.d) follows since 1λ1µ equals 1µ or zero and µ + 2(U − j) <1µ µ for
U − j ∈ Fp and EU−j+V = 0 for U − j ≥ p. �

4E. Some consequences

Similarly as in Example 4.8, we will explain how to recover the representation
theory of u0(sl2) for general p > 2. All of this is of course known, but the point is
that we use the general theory of relative cellular algebras to do so.

Proposition 4.11. From the Theorem 4.10 and the theory of relative cellular
algebras we obtain the following, where λ ∈ X:

(a) The cell modules ∆(λ) are of dimension p and isomorphic to baby Verma
modules of highest weight λ.

(b) The simple quotients L(λ) of ∆(λ) are of dimension λ and we have

L(p− λ− 2) ↪→ ∆(λ)� L(λ) ∆(p− 1) ∼= L(p− 1) . (4-20)

(c) The indecomposable projectives P (λ) satisfy

∆(p− λ− 2) ↪→ P (λ)� ∆(λ) P (p− 1) ∼= ∆(p− 1) . (4-21)

(d) The algebra u0(sl2) is a non-semisimple, non-cellular algebra whose core
(defined as in (4-16)) Core(u0(sl2)) is cellular.
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Proof. We use all the lemmas from Sections 4A and 4B. Using these, the general
case can be proven verbatim as the p = 3 case in Example 4.8:

(4.11.a). Clear by construction.

(4.11.b). The first claim follows since

φλ(F S1λ,F S1λ) =

{
(S!)2

(
λ
S

)
, if S = T,

0, if S 6= T.
(4-22)

The second claim follows then from (4.11.a).

(4.11.c). By using (4.11.b) and Theorem 3.23.

(4.11.d). Observe that (4.11.b) shows — by Proposition 3.28 — that u0(sl2) is non-
semisimple, while (4.11.c) — by Remark 2.19 — shows that u0(sl2) is not cellular.
The last claim follows from Theorem 4.10 and Proposition 2.8. �

This resembles the known representation theory of u0(sl2) from the theory of
relative cellular algebras.

Remark 4.12. The case of the small quantum group uq (sl2) for q being a complex,

primitive 2lth root of unity with l > 2 works — by carefully keeping track of the
quantum numbers — mutatis mutandis as above. Details are omitted.

Further directions 4.13. Having (4.11.d), it is tempting to ask whether one can
extend the setting of [BT18] and [BT17]. However, we stress that our above basis
is too “naive” to generalize to higher rank cases and certainly is not the relative
analog of the basis of Core(u0(sl2)) constructed in [BT17, Thm. 4.6].

5. An extended example II: The annular arc algebra

Throughout, fix n ∈ Z>0. The purpose of this section is to discuss the relative
cellularity of the annular arc algebra Arcann

n in detail, with Theorem 5.16 being
the main result.

The definition of the underlying space and multiplication rule for Arcann
n are

due to Anno–Nandakumar [AN16, Sect. 5.3], and we will recall their definitions in
Sections 5A to 5C in our conventions. Following [APS04], we show well-definedness
in Section 5D.

5A. The arc algebra in an annulus

The conventions we use for Arcann
n are very much in the spirit of the type A arc

algebra Arcn (see, e.g., [Kho02] or [BS11]), but using a TQFT as in [APS04].
Consequently, all the definitions below are adaptations of the corresponding notions
for Arcn to the annulus, where we keep the following illustration in mind:

1

A

6

A

2

B

5

B

3 4

dashed line dashed line

dotted lineI J

n=3

!

1

A

6

A

2

B

5

B

3 4

I J
(5-1)
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(In (5-1), note that the annulus is topologically a cylinder, a perspective that we
use silently throughout.) Readers familiar with Arcn can immediately check 5.M
and 5.S in addition to (5-1) before reading the definitions.

5B. Combinatorics of annular arc diagrams

We start by defining the necessary combinatorial data. Hereby we closely follow
the exposition in the non-annular case from [BS11, Sect. 2] or [EST17, Sect. 3].

Definition 5.1. A (balanced) weight (of rank n) is a tuple λ = (λi) ∈ {∨, ∧}2n
with n symbols ∨ and n symbols ∧. The set of weights is denoted by X.

Simplifying notation, an example of a weight of rank 2 is λ = ∨ ∧ ∧ ∨.
Let S1 denote the 1-sphere. The dotted line is topologically S1 × {0} smoothly

embedded in R2×{0} together with a choice of an orientation (this orientation will
always be anticlockwise in illustrations), two distinct points I,J and 2n discrete
points, called vertices, in the segment [I,J] between I and J. We number the
vertices in order from 1 to 2n, reading along the chosen orientation. We view the
dotted line as being the bottom (or top) boundary of S1 × [0, 1] (or S1 × [0,−1])
smoothly embedded in R3, with orientation compatible with the one of the dotted
line. Similarly, the dashed lines are {I} × [0,±1] and {J} × [0,±1], see again in
S1 × [0,±1]. Note that each λ = (λi) ∈ X gives a labeling of the vertices of the
dotted line by putting λi at the ith vertex.

Definition 5.2. A(n annular) cup diagram S (of rank n) is a collection {γ1, . . . , γn}
of smooth embeddings of [0, 1] into S1 × [0,−1], called arcs, such that:

(a) The arcs are pairwise non-intersecting and have only one critical point.
(b) There is a 1:1 correspondence between the vertices of the dotted line and

the boundary points of arcs, identifying the two sets.
(c) The arcs cut the dashed lines transversely and each dashed line at most

once.

Similarly, a(n annular) cap diagram T ? is defined inside S1 × [0, 1].
Observing that (5.2.b) and (5.2.c) imply that each arc either stays within the

region [I,J]× [0,±1] or goes around the cylinder once, we can say that an arc is
of staying type or wrapping type. Similarly, if all arcs of a cup (or cap) diagram are
of staying type, then we say that the cup (or cap) diagram is of staying type.

Combinatorially speaking, we consider arcs to be equal if their endpoints connect
the same vertices on the dotted line and they are of the same type, and the
corresponding equivalence classes are still called cup and cap diagrams. We work
with these throughout, and illustrate them as exemplified in (5-2). We call the
corresponding arcs cups and caps, and we usually denote them by , respectively
by .

We note that cup (or cap) diagrams of staying type are those appearing for
Arcn, while all others are new in the annular setting.

Definition 5.3. An oriented cup diagram Sλ is a pair of a cup diagram and
a weight λ such that the weight induces an orientation on the arcs of S (seen
topologically). An oriented cap diagram λT ? is defined verbatim.
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For λ ∈ X we denote by M(λ) the set of all oriented cup diagrams of the form
Sλ.

Note that we can swap the cylinders S1× [0,−1]� S1× [0, 1] by reflecting along
the (x, y, 0)-plane in R3. This induces an involution ? turning a cup S into a cap
diagram S?, and vice versa. Clearly, (S?)? = S, and — by convention — (Sλ)? = λS?

and (λS?)? = Sλ.

Definition 5.4. A(n annular) circle diagram ST ? (of rank n) is obtained from a
cup diagram S and a cap diagram T ? (both of rank n) by stacking T ? on top of S,
inducing a corresponding diagram in S1 × [−1, 1].

An oriented circle diagram is built from an oriented cup Sλ and cap diagram
λT ? for the same weight λ. We denote such diagrams by CλS,T , and we say that the

circle diagram ST ? is associated to CλS,T .

Just as cup and cap diagrams are built from arcs, circle diagrams are collections
of (up to n) circles C, with “circle” understood in the evident way.

All the above is summarized in (5-2) below.

λ

,

S

,

T

,

CλS,T

(5-2)

Definition 5.5. A circle C in a circle diagram ST ? is called essential if it induces
a non-trivial element in π1(S1 × [−1, 1]), and usual otherwise.

For an oriented circle diagram SλT ?, any circle C gets an induced orientation.
Thus, we can say a usual circle is anticlockwise or clockwise (oriented), while
essential circles are leftwards or rightwards (oriented).

The picture illustrating Definition 5.5 is:

, ;

usual and anticlockwise

, ;

usual and clockwise

, ;

essential and leftwards

,

essential and rightwards

(5-3)

(As in (5-3), we say, e.g., usual and clockwise for short.)

5C. The multiplication

We first define the vector space for the annular arc algebra, and explain the
multiplication afterwards.

Definition 5.6. As a vector space, the annular arc algebra Arcann
n (of rank n) is

Arcann
n = K{CλS,T | λ ∈ X, S, T ∈ M(λ)}, (5-4)
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i.e., the free vector space on the basis given by all oriented circle diagrams (of rank
n).

Before we define the multiplication by a surgery procedure, here is a prototypical
example, each step called a(n oriented) stacked diagram:

T ?

U

S

V ?

middle

λ

µ

C
µ
U,V

CλS,T

sur-−−−→
gery

S

V ?

sur-−−−→
gery

S

V ?

µ

µ

C
µ
S,V

=

S

V ?

µ

C
µ
S,V

(5-5)

(In our notation, left multiplication is given by concatenation from the bottom.)
To define the multiplication Mult : Arcann

n ⊗Arcann
n → Arcann

n it suffices to explain
it on two basis elements CλS,T and C

µ
U,V , and extend linearly. The multiplication of

such basis elements is defined as follows.

(a) We let CλS,T C
µ
U,V = 0 unless T = U . Otherwise, put the circle diagram

associated to C
µ
U,V on top of the one associated to CλS,T , producing a stacked

diagram having T ?U in the middle, cf. (5-5).
(b) For the stacked diagram perform inductively a surgery procedure by picking

any (note the choice involved) - pair available, meaning that the and
the can be connected without crossing any other arc, and replace it locally
via:

choose
sur-−−−→
gery

(5-6)

(c) In each step of (5.b) we replace the resulting stacked diagrams by a sum of
(oriented) stacked diagrams as explained below.

(d) Finally, collapse the resulting stacked diagrams to circle diagrams as illust-
rated on the right in (5-5).

Observing that each step of (5.b) either merges two circles into one, or splits
one circle into two, we define how to reorient diagrams as follows. In all cases, we
say “orient the result” meaning to put the corresponding orientation locally on the
stacked diagram after applying (5.b), leaving all non-involved parts with the same
orientation.

5.M. Assume that two circles are merged into one.
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(a) If one of the circles is usual and anticlockwise, then orient the result with
the orientation induced by the other circle.

(b) If one of the circles is usual and clockwise and the other is not usual and
anticlockwise, then the result is zero.

(c) If one of the circles is essential and leftwards and the other is essential and
rightwards, then orient the result clockwise.

(d) Otherwise, the result is zero.

7→

Example for (5.M.a)

7→ 0

Example for (5.M.b)

7→

Example for (5.M.c)

7→ 0

Example for (5.M.d)

(5-7)

5.S. Assume that one circle is split into two.

(a) If the circle is usual and anticlockwise and splits into two usual circles C1
and C2, then take the sum of two copies of the result. In one summand orient
C1 clockwise and C2 anticlockwise, in the other swap the roles.

(b) If the circle is usual and clockwise and splits into two usual circles, then
orient both circles in the result clockwise.

(c) If the circle is usual and anticlockwise and splits into two essential circles
C1 and C2, then take the sum of two copies of the result. In one summand
orient C1 leftwards and C2 rightwards, in the other swap the roles.

(d) If the circle is usual and clockwise and splits into two essential circles, then
the result is zero.

(e) If the circle is essential, then orient the resulting usual circle clockwise while
keeping the orientation of the resulting essential circle.

7→ +

Example for (5.S.a)

7→

Example for (5.S.b)

7→ +

Example for (5.S.c)

7→0

Example for (5.S.d)

7→

Example for (5.S.e)

(5-8)

We leave it to the reader to check that 5.M and 5.S are all possible configurations.
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5D. Well-definedness via annular TQFTs

We first prove well-definedness of Arcann
n .

Proposition 5.7. The multiplication is well defined, i.e., independent of all in-
volved choices. This turns Arcann

n into an associative, unital, finite-dimensional
algebra with

E = {CλS,S | SλS? contains only usual and anticlockwise Cs} (5-9)

being a complete set of pairwise orthogonal idempotents.

Proof. With the well-definedness as an exception, the statements are easy to verify.
We will sketch now why the multiplication is well defined. (A detailed treatment in
case of the non-annular arc algebras, that can be adapted to the annular setup,
is explained, e.g., in [EST17].) The main idea is to identify the algebraically
defined annular arc algebra with a topological algebra — whose elements are certain
surfaces — obtained via a TQFT. For this topological incarnation of Arcann

n the well-
definedness boils down to isotopies of surfaces, and the main problem is to find the
TQFT realizing Arcann

n . However, in our case this is easy since we modeled Arcann
n

on such a topological defined algebra using the TQFT from [APS04]. (For further
details about this TQFT see, e.g., [Rob13, Sect. 2], [GLW18, Sect. 4.2] or [BPW19,
Sect. 2.4].) To be a bit more precise, using this TQFT one can define — following,
e.g., [EST17] — the topological incarnation of Arcann

n . Then, after choosing a cup
basis as in [EST17], one checks that on this basis the topological algebra satisfies
the multiplication rules of Arcann

n . �

Further directions 5.8. The TQFT used in the proof of Proposition 5.7 origi-
nates in the context of versions of annular link homologies, see, e.g., the references
above. It would be interesting to know a connection between Arcann

n and those
homologies.

Example 5.9. Here the multiplication for symmetric pictures in case n = 1:

7→
∨∧
∨∧ 7→ ∨ ∧

7→
∧∨
∨∧ 7→ ∧ ∨

7→
∨∧
∧∨ 7→ ∧ ∨

7→ 0

∧∨
∧∨ 7→ 0

7→
∧∨
∧∨ 7→ ∧ ∨

7→
∨∧
∧∨ 7→ ∨ ∧

7→
∧∨
∨∧ 7→ ∨ ∧

7→ 0

∨∧
∨∧ 7→ 0

(5-10)

Note the changed roles of the weights.
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Example 5.10. The list of the idempotents from (5-9) in case n = 2 is

e1

,

e2

,

e3

,

e4

,

e5

,

e6
(5-11)

(For later use, cf. Example 5.23, we denote them by ei for i = 1, . . . , 6.)

Further directions 5.11. Our conventions here differ slightly from the ones in
[AN16, Sect. 5.3] and it would be interesting to find an explicit isomorphism
between the two algebras.

5E. Relative cellularity: The cell datum

Let us now give the relative cell datum.
First, as already indicated by our notation in Section 5B, the set X is the set of

weights, while the sets M(λ) are those cup diagrams S such that Sλ is oriented.
The map C is then given by the defined basis elements CλS,T . The anti-involution ?

is given by reflection.
Furthermore — by Proposition 5.7 — we let E be as in (5-9), and we can associate

to a cup diagram S the idempotent εS = CλS,S ∈ E. This in turn defines the map
ε(S) = εS .

To define the partial orders <εS with respect to the idempotents in E, note that
there is a rotation map ρ : X → X given by rotating rightwards. This is formally
done by renumbering the vertices on the dotted line to 2, 3, · · · , 2n, 1. The same is
done for cup diagrams, e.g.:

ρ−→
ρ−→

,

S

ρ−→

ρ(S)

(5-12)

We note two lemmas whose (very easy) proofs we omit.

Lemma 5.12. The map ρ defined on the basis as ρ(CλS,T ) = C
ρ(λ)
ρ(S),ρ(T ) defines an

algebra automorphism of Arcann
n .

Lemma 5.13. For each cup diagram S there is k ∈ Z≥0 such that the cup diagram
ρk(S) is of staying type.

The set X has a partial order ≺Arcn generated by saying that an ordered pair ∨ ∧
swapped to ∧ ∨ creates a smaller element of X. (This is actually the partial order
for Arcn, cf. [BS11, Sect. 2].) Starting from this partial order we will define — by
using Lemma 5.13 — our partial orders using the rotation ρ.
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Definition 5.14. Let S be a cup diagram and λ, µ ∈ X. Let k ∈ Z≥0 be minimal
such that ρk(S) is of staying type. Then we define µ <εS λ if ρk(µ) ≺Arcn ρ

k(λ).

For example, ∧ ∨ ∨ ∧ <εS ∧ ∨ ∧ ∨, but ∧ ∨ ∧ ∨ <ερ(S)
∧ ∨ ∨ ∧ for S as in (5-12).

Now — by Definition 5.14 — we set O = {<εS | S is a cup diagram}, and have

(X,M,C, ?,E,O, ε) (5-13)

as the candidate for the relative cell datum.
The main ingredient to prove relative cellularity is the following that is similar

to [BS11, Thm. 3.1], but more involved to prove. Its proof appears in Section 5J
below.

Theorem 5.15. Let λ, µ ∈ X, S, T ∈ M(λ) and U, V ∈ M(µ). Then

CλS,T C
µ
U,V =


0, if T 6= U,

r(CλS,T , U)CµU,V + (†), if T = U and V ∈ M(µ),

(†), otherwise,

(5-14)

with r(CλS,T , U) ∈ {0, 1} ⊂ K, (†) ∈ Arcann
n (<εV µ) and εS(†) = (†) = (†)εV .

This in turn implies the relative cellularity of the annular arc algebra.

Theorem 5.16. The algebra Arcann
n is relative cellular with cell datum as in

(5-13).

Proof. (2.1.a). The sets X and M(λ) are clearly finite, and the assignment C gives —
by definition — an injective map with the image forming a basis of Arcann

n .

(2.1.b). Clearly, ? is an anti-involution with (CλS,T )? = CλT,S .

(2.1.c). All statements about the idempotents and the mapping ε are — by, e.g.,
Proposition 5.7 — immediate except (2-3). For (2-3) we note that εArcann

n εCλS,T is
zero unless ε = εS . In this case εArcann

n ε is spanned by elements of the form C
µ
S,S

for µ ∈ X. The multiplication C
µ
S,SC

λ
S,T will be a merge in each step and the only

non-trivial operation is that some circles in ST ? are reoriented from anticlockwise
to clockwise. However — by Lemma 5.34 below — this will decrease the weight with
respect to both, <εS and <εT .

(2.1.d). We note that Theorem 5.15 is a stronger version of (2.1.d). �

5F. Further properties

By Theorem 5.16 we can use the notions from Section 3 regarding simples, cell and
indecomposable projective Arcann

n -modules.

Proposition 5.17. Let λ, µ ∈ X and S ∈ M(λ), T ∈ M(µ) such that εS = CλS,S
and εT = C

µ
T,T . Then the following hold.

(a) We have [∆(λ) : L(µ)] = 1 if and only if Tλ is oriented, otherwise it is zero.
(b) The projective P (λ) has a filtration by cell modules of the form ∆(ν) such

that Sν is oriented. Further, it has a filtration by 2n cell modules, each
occurring once.

(c) The value [P (λ) : L(µ)] can be computed by counting the number of orienta-
tions of ST ?, with each orientation ν giving the occurrence of L(µ) in ∆(ν)
inside the cell module filtration given by (5.17.b).
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Proof. (5.17.a). This follows immediately by noting that the basis elements of ∆(λ)
are compatible with the choice of primitive idempotents, with exactly one of the
idempotents acting as 1 on a given basis element and all others acting by 0.

(5.17.b). The first statement follows by construction of the cell filtration in
Proposition 3.19. The second statement follows since the number of orientations
for S is exactly n.

(5.17.c). By combining (5.17.a) and (5.17.b). �

Remark 5.18. Note that — by the proof of (5.17.a) — it also follows that simple
modules always have dimension one. On the other hand, a cell module ∆(λ) has
dimension equal to the number of cup diagrams S such that Sλ is oriented. Thus,
dim ∆(λ) > 1. Furthermore, (5.17.b) implies that P (λ) is also always different from
∆(λ). To summarize: No cell module is simple or projective.

Proposition 5.19. The algebra Arcann
n is a non-semisimple Frobenius algebra of

infinite global dimension.

Proof. A bilinear form σ : Arcann
n ⊗ Arcann

n → K is given by σ(CλS,T , C
µ
U,V ) = 0 for

S 6= V , and otherwise σ(CλS,T , C
µ
U,V ) is set to be the coefficient of CνS,S in the product

CλS,T C
µ
U,V , where ν is chosen such that all circles in SνS? are oriented clockwise.

Associativity and non-degeneracy can be shown using the same TQFT methods
as in [EST17], using the TQFT as in the proof of Proposition 5.7, i.e., both are
immediate for the topological incarnation of Arcann

n due to the TQFT involved in
the construction. (Associativity being again an isotopy; non-degeneracy follows
from the non-degeneracy of the involved TQFT.)

From the dimension observations in Remark 5.18 it follows that Arcann
n is non-

semisimple. Further, recall that a Frobenius algebra has finite global dimension if
and only if it is semisimple. Thus, Arcann

n is of infinite global dimension. �

Remark 5.20. The Frobenius property in Proposition 5.19 can be proven directly
using combinatorics. While associativity of σ follows immediately, the non-degene-
racy can be checked by carefully looking at products of the form CλS,T C

µ
T,S and

noting that the surgeries can be ordered so that merges are performed first followed
by splits. Thus, for a given weight λ, the µ can be chosen appropriately so that all
circles, after performing the merges, are usual and clockwise and then the splits
will all create usual and clockwise circles, giving the non-degeneracy of σ.

Proposition 5.21. The matrix C(Arcann
n ) is positive semidefinite with determinant

zero.

Proof. By Corollary 3.25 it remains to check that the Cartan matrix is not of full
rank.

The case n = 1 is done explicitly in Example 5.22 below.
For the case n > 1, let S be the cup diagram having only arcs of staying type

with one arc connecting vertices 1 and 2n and arcs connecting 2i and 2i + 1 for
1 ≤ i ≤ (n−1). Let εS = SλS? for λ = ∨ (∨ ∧)(∨ ∧) · · · (∨ ∧)∧. The multiplicity
[P (λ) : L(µ)] is — by (5.17.c) — obtained by counting the number of possible
orientations of the diagram ST ?, where T is the unique diagram such that TµT ? is
a primitive idempotent. Note that this is 2m for m being the number of circles in
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ST ?. Next, the number of such orientations is the same as the number of orientations
of ρ2(S)T ?. This holds true since ρ2(S) connects the same vertices as S, just with
arcs that are not of staying type. Thus, [P (λ) : L(µ)] = [P (ρ2(λ)) : L(µ)] and with
the assumption n > 1 we obtain ρ2(λ) 6= λ. In total, the matrix C(Arcann

n ) has two
equal columns. �

5G. Low rank examples

Let us discuss the cases n = 1 and n = 2 in detail. This will be very much as in
Section 2E, whose notions we recommend the reader to recall.

Example 5.22. Let n = 1. Then the relative cell datum of Arcann
1 is as follows.

X = { ∧ ∨ <e1 ∨ ∧ } = { ∨ ∧ <e2 ∧ ∨ }, ?  reflect diagrams,

M(∨ ∧) =
{

,
}
, M(∧ ∨) =

{
,

}
, CλS,T  cf. (5-2),

E =

{
e1 = , e2 =

}
, ε(M(∨ ∧)) = e1, ε(M(∧ ∨)) = e2.

(5-15)

Now, as for the usual arc algebra, the indecomposable projectives P (∨ ∧) = Arcann
1 e1

and P (∧ ∨) = Arcann
1 e2 are given by fixing (in our notation) the top shape. In

contrast, the cell modules ∆(∨ ∧) and ∆(∧ ∨) are given by fixing the weight, and
we get

∨ ∧ ∧ ∨

∆(∨ ∧)

∆(∧ ∨)

∆(∧ ∨)

∆(∨ ∧)

<e1 <e2

P (∨ ∧)

L(∨ ∧)

L(∧ ∨)

∆(∨ ∧)

L(∨ ∧)

L(∧ ∨)

∆(∧ ∨)

P (∧ ∨)

L(∧ ∨)

L(∨ ∧)

∆(∧ ∨)

L(∧ ∨)

L(∨ ∧)

∆(∨ ∧)

(5-16)

Note that looking at the bottom picture determines the action of the primitive
idempotents e1 and e2, and thus the simple module as illustrated.

Finally, the above gives us the Cartan matrix C(Arcann
1 ) = ( 2 2

2 2 ), showing that
Arcann

1 is not cellular.

Example 5.23. Let n = 2. We are now going to explain what the relative cellular
datum of Arcann

2 looks like. The relative cellular datum will be very much in the
spirit as in Example 5.22, with partial orderings relative to the idempotents in
Example 5.10. But since the algebra Arcann

2 is of dimension 108, we will only
highlight some features by focussing on e2 and e5.
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First, we have X = { ∨ ∨ ∧ ∧ , ∨ ∧ ∨ ∧ , ∧ ∨ ∨ ∧ , ∨ ∧ ∧ ∨ , ∧ ∨ ∧ ∨ , ∧ ∧ ∨ ∨ } as the
set of weights. As explained in Section 5E, the partial orderings for the idempotents
are obtained from the usual one (i.e., (5-18) in this case) by ‘rotation of the cylinder’,
e.g.,

∨ ∨ ∧ ∧

∨ ∧ ∧ ∨ ∧ ∨ ∧ ∨ ∨ ∧ ∨ ∧ ∧ ∨ ∨ ∧

∧ ∧ ∨ ∨

<e2

<e2

<e2

<e2

<e2

<e2

(5-17)

∧ ∨ ∨ ∧

∨ ∨ ∧ ∧ ∨ ∧ ∨ ∧ ∧ ∨ ∧ ∨ ∧ ∧ ∨ ∨

∨ ∧ ∧ ∨

<e5

<e5

<e5

<e5

<e5

<e5

(5-18)

The other partial orderings are similar, but rotated.
Now, the relative cell datum is

X cf. (5-17), ?  reflect diagrams, M cf. Example 5.23,

CλS,T  cf. (5-2), E cf. Example 5.10 ε cf. Example 5.23.
(5-19)

Having these, the cell modules in P (∨∧∧∨) are

∨ ∧ ∧ ∨

(5-20)
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and in P (∨∧∨∧)
∨ ∧ ∨ ∧

(5-21)

These are ordered as in (5-17) and (5-18). Next, the indecomposable projectives
are

L(∨∧∧∨)

L(∨∧∨∧) L(∧∨∧∨) L(∨∧∨∧)

L(∧∨∨∧) L(∨∧∧∨) L(∨∨∧∧) L(∧∧∨∨) L(∧∨∨∧) L(∧∨∨∧) L(∧∧∨∨) L(∨∨∧∧) L(∨∧∧∨) L(∧∨∨∧)

L(∨∧∨∧) L(∧∨∧∨) L(∨∧∨∧)

L(∨∧∧∨)

P (∨∧∧∨)

∆(∨∧∧∨)

∆(∨∧∧∨)

∆(∨∧∧∨)

∆(∧∨∨∧)

L(∧∨∧∨)

L(∨∧∧∨) L(∨∧∧∨) L(∨∨∧∧) L(∧∧∨∨) L(∧∨∨∧) L(∧∨∨∧)

L(∨∧∨∧) L(∨∧∨∧) L(∨∧∨∧) L(∨∧∨∧)

L(∧∨∨∧) L(∧∨∨∧) L(∧∧∨∨) L(∨∨∧∧) L(∨∧∧∨) L(∨∧∧∨)

L(∧∨∧∨)

P (∨∧∧∨)

∆(∨∧∧∨)

∆(∨∧∧∨)

∆(∨∧∧∨)

∆(∧∨∨∧)

(5-22)

(Note: From n = 3 onwards the P (λ)’s are not of the same size anymore. That
is, Arcann

3 is of dimension 1664 with P (λ)’s being of dimension 80 or 88.) By the
above we see that the Cartan matrix is (up to similarity)

C(Arcann
2 ) =

 4 2 2 4 2 4
2 4 4 2 4 2
2 4 4 2 4 2
4 2 2 4 2 4
2 4 4 2 4 2
4 2 2 4 2 4

 (5-23)

This again shows that Arcann
2 is not a cellular algebra.

5H. Some concluding comments

A few potential generalizations regarding relative cellularity of Arcann
n are:

Further directions 5.24. Everything can be done in the graded setup as well
with the algebra Arcann

n having an analogous grading as Arcn. In particular, it
makes sense to define the notion of a graded, relative cellular algebra, generalizing
[HM10, Def. 2.1].
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Further directions 5.25. Arcn was originally defined to construct tangle invari-
ants associated to Khovanov homology [Kho02]. Similarly, so-called web algebras
appear in the construction of tangle invariants associated to Khovanov–Rozansky
homologies. These web algebras are also known to be cellular algebras, see [MPT14,
Cor. 5.21], [Tub14, Thm. 4.22] and [Mac14, Thm. 7.7]. Building on [QR18], it
should be possible to define annular variants, and the question whether these are
relative cellular arises.

Further directions 5.26. One could also define annular versions of the type D
arc algebra as in [ES16b], [ES16a] or [ETW16]. This algebra is again cellular, see
[ES16b, Cor. 7.3], and the question about relative cellularity again arises.

5I. Relative cellularity: Technicalities

For the proof of Theorem 5.15 we need some more control over cups and caps,
necessitating a number of definitions and lemmas.

Definition 5.27. Let λ ∈ X and S be a cup diagram such that Sλ is oriented.
Assume that we have the following local situations.

, , ,

anticlockwise

; , , ,

clockwise

(5-24)

Then we call such cups or caps anticlockwise and clockwise, as indicated.

Comparing to (5-3), cups and caps in usual circles are always of the corresponding
orientation. Moreover, cups in essential and rightwards and caps in essential and
leftwards circles are clockwise, and vice versa.

Definition 5.28. Let C be a circle in a circle diagram ST ?. Then S1×[−1, 1]\C has
two connected components. For a usual circle the connected component containing
the boundary of S1 × [−1, 1] is called the exterior of C, the other is called the
interior. For an essential circle the one containing the boundary S1 × {1} is called
the upper (half), the other is called the lower (half).

Here is the picture illustrating these notions:

exterior

interior

,

upper

lower

;

left

right

,

right

left

;

left

right

,

right

left

(5-25)

As in (5-25), if furthermore a small circle C (i.e., a circle built from one cup and
one cap only) is endowed with an orientation in CλS,T , then we distinguish between
a right and a left side of C by using the orientation.

For more general circles we use repeatedly

right

left

 
rightleft

 

right

left

;

right

left

 
right left

 

right

left

(5-26)

269



M. EHRIG, D. TUBBENHAUER

to define the notions right and left side of C.

The following is clear.

Lemma 5.29. Let C be a circle in an circle diagram ST ?. Then the notions in
Definition 5.28 are well defined and satisfy:

(a) If C is usual and anticlockwise, then its interior is to the left. If C is usual
and clockwise, then its exterior is to the left.

(b) If C is essential and leftwards, then its lower is to the left. If C is essential
and rightwards, then its upper is to the left.

We also need to distinguish certain types of cups and caps.

Definition 5.30. Let ST ? be a circle diagram and C a circle in ST ?.

(a) Let C be usual. We say that a cup, respectively cap, in C is e , respectively
e , if the exterior of C is directly above the cup, respectively below the cap.
Otherwise we call it i , respectively i .

(b) Let C be essential. We say that a cup, respectively cap, in C is l , respectively
l , if the lower of C is directly below the cup, respectively below the cap.
Otherwise we call it u , respectively u .

Note that Definition 5.30 depends only on the shape, and here is the picture:

ext.

e

,

ext.

e

;

int.

i

,

int.

i

;

low.

l

,

upp.

u

;

upp.

u

,

low.

l

(5-27)

We write, e.g., e instead of e cup for short.

Lemma 5.31. Let C be a circle in an oriented circle diagram CλS,T .

(a) If C is usual, then the orientation of C and any e or e agrees, while any
i or i is oriented in the opposite way.

(b) If C is essential and leftwards, then any l or l is oriented clockwise, while
any u or u is oriented anticlockwise.

(c) If C is essential and rightwards, then any u or u is oriented clockwise,
while any l or l is oriented anticlockwise.

Proof. All of these are easily proved by induction on the number of cups and caps
in the circle. Here the induction start:

e

e

;

e

e

;

u

l

,

u

l

;

u

l

,

u

l

(5-28)

Then one continues using (5-26). �
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For the next two lemmas the circles are considered inside an oriented, stacked
diagram where the surgery is performed. Note hereby that we apply (5.b) only,
i.e., without reorienting the resulting diagram, but rather keeping the original
orientation. We call this applying the surgery naively.

Lemma 5.32. Assume an essential circle C splits into an essential Ce and an usual
Cu circle by naive surgery. Then the resulting diagram is oriented, Ce is oriented in
the same way as C and Cu is oriented opposite to the orientation of the - pair
involved in the naive surgery.

Proof. First — by (5.31.b) and (5.31.c) — we know that the cup and cap involved in
the naive surgery have the same orientation. Thus, these are the local possibilities:

C 7→ CeCu ; C 7→ CeCu ;

C 7→ Ce Cu ; C 7→ Ce Cu

(5-29)

Ce is — by assumption — essential, meaning that all other possible situations can
be rotated into such positions. �

For two essential circles Cu is above Cl if Cl is contained in the lower half of Cu.
We also say that Cl is below Cu.

Lemma 5.33. Let C be a usual circle splitting into two essential circles, Cu being
above Cl, by naive surgery. Then the result is oriented with Cu being essential and
leftwards and Cl essential and rightwards in case C is anticlockwise, and vice versa,
in case C is clockwise.

Proof. As before by (5.31.a), we know that the - of the naive surgery have the
same orientation. Thus, there is an induced orientation on the result after naive
surgery.

To see the second part of the claim, keeping

C 7→ Cl Cu (5-30)

in mind, we use (5.29.a) and (5.29.b) with the interior of C turning into the lower
of Cu and the upper of Cl. �
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For the following lemma we use the evident notion of usual circles to be nested
inside other usual circles. (We also say that one circle is the outer, having the
evident meaning.)

Lemma 5.34. Let CλS,T be an oriented circle diagram.

(a) Let C
µ
S,T be obtained from CλS,T by reorienting an anticlockwise circle C

clockwise, as well as reorienting an arbitrary number of clockwise circles
nested inside C anticlockwise. Then µ <εS λ and µ <εT λ.

(b) Assume that T is of staying type and let C
µ
S,T be obtained from CλS,T by

reorienting a leftwards circle C rightwards, as well as reorienting an arbitrary
number of rightwards circles below C leftwards. Then µ <εT λ.

Proof. (5.34.a). We first use the rotation map ρ to obtain a diagram with S of
staying type. Then the statement µ <εS λ follows by the same arguments as in the
usual case and is left to the reader. (For a similar proof see [ES16b, Lem. 7.7].)
The same can be done to obtain a diagram with T of staying type, giving µ <εT λ.

(5.34.b). In this case we substitute all cups in S that are not of staying type
by cups of staying type that connect the same vertices to obtain a cup diagram
S′. Then the circle C determines a circle C′ in S′T ? containing the same caps
as C. Observe that C′ is then anticlockwise. Hence, reorienting this we obtain —
by (5.34.a) — a weight µ <εT λ. If there are rightward circles below, they get
transformed to clockwise circles nested inside C′. So the statement also follows by
(5.34.a), if some of these are reoriented. �

5J. Relative cellularity: Main proof

We can now proceed and finish with the proof of Theorem 5.15 to obtain the main
part of relative cellularity for Arcann

n .

Proof of Theorem 5.15. We show a stronger statement. Namely the appropriate
analog of the claim itself, but for each step within the multiplication process. In
each step the general idea is roughly as follows:

V

V

V

surgery

naive
surgery≤εV

merge

;

V

V

V

+other
terms

surgery

naive
surgery ≤εV

split

(5-31)

In words, we reorient before or after the surgery such that naive surgery gives
the result we want to consider. In doing so the reordering will — by Lemma 5.34 —
≤εV -decrease the weight. Observe hereby that this reorientation process is always
possible. But in case of a merge the reorientation might happen for circles not
touching the upper dotted line. (Examples are, for instance, provided by the
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merge rule (5.a).) Those cases need a bit more care, but this will only happen in
5.15.Case.C below.

Let us make this rigorous. To this end, let SλT ?TµV ? be a stacked diagram.
Without loss of generality we also assume that the diagram is rotated in such a
way that V is of staying type. Further, let denote a cap in T ? and the mirrored
cup in T such that one can perform surgery with the pair - . In the following,
let C denote the circle containing and C′ the circle containing . (These need not
be distinct in general.)

5.15. Claim.a. After naive surgery along - and reorientation one obtains diagrams
with an orientation µ′ on the upper dotted line such that µ′ <εV µ. Further, if µ
appears, then it appears with coefficient one, independent of V .

Proof of 5.15. Claim.a. The proof is divided into three parts: First we assume that
is oriented clockwise, then we assume that is anticlockwise and divide the

cases of being anticlockwise respectively clockwise. In all cases we silently use
Lemma 5.31.

5.15. Case. A: is clockwise. We further distinguish depending on the properties of
the circle C that in turn imply further properties of and .

(i) C is usual and anticlockwise. This implies that is i .

(1) If the surgery is a merge of two circles, then C′ must be nested inside C.
Hence, C′ is usual as well, and C′ and have the same orientation. In particular,
if C′ and are anticlockwise, we need to reorient C′ and clockwise and then
perform the surgery naively. The resulting orientation µ′ on the upper dotted line
is strictly <εV -smaller than µ. If on the other hand C′ and are clockwise, we need
to reorient both C and C′ and then perform the surgery naively. In this case this
also produces a µ′ strictly <εV -smaller than µ.

(2) If the surgery is a split, then is clockwise as well. Hence, the surgery
will create two usual circles both containing arcs in V . Note that the naive surgery
creates two circles that are usual and anticlockwise. Thus, for each summand of the
result one of the two circles needs to be reoriented creating strictly <εV -smaller
orientations µ′.

(ii) C is usual and clockwise. In this case is e .

(1) If one merges, then the only non-zero result occurs when C′ is usual and
anticlockwise. To obtain the result we need to reorient C′, and C if it is nested
inside C′, and then perform naive surgery. Since C′ contains arcs in V this will
produce a strictly <εV -smaller orientation µ′.

(2) If one splits, then is a clockwise e . The only non-zero result is the split
into two usual circles, both touching the upper dotted line. After performing naive
surgery the outer of the two created circles is already clockwise, while the nested
is anticlockwise. Reorienting the nested circle again gives a strictly <εV -smaller
orientation µ′.

(iii) C is essential and leftwards. In this case is l .

(1) If the surgery is a merge, the non-zero cases are the ones where C′ is usual
and anticlockwise or essential and rightwards. In the first case, we have that is
anticlockwise as well. In this case C′ needs to be reoriented, strictly <εV -decreasing
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the orientation µ′, and then naive surgery can be performed. In the second case,
is clockwise. Performing naive surgery will then produce a usual and anticlockwise
circle containing arcs in V . Thus, reorienting the resulting circle gives a <εV -strictly
smaller orientation µ′.

(2) If the surgery is a split, then also is clockwise. Performing naive surgery
will thus produce a usual and anticlockwise and an essential and leftwards circle.
Since both contain arcs in V , reorienting the former will again yield a strictly
<εV -smaller orientation µ′ by Lemma 5.34.

(iv) C is essential and rightwards. Very similar to the leftwards case and omitted.

5.15.Case.B: and are anticlockwise. In this case the result after naive surgery
will always be automatically oriented, giving a coefficient 1 for the orientation µ.
It remains to rule out the case that other summands are not <εV -strictly smaller
than µ.

(i) We first assume that the surgery will be a merge. In the case that two
usual circles are merged, the result is already oriented in the correct way and no
reorientation is necessary. In the case that two essential circles are merged, note
that either or is upper, while the other is lower. This means that one has an
essential and leftwards and an essential and rightwards circle. Since the result of
the naive surgery is oriented clockwise, no reorientation is needed. Further, if the
merge includes a usual and an essential circle, then the usual circle is oriented
anticlockwise. Thus, there is again no need for a reorientation after surgery.

(ii) Assume now that the surgery is a split. If it is a split into two usual circles,
then the original circle was anticlockwise. After naive surgery we get a usual and
anticlockwise outer and a usual and clockwise nested circle. Thus, we obtain this
as a summand in the result and a summand where both circles are reoriented.
But since both contain arcs in V , this creates a strictly <εV -smaller orientation
µ′ on the upper dotted line. In the case that the split creates a usual and an
essential circle, then the usual circle is automatically anticlockwise after naive
surgery. Finally, if the split creates two essential circles, then C = C′ is anticlockwise.
Further, the upper of the two created circles is essential and leftwards, while the
lower is essential and rightwards after naive surgery. The second summand in the
result is obtained by reorienting both circles, but since both contain arcs in V , we
see that reorienting both will give a strictly <εV -smaller orientation µ′.

5.15.Case.C: is anticlockwise, is clockwise. This case is a bit different than the
previous cases since the result will depend on whether the circle C contains arcs in
V or not, and what we show is that the result will always be independent of V .

Before we start, we note that, since the orientations of and are different, the
surgery will always be a merge.

(i) First assume that the circle C does not contain arcs in V . If C is usual, then
a merge with an usual or essential circle C′ will be performed by reorienting C
followed by naive surgery, hence, always resulting in the weight µ in the result. In
case C is essential, the two possibilities for C′ are either an essential circle, oriented
in the same way as C, or C′ being usual and clockwise. Both cases result in zero.
Thus, in this case the result is independent of V .
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(ii) If on the other hand C contains arcs in V , then C being usual will always
strictly <εV -decrease the weight µ′ when C is reoriented, while the case C being
essential, would still result in zero in all cases. Since in this case µ never occurs, its
coefficient is again independent of V .

In the last case, the condition whether C contains arcs in V or not is equivalent
to asking whether swapping all entries in λ contained in the circle C would give
an orientation of C or not. If C does not contain arcs in V then it would just be
the opposite orientation, while if C contains arcs in V , this would not result in an
orientation as the orientation on the top is unchanged. Doing this for all surgery
moves and always assuming the case that λ appears in every step, thus implies
that V ∈ M(λ).

Taking all above together shows 5.15. Claim.a. This in turn implies the statement.
�
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