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Abstract. Let G be a connected reductive algebraic group. We develop a Gröbner
theory for multiplicity-free G-algebras, as well as a tropical geometry for subschemes
in a spherical homogeneous space G/H. We define the notion of a spherical tropical
variety and prove a fundamental theorem of tropical geometry in this context. We also
propose a definition for a spherical amoeba in G/H using Cartan decomposition. Our
work partly builds on the previous work of Vogiannou on spherical tropicalization and in
some ways is complementary.
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3. Gröbner theory for multiplicity-free G-algebras

4. Spherical tropical varieties via ideals

5. Spherical tropical varieties via tropicalization map

6. Some examples

7. Spherical amoebas and Cartan decomposition

Introduction

Let k be an algebraically closed field of characteristic 0 (we point out that
these assumptions on k are not needed in several results in the paper). This paper
extends the Gröbner theory of ideals in a polynomial algebra k[x1, . . . , xn], as well
as the tropical geometry of subvarieties in the algebraic torus (k∗)n, to the setting
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of spherical varieties for an action of a connected reductive algebraic group G
over k (throughout k∗ = k \ {0} denotes the multiplicative group of k). We also
suggest a notion of spherical amoeba using Cartan decomposition for a spherical
homogeneous space.

Our theory has a wide range of applications in different directions. It is not a
straightforward extension of the usual tropical and Gröbner theories and involves
new features from reductive group actions such as Borel charts and horospherical
degenerations. Our fundamental theorem (Theorem 4 below) describes how to
compute a spherical tropical variety in terms of defining ideals. As an example
of an application, one can effectively compute the set of invariant factors of a
subvariety of matrices (over a Laurent series algebra) using its defining equations.
There are applications in intersection theory to be explored in future work. Other
possible applications are in Horn’s problem and describing defining equations for
the Horn cone.

The problem of extending the notion of tropicalization to subvarieties of sphe-
rical homogeneous spaces was proposed by Tevelev in 2009 in a series of lectures
at MSRI (videos of these lectures are available at www.msri.org/people/12803).
In [G14] some ideas of tropical geometry in connection with spherical varieties
appear. Developing tropical geometry on spherical varieties was also independently
suggested by Gary Kennedy [K]. The first results in this direction appeared recently
in the Ph.D. thesis of Vogiannou [V15]. He defines a tropicalization map for a
spherical homogeneous space and extends the results in [T07] to the spherical
setting. We should also mention [N17], which suggests a notion of tropicalization
of a spherical embedding. We are not aware of any previous work on Gröbner
theory for spherical varieties or, in other words, for multiplicity-free G-algebras.

First, let us briefly review spherical varieties as well as classical Gröbner theory
and tropical geometry.

Spherical varieties are a generalization of toric varieties for actions of reductive
groups. Let G be a connected reductive algebraic group. A variety X with an action
of G (i.e., a G-variety) is called spherical if a Borel subgroup B (and hence any
Borel subgroup) of G has a dense orbit (as part of the definition, a spherical variety
is usually assumed to be normal, but we will not need the normality assumption
in the paper unless otherwise stated). If X is spherical it has a finite number of
G-orbits as well as a finite number of B-orbits. Generalizing toric varieties, the
geometry of spherical varieties can be read off from associated convex polytopes
and convex cones. In particular, if G/H is a spherical homogeneous space, the
celebrated Luna–Vust theory gives a one-to-one correspondence between spherical
G-varieties containing G/H as the dense G-orbit (i.e., spherical embeddings of
G/H) and colored fans [LV83], [K89]. It is a well-known fact that if L is a G-
linearized line bundle on a spherical variety X then the space of sections H0(X,L)
is a multiplicity free G-module. In particular, the ring of regular functions k[X]
of a spherical variety is a multiplicity-free G-algebra. Many important classes of
varieties are in fact spherical. When G is an algebraic torus, spherical varieties
are exactly toric varieties. The flag variety G/B and the partial flag varieties G/P
are spherical by the Bruhat decomposition. Another example is the variety of
smooth quadrics in a projective space. This example plays an important role in
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enumerative geometry. In Section 2 we discuss some background material about
spherical varieties. For a nice overview of the theory of spherical varieties we refer
the reader to [P14].

In the usual Gröbner theory for ideals in a polynomial ring k[x1, . . . , xn] (see
Section 1.1), one begins by fixing a total order � on the additive semigroup Zn≥0,
e.g., a (reverse) lexicographic order. Given an ideal I ⊂ k[x1, . . . , xn] one then
defines the initial ideal in�(I) with respect to �. Many of the properties of I
and its initial ideal in�(I) are related. The ideal in�(I) is a monomial ideal and
hence has the advantage that its structure can be described combinatorially. One
of the first main results in Gröbner theory is that a given ideal has only a finite
number of initial ideals, for all possible choices of total orders �. A Gröbner basis
for I is a finite collection of elements in I whose initial terms generate in�(I).
Given a Gröbner basis for an ideal I one can give effective algorithms to solve
many computational problems concerning I. For example, one can solve the ideal
membership problem, that is, to decide whether a given polynomial lies in I or
not. The celebrated Buchberger algorithm produces a Gröbner basis for I starting
from a set of ideal generators.

Similarly, given a vector w ∈ Rn and an ideal I ⊂ k[x1, . . . , xn], one defines the
initial ideal inw(I). For w1, w2 ∈ Rn one says that w1 ∼ w2 if the initial ideals
inw1

(I) and inw2
(I) coincide. Another important result in Gröbner theory asserts

that, when I is a homogeneous ideal, the closures of equivalence classes of the
relation ∼ are convex rational polyhedral cones. The resulting fan is called the
Gröbner fan of I and is an important concept in the theory (see [MR88] and [S96,
Chap. 1 and 2]).

The tropical variety of a subvariety of (k∗)n (i.e., a very affine variety) is the
support of a polyhedral fan in Rn that encodes the asymptotic directions in the
subvariety (see Section 1.2). There are basically two ways to define the tropical
variety of a subvariety Y ⊂ (k∗)n. The first way is to use initial ideals of the defining
ideal of Y , and works for any ideal I ⊂ k[x±1 , . . . , x

±
n ]. The tropical variety trop(I)

is defined as the set of all w ∈ Rn such that inw(I) does not contain any monomials.
The other way to define the tropical variety of a subvariety is to use Puiseux series
and the tropicalization map. Let K = k((t)) denote the field of formal Laurent
series in a variable t and let K denote its algebraic closure, that is, the field of
formal Puiseux series. One defines the tropicalization map Trop : (K∗)n → Qn by:

Trop(γ1, . . . , γn) = (ordt(γ1), . . . , ordt(γn)),

where ordt denotes the natural valuation on K obtained by taking the exponent
of the lowest term in t of a Puiseux series. Let Y ⊂ (k∗)n be a subvariety and
let Y (K) denote its set of points over K. The tropical variety of the subvariety Y
is then defined to be the closure of Trop(Y (K)) in Rn. The fundamental theorem
of tropical geometry asserts that the above two constructions coincide. That is, if
I = I(Y ) is the ideal of the subvariety Y ⊂ (k∗)n then trop(I) = Trop(Y ) (see
[MS15, Thm. 3.2.3]).

One shows that the tropical variety of an ideal is the support of a rational
polyhedral fan in Rn. More generally, one can define the notion of tropical variety
for subvarieties in an algebraic torus that are defined over a field extension K of k
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where K is equipped with a valuation (e.g., the field of Puiseux series K together
with the valuation ordt as above). In this more general setting, a tropical variety
is the support of a polyhedral complex instead of just a polyhedral fan.

After these brief reviews, let us give a summary of the contributions of the
present paper. Let G be a connected reductive algebraic group over k.

In Section 3, we extend several basic definitions and results from Gröbner theory
in a polynomial algebra to the spherical setting. We consider a quasi-affine spherical
G-variety X with A = k[X] its algebra of regular functions.

Extending the toric case, to a spherical variety X one associates a sublattice ΛX
of the weight lattice Λ of G. It is the lattice of all the weights of B-eigenfunctions
in the field of rational functions k(X). Analogous to the well-known notion of
dominant weight order on Λ, we define a partial order >X on ΛX which we
call the spherical weight order (see paragraph before Theorem 2.10). We consider
total orders which refine the spherical weight order >X . For such a total order
� we define the associated graded algebra gr�(A) which is in fact isomorphic to
Ahc, the horospherical contraction of A (see [P87] for the notion of horospherical
contraction). We recall that a G-variety is horospherical if the G-stabilizer of any
point contains a maximal unipotent subgroup.

Also for an ideal I ⊂ A we define its initial ideal in�(I) which is an ideal in
gr�(A). We say that a subset G ⊂ I is a spherical Gröbner basis if the image of
G in in�(I) generates this ideal (Definition 3.7). We give a generalization of the
well-known division algorithm to this setting (Proposition 3.10) and prove that
a spherical Gröbner basis G is a set of ideal generators for the original ideal I
(Proposition 3.8). Our first main result in Section 3 is the following (Theorem
3.15).

Theorem 1. An ideal I ⊂ A has a finite number of initial ideals.

This theorem then implies the existence of a universal spherical Gröbner basis
for I (Corollary 3.17).

Next we consider generalizations of the notions of initial ideal with respect to
a vector w ∈ Rn and Gröbner fan of an ideal. In the spherical Gröbner theory the
role of a vector w ∈ Rn is played by a G-invariant valuation on the field of rational
functions k(X) (see Section 2.1). We let VX denote the collection of all G-invariant
valuations on k(X) and with values in Q. It is a well-known result that VX can
be naturally realized as a cosimplicial cone in the dual vector space Hom(ΛX ,Q).
Hence sometimes VX is referred to as the valuation cone. Considering G-invariant
valuations in the study of spherical varieties goes back to the fundamental paper
of Luna and Vust [LV83].

For a valuation v ∈ VX we define the associated graded algebra grv(A). One
makes the following observation (Proposition 3.19): For v ∈ VX , the associated
graded algebra grv(A) depends only on the face σ of the cone VX which contains
v in its relative interior (thus we also write grσ(A) instead of grv(A)). When v lies
in the interior of VX then grv(A) is isomorphic to the horospherical contraction
Ahc. This has been observed by other authors also.

For an ideal I ⊂ A and a valuation v ∈ VX we consider the initial ideal inv(I) ⊂
grv(A). Extending the usual Gröbner theory we define an equivalence relation on
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the valuations: for v1, v2 ∈ VX we say v1 ∼ v2 if they lie on the relative interior of
the same face σ of VX and also inv1(I) = inv2(I) as ideals in grσ(A) (Definition
3.24).

For the next result we assume that A =
⊕

i≥0Ai is graded and G acts on
A preserving the grading. Moreover, we assume that each graded piece Ai is a
multiplicity free G-module (i.e., A is a multiplicity-free (k∗×G)-algebra). Thus A
is the ring of regular functions on an affine spherical (k∗ × G)-variety X. In this
situation the valuation cone VX is the cone of (k∗ × G)-invariant valuations. We
prove the following (Theorem 3.32).

Theorem 2. Let A be graded as above. Let I ⊂ A be a homogeneous ideal. Then
the closures of equivalence classes of ∼ form a fan.

We call the fan in Theorem 2, the spherical Gröbner fan of I. We would like
to point out some important differences between the toric case and the general
spherical case which makes the spherical theory more complicated. (1) In the torus
case the isotypic components are 1-dimensional corresponding to different Laurent
monomials, while in the general spherical case they are irreducible G-modules and
almost always have dimension greater than 1. (2) If fα = xα, fβ = xβ are two
monomials in a polynomial algebra then fαfβ = fα+β . In the spherical case, if
fγ ∈ Wγ , fµ ∈ Wµ where A =

⊕
λWλ is the isotypic decomposition of the G-

algebra A, then in general, fγfµ does not necessarily lie in Wγ+µ but rather in
Wγ+µ direct sum with Wλ where λ is greater than γ + µ in the spherical weight
order >X (Theorem 2.10).

In Sections 4 and 5 we extend several basic definitions and results from tropical
geometry to the spherical setting. We consider a spherical homogeneous space
G/H (which may not be quasi-affine). The spherical tropical variety encodes the
“asymptotic directions” of a subvariety of a spherical homogeneous space G/H
which correspond to G-equivariant embeddings of G/H. To make the notion of
asymptotic directions in G/H precise, one uses G-invariant valuations. In analogy
to the tropical geometry on the algebraic torus (k∗)n, we consider two ways of
constructing a spherical tropical variety: one using the spherical tropicalization
map and the other using initial ideals.

Given a valuation v : k(G/H)→ Q∪{∞} one can define a G-invariant valuation
v̄ ∈ VG/H . For 0 6= f ∈ k(G/H), the value v̄(f) is equal to v(g ·f) for g in a Zariski

open subset Uf ⊂ G. Also a formal curve γ in G/H, that is, a K-valued point
γ ∈ G/H(K), defines a valuation vγ . For f ∈ k(G/H), the value vγ(f) is simply
ordt of the restriction of f to the curve γ. Combining these two constructions to
a formal curve γ on G/H one associates an invariant valuation v̄γ ∈ VG/H . This
plays an important role in the Luna–Vust theory of spherical embeddings [LV83],
[K89]. Vogiannou suggests the map

Trop : G/H(K)→ VG/H , γ 7→ v̄γ ,

as a generalization of the tropicalization map to the setting of spherical varieties.
If Y ⊂ G/H is a subvariety, the spherical tropicalization Trop(Y ) is then defined
to be the image of Y in VG/H under the map Trop (see [V15] and Definition
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5.10). He shows the following: For a valuation v ∈ VG/H let Xv denote the G-
equivariant spherical embedding corresponding to the single ray generated by v
(in the sense of Luna–Vust). Then v lies in Trop(Y ) if and only if the closure of
Y in Xv intersects the unique G-invariant divisor at infinity Dv ⊂ Xv. It is also
proved in [V15, Sect. 4] that Trop(Y ) is the support of a rational polyhedral fan
in VG/H . Vogiannou uses Trop(Y ) to prove the existence of a spherical tropical
compactification for Y , extending an analogous result in [T07] for algebraic torus.
The arguments rely on the Luna–Vust theory of spherical embeddings. In Section
5.1 we review the spherical tropicalization map of Vogiannou.

One of the goals of the present paper is to give a definition of a spherical
tropical variety using the defining ideal of the subvariety. Note that a spherical
homogeneous space G/H may not in general be affine or quasi-affine. It turns out
that in the spherical context, it is more natural to consider subvarieties in an open
Borel orbit. A Borel orbit is always an affine variety.

Fix a Borel subgroup B in G and let J ⊂ k[XB ] be an ideal in the coordinate
ring of the open B-orbit XB ⊂ G/H. For v ∈ VG/H , the notions of associated
graded grv(k[XB ]) and initial ideal inv(J) are defined in a similar fashion as in the
case of a G-algebra. We define tropB(J) to be the set of all v ∈ VG/H such that
inv(J) contains no unit elements (Definition 4.4). That is,

tropB(J) = {v ∈ VG/H | inv(J) 6= grv(k[XB ])},

(cf. Definition 1.6).
Take a G-linearized very ample line bundle L on a projective spherical embed-

ding X of G/H. Let A =
⊕

i≥0H
0(X,L⊗i) be the algebra of sections of L. We

apply the spherical Gröbner theory discussed earlier to the (k∗ ×G)-algebra A to
prove the following (Theorem 4.11):

Theorem 3. tropB(J) is the support of a rational polyhedral fan. Moreover, this
fan structure can be obtained by intersecting tropB(J) with the spherical Gröbner
fan of an ideal J̃ ⊂ A (which can be thought of as the homogenization of J with
respect to (X,L)).

We also discuss how to compute the spherical tropical variety of a hypersurface
(Section 4.3). Finally, we show the existence of a finite spherical tropical basis for J .
In other words, tropB(J) is the intersection of a finite number of spherical tropical
hypersurfaces (Section 4.4).

Remark. The above results in principle give an algorithmic way to compute the
spherical tropical variety of a subvariety in a spherical homogeneous space. For
example, in the case of a subvariety Y of GL(n,k), these suggest a way to compute
the set of all the invariant factors of points of Y over K = k((t)) (see Example
2.1(5) and Example 5.7). It might be worthwhile to work out the details and
efficiency of such an algorithm.

Let Y ⊂ G/H be a subvariety and let I = I(Y ) ⊂ A the ideal of sections
vanishing on Y ⊂ G/H. In Section 4.5 we put together the spherical tropical
varieties in open Borel orbits, for different Borel subgroups, to define the notion
of a tropical variety trop(I) (Definition 4.18 and Proposition 4.20). For each Borel

1100



TROPICAL GEOMETRY ON SPHERICAL VARIETIES

subgroup B let JB ⊂ k[XB ] denote the ideal of Y ∩ XB . The following is our
generalization of the fundamental theorem of tropical geometry to the spherical
setting (Theorem 5.15). For v ∈ VG/H let Xv denote the spherical embedding of
G/H corresponding to the single ray generated by v.

Theorem 4. The following subsets of the valuation cone VG/H coincide:

(a) The set
⋃
B trop(JB), where the union is over all Borel subgroups of G (one

shows that it is enough to take the union over a finite collection of Borel
subgroups).

(b) The set Trop(Y )={Trop(γ)∈VG/H | γ∈Y (K) formal Puiseux curve on Y}.
(c) The set v ∈ VG/H such that the closure of Y in Xv intersects the divisor at

infinity Dv ⊂ Xv.

We remark that the equivalence of (b) and (c) is proved in [V15]. We show the
equivalence of (a) and (c).

In Section 5.3, we propose a generalization of the usual tropicalization map,
from the analytification of a subvariety in (k∗)n to Rn, to the spherical setting. In

this context it is natural to extend the valuation cone VX and define V̂X to be the
set of all invariant valuations v : k(X) → R ∪ {∞}. Let Y ⊂ X be a subvariety
of an affine spherical G-variety X that intersects the open G-orbit. Extending the
spherical tropicalization map in [V15], we define Trop : Y an → V̂X , where Y an is
the analytification of Y in the sense of Berkovich. We like to regard the Trop map
as an algebraic analogue of the averaging (over a compact group) map. We show
that Trop is continuous (Proposition 5.19). This is a relatively straightforward

extension. We believe that Trop : Y an → V̂X might give new insight into the
notion of tropicalization.

Remark. We expect that the arguments in this paper extend to any valued field,
i.e., when Y ⊂ G/H is defined over a valued field extension K of k.

Finally, we address the notion of an amoeba of a subvariety. When k = C, one
defines a logarithm map on the torus (C∗)n as follows. Fix a real number t > 0.
The logarithm map Logt : (C∗)n → Rn is simply defined by:

Logt(z1, . . . , zn) = (logt |z1|, . . . , logt |zn|).

The amoeba of a subvariety Y ⊂ (C∗)n is defined to be the image of Y under the
logarithm map. A well-known theorem states that as t approaches 0, the amoeba
of Y approaches, in the sense of Kuratowski, to the tropical variety of Y (see
[J16]). The Kuratowski convergence is a natural notion of convergence of sets in a
metric space. It is equivalent to convergence in Hausdorff metric when the ambient
space is compact (see [J16, Sect. 1]). In Section 7 we propose a generalization of
the notions of logarithm map and amoeba for spherical varieties. The spherical
logarithm map is aK-invariant map Lt : (G/H)(C)→ VG/H , whereK is a maximal
compact subgroup in G. To define the spherical logarithm map we need to assume
that the Archimedean Cartan decomposition holds for the spherical homogeneous
space G/H (Conjecture 7.1). In fact, the authors originally conjectured that the
Archimedean Cartan decomposition should hold for any spherical homogeneous
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space. Later, we learned that Victor Batyrev had made the same conjecture some
years ago (some related results can be found in [KKSS15]).

In [E18] a generalized notion of logarithm map (and amoeba) is introduced for
a complex manifold X with respect to a vector of holomorphic differentials. We
expect that a spherical logarithm map in the context of spherical varieties is a
special case of this generalized logarithm map.

In Section 7 we suggest a generalization of the fact that amoeba approaches
the tropical variety to the spherical setting. Let Y ⊂ G/H be a subvariety.
We conjecture that Lt(Y ) converges to Trop(Y ) in the sense of Kuratowski. In
particular, if v ∈ VG/H and γ ∈ (G/H)(K) a formal curve with nonzero radius of
convergence such that Trop(γ) = v then we have:

lim
t→0

Lt(γ(t)) = v.

Remark. In a work in progress we suggest another version of a spherical logarithm
map. It is a function logt Φ : G/H → QG/H ⊗ R = Hom(ΛG/H ,R). The image
of this map parametrizes the K-orbits in G/H but does not always coincide
with the valuation cone VG/H . The construction of the map Φ does not assume
the Archimedean Cartan decomposition for G/H (as above) and instead uses
Akhiezer’s spherical functions introduced in [A88].

An interesting instance of the above relates the singular values of a matrix with
the Smith normal form. It states that invariant factors of a matrix (whose entries
are algebraic functions and regarded as Laurent series in one variable t) are the
limits of logarithms of singular values of the matrix as t approaches 0 (Proposition
7.8). Recall that if A is an n×n complex matrix, the singular value decomposition
states that A can be written as:

A = U1DU2,

where U1, U2 are n × n unitary matrices and D is diagonal with nonnegative
real entries. In fact, the diagonal entries of D are the eigenvalues of the positive
semi-definite matrix

√
AA∗ where A∗ = Āt. The diagonal entries of A are usually

referred to as the singular values of A. Now let A(t) be an n × n matrix whose
entires Aij(t) are Laurent series in t (over C). We recall that the Smith normal
form theorem (over the ring of formal power series which is a PID) states that
A(t) can be written as:

A1(t)τ(t)A2(t),

where A1(t), A2(t) are n × n matrices with power series entries and invertible
over the power series ring, and τ(t) is a diagonal matrix of the form τ(t) =
diag(tv1 , . . . , tvn) for integers v1, . . . , vn. The integers v1, . . . , vn are usually called
the invariant factors of A(t). This can be thought of as a non-Archimedean analo-
gue of the singular value decomposition. We have the following amusing relation
between singular values and invariant factors.

Let A(t) be an n× n matrix whose entries Aij are algebraic functions in t. For
sufficiently small t 6= 0, let d1(t) ≤ · · · ≤ dn(t) denote the singular values of A(t)
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ordered increasingly. Also let v1 ≥ · · · ≥ vn be the invariant factors of A(t) ordered
decreasingly. We then have:

lim
t→0

(logt(d1(t)), . . . , logt(dn(t))) = (v1, . . . , vn).

This statement can be proved using the Hilbert–Courant minimax principle (for
details of the proof see [KM18]). The authors are not aware of such a statement
in the literature relating singular values and invariant factors.

Generalizing the Bezout theorem, the celebrated Bernstein–Kushnirenko theo-
rem gives a formula for the degree of a hypersurface in the torus (k∗)n in terms
of the volume of its Newton polytope. This can be translated into a formula for
the degree in terms of the tropical variety of the hypersurface. More generally,
the intersection numbers of subvarieties in the torus can be computed using the
combinatorics of the corresponding tropical varieties/fans. This is the stable inter-
section of the tropical varieties [FS97], [K03]. The Bernstein–Kushnirenko formula
has been extended to spherical varieties by Brion and Kazarnovskii [B89], [K87].
The formula expresses the degree of a hypersurface (which is the divisor of an
ample G-line bundle) in a spherical variety as the integral of a certain polynomial
over the corresponding moment polytope. We expect that in the same fashion the
spherical tropical geometry developed in this paper can be extended to give an
intersection theory of complete intersections in a spherical variety.

Acknowledgement. We would like to thank Victor Batyrev, Dmitri Timashev,
Askold Khovanskii, Gary Kennedy, Jenia Tevelev, Evan Nash, Johannes Hofscheier,
Frank Sottile and Stéphanie Cupit-Foutou for useful and stimulating discussions
and comments. We also thank Eric Katz for suggesting that we look at the Artin
approximation theorem. Finally, we are grateful to the referees for their many
comments and corrections that greatly improved the paper.

Notation.
Below are some of the notations and conventions used throughout the paper.

• k denotes the base field. It is assumed to be algebraically closed and characte-
ristic 0, although in some places these assumptions are not necessary.
• G is a connected reductive algebraic group over k with a Borel subgroup B

and maximal torus T . The maximal unipotent subgroup of B is denoted by U .
• Λ denotes the weight lattice of T with the semigroup of dominant weights Λ+

corresponding to the choice of B. The cone generated by Λ+ is the positive
Weyl chamber Λ+

R .
• For a dominant weight λ∈Λ+ we denote the irreducible G-module with high-

est weight λ by Vλ. We usually denote a highest weight vector in Vλ by vλ.
• X denotes a spherical G-variety over k. The ring of regular functions of X is

denoted by k[X].
• G/H denotes a spherical homogeneous space.
• For a G-variety X the group of weights of B-eigenfunctions in k(X) is denoted

by ΛX . Also Λ+
X denotes the semigroup of B-weights appearing in the algebra

of regular functions k[X]. One shows that when X is affine, this semigroup
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generates the lattice ΛX . We denote the set of G-invariant valuations on k(X)
by VX .

• For a G-algebra and domain A the semigroup of highest weights appearing
in A is denoted by Λ+

A. Also ΛA denotes the lattice of B-weights appearing
in the quotient field of A. We also use the notation VA to denote the set of
G-invariant valuations of the quotient field of A.

1. Preliminaries on Gröbner bases and tropical geometry

1.1. Gröbner bases

The theory of Gröbner bases deals with ideals in a polynomial ring k[x1, . . . , xn].
Gröbner bases are an excellent tool in computational algebra and algebraic geomet-
ry. One of the many problems that can be answered with an efficient algorithm
using Gröbner bases is the ideal membership problem: Let I ⊂ k[x1, . . . , xn] be
an ideal generated by the given polynomials f1, . . . , fr. Suppose a polynomial f is
given. Determine whether f lies in I or not.

A term order is a total order on the semigroup Zn≥0 which respects addition.
We assume the following condition is satisfied: (Zn≥0,�) is maximum well-ordered
i.e., any increasing chain has a maximum. If the above is satisfied we say that
(Zn≥0,�) has the maximum well-ordered property. This assumption is crucial for
the algorithms concerning Gröbner bases to terminate. An important example of
a term order with the maximum well-ordered property is a reversed lexicographic
order (corresponding to an ordering of the coordinates in Zn≥0).

Let us fix a term order � on Zn≥0. Let f(x) =
∑
α cαx

α be a polynomial in
k[x1, . . . , xn]. (Here we have used the multi-index notation, so that x = (x1, . . . , xn)
and xα = xa11 · · ·xann where α = (a1, . . . , an).) One defines the initial term of f by:

in�(f) = cβx
β ,

where β = min{α | cα 6= 0}, and the minimum is taken with respect to the
term order �. (Many authors define the initial term using maximum instead of
the minimum. Throughout the paper we use minimum convention since it is more
compatible with the definition of a valuation in commutative algebra which we will
abundantly use in the rest of the paper.) Then given an ideal I ⊂ k[x1, . . . , xn]
one defines the initial ideal of I as:

in�(I) = 〈in�(f) | f ∈ I〉.

Clearly in�(I) is a monomial ideal, i.e., it is generated by monomials. The initial
ideal I can be described by the corresponding collection of lattice points:

{α | xα ∈ I} ⊂ Zn≥0.

It is usually referred to as the staircase diagram of I (with respect to �). This
set has a nice combinatorial/geometric description: It is a finite union of shifted
copies of Zn≥0. This is a key observation which is the basis of the theory of Gröbner
bases.

The following is a basic theorem in the Gröbner basis theory (see [S96, Thm.
1.2]):
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Theorem 1.1 (Finiteness of number of initial ideals). Every ideal I in the ring
k[x1, . . . , xn] has only finitely many distinct initial ideals (for all possible term
orders on Zn≥0).

Fix a term order � and let I be an ideal in k[x1, . . . , xn].

Definition 1.2 (Gröbner basis). A Gröbner basis for I (with respect to the term
order �) is a finite set G ⊂ I such that the set in�(G) = {in�(f) | f ∈ G} generates
in�(I) as an ideal.

One shows that if G = {g1, . . . , gr} is a Gröbner basis for I then any element
f ∈ I can be written as a combination f =

∑
i higi with hi ∈ k[x1, . . . , xn] using

a simple efficient algorithm. The celebrated Buchberger algorithm constructs a
Gröbner basis for an ideal I from a given set of ideal generators for I.

Also given a vector w ∈ Rn one can define the initial form of a polynomial with
respect to w. Let f(x) =

∑
α cαx

α ∈ k[x1, . . . , xn] then the initial form of f with
respect to w is:

inw(f) =
∑

w·β=m

cβx
β ,

where m = min{w ·α | cα 6= 0}. In contrast with the initial term with respect to a
term order, the initial form with respect to a vector w may contain several terms,
i.e., is not always a single term. Although it is not difficult to see that it is a single
term when w is in general position.

Given w ∈ Rn and a term order � on Zn≥0 one defines the term order �w on
Zn≥0 as follows: α �w β if w ·α > w · β, or w ·α = w · β and α � β. It is important
to notice that this term order has maximum well-ordered property if w ∈ Rn≤0.
This property is essential when one wants to have a Gröbner basis with respect to
�w.

Similar to the case of initial ideals with respect to a term order, one can prove
that an ideal I has only finitely many distinct initial ideals inw(I), for w ∈ Rn.
In fact, given an ideal I one can group together the vectors w according to their
corresponding initial ideals. Namely, for w1, w2 ∈ Rn we say that w1 ∼ w2 if
inw1

(I) = inw2
(I). The following theorem is well-known [S96, Prop. 2.4]:

Theorem 1.3 (Gröbner fan of an ideal). Let I be a homogeneous ideal. Then the
equivalence classes of ∼ form a fan in Rn.

The above fan is usually called the Gröbner fan of the ideal I. In Section 3.3
we generalize the notion of Gröbner fan to the context of spherical varieties.

1.2. Tropical geometry

From the point of view of algebraic geometry, tropical geometry is concerned with
describing the asymptotic behavior, or behavior at infinity, of subvarieties in the
algebraic torus (k∗)n. A subvariety of (k∗)n is usually called a very affine variety.
The behavior at infinity of a subvariety Y ⊂ (k∗)n is encoded in a piecewise linear
object (a fan) called the tropical variety of Y .

Since intersection theoretic data is stable under deformations, tropical geometry
can often be used to give combinatorial or piecewise linear formula for intersection
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theoretic problems. Many developments and applications of tropical geometry, at
least in algebraic geometry, come from this point of view.

More generally, in tropical geometry instead of varieties in (k∗)n one works
with varieties in (K∗)n where K is an algebraically closed field containing k and
equipped with a valuation with values in Q, which we denote by ord (the notation
ord stands for order of vanishing). We assume that ord is trivial on k and the
residue field of (K, ord) is k. Also we assume that there is an element t ∈ K with
ord(t) = 1 and and a splitting, i.e., a group homomorphism, w 7→ tw from the
value group of ord to K∗.

The main example of such K is the field of formal Puiseux series over k. Let
K = k((t)) be the field of formal Laurent series in one indeterminate t. Then
K = k{{t}} =

⋃
k=1 k((t1/k)) is the field of formal Puiseux series. It is the algebraic

closure of the field of Laurent series K. The field K comes equipped with the order
of vanishing valuation ordt : K \ {0} → Q defined as follows: for a Puiseux series
f(t) =

∑∞
i=m ait

i/k, where am 6= 0, we put ordt(f) = m/k.
The valuation ord gives rise to the tropicalization map Trop from the torus

(K∗)n to Qn:
Trop(f1, . . . , fn) = (ord(f1), . . . , ord(fn)).

Let Y ⊂ (K∗)n be a subvariety.

Definition 1.4 (Tropicalization). The tropicalization Trop(Y ) of Y is simply de-
fined to be the image of Y under the map Trop. We refer to the closure of Trop(Y )
in Rn as the tropical variety of Y .

One shows that the tropical variety of a subvariety always has the structure
of a rational polyhedral complex in Rn (although not in a unique way). When
the variety is defined over k, the tropical variety can be given the structure of a
rational polyhedral fan in Rn (again not in a unique way in general).

The notion of a tropical variety can also be defined in terms of the ideal
of the variety. We start by defining the notion of a tropical hypersurface. Let
K[x±1 , . . . , x

±
n ] denote the algebra of Laurent polynomials with coefficients in K

and let f(x) =
∑
α cαx

α be a Laurent polynomial where as usual x = (x1, . . . , xn)
and xα = xa11 · · ·xann with α = (a1, . . . , an). Let supp(f) = {α | cα 6= 0} ⊂ Zn
denote the set of exponents appearing in f .

Definition 1.5 (Tropical hypersurface). The tropical hypersurface of f is the set
of all w ∈ Rn such that the minimum of α 7→ ord(cα) + (w · α), regarded as a
function on supp(f ), is attained at least twice.

More generally one can define the notion of tropical variety of an ideal I ⊂
K[x±1 , . . . , x

±
n ]. First we need a generalization of the notion of the initial form of a

polynomial from Section 1.1. For a vector w ∈ Rn we define the initial form inw(f)
of a Laurent polynomial f ∈ K[x±1 , . . . , x

±
n ] as follows: Let f(x) =

∑
α cαx

α and
let m = min{ord(cα) + (w ·α) | cα 6= 0}. Then the initial form of f is a polynomial
inw(f) ∈ k[x±1 , . . . , x

±
n ] defined by:

inw(f)(x) =
∑

ord(cβ)+(w·β)=m

t−ord(cβ)cβ x
β ,
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where a denotes the image of an element a ∈ K with ord(a) ≥ 0 in the residue
field k.

The notion of initial ideal inw(I) is also defined analogously, i.e., inw(I) is the
ideal generated by all the inw(f) ∀f ∈ I.

Definition 1.6 (Tropical variety of an ideal). The tropical variety of I is the set
of all w ∈ Rn such that the initial ideal inw(I) does not contain any monomials
(in other words, inw(I) 6= k[x±1 , . . . , x

±
n ]).

The following theorem states that all of the above notions of tropical variety
coincide (see [EKL06] and [MS15, Sect. 3.2]).

Theorem 1.7 (Fundamental theorem of tropical geometry). Let Y ⊂ (K∗)n be a
subvariety with ideal I = I(Y ) ⊂ K[x±1 , . . . , x

±
n ]. Then the following sets coincide:

(a) The intersection of all the tropical hypersurfaces trop(f), for all 0 6= f ∈ I.
(b) The closure, in Rn, of the set trop(I), that is, the set of w ∈ Rn such that

inw(I) contains a monomial.
(c) The closure, in Rn, of the set Trop(Y ), that is, the image of Y under the

tropicalization map.

The definition of tropicalization of a subvariety crucially uses the valuation on
the field K. Hence it is not surprising that tropical geometry is intrinsically related
to the non-Archimedean analytic geometry. We recall that if Y is an affine variety
with coordinate ring A then the Berkovich analytification Y an of Y is the set of
all valuations v : A → R ∪ {∞} equipped with the coarsest topology in which all
the maps v 7→ v(f) are continuous ∀f ∈ A. The Berkovich analytification can be
extended to arbitrary varieties Y by gluing the affine pieces. It plays a central role
in non-Archimedean geometry [G13].

Given an embedding of Y into a torus (k∗)n we can define a natural map
Y an → Trop(Y ). A theorem of Payne states that in fact the analytification Y an

can be realized as the inverse limit of all tropicalizations Trop(Y ) for all possible
embeddings of Y [P09].

Finally there is also an Archimedean version of the notion of tropicalization
and tropical variety. It is based on the familiar logarithm map on the complex
algebraic torus. Let k = C and fix a real number t > 0. Consider the logarithm
map Logt : (C∗)n → Rn defined by:

Logt(z1, . . . , zn) = (logt |z1|, . . . , logt |zn|).

Definition 1.8 (Amoeba of a subvariety). The amoeba of Y denoted by At(Y )
is the image of Y under the logarithm map Logt (clearly it depends on the choice
of the base t).

The following well-known result gives a connection between the amoeba of a
subvariety and its tropicalization.

Theorem 1.9 (Amoeba approaches the tropical variety). As t approaches 0, the
amoeba At(Y ) converges to the tropical variety of Y (in the sense of Kuratowski ).

The book[MS15]is a nice introduction to tropical geometry. The paper [BIMS14]
is an introduction to several different topics in tropical geometry.
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In the rest of the paper we discuss generalizations of all of the above definitions
and results for subvarieties of a torus (k∗)n to subvarieties of a spherical variety
(or a spherical homogeneous space).

2. Preliminaries on reductive group actions and spherical varieties

We start by introducing some notation. As usual let G be a connected reductive
algebraic group over an algebraically closed field k. Let A be a k-algebra and
domain with the field of fractions K. Let us assume that A is a G-algebra, that
is, G acts on A by algebra isomorphisms. We denote by K(B) the multiplicative
group of nonzero B-eigenfunctions in the field K. Also we let ΛA (respectively
Λ+
A) denote the set of weights which appear as a weight of a B-eigenfunction in K

(respectively in the algebra A).
Clearly ΛA is a sublattice of the weight lattice Λ of G. One shows that if A is

a finitely generated algebra then Λ+
A is a finitely generated semigroup. Moreover,

the semigroup Λ+
A generates the lattice ΛA (see, for example, [T11, Props. 5.5 and

5.6]).
We are interested in the case when A = k[X] is the algebra of regular functions

on a G-variety X. Then K = k(X) is the field of rational functions on X. In
this case, we will denote the lattice ΛA and the semigroup Λ+

A by ΛX and Λ+
X

respectively.
A normal G-variety X is called spherical if B has a dense open orbit (note that

since all the Borel subgroups are conjugate this is independent of the choice of B).
A homogeneous space G/H is spherical if it is spherical for the left action of G.

Since B has an open orbit it follows that the map which assigns to a B-
eigenfunction its weight, gives an isomorphism between k(X)(B)/k∗ and ΛX . One
can show that there is a natural choice of a torus TX ∈ G such that the weight
lattice of TX can be identified with the lattice ΛX .

It can be shown that if X is a quasi-affine spherical G-variety then X is strongly
quasi-affine. This means that the algebra of regular functions A = k[X] is finitely
generated and the natural map X → Spec(A) is an open embedding (see for
example [S12, Prop. 2.2.3]). The affine variety Xaff = Spec(A) is usually called the
affine closure of X.

For the rest of the paper we work with a spherical G-variety X. Sometimes we
will assume X is quasi-affine and will work with the algebra of regular functions
A = k[X].

Example 2.1. Here are some examples of spherical varieties. We will use (3)
below as a simple example to illustrate several concepts and results in the paper
(see Section 6.2).

(1) Let G = T = (k∗)n be an algebraic torus. Then a spherical T -variety is the
same a toric T -variety.

(2) Let X = G/P be a partial flag variety. By the Bruhat decomposition it is
a spherical variety for the left action of G. It is an example of a projective
spherical variety.

(3) Consider the natural linear action of G = SL(2,k) on A2 \ {(0, 0)}. It
is easy to see that G acts transitively on A2 \ {(0, 0)}. The stabilizer of
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the point (1, 0) is the maximal unipotent subgroup U of upper triangular
matrices with 1’s on the diagonal. Thus A2 \ {(0, 0)} can be identified with
the homogeneous space G/U . Let B be the subgroup of upper triangular
matrices. The B-orbit of the point (0, 1) is the open subset {(x, y) | y 6= 0}.
Hence A2\{(0, 0)} is a spherical SL(2,k)-variety. It is an example of a quasi-
affine spherical variety. Similarly, one verifies that An \ {0} is a spherical
variety for the natural action of G = SL(n,k) (note that for n > 2, the
SL(n,k)-stabilizer of a point in An \{0} is larger than a maximal unipotent
subgroup).

(4) More generally, let X = G/U where U is a maximal unipotent subgroup
of G. Again by the Bruhat decomposition X is a spherical G-variety for
the left action of G. It is well known that X is a quasi-affine variety. Note
that there is a natural projection from G/U to G/B, where B is the Borel
subgroup containing U .

(5) Let X = G and consider the left-right action of G×G on X = G. Note that
this action is transitive and the stabilizer of the identity e is the subgroup
Gdiag = {(g, g) | g ∈ G}. Thus G can be identified with the homogeneous
space (G×G)/Gdiag. Again from the Bruhat decomposition it follows that
X = G is a (G×G)-spherical variety. The (G×G)-equivariant completions
of G are usually called group compactifications.

2.1. Invariant valuations and spherical roots

As usual let X be a spherical G-variety. In this section we consider the set of
G-invariant valuations on the field of rational functions k(X).

Let v be a valuation on the field k(X) with values in Q. By restriction the
valuation v gives a linear map on k(X)(B) and hence on the lattice ΛX . Let ρ(v) ∈
Hom(ΛX ,Q) denote this linear map. We will denote the dual space Hom(ΛX ,Q)
by by QX .

Definition 2.2 (G-invariant valuation). A valuation v on k(X) is G-invariant if
for any g ∈ G and f ∈ k(X) we have v(f) = v(g · f). We denote the set of all
G-invariant valuations with values in Q by VX .

The following is well-known [LV83]:

Theorem 2.3.

(a) The map ρ : VX → QX is one-to-one, that is, a G-invariant valuation is
determined by its restriction on the B-eigenfunctions.

(b) The image of ρ is a convex polyhedral cone in the vector space QX . We will
identify VX with its image under ρ.

(c) Let CX denote the image of the anti-dominant Weyl chamber in QX . Then
VX contains CX .

We note that the value of a G-invariant valuation v on a B-weight vector fλ
(with weight λ) depends only on v and λ. We denote this value by 〈v, λ〉. This is
in fact the natural pairing between the vector ρ(v) ∈ QX and λ ∈ ΛX .

Remark 2.4. In the case when G = T = (k∗)n and A = k[x±1 , . . . , x
±
n ] is the algebra

of Laurent polynomials, the pairing between invariant valuations and weights is
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the usual dot product. A vector w ∈ Qn gives rise to a weight valuation vw on A.
If f(x) =

∑
α cαx

α then vw(f) is by definition given by:

vw(f) = min{w · α | cα 6= 0}.

The value of vw on a monomial xα (i.e., a weight vector with weight α) is given
by the dot product w · α.

The following theorem is due to Brion [B90] and Knop [K94].

Theorem 2.5. The set VX is a cosimplicial cone in the vector space QX , that is,
it is dual to a simplicial cone in ΛX ⊗Q. More precisely, one can choose a set of
linearly independent vectors β1, . . . , β` ∈ ΛX such that VX is defined by:

VX = {v ∈ QX | 〈v, βi〉 ≤ 0 ∀i = 1, . . . , `}. (1)

Moreover, β1, . . . , β` can be chosen to be simple roots of a root system and VX is
the fundamental domain for the Weyl group of this root system.

Definition 2.6 (Spherical roots). The set of simple roots {β1, . . . , β`} is called
the system of spherical roots of X. The Weyl group of the spherical root system is
called the little Weyl group of X.

Remark 2.7. The above theorem (Theorem 2.5) can be extended to arbitrary G-
varieties. Let X be a (not necessarily spherical) G-variety. Consider the subfield
of B-invariant rational functions k(X)B . Fix a Q-valued valuation v0 on the field
k(X)B . Let V0 denote the collection of G-invariant valuations on k(X) whose
restriction on k(X)B coincides with v0. Similar to the above, we can define a
map ρ0 from V0 to HomZ(Λ,Q) as follows. Fix a G-invariant valuation v1 in V0.
Then for v ∈ V0 define ρ0(v)(λ) = v(fλ) − v1(fλ), where fλ ∈ k(X) denotes a
B-eigenfunction with weight λ. One verifies that this is well defined, i.e., ρ0(v)(λ)
is independent of the choice of the B-eigenfunction fλ. Then the set V0 can be
identified with a cone in the vector space Hom(ΛX ,Q), which is the fundamental
domain for a root system.

Now we assume that X is a quasi-affine spherical variety and consider its ring
of regular functions A = k[X].

As a G-module we can decompose A into:

A = k[X] =
⊕
λ∈Λ+

X

Wλ,

where Wλ is the λ-isotypic component in the G-module A. Since X is spherical
the algebra A is multiplicity-free and hence Wλ

∼= Vλ or {0}.
The following proposition is an important observation about invariant valuati-

ons. We record it here for later reference.

Proposition 2.8. Let v ∈ VX be a G-invariant valuation. For each λ ∈ Λ+
X let

hλ be a B-eigenvector in Wλ (it is unique up to a scalar ).
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(1) For any 0 6= fλ ∈Wλ we have v(fλ) = v(hλ).
(2) Let f ∈ A and write f =

∑
λ fλ as the sum of its isotypic components. We

then have:
v(f) = min{v(hλ) | fλ 6= 0}.

Proof. (1) First we note that the G-module Wλ is spanned by the G-orbit of the
highest weight vector hλ. Thus we can find g1, . . . , gs ∈ G such that fλ is a linear
combination of the gi · hλ. From the G-invariance and non-Archimedean property
of v it then follows that v(fλ) ≥ v(hλ). Reversing the roles of fλ and hλ in the
above argument we see that v(fλ) = v(hλ). (2) By the non-Archimedean property
of v we have v(f) ≥ min{v(fλ) | fλ 6= 0}. Note that by (1) above, the right-hand
side is equal to min{v(hλ) | fλ 6= 0}. To prove the reverse inequality let Mf be
the G-submodule of A generated by f . By an argument similar to that in (1) we
see that for every nonzero f ′ ∈ Mf we have v(f ′) ≥ v(f). But all the isotypic
components fλ of f lie in Mf and hence v(f) ≤ min{v(fλ) | fλ 6= 0}. This finishes
the proof. �

Finally, we discuss the multiplication in the G-algebra A. Let us recall the
definition of the dominant weight order on the weight lattice Λ. It is a partial
order on dominant weights. For two dominant weights λ, µ we say λ ≥ µ if µ− λ
is a linear combination of the simple roots with nonnegative integer coefficients.
(Note that what we have defined is the reverse of the usual dominant weight
order in the literature. We are using this convention to be consistent with the
definition of a valuation.) The dominant weight order has the important property
that: for λ, µ, γ ∈ Λ+, if Vγ appears in Vλ ⊗ Vµ then γ ≥ λ + µ. From the above
statement regarding the irreducible G-modules appearing in the tensor product
one can conclude the following.

Theorem 2.9. Let R be any G-algebra and let us write R =
⊕

λWλ where Wλ is
the λ-isotypic component in R for λ ∈ Λ. Let f ∈Wλ and g ∈Wµ then fg lies in:⊕

γ≥λ+µ

Wγ .

We can also define an analogue of the dominant weight order for the sublattice
ΛX associated to the spherical variety X. Let λ, µ ∈ ΛX . We say that λ ≥X µ if µ−
λ is a linear combination of the spherical roots with nonnegative integer coefficients.
We call >X the spherical weight order. We have the following refinement of Theo-
rem 2.9 in the spherical case [K89, Sect. 5]:

Theorem 2.10. Let A = k[X] =
⊕

λ∈Λ+
X
Wλ be the ring of regular functions on

X. Let f ∈Wλ, g ∈Wµ. Then fg lies in:⊕
γ≥Xλ+µ

Wγ .

Take λ, µ ∈ Λ+
X and let Wν appear in the product WλWµ. A weight of the form

λ+ µ− ν is usually called a tail and the closure of the cone in ΛX ⊗ R generated
by all the tails is called the tail cone of X. Theorem 2.10 implies the following (see
for example [K89, Lem. 5.1]):
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Corollary 2.11. The tail cone is the dual cone to −VX , where as usual VX is the
valuation cone.

2.2. Horospherical contraction

We recall the notion of horospherical contraction of a G-algebra [P87]. Let R =⊕
λWλ be a (rational) G-algebra. Consider the Λ+-filtration F• on R defined as

follows. For λ ∈ Λ+ let
F≥λ =

⊕
µ≥λ

Wµ.

From Theorem 2.9 it follows that F• is a multiplicative filtration. Let

Rhc = grF•(R) =
⊕
λ

F≥λ/F>λ

denote the associated graded algebra of R. The Λ+-graded algebra Rhc is usually
called the horospherical contraction of R. The algebra Rhc is isomorphic to R as
a G-module but it has a different (simpler) multiplication. If R is the coordinate
ring of an affine G-variety X then the horospherical contraction of X is the variety
Spec(Rhc). The horospherical contraction of X is indeed a horospherical G-variety.
We recall that a G-variety is called horospherical if G-stabilizer of any point
contains a maximal unipotent subgroup.

Now let A =
⊕

λ∈Λ+
X
Wλ be the ring of regular functions on a quasi-affine

spherical variety X. Then A is a multiplicity-free G-module. As a G-module
the horospherical contraction Ahc is also

⊕
λWλ, but for any λ, µ ∈ ΛX the

multiplication map is given by a Cartan multiplication Wλ ×Wµ →Wλ+µ.
We also note that, by Theorem 2.10, if instead of the dominant weight order

> we use the weaker order >X on ΛX to define the filtration F•, the resulting
associated graded Ahc = grF•(A) is the same.

Finally we define the notion of a ΛX -homogeneous ideal in the horospherical
contraction Ahc. It is a generalization of the notion of a monomial ideal in a
polynomial ring.

Definition 2.12 (Homogeneous ideal). We call an ideal J ⊂ Ahc a Λ+
X -homoge-

neous ideal if it is generated by a finite number of Λ+
X -homogeneous elements. That

is, we can find a set of generators f1, . . . , fs for J such that each fi lies in some
Wλi , λi ∈ Λ+

X .

The next proposition is straightforward to verify.

Proposition 2.13. An ideal J ⊂ Ahc is a ΛX-homogeneous ideal if and only if the
following holds: Let f ∈ J with isotypic decomposition f =

∑
λ fλ. Then fλ ∈ J

for all λ.

3. Gröbner theory for multiplicity-free G-algebras

3.1. Spherical Gröbner bases

As usual let A = k[X] be the algebra of regular functions on a quasi-affine spherical
G-variety X (alternatively we can take A to be a finitely generated G-algebra
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which is a multiplicity-free rational G-module). In this section we develop basics
of a Gröbner theory for ideals in the G-algebra A. This will be used in the next
sections where we define and explore the notion of a spherical tropical variety for
a subscheme in a spherical homogeneous space.

First we define the notion of initial ideal with respect to a total order. Let �
be a total order on the weight lattice ΛX respecting addition.

Assumption 3.1. We will always make the following assumptions on the total
order �.

(1) The total order � refines the spherical weight order >X (which in general
is a partial order). That is, for two weights λ, µ if we have λ >X µ then
λ � µ.

(2) The semigroup Λ+
X is maximum well-ordered with respect to �, i.e., any

increasing chain has a maximum element.

We mention that in the usual Gröbner theory literature (over a polynomial
ring) it is customary to assume that the total order (term order) is minimum well-
ordered. In this paper we use the minimum convention, i.e., we define the initial
term using minimum, in order to be compatible with the usual definition of a
valuation. That is why we need the maximum well-ordered property, as opposed
to the minimum well-ordered property.

Remark 3.2. The assumption (2) above is needed to guarantee that several algo-
rithms regarding spherical Gröbner bases terminate. For example, this assumption
is essential in Propositions 3.8 and 3.10 below.

Remark 3.3. If A is a positively graded G-algebra and dim(Ai) <∞, for all i, then
A, regarded as a (k∗×G)-algebra admits an ordering � satisfying Assumption 3.1.

The total order � gives rise to a filtration on A. Namely, for each λ ∈ ΛX we
define:

A�λ =
⊕
µ�λ

Wµ.

The space A�λ is defined similarly. We denote the associated graded of this
filtration by gr�(A), that is:

gr�(A) =
⊕
λ∈Λ+

X

A�λ/A�λ.

We have a natural G-module isomorphism between A and gr�(A) defined as
follows. For each λ ∈ Λ+

X and fλ ∈ Wλ ⊂ A send fλ to its image in the quotient
space A�λ/A�λ ⊂ gr�(A). It can be verified that this map extends to give a
G-module isomorphism between A and gr�(A).

Moreover, we have the following.

Proposition 3.4 (Associated graded of a total order). For any total order � on
ΛX as above, the associated graded gr�(A) is naturally isomorphic, as a G-algebra,
to the horospherical contraction Ahc.
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Proof. This follows from the assumption that � refines the spherical weight order
and Theorem 2.10. �

For f ∈ A let us write f =
∑
λ fλ with fλ ∈ Wλ. Let µ = min{λ | fλ 6= 0} be

the smallest dominant weight appearing in f . Here the minimum is with respect
to the total order �. Clearly f ∈ A�µ. We define in�(f) to be the image of f in
A�µ/A�µ ⊂ gr�(A). We call in�(f) the initial term of f with respect to �.

Definition 3.5 (Initial ideal with respect to a total order). Let I ⊂ A be an ide-
al. We denote by in�(I) the ideal in gr�(A) generated by all the initial terms
in�(f) for f ∈ I.

The following lemma will be useful later.

Lemma 3.6. With notation as above, let 0 6= fλ ∈ in�(I)∩Wλ be a homogeneous
element. Then there exists f ∈ I such that in�(f) = fλ.

Proof. Since fλ ∈ in�(I), it can be written as a combination fλ =
∑
i hi in�(fi)

where fi ∈ I and hi ∈ Ahc. This in turn can be written as fλ =
∑
i in�(hifi) where

we regard the hi as homogeneous elements in A. Now since both in�(
∑
i hifi) and∑

i in�(hifi) are homogeneous in Ahc, we can have in�(
∑
i hifi) 6=

∑
i in�(hifi)

only if
∑
i in�(hifi) = 0 which contradicts fλ 6= 0. �

Definition 3.7 (Spherical Gröbner basis). If G ⊂ I is such that {in�(f) | f ∈ G}
generates the initial ideal in�(I) ∈ gr�(A) then we call G a spherical Gröbner basis
for I with respect to the total order �.

As in the usual Gröbner basis theory we have the following.

Proposition 3.8. Let G be a spherical Gröbner basis for I with respect to � then
G generates I as an ideal.

Proof. Let 0 6= h ∈ I and suppose for λ0 ∈ Λ+
X we have h ∈ A�λ0

but h /∈ A�λ0
.

Since in(G) = {in(f) | f ∈ G} generates the initial ideal in�(I) we can find
f1, . . . , fs ∈ G and h1, . . . , hs ∈ A such that in(h) = in(

∑
i hifi). This means that

h −
∑
i hifi lies in the subspace A�λ0 . If h1 = h −

∑
i hifi is nonzero we find

λ1 such that h1 ∈ A�λ1
but h1 /∈ A�λ1

and continue. Thus we get a sequence
of elements λ0 � λ1 � λ2 � · · · . By the maximum well-ordering assumption we
cannot have a strictly increasing chain. This means that at some stage we should
arrive at 0 which implies that h is in the ideal generated by G. �

We can also define an analogue of the reduced Gröbner basis.

Definition 3.9 (Reduced spherical Gröbner basis). With notation as above, let
G be a spherical Gröbner basis for an ideal I ⊂ A. We call G a reduced spherical
Gröbner basis if the following hold: Take any f ∈ G and write f =

∑
λ fλ, fλ ∈Wλ.

Then for any fλ 6= 0, we require that in�(fλ) does not belong to the ideal generated
by {in�(g) | g ∈ G \ {f}}.

Using a similar argument as in the usual Gröbner theory one shows that any
ideal has a reduced spherical Gröbner basis.

We also have a version of the division algorithm. The proof is analogous to the
usual division algorithm in Gröbner theory.
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Proposition 3.10 (Spherical division algorithm). Let I ⊂ A be an ideal. Then
any f ∈ A can be written as:

f = h+
∑
λ

fλ,

where h ∈ I and for each λ, 0 6= fλ ∈ Wλ does not lie in in�(I). Moreover∑
λ fλ = 0 if and only if f ∈ I.

Proof. Proceed as in the proof of Proposition 3.8. �

The next lemma is an analogue of the well-known fact in Gröbner theory that
standard monomials give a vector space basis for the algebra A/I. It is a corollary
of the division algorithm (Proposition 3.10).

Lemma 3.11. Let us identify A and Ahc as G-modules. For each λ ∈ Λ+
A pick

a vector space basis Bλ for Wλ such that Bλ ∩ in�(I) is a vector space basis for
Wλ ∩ in�(I). Let B = ∪λ∈Λ+

A
Bλ.

(1) The set BI = {b+ I | b ∈ B, b /∈ in�(I)} is a vector space basis for A/I.
(2) Let �′ be another total order on ΛA. Then the initial ideal in�(I) cannot

be strictly contained in in�′(I).

Proof. (1) The linear independence of BI follows from the construction. That BI
spans A/I is a consequence of Proposition 3.10. (2) Suppose in�(I) ⊂ in�′(I). We
can pick the basis B as above such that B∩ in�(I) and B∩ in�′(I) are vector space
bases for A∩ in�(I) and A∩ in�′(I) respectively. By the part (1) we know that the
choice of basis B gives vector space isomorphisms between A/I and Ahc/in�(I),
as well as A/I and Ahc/in�′(I). This implies that in�(I) = in�′(I) as required.
�

Remark 3.12. The spherical division algorithm is more complicated to implement
than the usual division algorithm in a polynomial ring. This is because, in the
general spherical setting we have two new ingredients involving the multiplication
in our algebra A:

• For λ, µ ∈ Λ+
X , the multiplication sends Wλ ×Wµ to Wλ+µ ⊕

⊕
γ≥Xλ+µWγ ,

as opposed to the case of polynomials where the product of two monomials
is just another monomial (see Theorem 2.10).
• Even computing the leading component of the multiplication i.e., the map
Wλ×Wµ →Wλ+µ obtained by projection onto the Wλ+µ component, involves
some more computation (this is in fact a Cartan multiplication and describes
the multiplication in the horospherical contraction Ahc).

Similarly, the Buchberger algorithm is more involved. Nevertheless the authors
believe that one can introduce a “nice” spherical Gröbner basis which would make
spherical division algorithm and the Buchberger algorithm more effective (using
canonical bases from representation theory).

Remark 3.13. As one of the referees pointed out, there is a Göbner basis theory
for the setting of non-commutative filtered algebras with associated graded a
polynomial algebra, e.g., an algebra with a PBW basis (see for example [M94]).
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The approach in the present paper shares similar ideas with non-commutative
Gröbner basis theory in the sense that passage to the Gröbner basis is a passage
to the associated graded objects.

To illustrate the concepts we give a baby example below.

Example 3.14. As in Example 2.1(3) let G = SL(2,k) act on X = A2 in
the natural way. The algebra of regular functions A = k[X] is just the ring of
polynomials k[x, y]. The weight lattice ΛX is Z with the semigroup Λ+

X = Z≥0.
We note that in this case the horospherical contraction Ahc is just A itself. As the
total order � we take the reverse of the natural ordering on Z. Then (Z≥0,�) is
maximum well ordered. The associated graded gr�(A) is then naturally isomorphic
to A. We have the isotypic decomposition:

A =
∞⊕
d=0

Ad,

where Ad = k[x, y]d is the vector space of homogeneous polynomials of degree d. If
f ∈ k[x, y] is a polynomial of degree d then in�(f) is just fd, the sum of monomials
in f of degree d. Now let us explain how to get a spherical Gröbner basis for an
ideal in k[x, y]. Let I ⊂ k[x, y] be an ideal. Let > denote some lexicographic order
on x and y, e.g., x > y. Also let w = (1, 1) with >w the corresponding total order
on Z2

≥0. That is, (a1, a2) >w (b1, b2) if a1 + a2 > b1 + b2, or a1 + a2 = b1 + b2 and
(a1, a2) > (b1, b2). One verifies that a Gröbner basis (in the usual sense) for I with
respect to >w is also a spherical Gröbner basis for I with respect to �.

Similarly to the usual Gröbner theory, we can prove the key statement that an
ideal has only finitely many initial ideals.

Theorem 3.15. Every ideal I has a finite number of initial ideals, where for each
total order � we consider the initial ideal in�(I) as an ideal in the algebra Ahc via
the natural isomorphism gr�(A) ∼= Ahc.

Proof. We adapt the proof in [MR88, Lem. 2.6] as well as [S96, Thm. 1.2] to our
situation. By contradiction suppose the set Σ0 of all the distinct initial ideals of I
is infinite. Choose a nonzero f1 ∈ I and write f1 =

∑
λ f1,λ with 0 6= f1,λ ∈ Wλ.

Among the f1,λ we can then find 0 6= f1,λ1 such that the set Σ1 = {in�(I) | f1,λ1 ∈
in�(I)} is infinite. Consider the ideal J1 = 〈f1,λ1

〉 ⊂ Ahc. There are infinitely
many distinct ideals in Σ1 so one of them strictly contains J1. Let � be such that
in�(I) strictly contains J1. Since both of these ideals are ΛA-homogeneous there
is a homogeneous element fµ ∈ in�(I) \ J1. By Lemma 3.6 we can find f2 ∈ I
with in�(f2) = fµ. Let us write f2 =

∑
λ f2,λ. By repeatedly eliminating the

components that lie in J1 (as in the proof of the spherical division algorithm),
we can assume that none of the 0 6= f2,λ lies in J1. Thus we can find a nonzero
f2 =

∑
λ f2,λ ∈ I with the property that none of the 0 6= f2,λ lies in J1. Then among

the f2,λ there exists f2,λ2
such that the set Σ2 = {in�(I) ∈ Σ1 | f2,λ2

∈ in�(I)} is
infinite. Next let J2 = 〈f1,λ1 , f2,λ2〉 ⊂ Ahc. Again there exists an initial ideal in Σ2

which strictly contains J2. Repeating the above argument we see that there exists
0 6= f3 ∈ I such that none of its components lies in J2, and so on. Continuing, we
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arrive at an increasing chain of ideals J1  J2  · · · in Ahc. This contradicts that
Ahc is Noetherian and the theorem is proved. �

Definition 3.16 (Universal spherical Gröbner basis). Let I be an ideal in A. We
say that G ⊂ A is a universal spherical Gröbner basis for I if for any total order
� the set {in�(f) | f ∈ G} generates the initial ideal in�(I) ∈ gr�(A).

Corollary 3.17 (Existence of a finite universal spherical Gröbner basis). There
exists a finite universal spherical Gröbner basis.

Proof. The corollary follows immediately from the finiteness of the number of
initial ideals (Theorem 3.15). �

3.2. Partial horospherical contractions associated to faces of valuation
cone

As usual X is a quasi-affine spherical G-variety with A = k[X]. Let v ∈ VX be a
G-invariant valuation. The valuation v gives rise to a filtration on the algebra A
defined as follows. For every a ∈ Q put:

Av≥a = {f ∈ A | v(f) ≥ a}.

We note that:
Av≥a =

⊕
〈v,γ〉≥a

Wγ . (2)

The subspace Av>a is defined similarly. The associated graded algebra of v is
defined to be:

grv(A) =
⊕
a∈Q

Av≥a/Av>a.

Since v is G-invariant, each subspace in the filtration is G-stable and the algebra
grv(A) is naturally a G-algebra. For each f with v(f) = a let inv(f) denote the
image of f in the quotient space Av≥a/Av>a.

Below we show that the graded algebra grv(A) only depends on the face of the
valuation cone on which v lies.

As before let β1, . . . , β` ∈ ΛX denote the simple spherical roots for X. Since the
valuation cone VX is cosimplicial, there is a one-to-one correspondence between
the subsets of the simple roots and the faces of VX . A subset S ⊂ {β1, . . . , β`}
determines a face σ by:

σ = {v ∈ VX | 〈v, β〉 = 0 ∀β ∈ S}. (3)

Definition 3.18. To a face σ of the valuation cone VX we can also associate a
partial order >σ which is weaker than the spherical weight order >X . For λ, µ ∈ ΛX
we say that λ >σ µ if µ − λ =

∑
i ciβi where the ci are nonnegative integers and

at least for one βi /∈ S we have ci 6= 0.

The partial order >σ in turn gives rise to a partial horospherical contraction of
A. More precisely, let Fσ,• be the Λ+

X -filtration on A defined as follows. For λ ∈ Λ+
X

put:

Fσ,λ =
⊕
γ≥σλ

Wγ .
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We denote the associated graded of the filtration Fσ,• by grσ(A) or Aσ. Clearly,
if the face σ is the whole valuation cone VX then the associated graded grσ(A) is
just the horospherical degeneration Ahc.

Proposition 3.19. Let v ∈ VX be a G-invariant valuation. Suppose v lies in the
relative interior of a face σ of V. Then the graded algebra grv(A) is naturally
isomorphic to the partial horospherical contraction grσ(A).

Remark 3.20. There is a geometric interpretation of Spec(Aσ) as follows. Let v
be in the relative interior of σ and let Xv be the elementary spherical embedding
corresponding to the fan consisting of the single ray generated by v. Let Dv denote
the divisor at infinity in Xv. It is the unique closed G-orbit in Xv. Then the
deformation Spec(Aσ) contains the normal bundle in Xv of the divisor Dv as an
open subset. Following V. Batyrev we refer to the stabilizer of a general point
in this normal bundle as a satellite subgroup associated to the face σ [BM18].
Moreover, one can glue together the varieties Spec(Aσ) in a family. Let TX denote
the tail cone of X (which is the dual cone to −VX). Then one can define a family
π : X → Spec(k[TX ∩ ΛX ]) such that the fibers are the partial horospherical
contractions Spec(Aσ) (see [AB05]).

Remark 3.21. The material in this section (namely Definition 3.18 and Proposition
3.19) can be found in other places (see for example [AC-F17]).

Proof of Proposition 3.19. For λ, µ ∈ Λ+
X let mX denote the multiplication map

mX : Wλ ⊗Wµ →
⊕

λ+µ−η tail

Wη. (4)

Recall that η is a tail if η ≥X λ+ µ. The map mX then gives a map grσmX :

grσmX : Wλ ⊗Wµ →
( ⊕
λ+µ−η tail

Wη

)/( ⊕
η′>σλ+µ

Wη′

)
, (5)

which defines the multiplication in the algebra Aσ. Similarly, for a valuation v ∈ VX
we get a map grvmX :

grvmX : Wλ ⊗Wµ →
( ⊕
λ+µ−η tail

Wη

)/( ⊕
〈v,η′〉>〈v,λ+µ〉

Wη′

)
, (6)

which defines the multiplication in the algebra grv(A). We would like to show
that these two multiplications coincide. As usual let {β1, . . . , β`} denote the set of
spherical roots. Let S ⊂ {β1, . . . , β`} be the subset of spherical roots determining
the face σ as in (3). Then the relative interior σ◦ of σ is defined by the inequalities:

σ◦ = {v ∈ VX | 〈v, β〉 = 0, ∀β ∈ S and 〈v, β′〉 > 0 ∀β′ /∈ S}.
Let η be a weight appearing in the right-hand side of (4) which means λ + µ− η
is a tail. Also take a valuation v in the relative interior σ◦. Since λ + µ − η is a
tail we can write λ+µ− η =

∑
i ciβi where ci ≥ 0 for all i. Then η appears in the

denominator in the righ-thand side of (6) if and only if:〈
v,
∑
i ciβi

〉
=
〈
v,
∑
βi /∈S ciβi

〉
=
∑
βi /∈S ci〈v, βi〉 > 0.

Since v is in the relative interior of σ this is the case if and only if there is βi /∈ S
such that ci > 0. That is, if and only if η >σ λ+ µ. This finishes the proof. �
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3.3. Spherical Gröbner fan

In this section we introduce a generalization of the notion of Gröbner fan of an
ideal in a polynomial ring. As in the usual Gröbner theory it is more natural to
work with homogeneous ideals. Thus, in this section we assume that A is a Z≥0-
graded G-algebra and domain and the action of G respects the grading. Moreover,
each graded piece Ai is a multiplicity free G-module. Thus A is a multiplicity
free (k∗ × G)-algebra. We let VA denote the (k∗ × G)-invariant valuation cone
of A. Similarly, the weight lattice ΛA and the weight semigroup Λ+

A are for the
(k∗ ×G)-action on A.

We begin with introducing the notion of an initial ideal with respect to an
invariant valuation v. In fact, for the next couple of definitions we do not need to
assume that A is graded and the definitions make sense in the non-graded case as
well.

Definition 3.22 (Initial ideal with respect to a valuation). Let I ⊂ A be an ide-
al. We denote by inv(I) the ideal in grv(A) generated by all the inv(f) where f ∈ I.
By Proposition 3.19 we may consider inv(I) as an ideal in Aσ where σ is the unique
face of the valuation cone VA such that v lies in the relative interior of σ.

Let v ∈ VA be an invariant valuation. Also let � be a total order on the weight
lattice ΛA as in Section 3.1. We define the total order �v as follows: λ �v µ if
either 〈v, λ〉 > 〈v, µ〉, or 〈v, λ〉 = 〈v, µ〉 and λ � µ.

We note that if v attains positive values on A then the total order �v is not
maximum well ordered. By Proposition 2.8 if v has a positive value on A then we
can find λ ∈ Λ+

A and fλ ∈ Wλ such that v(fλ) > 0, or in other words 〈v, λ〉 > 0.
By the definition of �v we then have λ ≺v 2λ ≺v 3λ ≺v. This shows that Λ+

A is
not maximum well ordered with respect to �v. One can verify the following.

Proposition 3.23. With notation as above, the total order �v refines the spheri-
cal weight order. Moreover, if v is nonpositive on A then Λ+

A is maximum well
ordered with respect to �. Thus �v satisfies the properties in Assumption 3.1.

Thus whenever we deal with a total order of the form �v we would like v to be
nonpositive on A.

Definition 3.24. Let I ⊂ A be an ideal. Given two invariant valuations v, w ∈ VA,
we say v ∼ w if:

(i) v and w lie in the relative interior of the same face σ of the valuation cone
VA.

(ii) inv(I) = inw(I) regarded as subsets of Aσ (under the isomorphisms grv(A)∼=
Aσ ∼= grw(A) coming from Proposition 3.19).

The following lemma will be used below. We skip the proof. It is straightforward
from the definitions.

Lemma 3.25. Let v ∈ VA be a G-invariant valuation and � a total order on ΛA
as above. For any ideal I we have:

in�v (I) = in�(inv(I)),

where both sides are considered as ideals in the horospherical contraction Ahc of A.
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Remark 3.26. In general, the (closures of) equivalence classes of the equivalence
relation ∼ on VA may not be convex. But as we will see below, this is the case
when the ideal I is homogeneous with respect to the Z≥0-grading of A.

From here on the assumption that A is graded becomes important. Let deg :
A \ {0} → Z≥0 be the degree function of the grading of A and let v0 = − deg.
That is, if we write f =

∑
i fi as sum of its homogeneous parts, then v0(f) =

−max{i | fi 6= 0}. Also let v′0(f) = min{i | fi 6= 0}. We note that v0 and v′0 are
(k∗×G)-invariant valuations on A and, regarded as elements of the valuation cone
VA, we have v0 = −v′0. Thus the valuation cone contains the whole line through
v0 which means it is not a pointed cone. The following lemma is important.

Lemma 3.27. Let v ∈ VA be an invariant valuation. We have the following.

(i) For sufficiently large k the valuation v′ = v+kv0 is a nonpositive invariant
valuation on A.

(ii) The valuation v′ lies on the relative interior of the same face as v and hence
grv′(A) is naturally isomorphic to grv(A).

(iii) Let I ⊂ A be a homogeneous ideal. Then under the isomorphism in (b) we
have inv′(I) ∼= inv(I).

Proof. As explained above, the valuation v0 = − deg lies on a line in the cone VA.
Thus we see that v and v′ lie on the relative interior of the same face of the cone.
Let h1, . . . , h` be (B × k∗)-eigenvectors in A whose weights generate the lattice
ΛA. By Proposition 2.8 every invariant valuation is uniquely determined by its
values on the hi. Now we can choose k sufficiently large so that v′(hi) ≤ 0 for all
i = 1, . . . , `. It follows that v′ is nonpositive on the whole A. It remains to show
that I has the same initial ideals with respect to v and v′. To do this we notice
that since I is a Z-homogeneous ideal we can find a universal spherical Gröbner
basis G = {f1, . . . , fs} for I consisting of Z-homogeneous elements, i.e., fi ∈ Adi
for some di ≥ 0. It follows from the construction of v′ that inv(fi) = inv′(fi),
for all i. On the other hand, since G is a spherical Gröbner basis we know that
inv(G) and inv′(G) generate the initial ideals inv(I) and inv′(I) respectively. Thus
inv(I) = inv′(I) as required. �

We can now define the notion of spherical Gröbner fan of a homogeneous ideal
I ⊂ A.

Definition 3.28 (Spherical Gröbner fan). We call the set of closures of equiva-
lence classes of ∼ in VA, the spherical Gröbner fan of I and denote it by GF(I).

Below we will show that GF(I) is indeed a fan.

Theorem 3.29. The equivalence classes of ∼ are relatively open rational polyhed-
ral convex cones.

Proof. The proof follows the usual Gröbner theory proof from [S96, Prop. 2.3]. Let
σ be a face of the cone VA and let C[v] denote the equivalence class of a valuation
v ∈ VA which lies in the relative interior of σ. Fix a total order �. By Lemma 3.27
we can assume that v is nonpositive on A and hence the associated total order
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�v has the good properties in Assumption 3.1. Take a reduced spherical Gröbner
basis G for I with respect to �v (Definition 3.9). We will prove the following:

C[v] = {v′ ∈ σ | inv(f) = inv′(f); ∀f ∈ G}. (7)

We note that the right-hand side of (7) defines a relatively open polyhedral convex
cone and hence it proves the claim of the theorem. First we prove the “⊃” part.
Let v′ lie in the right-hand side of (7). We observe that the image of G in grv(A)
is a spherical Gröbner basis (with respect to �v) for the ideal inv(I). Thus

inv(I) = 〈inv(f) | f ∈ G〉 = 〈inv′(f) | f ∈ G〉 ⊂ inv′(I).

It follows that in�v (I) ⊂ in�v′ (I) as ideals in Ahc. By Lemma 3.11(2), this
containment cannot be strict and hence in�v (I) = in�v′ (I). From Proposition
3.8 applied to the ideals inv(I) ⊂ grv(A) = Aσ and inv′(I) ⊂ grv′(A) = Aσ,
we then conclude that inv(I) = inv′(I). Next we prove the inclusion “⊂”. Take
v′ ∈ C[v]. Then inv(I) = inv′(I). We would like to show that for any f ∈ G
we have inv(f) = inv′(f). As said above the image inv(G) of G in grv(A) is a
spherical Gröbner basis (with respect to �v) for inv(I) = inv′(I). Take f ∈ G.
Thus inv′(f) ∈ inv(I) can be reduced to 0 using inv(G). Since G was a reduced
spherical Gröbner basis, the isotypic component of f that appears in inv′(f) is
in�v (f). Let us write inv(f) = in�v (f) + h and inv′(f) = in�v (f) + h′ where none
of the isotypic components of h and h′ lie in in�v (I). On the other hand, after the
first step of reducing inv(f) to 0 using inv(G), we obtain h′−h which lies in inv(I).
This shows that h′− h must be equal to 0 and hence inv(f) = inv′(f) as required.
�

Finally we show that the spherical Gröbner fan is indeed a fan. We first need
the following analogue of the notion of a Newton polytope.

Definition 3.30 (Generalized Newton polytope). Let f ∈A and write f =
∑
λ fλ

as a sum of its isotypic components. We define the convex polytope ∆(f) ⊂ ΛA⊗Q
to be the convex hull of the support of f , that is:

∆(f) = conv{λ | fλ 6= 0}.

Remark 3.31. The polytope ∆(f) appears in [KK11] where it is used to prove a
version of the Bernstein–Kushnirenko theorem from toric geometry for horosphe-
rical varieties.

Theorem 3.32. The spherical Gröbner fan is a fan.

Proof. The proof is along the same line as the usual Gröbner theory proof from
[S96, Prop. 2.4]. Take a valuation v ∈ VA and let C[v] denote the closure of the open
cone C[v] in VA. Let �′ be a total order and let �′v be the total order associated
to �′ and v. To simplify the notation we denote �′v by �. Note that by definition
�v coincides with �. Let G be a reduced spherical Gröbner basis for the ideal I
with respect to �. Consider the polytope

∆ =
∑
f∈G

∆(f).
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Any valuation v ∈ VX defines a face facev(∆) on which the linear function 〈v, ·〉
attains its minimum. We note that from the equation (7) it follows that the closure
C[v] is the dual cone to the face facev(∆) of the polytope ∆ corresponding to v.
Next take v′ ∈ C[v]. One shows that for any f ∈ A, in�v′ (f) = in�(inv′(f)) =
in�(f). Thus, G is a reduced spherical Gröbner basis for the total order �v′ as well,
and hence we see that C[v] and C[v′] are the dual cones to the faces of the same
polytope ∆ corresponding to the valuations v and v′ respectively. But facev(∆)
is a face of facev′(∆) and consequently the closed convex cone C[v′] is a face of
the closed convex cone C[v]. Using this, one can show that the collection of the
closures C[v] of the equivalence classes of ∼ satisfies the defining axioms of a fan.
�

Recall that we call an ideal J ⊂ Ahc a ΛA-homogeneous ideal if it is generated
by a finite number of ΛA-homogeneous elements (Definition 2.12). The next propo-
sition is a generalization of the fact that for an ideal in a polynomial ring the initial
ideal corresponding to a generic choice of a weight is monomial. It is a corollary of
the existence of a universal spherical Gröbner basis. The proof is verbatim to the
case of a polynomial ring but we include it here for the sake of completeness.

Proposition 3.33. Let I ⊂ A be an ideal and let σ be a cone of maximum
dimension in the Gröbner fan GF(I) (i.e., σ has the same dimension as the valua-
tion cone VA). Then for any valuation v in the interior of σ the initial ideal inv(I)
is a ΛA-homogeneous ideal in grv(A) ∼= Ahc, the horospherical contraction of A.

Proof. Fix a universal spherical Gröbner basis G = {f1, . . . , fs} for I. Also let � be
an ordering on ΛA. Let v be in the interior of σ. Take a vector w in the linear span
of VA and consider v′ = v + εw where ε > 0. If ε is sufficiently small then v′ also
lies in the interior of σ and hence inv′(I) = inv(I). Thus it suffices to prove that
inv′(I) is ΛA-homogeneous. We show that this is the case if w is generic enough.
In fact one verifies that if w is generic then all the initial elements inv′(fi) are ΛA-
homogeneous. Now since G is universal it is a spherical Gröbner basis for I with
respect to �v′ . It follows that inv′(G) is a spherical Gröbner basis for inv′(I) with
respect to �v′ as well. Thus inv′(I) is generated by the ΛA-homogeneous elements
inv′(fi) and hence is a ΛA-homogeneous ideal as desired. �

4. Spherical tropical varieties via ideals

In this section we present our construction of spherical tropical varieties using
initial ideals with respect to valuations (Definitions 4.4 and 4.18). It turns out that
in the context of spherical varieties, it is more natural to consider subvarieties in
the open Borel orbit (in fact G/H may not be affine or even quasi-affine while
the open Borel orbit is always affine). In Section 5, following Vogiannou, we define
the spherical tropical variety using the tropicalization map (Definition 5.10). The
content of our fundamental theorem (Theorem 5.15) is that these two constructions
coincide.

4.1. Spherical tropical variety of a subscheme in the open B-orbit

In this section we define the notion of a spherical tropical variety for a subscheme
in the open Borel orbit.
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Let v ∈ VG/H be a G-invariant valuation. Recall that Xv denotes the equivariant
embedding of G/H corresponding to the ray generated by v. It consists of two G-
orbits: the open G-orbit G/H and the G-stable prime divisor Dv. Fix a Borel
subgroup B and let XB be the open B-orbit in G/H. One knows that XB is an
affine variety. We denote the set of B-stable prime divisors in G/H by D(G/H).
One observes that:

XB = G/H \
⋃

D∈D(G/H)

D.

We also denote the open B-orbit in the G-orbit Dv by D′v.

Similarly let us denote the set of B-stable prime divisors in Xv by D(Xv). One
defines a subvariety Xv,B ⊂ Xv by:

Xv,B = Xv \
⋃

D∈D(Xv)\{Dv}

D.

One shows the following (see [K89, Thm. 2.1]):

Theorem 4.1. Xv,B is a B-stable affine subvariety of Xv and Xv,B ∩Dv is the
B-orbit D′v. Moreover the coordinate ring of Xv,B can be described as:

k[Xv,B ] = {f ∈ k[XB ] | v(f) ≥ 0}.

Remark 4.2. More generally, for each closed G-orbit in a spherical variety one can
define a B-stable affine neighborhood. See [K89, Sect. 2] for more details (in [K89]
this affine neighborhood is denoted by X0).

Now we define analogues of the notions from Sections 3.1, 3.2 and 4.5 replacing
the algebra A by k[XB ]. Let grv(k[XB ]) denote the associated graded of the
filtration on k[XB ] defined by the valuation v. More precisely, for every a ∈ Q
we put k[XB ]v≥a = {f ∈ k[XB ] | v(f) ≥ a}. Similarly, one defines the subspace
k[XB ]v>a. Then

grv(k[XB ]) =
⊕
a∈Q

k[XB ]v≥a/k[XB ]v>a.

We note that each subspace in the filtration is B-stable and the algebra grv(k[XB ])
is naturally a B-algebra.

Remark 4.3. Using Proposition 3.19, in Section 4.2 we will see that if v1, v2 lie
in the relative interior of the same face σ of the valuation cone VG/H then the
corresponding associated graded algebras grv1(k[XB ]) and grv2(k[XB ]) are natu-
rally isomorphic.

For each f with v(f) = a let inv(f) denote the image of f in the quotient space
k[XB ]v≥a/k[XB ]v>a. Finally for an ideal J ⊂ k[XB ] we let inv(J) be the ideal in
grv(k[XB ]) generated by all the inv(f), f ∈ J . We can now define the notion of
spherical tropical variety of an ideal in the coordinate ring k[XB ].
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Definition 4.4. (Spherical tropical variety of an ideal in the coordinate ring of
XB). Let J ⊂ k[XB ] be an ideal. We define tropB(J) to be:

tropB(J) = {v ∈ VG/H | inv(J) 6= grv(k[XB ])}.

In other words, tropB(J) consists of v ∈ VG/H such that inv(J) does not contain a
unit element. We call tropB(J) the spherical tropical variety of J . When J = 〈h〉
is a principal ideal, we write tropB(h) in place of tropB(J) and call it the spherical
tropical hypersurface of h.

Remark 4.5. Let gr+
v k[XB ] =

⊕
a∈Q≥0

k[XB ]v≥a/k[XB ]v>a and let in+
v (J) be the

ideal generated in gr+
v (k[XB ]) by the inv(f), f ∈ J . One observes that tropB(J),

as in Definition 4.4, coincides with {v ∈ VG/H | in+
v (J) 6= gr+

v (k[XB ])}. This is

because 1 ∈ in+
v (J) ⊂ gr+

v k[XB ] if and only if there exists f ∈ J with v(f) = 0
and v(f − 1) > 0 which in turn is equivalent to 1 ∈ inv(J) ⊂ grvk[XB ].

In Section 6.3 we consider two examples of tropical hypersurfaces in an open
Borel orbit in GL(2,k).

Remark 4.6. In Section 4.2 we use spherical Gröbner theory to show that the
spherical tropical variety tropB(J) is indeed the support of a rational polyhedral
fan (Theorem 4.11).

The following result justifies the above definition.

Theorem 4.7. Let Z ⊂ XB be the subscheme of the open B-orbit defined by an
ideal J ⊂ k[XB ]. Let v ∈ VG/H be a valuation. Then v lies in tropB(J) if and only

if the closure Z of Z in Xv,B intersects the divisor at infinity D′v.

Proof. By Remark 4.5 we can use

in+
v (J) ⊂ gr+

v k[XB ] =
⊕
a∈Q≥0

k[XB ]v≥a/k[XB ]v>a

to define tropB(J). Consider the Rees algebra:

Rv(k[XB ]) =
⊕
a≥0

k[XB ]v≥a,

where the direct sum is over all a ∈ Q≥0 which lie in the value semigroup v(k[XB ]\
{0}). In light of Theorem 4.1, we see that Proj(Rv(k[XB ])) is the blowup of the
variety Xv,B along the prime divisor D′v. Also the exceptional divisor in the blowup
is Proj(gr+

v (k[XB ]). But the blowup of a variety along a prime Cartier divisor
coincides with the variety itself, so we conclude that Xv,B = Proj(Rv(k[XB ])) and
D′v = Proj(gr+

v (k[XB ]).
The filtration associated to nonnegative values of v on k[XB ] induces a push-

forward filtration F• on the quotient algebra k[XB ]/J . For any a ∈ Q≥0 we simply
define the subspace F≥a to be the image of k[XB ]v≥a in k[XB ]/J under the natural
homomorphism k[XB ] → k[XB ]/J . The subspace F>a is defined similarly. The
next lemma relates this pushforward filtration with the notion of initial ideal. Its
proof is straightforward (see also [KM19, Lem. 4.4]).
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Lemma 4.8 (Initial ideal in terms of pushforward filtration). There is a natural
isomorphism between the associated graded grF•(k[XB ]/J) of the pushforward filt-
ration F• and the quotient algebra gr+

v (k[XB ])/in+
v (J).

Next we notice that the scheme-theoretic intersection Z∩D′v can be constructed
as Proj(grF•(k[XB ]/J)) which by Lemma 4.8 is equal to Proj(gr+

v (k[XB ])/in+
v (J)).

Since Proj of a positively graded algebra is nonempty if and only if the algebra is
nonzero, it follows that Z ∩ D′v 6= ∅ if and only if in+

v (J) 6= k[XB ]. This finishes
the proof. �

4.2. Fan structure

In this section we use the existence of the spherical Gröbner fan (Theorem 3.32)
to show that the spherical tropical variety of an ideal in the open Borel orbit is
the support of a rational polyhedral fan. This is a generalization of the situation
in the classical torus case (see for example [MS15, Chap. 2]).

We begin by setting the stage. We follow the notation from the previous sections.
Let X be a projective spherical embedding of a spherical homogeneous space G/H.
Let L be a very ample G-line bundle on X. Without loss of generality we assume
there is a B-eigensection s ∈ H0(X,L) that vanishes on all the B-stable divisors
in X.

Let A =
⊕

i≥0Ai, Ai = H0(X,L⊗i), be the algebra of sections of L. It is a
finitely generated multiplicity-free (k∗ × G)-algebra and dim(Ai) < ∞, for all i.
We will apply the spherical Gröbner theory to this algebra (by Remark 3.3 this
algebra admits an ordering satisfying Assumption 3.1). We denote the semigroup
of highest weights of the algebra A by Λ̃+

A ⊂ Z≥0 × Λ. The lattice generated by

Λ̃+
A is Λ̃A. We also denote the cone of (k∗ × G)-invariant valuations on A by ṼA

(we use the tilde notation to distinguish between the notions corresponding to the
(k∗ ×G)-action from those of the G-action).

Given the section s, define an algebra homomorphism π : A→ k[XB ] as follows.
For any i ≥ 0 and fi ∈ Ai let π(fi) = fi/s

i. Since s is a B-eigensection it does not
have any zeros in XB and hence the image of π lies in k[XB ]. Moreover, because
L is very ample, we have an embedding XB ⊂ G/H ⊂ X ↪→ P(H0(X,L)∗). Since
s vanishes on all the B-stable divisors, XB embeds as a closed subvariety in the
affine space P(H0(X,L)∗) \ {s = 0}. It thus follows that π is surjective.

Next, we define an embedding φ from the valuation cone VG/H into the valuation

cone ṼA. Take v ∈ VG/H and define the valuation ṽ = φ(v) on A as follows. For
f =

∑
i fi, fi ∈ Ai, put:

ṽ(f) = min{v(fi/s
i) | fi 6= 0}. (8)

Proposition 4.9.

(1) The function ṽ : A \ {0} → Q is a (k∗ ×G)-invariant valuation.
(2) The map φ : v 7→ ṽ is a one-to-one linear map from the cone VG/H to the

cone ṼA and the image φ(VG/H) is the intersection of ṼA with a hyperplane.

Proof. (1) One checks that (8) defines a valuation. Take f =
∑
i fi ∈ A. By the

definition of the action of k∗ on A, for t ∈ k∗ we have t · f =
∑
i t
ifi, and thus
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ṽ(t · f) = min{v(tifi/s
i) | fi 6= 0} = min{v(fi/s

i) | fi 6= 0} = ṽ(f). Thus ṽ is
k∗-invariant. It remains to show that ṽ is G-invariant. Take g ∈ G; it is enough
to show that for any k > 0 and fk ∈ Ak we have ṽ(g · fk) = ṽ(fk). One knows
that the valuation v on k(G/H) lifts to a G-invariant valuation v̂ on k(G) for
the left G-action (see [K89, Corollary 1.5]). Also one knows that H0(G/H,L|G/H)
can be identified with the space of H-eigensection in k[G] corresponding to an
H-weight χ. With this identification we have v((g · fk)/sk) = v̂(g · fk) − v̂(sk) =
v̂(fk)− v̂(sk) = v̂(fk/s

k) = v(fk/s
k). (2) The injectivity and linearity of the map φ

are straightforward from the definition. It remains to prove the last assertion. The
valuation cone ṼA sits in the rational vector space Q̃A = Hom(Λ̃A,Q) (Section
2.1). We note that the set {ṽ | ṽ(s) = 0} is a hyperplane in this vector space. Now
let ṽ ∈ ṼA be a valuation with ṽ(s) = 0. Define a function v on k[XB ] as follows.
For h ∈ k[XB ], write h = fi/s

i, for some i ≥ 0 and fi ∈ Ai. Let v(h) = ṽ(fi).
One verifies that the function v is well defined and gives a G-invariant valuation
on G/H. This finishes the proof. �

Remark 4.10. The above is a generalization of the classical torus case where G =
B = T = (k∗)n and H = {e}. In this case, we can take X to be the projective
space Pn, L = O(n+ 1) and s = x1 · · ·xn+1, where (x1, . . . , xn) are coordinates on
T and (x1 : · · · : xn+1) are homogeneous coordinates on Pn.

Theorem 4.11 (Fan structure on a spherical tropical variety). With notation as
before, let J ⊂ k[XB ] be an ideal. Then the spherical tropical variety tropB(J) is
the support of a rational polyhedral fan. Moreover, this fan structure comes from
intersecting the image of tropB(J) with a spherical Gröbner fan for a homogeneous
ideal J̃ in the algebra of sections A (of a very ample line bundle on a projective
spherical embedding of G/H).

Proof. Let J̃ ⊂ A be the ideal generated by the homogeneous elements in π−1(J).
By definition J̃ is a homogeneous ideal. It is a generalization of the homogenization
of an ideal in the Laurent polynomial algebra k[x±1

1 , . . . , x
±1
n ] (see [MS15, Sect. 2.6]).

Consider the image of tropB(J) in the valuation cone ṼA under the linear embed-
ding φ (Proposition 4.9). We show that this image is a subfan of the spherical
Gröbner fan GF(J̃), i.e., it is a union of closures of cones from GF(J̃). Let v ∈
tropB(J), i.e., grv(k[XB ]) does not contain any unit element. Let C[ṽ] be the
closure of cone in the Gröbner fan containing ṽ ∈ ṼA. Suppose v′ ∈ VG/H is

such that ṽ′ ∈ C[ṽ]. This implies that there are faces σ, σ′ of the cone ṼA such
that σ′ ⊂ σ and ṽ, ṽ′ belong to the relative interiors of σ, σ′ respectively. One
verifies that the map inṽ′(f) 7→ inṽ(inṽ′(f)) ∀f ∈ A, defines a multiplicative
homomorphism from inṽ′(J̃)hom to inṽ(J̃)hom (here the subscript hom denotes
the set of homogeneous elements, with respect to the Q-grading in the associated
graded, in the corresponding set). It then follows that we have a multiplicative
homomorphism from inv′(J) to inv(J). If inv′(J) contains a unit element then
inv(J) should also contain a unit element which contradicts the assumption v ∈
tropB(J). Thus v′ ∈ tropB(J). This finishes the proof. �

4.3. Spherical tropical hypersurfaces

In this section we see how to compute the spherical tropical variety of a hyper-
surface in the open Borel orbit. We continue to use the notation from previous
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sections. Let v ∈ VG/H . The following statement shows how to detect the units in
the associated graded algebras grv(k[XB ]) using the (k∗ ×G)-algebra grṽ(A).

Proposition 4.12. Let h ∈ k[XB ] and let fk ∈ Ak, for some k > 0, be such that
π(fk) = fk/s

k = h. Then inv(h) ∈ grv(k[XB ]) is a unit if and only if inṽ(fk)
divides a power of inṽ(s).

Proof. Suppose inv(h) ∈ grv(k[XB ]) is a unit. Then there exists h′ ∈ k[XB ] such
that v(hh′) = v(1) = 0 and v(hh′ − 1) > 0. Since π : A → k[XB ] is surjective we
can find f ′` ∈ A`, for some ` > 0, with π(f ′`) = h′. Then ṽ(fkf

′
`) = v(hh′) = 0

and ṽ(fkf
′
` − sk+`) = v(hh′ − 1) > 0. Note that ṽ(sk+`) = v(1) = 0. This shows

that inṽ(fk) inṽ(f
′
`) = inṽ(s)

k+` in the algebra grṽ(A). Conversely, suppose inṽ(fk)
divides a power of inṽ(s). Since inṽ(s) and inṽ(fk) are homogeneous, there is f ′` ∈
A`, for some ` > 0, such that ṽ(fkf

′
`) = ṽ(sk+`) and ṽ(fkf

′
`− sk+`) > 0. As before,

this implies that v(hh′) = 0 and v(hh′− 1) > 0 where h′ = f ′`/s
`. This means that

inv(h) is a unit in grv(k[XB ]) as required. �

Now since A and hence grṽ(A) are (k∗×G)-algebras, we can give a criterion for
when the ideal generated by an element in grṽ(A) contains a power of inṽ(s), in
terms of its isotypical decomposition. Take f ∈ A and let us write f =

∑
k,λ fk,λ

where fk,λ is the (k, λ)-isotypic component of f in A, i.e., fk,λ lies in the λ-isotypic
component of Ak.

Proposition 4.13. Let ṽ ∈ ṼA. Then inṽ(f) divides a power of inṽ(s) if and only
if the following conditions are satisfied:

(1) The minimum min{〈ṽ, (k, λ)〉 | fk,λ 6= 0} is attained at a unique (k0, λ0).

(2) Moreover, there exists (`0, µ0) ∈ Λ̃+
A and f ′`0,µ0

∈ A`0,µ0
such that we

have inṽ(fk0,λ0
)inṽ(f

′
`0,µ0

) = inṽ(s
k0+`0). In particular, (k0, λ0) lies in the

semigroup generated by −Λ̃+
A and (1, θ), where θ is the B-weight of the

section s.

Proof. As in Section 3.3, let � be a total order refining the spherical weight order
for A regarded as a (k∗ × G)-algebra. We then consider the total order �ṽ and
the associated graded algebra gr�ṽ (A) which is a Λ̃+

A-graded algebra. Now let us
assume that inṽ(f) divides a power of inṽ(s). Thus there is f ′ ∈ A and m > 0 such
that

inṽ(f) inṽ(f
′) = inṽ(s)

m. (9)

Let f ′ =
∑
`,µ f

′
`,µ be the isotypic decomposition of f ′. We note that s is a (k∗ ×

B)-eigensection with weight (1, θ) and hence is its own isotypic decomposition.
Let f̄ , f̄ ′ and s̄ be the elements in gr�ṽ (A) represented by the same isotypic
decompositions as inṽ(f), inṽ(f

′) and s respectively. From (9) we know that f̄ f̄ ′ =
s̄m. But the algebra gr�ṽ (A) is a Λ̃+

A-graded algebra and s̄m is a homogeneous

element in this grading. It follows that f̄ and f̄ ′ are also Λ̃+
A-homogeneous (because

in a graded domain the product of a non-homogeneous element with any other
element cannot be homogeneous). This shows that f̄ and f̄ ′ each consist of a single
isotypic component. This readily implies the conditions (1) and (2). Conversely,
assume that the conditions (1) and (2) are satisfied. One then verifies that the
product inṽ(f) inṽ(f

′
`0,µ0

) is equal to inṽ(s)
m in the algebra grṽ(A), where m =

k0 + `0. This finishes the proof. �
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Remark 4.14. We observe that given f ∈ A, the conditions (1) and (2) in Propo-
sition 4.13 are piecewise linear conditions on v. In fact, for each (k0, λ0) appearing
in f , the condition that min{〈ṽ, (k, λ)〉 | fk,λ 6= 0} is attained only at (k0, λ0), is
a piecewise linear condition on ṽ. Also (2) says that we want the minimum in (1)
to be attained only at those (k0, λ0) which satisfy a certain condition as stated in
(2). On the other hand, by Proposition 4.9 we know that the map v 7→ ṽ is a linear
map from VG/H → ṼA. This shows that (1) and (2) together impose a piecewise
linear condition on v.

4.4. Spherical tropical bases

In this section we show that any ideal J ⊂ k[XB ] possesses a finite spherical
tropical basis (as defined below). In other words, the spherical tropical variety
tropB(J) is an intersection of a finite number of spherical tropical hypersurfaces.

Definition 4.15 (Spherical tropical basis). Let J ⊂ k[XB ] be an ideal. A set
T = T (J) ⊂ J is a spherical tropical basis for J if for every v ∈ VG/H the following
holds: v ∈ tropB(J), i.e., inv(J) ⊂ grv(k[XB ]) does not contain a unit element, if
and only if for all f ∈ T , inv(f) is not a unit element.

Theorem 4.16 (Existence of a finite spherical tropical basis). Every ideal J ⊂
k[XB ] has a finite spherical tropical basis.

Proof. Let J ⊂ k[XB ] be an ideal. The strategy of the proof is as follows. Let v be
a G-invariant valuation which lies in tropB(J). This means that the initial ideal
inv(J) ⊂ grv(k[XB ]) contains a unit element. As before let ṽ be the valuation on the
graded algebra A associated to v (see (8)). Also let I ⊂ A be the homogenization
of J , i.e., the ideal generated by homogeneous elements in π−1(J). We construct
a finite spherical tropical basis for J using the fact that there are a finite number
of cones in the spherical Gröbner fan of I (Theorem 3.32). The valuation ṽ lies
in the relative interior of some cone σ in the spherical Gröbner fan of I. Now
we would construct an element Fσ ∈ J such that the following holds: for each
valuation v′ ∈ VG/H for which ṽ′ lies in the relative interior of the cone σ, the
element inv′(Fσ) is a unit in grv′(k[XB ]). To get a spherical tropical basis T it
then suffices to define:

T = {Fσ | σ is a cone in GF(I) that intersects the image of tropB(J)}.

In the rest of the proof we explain how to construct Fσ ∈ J with the desired
property.

Let ṽ′ = ṽ+εw̃ be a valuation in ṼA for w̃ in the linear span of ṼA and ε > 0. By
Proposition 3.33, if w̃ is generic and ε is sufficiently small, then the graded algebra
grṽ′(A) is the horospherical contraction Ahc of A and the initial ideal inṽ′(I) is a
Λ̃+
A-homogeneous ideal. That is, if q =

∑
i,λ qi,λ is the isotypic decomposition of

an element q ∈ inṽ′(I) then qi,λ ∈ inṽ′(I) for all i, λ.
Now let h ∈ J be such that inv(h) is a unit element in grv(k[XB ]). Let f ∈ Ak,

for some k > 0, be such that f/sk = h. Let us write f =
∑
λ fλ as sum of its

isotypic components. By Proposition 4.12 we know that f satisfies the conditions
(1) and (2) in Proposition 4.13. Let fλ0 be the isotypic component of f where the
unique minimum min{〈ṽ, (k, λ)〉 | fλ 6= 0} is attained.
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We can find F ′ ∈ A such that F = fλ0−F ′ ∈ I and no isotypic component of F ′

lies in the generic initial ideal inṽ′(I). We claim that for any valuation v′′ ∈ VG/H
such that ṽ′′ lies in the relative interior of σ we have inṽ′′(F ) = fλ0

. First we
note that since inṽ′′(I) = inṽ′(I), the initial element inṽ′′(F ) can be regarded as
an element of inṽ′(I). Now if inṽ′′(F ) 6= fλ0

then it means that a nonzero sum of
isotypic components of F ′ lies in inṽ′(I). But this initial ideal is Λ̃+

A-homogeneous
and hence it follows that at least some of the isotypic components of F ′ are in
inṽ′(I) which contradicts the choice of F ′. Thus we conclude that inṽ′′(F ) = fλ0

.
Finally, combining Propositions 4.13 and 4.12 (applied to F and the valuation ṽ′′)
we see that that π(F ) ∈ inv′′(J) is a unit element in grv′′(J) as desired. �

Corollary 4.17. The spherical tropical variety of an ideal is a finite intersection
of spherical tropical hypersurfaces.

4.5. Spherical tropical variety of a subscheme in G/H

Finally, we define the spherical tropical variety of a subscheme in the spherical
homogeneous space G/H. As before, let L be a very ample G-linearized line bundle
on a projective spherical embedding X of G/H. Let A =

⊕
i≥0H

0(X,L⊗i) be the
algebra of sections of L.

Definition 4.18 (Spherical tropical variety of an ideal in an algebra of sections).
Let I ⊂ A be an ideal. We define the spherical tropical variety of I to be the set
of all v ∈ VG/H for which there exists a Borel subgroup B (depending on v) such
that inṽ(I) does not contain any B-eigensections.

Proposition 4.20 below shows how trop(I) encodes the behavior at infinity of
the subscheme defined by I, and moreover, how it is related to the tropical varieties
of ideals in coordinate rings of Borel open orbits.

Remark 4.19. In the spherical setting, we regard the notion of a B-eigensection as
a generalization of the notion of a monomial from the classical torus case.

Let Y ⊂ G/H be a subvariety and let I = I(Y ) be the ideal of sections in A
that vanish on Y . Also for a Borel subgroup B let JB denote the ideal of regular
functions in k[XB ] vanishing on Y ∩ XB . Recall that Xv denotes the spherical
embedding corresponding to the single ray generated by v. The unique G-stable
divisor in Xv is denoted by Dv.

Proposition 4.20. With notation as above, v ∈ trop(I) if and only if the closure
of Y in Xv intersects Dv. Moreover, we have the following:

trop(I) =
⋃
B

tropB(JB), (10)

where the union is over all the Borel subgroups B ⊂ G. (In Proposition 4.21 below
we show that there is a finite collection of Borel subgroups, independent of the
choice of Y , which suffice for defining the right-hand side of (10).)

Proof. Let v ∈ VG/H . We note that since by assumption s vanishes on all the

B-stable divisors in X, the ideal inṽ(I) contains a B-eigensection if and only if it
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contains a power of inṽ(s). The equality (10) now follows from Proposition 4.12. It
remains to prove the first assertion. For v ∈ VG/H let Y denote the closure of Y in
Xv. Suppose v ∈ trop(I). Then, by Proposition 4.12, there exists a Borel subgroup
B such that v ∈ tropB(JB). Theorem 4.7 then shows that the closure of Y ∩XB

in Xv,B intersects D′v. This readily implies that Y intersects Dv. Conversely, let
x ∈ Y ∩Dv. Clearly there exists a Borel subgroup B such that x lies in the open
B-orbit D′v ⊂ Dv. Consider the affine open subset Xv,B ⊂ Xv. It contains the
open B-orbit XB . Since Xv,B is open, x lies in the closure of Y ∩ XB in Xv,B .
Again from Theorem 4.7 we see that v ∈ tropB(JB) and hence v ∈ trop(Y ). �

Next, we show that the union in the right-hand side of (10) is finite. The proof
uses the Luna–Vust theory of spherical embeddings.

Proposition 4.21. With notation as above, there exists a finite number of Borel
subgroups B1, . . . , Bs such that for any subscheme Y in G/H we have:

trop(I) =
s⋃
i=1

tropBi(JBi),

where I = I(Y ) ⊂ A is the ideal of sections vanishing on Y , and JBi ⊂ k[XBi ] is
the ideal of Y ∩XBi .

Proof. Let XΣ be a complete spherical embedding of G/H corresponding to a
complete fan Σ. Choose a finite collection of Borel subgroups B1, . . . , Bs such that
for each G-orbit O in XΣ the open orbits in O corresponding to B1, . . . , Bs cover
the whole O. Now take a valuation v ∈ VG/H . Since Σ is a complete fan, there
exists a unique cone σ ∈ Σ such that v lies in the relative interior of σ. The cone σ
corresponds to a simple spherical subvariety Xσ ⊂ XΣ. Let Oσ denote the unique
closed G-orbit in Xσ (note that Oσ may not be closed in the larger variety XΣ). By
the Luna–Vust theory [K89, Thm. 4.1], the inclusion v ∈ σ gives a G-equivariant
morphism ψ : Xv → Xσ and ψ maps Dv to Oσ. Let Y be the closure of Y in
Xv. Suppose that the scheme-theoretic intersection Y ∩Dv is nonempty and let x
be a closed point in Y ∩Dv. Then ψ(x) lies in Oσ. We know that there is i such
that ψ(x) lies in the open Bi-orbit in Oσ. Since there are only a finite number of
Bi-orbits we conclude that x itself lies in the open Bi-orbit in Dv. This finishes
the proof. �

5. Spherical tropical varieties via tropicalization map

In this section we discuss construction of the spherical tropical variety via the
spherical tropicalization map.

5.1. Germs of curves and spherical tropicalization map

We start by recalling the notions of a germ of a curve and a formal curve (see for
example [T11, Sect. 24]). As usual k denotes the ground field. We let O = k[[t]]
denote the algebra of formal power series with coefficients in k and K = k((t))
its field of fractions, i.e., the field of formal Laurent series. If f ∈ K we denote by
ordt(f) the order of t in the Laurent series f . Clearly, ordt is a Z-valued valuation
on the field K.
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Let X be a variety. A germ of an algebraic curve or simply a germ of a curve
on X is a pair (γ, θ0) where γ is a rational map from a smooth projective curve
Γ to X and θ0 ∈ Γ is a base point. One says (γ, θ0) is convergent if γ is regular
at θ0. One can think of γ as a point in X(k(Γ)), i.e., a k(Γ)-point on X. A germ
of a formal curve or simply a formal curve γ on X is a K-point of X. An O-point
on X is called a convergent formal curve. The limit of a convergent formal curve
is the point on X(k) obtained by setting t = 0 in γ. It is natural to think of a
formal curve as a parameterized analytic curve in X. If we assume X is sitting in
an affine space AN then a formal curve γ on X is an N -tuple of Laurent series
satisfying the defining equations of X in AN . If γ is convergent then its coordinates
are power series and their constant terms are the coordinates of the limit point
γ0 = limt→0 γ(t).

If (γ, θ0) is a germ of a curve on X then the inclusion k(Γ) ⊂ K shows that
γ gives a formal curve on X (this depends on the choice of a formal uniforming

parameter t at the complete local ring ÔΓ,θ0). Also the inclusions OΓ,θ0 ⊂ ÔΓ,θ0
∼=

O show that if (γ, θ0) is a convergent germ of a curve then the corresponding
formal curve is also convergent. By abuse of notation we will denote the formal
curve associated to a germ of a curve (γ, θ0) again by γ.

Definition 5.1 (Valuation associated to a formal curve). A formal curve γ on X
defines a valuation vγ : k(X)→ Z ∪ {∞} as follows.

vγ(f) = ordt(f(γ(t))). (11)

There is a t-adic topology on X(K), the set of formal curves on X, which is
thinner than the Zariski topology. For X = AN a basic t-adic neighborhood of a
point γ = (γ1, . . . , γN ) consists of all τ = (τ1, . . . , τN ) such that

ordt(γi − τi) ≥ C ∀i = 1, . . . , N,

where C ∈ N. The t-adic topology on arbitrary varieties is induced from that on
the affine space using affine charts. The following basic result due to Michael Artin
says that formal curves on a variety X can be approximated by germs of algebraic
curves arbitrarily closely in t-adic topology.

Theorem 5.2 (Artin approximation theorem). The set of formal germs induced
by germs of algebraic curves on X is dense in X(K) with respect to the t-adic
topology.

From the Artin approximation theorem (Theorem 5.2) the following readily
follows:

Corollary 5.3. Let γ ∈ Y (K) be a formal curve on Y . Also let f1, . . . , fs ∈ O(Y )
be a finite number of regular functions on Y and C > 0 a constant. Then there
exists a germ of algebraic curves γ′ on Y such that:

ordt(fi(γ(t))− fi(γ′(t))) > C ∀i = 1, . . . , s.

We recall that the algebraic closure K of the field of formal Laurent series is the
field of Puiseux series (see Section 1.2). We call a point in X(K) a formal Puiseux
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curve or simply a Puiseux curve on X. The definition of valuation associated to a
curve extends to Puiseux curves as well. That is, a formal Puiseux curve γ on X
gives a valuation vγ : k(X)→ Q ∪ {∞}, defined by the same equation (11).

Now we turn to the case of spherical varieties and G-invariant valuations. As
usual we let G/H be a spherical homogeneous space. The main construction in
spherical tropicalization is the construction of a G-invariant valuation from a given
valuation on G/H. The following well-known result is the key to this construction
(see [K94, Lem. 1.4], [S74, Lem. 10 and 11], [LV83, 3.2 Lem.]).

Theorem 5.4 (Sumihiro). Let v : k(G/H) \ {0} → R be any valuation.

(1) For every 0 6= f ∈ k(G/H) there exists a nonempty Zariski open subset
Uf ⊂ G such that the value v(g ·f) is the same for all g ∈ Uf . Let us denote
this value by v̄(f), i.e.,

v̄(f) = v(g · f) ∀g ∈ Uf .

(2) We have v̄(f) = min{v(g · f) | g ∈ G}.
(3) v̄ is a G-invariant valuation on G/H.

Recall that a formal curve γ on G/H gives rise to a valuation vγ . We let v̄γ
denote the G-invariant valuation defined by:

v̄γ(f) = ordt(f(g · γ(t))),

for every 0 6= f ∈ A and g ∈ G in general position. Following [V15], we call the
map

Trop : G/H(K)→ VG/H , γ 7→ v̄γ ,

the spherical tropicalization map.

Example 5.5. As in Example 2.1(3) consider the spherical variety X = A2 \
{(0, 0)} for the natural action of G = SL(2,k). The algebra of regular functions
k[X] is just the polynomial ring k[x, y]. The weight lattice ΛX coincides with the
weight lattice Λ of G and can be identified with Z. The function f(x, y) = y is
a B-eigenfunction in k[X] whose weight is 1, namely, the generator of ΛX . Let
γ = (γ1, γ2) be a formal curve in X = A2 \ {0}. Let us write γ1(t) =

∑
i ait

i and

γ2(t) =
∑
i bit

i. Let g =

[
g11 g12

g21 g22

]
. We compute that f(g · γ(t)) = g21γ1 + g22γ2.

From the definition of the G-invariant valuation v̄γ we have v̄γ(y) = ordt(g · γ(t))
for g in general position. Thus

v̄γ(y) = ordt(g21γ1(t) + g22γ2(t)) = min(ordt(γ1(t)), ordt(γ2(t)). (12)

There is another way of understanding the G-invariant valuation associated
to a formal curve and that is through the generalized Cartan decomposition for
spherical varieties. It goes back to Luna and Vust [LV83]. A proof of it can also be
found in [GN10, Thm. 8.2.9].
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Theorem 5.6. (Generalized non-Archimedean Cartan decomposition for spheri-
cal varieties over K).The G(O)-orbits in G/H(K) are parameterized by Λ̌G/H ∩
VG/H . Here Λ̌G/H ⊂ QG/H denotes the lattice dual to the weight lattice ΛG/H , and

a one-parameter subgroup λ ∈ Λ̌G/H corresponds to the orbit through the formal
curve λ(t) ∈ TG/H(K).

Thus the valuation v̄γ can be interpreted as the valuation represented by the
point of intersection of the G(O)-obit of γ in G/H(K) and the image of valuation
cone VG/H (under the exponential map) in G/H(K).

Example 5.7 (non-Archimedean Cartan decomposition). As in Example 2.1(5),
consider G with left-right action of G×G. Theorem 5.6 applied in this case recovers
the non-Archimedean version of the usual Cartan decomposition (see [IM65]). With
notation as above, it states that:

G(K) = G(O) · Λ̌+ ·G(O).

Here Λ̌ is the dual lattice to the weight lattice Λ and Λ̌+ is the intersection of Λ̌
with the dual positive Weyl chamber. We regard both as subsets of T (K).

When G = GL(n,C) the above non-Archimedean Cartan decomposition gives
the well-known Smith normal form of a matrix (over the field of formal Laurent
series K which is the field of fractions of the principal ideal domain O, the ring of
formal power series).

Example 5.8 (Non-Archimedean Iwasawa decomposition).As in Example 2.1(4),
consider the spherical homogeneous space G/U where U is a maximal unipotent
subgroup of G. In this case Theorem 5.6 gives a non-Archimedean version of the
Iwasawa decomposition (see [IM65]). It states that:

G(K) = G(O) · Λ̌ · U(K),

where as in the previous example, Λ̌ is the dual lattice to the weight lattice Λ and
we regard it as a subset of T (K).

Remark 5.9. In Section 7 we will interpret the usual (Archimedean) Cartan decom-
position and the Iwasawa decomposition as giving us a spherical generalization of
the notion of an amoeba of a subvariety (see also Section 1.2). Using this point of
view, we will make a connection between the Archimedean and non-Archimedean
Cartan decompositions. More precisely, we see that the non-Archimedean Cartan
decomposition can be interpreted as a “limit” of the Archimedean Cartan decom-
position.

Finally, we come to the main definition of this section, which is the spherical
tropicalization of a subvariety.

Definition 5.10 (Spherical tropicalization). Let Y ⊂ G/H be a subvariety. Fol-
lowing [V15] we call the image Trop(Y (K)) ⊂ VG/H the spherical tropicalization
of Y .

In [V15, Thm. 1.2], it is proved that Trop(Y ) coincides with the support of a
rational polyhedral fan. The content of our Fundamental Theorem (Theorem 5.15)
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is that this Trop construction coincides with trop construction in Section 3.1 using
initial ideals.

The following key fact is proved in [V15, Prop. 4.5]. It shows that Trop(Y )
encodes the asymptotic behavior of the subvariety Y in all possible spherical
embeddings of G/H. As before, Xv denotes the spherical embedding of G/H
associated to v ∈ VG/H and Dv is the unique G-stable prime divisor in Xv.

Proposition 5.11. Let Y ⊂ G/H be a subvariety. A valuation v ∈ VG/H belongs

to the spherical tropical variety Trop(Y ) if and only if the closure Y of Y in Xv

intersects the unique closed G-orbit Dv.

To wrap up this section, we prove a theorem about approximation by germs
of algebraic curves. It is a corollary of the Artin approximation theorem stated
above. It implies that in defining the tropical variety one can assume that γ is an
algebraic curve.

Theorem 5.12 (Approximation by algebraic points). Let Y ⊂ G/H be a subva-
riety. Let γ be a point of Y (K), i.e., a formal curve in Y . Then there exists a germ
of an algebraic curve γ′ on Y such that:

v̄γ = v̄γ′ ,

i.e., γ and γ′ give rise to the same invariant valuation in VG/H .

We need the following easy lemma in the proof.

Lemma 5.13. Let p(t) be a formal Laurent series. Pick a constant C ≥ ordt(p)
and suppose that for some other formal Laurent series q(t) ∈ K we have ordt(p−
q) > C. Then ordt(p) = ordt(q).

Proof. By contradiction suppose that ordt(p) 6= ordt(q). Then by the non-Archi-
medean property of ordt we have ordt(p − q) = min(ordt(p), ordt(q)). But this
is impossible since by assumption the left-hand side is bigger than ordt(p) ≥
min(ordt(p), ordt(q)). �

Proof of Theorem. Let h1, . . . h` ∈ A be B-weight functions whose weights gene-
rate the lattice ΛG/H . Recall that any G-invariant valuation is determined by its
values on the hi, that is, if v̄γ(hi) = v̄γ′(hi) for all i = 1, . . . , ` then v̄γ = v̄γ′
(Proposition 2.8).

Take 1 ≤ i ≤ ` and let Mi be the G-module generated by hi. Since A is a
rational G-module, Mi is a finite-dimensional vector space which is spanned by
the g · hi, g ∈ G. Thus we can find a vector space basis for Mi of the form
{gi1 · hi, . . . , gisi · hi} where gi1, . . . , gisi ∈ G. Now for any g ∈ G we can write
g · hi =

∑si
j=1 cij(g)(gij · hi). We thus have:

vγ(g · hi) ≥ min{vγ(gij · hi) | cij(g) 6= 0}.

From this we see that for generic g ∈ G we have:

v̄γ(hi) := vγ(g · hi) = min{vγ(gij · hi) | cij(g) 6= 0}. (13)
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Now take a constant C which is greater than all the vγ(gij · hi) for all i, j. By
Corollary 5.3 (Artin approximation) we can find a germ of algebraic curves γ′ on
Y such that for all i, j we have:

ordt(vγ(gij · hi)− vγ′(gij · hi)) > C.

But Lemma 5.13 then implies that ordt(vγ(gij · hi)) = ordt(vγ′(gij · hi)) for all
i, j. Using (13) this gives us that v̄γ(hi) = v̄γ′(hi) for all i and hence v̄γ = v̄γ′ as
required. �

The following is an immediate corollary of Theorem 5.12.

Corollary 5.14. In the definition of spherical tropical variety it suffices to use
the germ of algebraic curves. In other words, with notation as above, the two sets
Trop(Y ) and {Trop(γ) | γ is a germ of an algebraic curve on Y } coincide.

5.2. A fundamental theorem for spherical tropical geometry

Finally we formulate a generalization of the fundamental theorem of tropical
geometry to the spherical setting. It states that all the different constructions of
the spherical tropical variety we discussed coincide. Namely: (1) the construction
using initial ideals and Borel charts (Definition 4.4), (2) the construction using
initial ideals in algebra of sections of a line bundle (Definition 4.18), and (3) the
construction using the tropicalization map and formal curves (Definition 5.10). It
is an immediate corollary of the results discussed in the previous sections.

Let Y ⊂ G/H be a subvariety. As before, take a G-linearized very ample line
bundle L on a projective spherical embedding X of G/H and let A = A(X,L)
denote its algebra of sections with I = I(Y ) ⊂ A the ideal of sections vanishing
on Y . Also for each Borel subgroup B, let JB ⊂ k[XB ] be the defining ideal of Y
intersected with the open B-orbit XB .

Theorem 5.15 (Fundamental theorem). With notation as above, the following
sets coincide:

(a) trop(I) = {v ∈ VG/H | inṽ(I) does not contain any B-eigensection for some
Borel B} (see Section 4.5).

(b)
⋃
B tropB(JB), where the union is over all Borel subgroups of G (recall that

by Proposition 4.21 it is enough to take the union over a finite collection of
Borel subgroups ).

(c) Trop(Y ) = {Trop(γ) ∈ VG/H | γ ∈ Y (K) is a formal Puiseux curve on Y }.
In fact, a valuation v ∈ VG/H belongs to any of the sets in (a), (b) or (c) if and only
if the closure of Y in Xv, the spherical embedding associated to the ray generated
by v, intersects the divisor at infinity Dv.

Proof. The theorem follows from 4.20 and 5.11. �

5.3. Analytification and spherical tropicalization map

In this section we briefly recall the notion of a Berkovich analytic space or analytifi-
cation of a variety X. It plays a central role in non-Archimedean geometry. As
before let K = k((t)) denote the field of formal Laurent series in an indeterminate
t. It is equipped with a natural valuation ordt : K → Z ∪ {∞}.

Let A be a finitely generated k-algebra and X = Spec(A) the corresponding
affine variety. Let Ã = A⊗k K.
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Definition 5.16 (Multiplicative seminorm). A function p : Ã → R≥0 is called a
multiplicative seminorm on A if it satisfies the following:

(a) p(fg) = p(f)p(g),

(b) p(λ) = exp(−ordt(λ)),

(c) p(f + g) ≤ max(p(f), p(g)), for all f, g ∈ Ã and λ ∈ K. The analytification
Xan of X is the collection of all multiplicative seminorms on Ã. We endow
Xan with the coarsest topology in which the maps Xan → R, p 7→ p(f), are
continuous for every f ∈ Ã.

Remark 5.17. (1) One shows that the axiom (c) in Definition 5.16 is equivalent to
the triangle inequality. (2) For a multiplicative seminorm p let us define

vp(f) = − log(p(f)), (14)

for all f ∈ A. One verifies that vp : A→ R∪ {∞} is a valuation (in this context it
is more convenient to consider a valuation as a map from A to R∪{∞} and define
the value of 0 to be ∞).

There is a natural embedding from j : X(K) ↪→ Xan given by restricting to
points in X(K). More precisely, for each point γ ∈ X(K) we let p = j(γ) to be the
multiplicative seminorm defined by:

j(γ)(f) = exp(−ordt(f(γ))). (15)

Now let X be an affine spherical G-variety. In the context of multiplicative
seminorms it is natural to extend the valuation cone VX and define V̂X be the set
of all invariant valuations v : k(X)→ R ∪ {∞}. Recall that to any valuation v on
X we can associate a G-invariant valuation v̄ on X (see Theorem 5.4). For any
f ∈ k(X), the valuation v̄ is defined by:

v̄(f) = v(g · f),

for g ∈ G in general position, i.e., g lies in some Zariski open subset Uf of G.
Moreover, v̄(f) = min{v(g · f) | g ∈ G}.

More generally, let Y ⊂ X be a subvariety that intersects the open G-orbit. Let
π : A→ k[Y ] be the algebra homomorphism induced by the inclusion of Y in X.

For a valuation v : k[Y ]→ R∪{∞} we denote by v̄ : A→ R∪{∞} the valuation
defined as follows. For any f ∈ A let:

v̄(f) = v(π(g · f)), (16)

for g in some Zariski open subset Uf . Now let p ∈ Y an with the associated valuation
vp. Let v̄p be the G-invariant valuation on k(X) associated to vp as above.
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Definition 5.18 (Spherical tropicalization map). We define the spherical tropi-

calization map Trop : Y an → V̂X by:

p 7→ v̄p.

Proposition 5.19. We have the following:

(1) The map Trop : Y an → V̂X is continuous.

(2) The map Trop extends the tropicalization map Trop : Y (K) → VX intro-
duced in Section 5.1. That is, the diagram below commutes:

Y (K) � � j //

Trop ""

Y an

Trop}}
V̂X

.

Proof. (1) To prove continuity of Trop it suffices to show that for any f ∈ A
the map p 7→ v̄p(f) is continuous. Take f ∈ A. Let Mf be the finite-dimensional
G-submodule of A generated by f . Let {g1 · f, . . . , gs · f} be a finite spanning set
for Mf where gi ∈ G. Then from the definition of the valuation v̄p we know that
(see Theorem 5.4):

v̄p(f) = min{vp(g1 · f), . . . , vp(gs · f)}.

By the definition of the topology on Xan each of the functions p 7→ vp(gi · f) =
− log(p(gi · f)) is continuous. The continuity of Trop now follows from the fact
that the minimum of a finite number of continuous functions is continuous.

Part (2) of the proposition is a straightforward corollary of (15) and the defini-
tions of the maps Trop and Trop. �

6. Some examples

6.1. Torus

Let G = T = (k∗)n and H = {e}. The torus T is clearly a T -spherical homogeneous
space. In this case, for any subvariety Y ⊂ T , the tropical variety trop(Y ) coincides
with the classical tropical variety of Y and Theorem 5.15 recovers the fundamental
theorem of tropical geometry (for the constant coefficient case).

6.2. Punctured affine plane

As in Example 2.1(3), consider the spherical variety X = A2 \ {(0, 0)} for the
natural action of G = SL(2,k). We recall that this action is transitive. The
stabilizer of the point (1, 0) is the subgroup U of upper triangular matrices with
1’s on the diagonal and we can identify X with G/U . The coordinate ring k[X] is
just the polynomial algebra k[x, y].
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The coordinate function y is a B-eigenfunction and any B-eigenfunction is of the
form yk, k ∈ Z. Thus ΛX ∼= Z and hence the valuation cone VX can be identified
with Q. It is generated (as a cone) by two distinguished G-invariant valuations v1

and v2 where v1 = −v2 regarded as elements of Q. As valuations they are given
as follows. Let h ∈ k[x, y] and write h =

∑d
i=m hi as sum of its homogeneous

components with hm, hd 6= 0. Then v1(h) = m and v2(h) = −d, i.e., v1 is the
degree of smallest term and v2 is minus the degree.

Let Y ⊂ A2 \ {(0, 0)} be a curve given by an equation f(x, y) = 0 where f is a

nonconstant polynomial. Let f =
∑d
i=m fi where fi is the homogeneous component

of f of degree i and fm, fd 6= 0. A description of the tropicalization of Trop(Y ) in
this example is obtained in [V15, Example 3.10]. One has:

trop(Y ) =

{
Q m > 0

Q≤0 m = 0.
(17)

That is, Trop(Y ) ⊂ Q is the negative ray Q≤0 if Y does not pass through the origin,
and is the whole line Q if it does. We verify the fundamental theorem (Theorem
5.15) in this example by computing the tropical variety from initial ideals and
Borel charts (Definition 4.4 and Proposition 4.20).

Let B and B− denote the Borel subgroups of upper triangular and lower
triangular matrices respectively. It is easy to see that the B-orbit and B−-orbit
of the point (0, 1) are XB = A2 \ {y 6= 0} and XB− = A2 \ {x 6= 0}. Thus the
coordinate rings k[XB ] and k[XB− ] are k[x, y, y−1] and k[x, y, x−1] respectively.
Clearly the action of G on X extends to the whole projective plane P2. One
can verify that the condition in the proof of Proposition 4.21 is satisfied for the
complete spherical embedding P2 and the collection of Borel subgroups {B,B−}.
That is, every G-orbit O ⊂ P2 is covered by the open B-orbit and the open B−-
orbit contained in O.

First consider the case v = v1. One can check that v ∈ tropB(I) if and only if
fm is neither a constant nor a power of y. Similarly, v ∈ tropB−(I) if and only
if fm is neither a constant nor a power of x. Putting these together we see that
v ∈ trop(Y ) if and only if fm is not a constant. The case v = v2 can be dealt with
in a similar fashion. In this case we have v ∈ tropB(I) if and only if fd is not a
power of y, and v ∈ tropB−(I) if and only if fd is not a power of x. It thus follows
that Q≤0 is always contained in trop(Y ) = tropB(I) ∪ tropB−(I). This recovers
(17).

6.3. Group G with (G × G)-action

Following Example 2.1(5) and Example 5.7 consider the left-right action of G×G
on G. Recall that X = G is a spherical (G×G)-homogeneous space. In fact, we can
identify G with the homogeneous space (G×G)/Gdiag where Gdiag = {(g, g) | g ∈
G}. Let us consider the case where X = G = GL(2,k). We identify the valuation
cone of X with:

VX = {(x, y) | x ≥ y}.
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We denote a general element of G by a matrix g =

[
a b
c d

]
. The coordinate

ring k[G] is then the localization of the polynomial algebra k[a, b, c, d] at ad− bc,
i.e., k[G] = k[a, b, c, d, (ad − bc)−1]. We compute the spherical tropical variety for
two hyperplanes Z1 and Z2 in the open (B×B)-orbit in G where B is the subgroup
of upper triangular matrices. We denote this open Borel orbit by XB×B . It is easy
to see that XB×B = {g ∈ GL(2,k) | c 6= 0}. Thus k[XB×B ] = k[a, b, c, d, c−1, (ad−
bc)−1].

Let Z1 and Z2 be the hyperplanes in XB×B defined by c = 1 and d = 1
respectively. By definition (Definition 4.4) we have tropB×B(Z1) (respectively
tropB×B(Z2)) is the set of all v ∈ VX such that the initial form of c−1 (respectively
d−1) is not invertible. We note that c is invertible in k[XB×B ] while d is not. One
shows that tropB×B(Z1) is the ray R1 = {(x, 0) | x ≥ 0} and tropB×B(Z2) is the
angle between the two rays R1 = {(x, 0) | x ≥ 0} and R2 = {(x, x) | x ≤ 0}.

Let M(2,k) denote the vector space of 2×2 matrices. Let G×G act on M(2,k)×
k where it acts by multiplication from left and right on the first component M(2,k)
and trivially on the second component k. Projectivizing this action we get a (G×
G)-action on the projective space P4. Finally, this action induces a (G×G)-action
on the blowup at the origin Bl0(P4). Let X denote this blowup. One verifies that
it is a complete toroidal spherical embedding of G × G. Moreover, it contains 3
codimension 1 (G×G)-orbits O1, O2 and O3. In the colored fan of this spherical
embedding, O1 and O2 correspond to the rays R1 and R2 in the valuation cone
respectively. One checks that the closure of Z1 in X intersects the open Borel orbit
in O1 but it does not intersect the open Borel orbit in O2. On the other hand,
the closure of Z2 intersects both of these Borel orbits. This is in agreement with
Theorem 4.7.

7. Spherical amoebas and Cartan decomposition

For t > 0, the logarithm map on the complex algebraic torus Logt : (C∗)n → Rn
is defined by:

Logt(z1, . . . , zn) = (logt |z1|, . . . , logt |zn|). (18)

Clearly the inverse image of every point is an (S1)n-orbit in (C∗)n. Note that (S1)n

is a maximal compact subgroup in (C∗)n. For a subvariety Y ⊂ (C∗)n, the amoeba
At(Y ) of Y is the image of Y in Rn under the logarithm map Logt [GKZ94]. It is
well known that as t→ 0 the amoeba At(Y ) approaches the tropical variety of Y
in the sense of Kuratowski [J16]. The goal of this section is to suggest an extension
of the above to spherical homogeneous spaces. This section is more speculative.

Let G be a complex connected reductive algebraic group and G/H a spherical
homogeneous space. Let TG/H be the torus associated to G/H, i.e., TG/H is the
torus whose lattice of characters is ΛG/H . It can be identified with T/(T ∩H) for
a maximal torus T ⊂ G. Thus TG/H also can be identified with the T -orbit of
eH ∈ G/H.
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We now take the ground field to be k = C. We consider the exponential map
exp : Lie(TG/H) → TG/H ⊂ G/H. With slight change from our previous notation
let VG/H be the cone of R-valued G-invariant valuations (instead of Q-valued
G-invariant valuations). As usual, VG/H lies in the vector space QG/H ⊗ R =
Hom(ΛG/H ,R) which in turn we consider as a subset of Lie(TG/H). The image
exp(i VG/H) of the valuation cone thus naturally sits in TG/H ⊂ G/H. Let
Treal,G/H ⊂ TG/H be the closed subgroup of TG/H corresponding to the real
subalgebra QG/H ⊗ R ⊂ Lie(TG/H). We let Logt denote the inverse of the map
QG/H ⊗ R→ Treal,G/H given by ξ 7→ exp(itξ).

Motivated by the Cartan and Iwasawa decompositions from Lie theory, we make
the following conjecture.

Conjecture 7.1. (Archimedean Cartan decomposition for a spherical homoge-
neous space). There exists a maximal compact subgroup K of G such that each
K-orbit in G/H intersects the image of the valuation cone exp(i VG/H) at a unique
point.

We can then define the map Lt : G/H → VG/H by:

x 7→ Logt((K · x) ∩ exp(i VG/H)) ∈ VG/H ,

that is, first we intersect the orbit K · x with exp(i VG/H) and then map it to the
valuation cone by the logarithm map Logt. We call Lt a spherical logarithm map.

Definition 7.2 (Spherical amoeba). Let Y ⊂ G/H be a subvariety. We denote
the image of Y under the map Lt by At(Y ) and call it a spherical amoeba of the
subvariety Y .

Remark 7.3. Later we learned that in fact Victor Batyrev has conjectured a similar
statement some years ago. As far as we know no proof or counterexample is known.
A result in this direction can be found in [KKSS15].

Let (γ, θ0) be a germ of an algebraic curve γ : Γ 99K G/H. Take a local unifor-
mizing parameter t forOΓ,θ0 and let us consider γ as a Laurent series in the variable
t. Then there exists r > 0 such that γ(t) is convergent (in the classical topology)
for all t ∈ C with 0 < |t| < r (this is because there exists a neighborhood U of the
point θ0, in the classical topology on Γ, such that γ is defined at every point in
U \ {θ0}). Let v = v̄γ ∈ VG/H denote the G-invariant valuation associated to the
curve γ. We also conjecture that the following holds:

lim
t→0

Lt(γ(t)) = v. (19)

Assuming (19) one can see that every point in the tropical variety is a limit of
points from the amoeba. This can be seen as follows: Let Y ⊂ G/H be a subvariety.
Let v ∈ Trop(Y ) be a point in the spherical tropical variety of Y . By Theorem
5.12 we can find a point γ of Y over the field of algebraic functions C(t) with
Trop(γ) = v. Now γ is a germ of an algebraic curve and hence by (19) we have
limt→0 Lt(γ(t)) = v.

Finally, we conjecture that the spherical amoeba approaches the spherical tro-
pical variety in the sense of Kuratowski.
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Example 7.4 (Torus). As in Example 2.1(1) let G = T = (C∗)n. In this case,
for any subvariety Y ⊂ T , the tropical variety Trop(Y ) coincides with the usual
tropical variety of Y . If we take the maximal compact subgroup K = (S1)n, i.e., the
compact torus in T , then the corresponding logarithm map is the usual logarithm
map from T to Rn. Hence At(Y ) is the usual amoeba of the subvariety Y .

Example 7.5 (Punctured affine plane). As in Example 2.1(3) consider the sphe-
rical variety X = C2\{(0, 0)} for the natural action of G = SL(2,C). We recall that
this action is transitive and X can be identified with the homogeneous space G/U
where U is the subgroup of upper triangular matrices with 1’s on the diagonal. We
explicitly describe the spherical logarithm map in this example. Let the maximal
compact subgroup K be SU(2) ⊂ SL(2,C). We have the Iwasawa decomposition
G = KTH. Consider a point p = (x, y) ∈ X = C2 \ {(0, 0)}. Then:[

x −y/(|x|2 + |y|2)
y x/(|x|2 + |y|2)

] [
1
0

]
=

[
x
y

]
.

The Iwasawa decomposition of the matrix above into a product of a unitary matrix
and an upper triangular matrix is:[
x −y/(|x|2 + |y|2)
y x/(|x|2 + |y|2)

]
=

1√
|x|2 + |y|2

[
x −y
y x

] [√
|x|2 + |y|2 0

0 1/
√
|x|2 + |y|2

]
.

This shows that the unique point of intersection of the K-orbit of p with exp(VG/H)
⊂ TG/H is represented by the diagonal matrix:

[√
|x|2 + |y|2 0

0 1/
√
|x|2 + |y|2

]
.

Thus the spherical logarithm map, corresponding to the choice of K = SU(2), is
given by

Lt(p) = logt(||p||),

where ||p|| =
√
|x|2 + |y|2 is the length of p.

Now consider a curve γ(t)=(γ1(t),γ2(t)) with nonzero radius of convergence. We
observe that as t approaches 0 the order in t of the expression

√
|γ1(t)|2 + |γ2(t)|2

is equal to min(ordt(γ1(t)), ordt(γ2(t))). This verifies (19) in this example.

Example 7.6 (Homogeneous space G/U). As in Example 2.1(4) consider the
spherical homogeneous space G/U where U is a maximal unipotent subgroup of G.
Again take the base field to be C and take a maximal compact subgroup K such
that K ∩ T is a maximal compact subgroup of the torus T . Then by the Iwasawa
decomposition we have G = KTU . If we write g ∈ G as kau, where k ∈ K, a ∈ T
and u ∈ U as in the Iwasawa decomposition, then the spherical logarithm map
Lt sends the point gU ∈ G/U to Logt(a) where Logt denotes the usual logarithm
map for the torus T (see (18)).
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Example 7.7 (Group G with G×G-action). As in Example 2.1(5) consider X =
G as a spherical variety for the left-right action of G×G. Take the base field to be
k = C and let G = GL(n,C) or SL(n,C). Also let B and T denote the subgroups
of upper triangular and diagonal matrices respectively. Moreover, let K = U(n) or
SU(n) be the maximal compact subgroup of unitary matrices.

In this case, the (Archimedean) Cartan decomposition (Conjecture 7.1) is the
well-known singular value decomposition theorem. Recall that if A is an n × n
complex matrix, the singular value decomposition states that A can be written as:

A = U1DU2,

where U1, U2 are n× n unitary matrices and D is diagonal with nonnegative real
entries. In fact, the diagonal entries of d are the eigenvalues of the positive semi-
definite matrix

√
AA∗ where A∗ = Āt. The diagonal entries of A are usually

referred to as the singular values of A. On the other hand, in this case, the
non-Archimedean Cartan decomposition (Theorem 5.6) is the Smith normal form
theorem (see also Example 5.7). Let A(t) be an n× n matrix whose entires Aij(t)
are Laurent series in t and over C. We recall that the Smith normal form theorem
(over the ring of formal power series which is a PID) states that A(t) can be written
as:

A1(t)τ(t)A2(t),

where A1(t), A2(t) are n × n matrices with power series entries and τ(t) is a
diagonal matrix of the form τ(t) = diag(tv1 , . . . , tvn) for integers v1, . . . , vn. The
integers v1, . . . , vn are usually called the invariant factors of A(t).

An instance of the statement that spherical amoebae of a curve approach its
spherical tropical variety is the following. It can be proved using the Hilbert–
Courant minimax principle [KM18].

Proposition 7.8 (Invariant factors versus singular values of a matrix). Let A(t)
be an n× n matrix whose entries Aij are algebraic functions in t. For sufficiently
small t 6= 0, let d1(t) ≤ · · · ≤ dn(t) denote the singular values of A(t) ordered
increasingly. Also let v1 ≥ · · · ≥ vn be the invariant factors of A(t) ordered
decreasingly. We then have:

lim
t→0

(logt(d1(t)), . . . , logt(dn(t))) = (v1, . . . , vn).

Let us look at a concrete example in this case. As in Section 6.3 consider the
line Y in GL(2,C) defined by the ideal:

I = 〈x11 − x12 − 1, x12 − x21, x22〉.

The spherical tropical variety of Y is computed in [V15, Example 5.3]. Using the
parametrization

Y =

{[
t+ 1 t
t 0

] ∣∣∣ t ∈ C},
the spherical amoeba of Y is plotted in Figure 1 on the next page.
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Figure 1. An approximate picture of the spherical amoeba of a line in GL(2,C)
(in fact, the picture shows the union of the images of the amoeba under the Weyl
group of GL(2,C)).
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