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Abstract. Let P be a parabolic subgroup in G = SLn(k), for k an algebraically closed
field. We show that there is a G-stable closed subvariety of an affine Schubert variety in
an affine partial flag variety which is a natural compactification of the cotangent bundle
T ∗G/P . Restricting this identification to the conormal variety N∗X(w) of a Schubert
divisor X(w) in G/P , we show that there is a compactification of N∗X(w) as an affine
Schubert variety. It follows that N∗X(w) is normal, Cohen–Macaulay, and Frobenius
split.

1. Introduction

Let the base field k be algebraically closed. Consider a cyclic quiver with h
vertices and dimension vector d = (d1, . . . , dh). Let

Rep(d, Âh) = Hom(V1, V2)× · · · × Hom(Vh, V1), GLd =
∏

1≤i≤h

GL(Vi).

We have a natural action of GLd on Rep(d, Âh): for g = (g1, . . . , gh) ∈ GLd and

f = (f1, . . . , fh) ∈ Rep(d, Âh),

g · f = (g2f1g
−1
1 , g3f2g

−1
2 , . . . , g1fhg

−1
h ).

Let

Z =
{

(f1, . . . , fh) ∈ Rep(d, Âh)
∣∣ fh ◦ fh−1 ◦ · · · ◦ f1 : V1 → V1 is nilpotent

}
.

Clearly Z is GLd-stable. Set n =
∑
di, and let ŜLn be the affine type Kac–Moody

group with Dynkin diagram Ân−1. Lusztig (cf. [12]) has shown that an orbit closure
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in Z is canonically isomorphic to an open subset of a Schubert variety in ŜLn/Q,

where Q is the parabolic subgroup of ŜLn corresponding to omitting the simple
roots α0, αd1 , αd1+d2 , . . . , αd1+···+dh−1

.

Let now h = 2 and consider the subvariety Z0 of Z given by

Z0 =
{

(f1, f2) ∈ Hom(V1, V2)×Hom(V2, V1)
∣∣ f2 ◦ f1 = 0, f1 ◦ f2 = 0

}
with the dimension vector (d1, d2). Strickland (cf. [17]) has shown that the irredu-
cible components of Z0 give the conormal varieties of the determinantal varieties
in Hom(V1, V2) = Matd2,d1(k), the set of d2 × d1 matrices with entries in k. A
determinantal variety in Hom(V1, V2) being canonically isomorphic to an open
subset in a certain Schubert variety in Grd2,d1+d2 (the Grassmannian variety of
d2-dimensional subspaces of kd1+d2) (cf. [8]), the above two results of Lusztig and
Strickland suggest a connection between conormal varieties to Schubert varieties
in the (finite-dimensional) flag variety and affine Schubert varieties.

Let G = SLn(k). We view the loop group LG = SLn
(
k[t, t−1]

)
as a Kac–

Moody group of type Ân−1. Let P be the parabolic subgroup of G corresponding
to omitting the simple root αd for some 1 ≤ d ≤ n − 1, and P the parabolic
subgroup of LG corresponding to omitting the simple roots α0, αd. Lakshmibai
([7]) has shown that the cotangent bundle T ∗G/P is an open subset of a Schubert
variety in LG/P . Let w0 be the longest element in the Weyl group W of G. In
[10], we have shown that the conormal variety of the Schubert variety XP (w) is
an open subset of a Schubert variety in LG/P if and only if the Schubert variety
XP (w0w) is smooth.

The approach adopted in [7], [10] seems to be quite successful in relating
cotangent bundles and conormal varieties of classical Schubert varieties to affine
Schubert varieties. In this paper, for any parabolic subgroup P of G, we first
construct an embedding of the cotangent bundle T ∗G/P inside an affine Schu-
bert variety X(κ) (Theorem 4.11). We then show that the conormal variety of a
Schubert divisor in G/P is an open subset of some affine Schubert subvariety of
X(κ) (Proposition 5.4). In particular, we obtain that the conormal variety of a
Schubert divisor is normal, Cohen–Macaulay, and Frobenius split (Corollary 5.5).

Let L+G = G (k[t]) and let B be a Borel subgroup of LG contained in L+G.
The action of of G on V = kn defines an action of LG on V [t, t−1]. The affine
Grassmannian LG/L+G is an ind-variety whose points are the lattices with virtual
dimension 0 (see Section 3.8 for the definition of a lattice and its virtual dimension).
The affine flag variety LG/B is an ind-variety whose points are affine flags L0 ⊂
L1 ⊂ · · · ⊂ Ln−1 satisfying the incidence relation tLn−1 ⊂ L0.

Let N be the variety of n×n nilpotent matrices on which G acts by conjugation.
In [11], Lusztig constructs a G-equivariant embedding ψ : N ↪→ LG/L+G which
takes G-orbit closures in N to G-stable Schubert varieties in LG/L+G. Let θ be
the Springer resolution T ∗G/B → N given by (g,X) 7→ gXg−1. In [9] Lakshmibai
et al. construct a lift of ψ, namely a map η embedding T ∗G/B into the affine flag
variety LG/B, leading to the following commutative diagram:
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T ∗G/B LG/B

N LG/L+G,

η

θ pr

ψ

where pr is the projection map. Under the identifications of the previous para-
graph, it takes the affine flag L0 ⊂ · · · ⊂ Ln−1 to the lattice L0. In this paper,
for any parabolic subgroup P of G, we define a generalization φP , as described
below, of the map η, and then study the conormal variety of a Schubert divisor by
identifying its image under φP .

Let P be a parabolic subgroup of G corresponding to some subset SP ⊂ S0. We
denote by P the parabolic subgroup of LG corresponding to SP ⊂ S = S0 t {α0}.
Let u be the Lie algebra of the unipotent radical of P . Using the identification
T ∗G/P = G ×P u (see Section 3.6), we define in Section 3.11 the map φP :
T ∗G/P ↪→ LG/P by φP (g,X) = g

(
1− t−1X

)
(modP), which sits in the following

commutative diagram (see Section 3.13):

T ∗G/P LG/P

Nν LG/L+G.

φP

θP pr

ψ

The variety Nν is the closure of a G-orbit in N . The map θP : T ∗G/P → Nν ,
given by (g,X) 7→ gXg−1 is a resolution of Nν (cf. [2]), and pr is the quotient
map. The closure of Im(φP ) in LG/P is a G-stable compactification of T ∗G/P .

We also identify the κ ∈ ŴP (see Section 4.5 and Theorem 4.11) for which Im φP ⊂
XP(κ), and further, κ is minimal for this property. Finally, given a Schubert divisor
XP (w) ⊂ G/P , we identify a Schubert variety XP(v) which is a compactification
of the conormal variety N∗XP (w) (see Proposition 5.4).

When P is maximal, φP is the same as the map in [7], and gives a dense
embedding of T ∗G/P , i.e., XP(κ) is a compactification of T ∗G/P . Mirković
and Vybornov [14] have constructed another lift of Lusztig’s embedding along
the Springer resolution, which we briefly discuss in Section 3.14. Their lift is in
general different, but agrees with φP exactly when P is maximal. The reader is
cautioned that Mirković and Vybornov work with a different choice of Lusztig’s
map given by X 7→ (1 − t−1X)−1(modL+G). This difference is simply a matter
of convention.

The paper is organized as follows. In §2, we discuss some generalities on loop
groups, and the associated root system and Weyl group. In §3, we define the
embedding φP : T ∗G/P ↪→ G/P, relate it to Lusztig’s embedding ψ : N → G/L+G
via the Springer resolution, and discuss the relationship between φP and the map
ψ̃ of [14]. In §4, we identify the minimal κ ∈ Ŵ for which φP (T ∗G/P ) ⊂ XP(κ).
In particular, φP identifies a G-stable subvariety of XP(κ) as a compactification
of T ∗G/P . We also compute the dimension of XP(κ). This allows us to recover
the result of [7] and further show that XP(κ) is a compactification of T ∗G/P if
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and only if P is a maximal parabolic subgroup. Finally, in §6, we apply φP to
the conormal variety N∗XP (w) of a Schubert divisor XP (w) in G/P to show that
N∗XP (w) can be embedded as an open subset of an affine Schubert variety.

Acknowledgments. We thank the referees for their many helpful comments.

2. The loop group

Let k be an algebraically closed field. In this section, we discuss some standard
results on the root system, Weyl groups, and the Bruhat decomposition of the loop
group LG = SLn

(
k[t, t−1]

)
. For further details, the reader may refer to [5], [6],

[15].

2.1. The loop group and its Dynkin diagram

Let G be the special linear group SLn (k). The subgroup B (resp. B−) of upper
(resp. lower) triangular matrices in G is a Borel subgroup of G, and the subgroup
T of diagonal matrices is a maximal torus in G. The root system of G with respect
to (B, T ) has Dynkin diagram An−1. We use the standard labeling of simple roots
S0

α1• α2• · · ·
αn−2•

αn−1•

Let ∆0 be the set of roots and ∆+
0 the set of positive roots. Let L±G=SLn

(
k
[
t±1
])

and π± : L±G → G the surjective map given by t±1 7→ 0. Then B := π−1+ (B)

and B− := π−1− (B−) are opposite Borel subgroups of LG. The loop group LG is a

(minimal) Kac–Moody group (cf. [15]) with torus T and Dynkin diagram Ân−1.
α1• α2• · · ·

αn−2•
αn−1•

α0•

We denote the Borel subgroup B+ as just B. Parabolic subgroups containing B
(resp. B) in G (resp. LG) correspond to subsets of S0 (resp. S). For P the para-
bolic subgroup in G corresponding to SP ⊂ S0, the parabolic subgroup P ⊂ LG
corresponding to SP ⊂ S is given by P = π−1(P ). In particular, the subgroup
L+G is the parabolic subgroup corresponding to S0 ⊂ S.

2.2. The root system of An−1

Consider the vector space of n×n diagonal matrices, with basis {Ei,i | 1 ≤ i ≤ n}.
Writing {εi | 1 ≤ i ≤ n} for the basis dual to {Ei,i | 1 ≤ i ≤ n}, we can identify the
set of roots ∆0 of G as follows:

∆0 = {εi − εj | 1 ≤ i 6= j ≤ n} .

The positive root αi + · · · + αj−1, where i < j, corresponds to εi − εj , and the
negative root −(αi + · · ·+ αj−1) corresponds to εj − εi. For convenience, we shall
denote the root εi − εj by (i, j), where 1 ≤ i 6= j ≤ n. The action of W (∼= Sn) on
∆0 is given by w(i, j) = (w(i), w(j)).
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2.3. The root system of Ân−1

Let ∆ be the root system associated to the Dynkin diagram Ân−1. We have

∆ = {kδ + α | k ∈ Z, α ∈ ∆0}t {kδ | k ∈ Z, k 6= 0} .

where δ = α0 + θ is the basic imaginary root in ∆, and θ = α1 + · · ·+ αn−1 is the
highest root in ∆+

0 . The set of positive roots ∆+ has the following description:

∆+ = {kδ + α | k > 0, α ∈ ∆0t∆+
0 t {kδ | k > 0}. (2.4)

Let ∼ be the equivalence relation on Z× Z given by

(i, j) ∼ (i+ kn, j + kn) ∀ k ∈ Z.

We identify ∆ with Z× Z/∼ as follows:

kδ 7→ (0, kn),

(i, j) + kδ 7→ (i, j + kn) for (i, j) ∈ ∆0.
(2.5)

Under this identification, (i, j) ∈ ∆+ if and only if i < j.

2.6. The Weyl group

Let N be the normalizer of T in G. We identify the Weyl group Ŵ associated
to Ân−1 with N(k[t, t−1])/T . Let Ei,j be the n × n matrix with 1 in the (i, j)
position, and 0 elsewhere. The elements of N

(
k[t, t−1]

)
are matrices of the form∑

1≤i≤n
tiEσ(i),i, where

• (ti) is a collection of non-zero monomials in t and t−1.
• σ is a permutation of {1 . . . n}.
• det

(∑n
i=1 tiEσ(i),i

)
= 1.

Consider the homomorphism N
(
k[t, t−1]

)
→ GLn

(
k[t, t−1]

)
given by

n∑
i=1

tiEσ(i),i 7→
n∑
i=1

tord(ti)Eσ(i),i. (2.7)

The kernel of this map is T . Hence we can identify Ŵ with the group of n × n
permutation matrices M , with each non-zero entry a power of t, and ord(detM) =

0. For w ∈ Ŵ , we call the matrix corresponding to w the affine permutation matrix
of w.

2.8. Generators for Ŵ

We shall work with the set of generators for Ŵ given by {s0, s1, . . . , sn−1}, where
si, 0 ≤ i ≤ n − 1 are the reflections with respect to αi, 0 ≤ i ≤ n − 1. Note that
{αi | 1 ≤ i ≤ n− 1} being the set of simple roots of G, the Weyl group W of G is
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the subgroup of Ŵ generated by s1, . . . , sn−1. The affine permutation matrix of
w ∈W is

∑
Ew(i),i. The affine permutation matrix of s0 is given by

0 0 · · · t−1

0 1 · · · 0
...

...
...

...
0 · · · 1 0
t 0 0 0

 .

For 1 ≤ a < b ≤ n, the reflection with respect to the positive root (a, b) is given
by the affine permutation matrix

s(a,b) = Ea,b + Eb,a +
∑

1≤i≤n
i 6=a,b

Ei,i.

2.9. Decomposition of Ŵ as a semi-direct product

Consider the element sθ ∈W , reflection with respect to the highest root θ. There
exists (cf. [6, §13.1.6]) a group isomorphism Ŵ →W nQ given by

si 7→ (si, 0) for 1 ≤ i ≤ n− 1,

s0 7→ (sθ,−θ∨),

where Q is the coroot lattice and θ∨ = α∨1 + · · · + α∨n−1. The simple coroot
α∨i ∈ h, 1 ≤ i ≤ n − 1, is given by the matrix Ei,i − Ei+1,i+1. As shown in [9,

Sect. 2.4], a lift to N(k[t, t−1]) of (id, α∨i ) ∈ Ŵ , for 1 ≤ i ≤ n− 1 is given by

τα∨i =
∑

k 6=i,i+1

Ek,k + t−1Ei,i + tEi+1,i+1.

For q ∈ Q, we will write τq for the image of (id, q) ∈ W nQ in Ŵ . Observe that
for α ∈ ∆0, q ∈ Q such that α = (a, b) and τq =

∑
tiEii, we have

α(q) = ord(tb)− ord(ta). (2.10)

The action of τq on ∆ is given by τq(δ) = δ, and

τq(α) = α− α(q)δ for α ∈ ∆0. (2.11)

Hence, for α ∈ ∆+
0 , it follows from Equation (2.4) that

τq(α) > 0 ⇐⇒ q(α) ≤ 0. (2.12)

Corollary 2.13. For α ∈ ∆+
0 , τqsα > τq if and only if α(q) ≤ 0 and sατq > τq if

and only if α(q) ≥ 0 .
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Proof. Follows from the equivalences (cf. [6]) wsα > w ⇐⇒ w(α) > 0 and
sαw > w ⇐⇒ w−1(α) > 0 applied to w = τq. �

2.14. The Coxeter length

Let w ∈ Ŵ be given by the affine permutation matrix w =
∑
tciEσ(i),i, i.e.,

w(i) = σ(i)− cin. We have the formula:

l(w) =
∑

1≤i<j≤n

|ci − cj − fσ(i, j)| , (2.15)

where

fσ(i, j) =

{
0 if σ(i) < σ(j),

1 otherwise.

Proof. We use Equation (2.5) to write ∆+ = {(i, j) | 1 ≤ i ≤ n, i < j}. We know
from [6] that

l(w) = #
{
α ∈ ∆+

∣∣w(α) < 0
}

= # {(i, j) | 1 ≤ i ≤ n, i < j, w(i) > w(j)}

=
∑

1≤i≤n

∑
1≤j≤n

# {(i, j′) | j′ = j modn, i < j′, w(i) > w(j′)}

=
∑

1≤i<j≤n

# {(i, j + kn) | k ≥ 0, w(i) > w(j + kn)}
+ # {(j, i+ kn) | k ≥ 1, w(j) > w(i+ kn)}

=
∑

1≤i<j≤n

# {k | 0 ≤ k < (σ(i)− σ(j))/n+ cj − ci}
+ # {k | 1 ≤ k < (σ(j)− σ(i))/n− cj + ci}

=
∑

1≤i<j≤n

|ci − cj − fσ(i, j)| . �

2.16. The Bruhat decompostion

The Bruhat decomposition of LG is given by LG =
⊔

w∈Ŵ
BwB. For w ∈ Ŵ , let

XB(w) ⊂ LG/B be the affine Schubert variety:

XB(w) = BwB(modB) =
⊔
v≤w

BvB(modB).

The Bruhat order ≤ on Ŵ reflects inclusion of Schubert varieties, i.e., v ≤ w if
and only if XB(v) ⊆ XB(w).

Let ŴP ⊂ Ŵ be the set of minimal (in the Bruhat order) representatives of

Ŵ/ŴP . The Bruhat decomposition with respect to P is given by

LG =
⊔

w∈ŴP

BwP.
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For w ∈ ŴP , the affine Schubert variety XP(w) ⊂ LG/P is given by

XP(w) = BwP(modP) =
⊔
v≤w

v,w∈ŴP

BwP(modP).

For w ∈ ŴP , XP(w) is a normal (cf. [3]), projective variety of dimension l(w), the
length of w.

Proposition 2.17. Suppose w ∈ Ŵ is given by the affine permutation matrix∑
tiEσ(i),i =

∑
Eσ(i),i

∑
tiEi,i = στq,

with σ ∈ Sn and τq =
∑
tiEi,i ∈ Q, where Q is the coroot lattice as in Section 2.9.

Let 1 ≤ a < b ≤ n and set sr = s(a,b), sl = σsrσ
−1 = s(σ(a),σ(b)). The unique

minimal element in the set {w, slw,wsr, slwsr} has the description as given by the
following cases:

Case 1. Suppose ord(ta) = ord(tb). Then slw = wsr, and the set {w, slw} has
a unique minimal element u, given by

u =

{
w if σ(a) < σ(b),

slw if σ(a) > σ(b).

Case 2. Suppose ord(ta) 6= ord(tb) and σ(a) < σ(b). Then slw 6= wsr, and the
set {w, slw,wsr, slwsr} has a unique minimal element u, given by

u =

{
wsr if ord(ta) < ord(tb),

slw if ord(ta) > ord(tb).

Further, we have u < slu < slusr and u < usr < slusr.
Case 3. Suppose ord(ta) 6= ord(tb) and σ(a) > σ(b). Then slw 6= wsr, and the

set {w, slw,wsr, slwsr} has a unique minimal element u, given by

u =

{
slwsr if ord(ta) < ord(tb),

w if ord(ta) > ord(tb).

Further, we have u < slu < slusr and u < usr < slusr.

Proof. Recall from Equation (2.10) that q(a, b) = ord(tb)− ord(ta).
Case 1. Suppose first that ord(ta) = ord(tb), which from Equation (2.11) is

equivalent to τq(a, b) = (a, b). It follows that

wsr = στqs(a,b) = σs(a,b)τq = s(σ(a),σ(b))στq = slw.

Recall that for α ∈ ∆+
0 , we have wsα > w if and only if w(α) > 0. Now, w(a, b) =

στq(a, b) = σ(a, b) = (σ(a), σ(b)) being positive if and only if σ(a) < σ(b), it follows
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that w < wsr if and only if σ(a) < σ(b). This is precisely the description of the
unique minimal element in Case 1.

Case 2. Suppose ord(ta) 6= ord(tb) and σ(a) < σ(b). In particular, (σ(a), σ(b))
is a positive root. Set k = −q(a, b) = ord(ta) − ord(tb). By Equation (2.11), we
have that τq(a, b) = (a, b) + kδ. Then

w(a, b) = στq(a, b) = σ((a, b) + kδ) = (σ(a), σ(b)) + kδ,

w−1(σ(a), σ(b)) = τ−1q σ−1(σ(a), σ(b)) = τ−q(a, b) = (a, b)− kδ.
It follows that w(a, b) is positive if and only if k > 0, while w−1(σ(a), σ(b)) is
positive if and only if k < 0. Hence, we have

slw < w < wsr if ord(ta) > ord(tb),

wsr < w < slw if ord(ta) < ord(tb).
(2.18)

In particular, we have slw 6= wsr. Next, observe that

slwsr =
∑
i 6=a,b

tiEσ(i),i + tbEσ(a),a + taEσ(b),b.

Further, the affine permutation matrix of slwsr is obtained by interchanging ta and
tb in the affine permutation matrix of w. Applying Equation (2.18) to v = slwsr,
we have

slw = vsr < v < slv = wsr if ord(ta) > ord(tb),

wsr = slv < v < vsr = slw if ord(ta) < ord(tb).

From Equations (2.18) and (2.19), we deduce the description of the minimal
element in the set {w, slw,wsr, slwsr}, as asserted in Case 2 of the Proposition.

Case 3. Suppose ord(ta) 6= ord(tb) and σ(a) > σ(b). Then Case 2 applies to the
element v = slw. Hence, we deduce the answers in this case by replacing w with
slw everywhere in Case 2.

3. Lusztig’s embedding and the Springer resolution

In this section, we define the embedding φP : T ∗G/P ↪→ LG/P and relate it
to Lusztig’s embedding ψ : N → LG/L+G via the Springer resolution. We also
discuss Mirković and Vybornov’s ([14]) compactification of T ∗G/P and show how
it relates to the map φP .

Let V be the vector space kn with standard basis {ei| 1 ≤ i ≤ n}, and let the
group G = SLn(k) act on V in the usual way. Fix a sequence 0 = d0 < d1 < . . . <
dr−1 < dr = n, and let P ⊃ B be the parabolic subgroup corresponding to the set
of roots SP = S0\ {αdi | 1 ≤ i < r} in S0. Let λi = di− di−1 and λ = (λ1, . . . , λr).
We denote by P the parabolic subgroup B ⊂ P ⊂ LG corresponding to SP ⊂ S.

3.1. Partitions

A partition µ of n is a non-increasing sequence (µ1, µ2, . . . , µr) of positive integers
such that

∑
µi = n. Given µ = (µ1, . . . , µr), we sometimes view µ as an infinite

non-negative sequence by defining µi = 0 for i > r. Let Par denote the set of
partitions of n. The dominance order � on Par is given by

µ � ν ⇐⇒
∑
j≤i

µj ≤
∑
j≤i

νj ∀ i ∈ Z.
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3.2. The Nilpotent cone

LetN be the variety of nilpotent n×n matrices, and let G act onN by conjugation.
The variety N has the G-orbit decomposition N =

⊔
ν∈Par

N ◦ν , where N ◦ν is the set

of nilpotent matrices of Jordan type ν. We write Nν for the closure (in N ) of N ◦ν .
Then Nµ ⊂ Nν if and only if µ � ν.

3.3. Lusztig’s embedding

Let ν = (ν1, . . . , νs) be the partition of n which is conjugate to the partition of
n obtained from λ by rearranging the λi in non-increasing order. In particular,
r = ν1 and s = max {λi | 1 ≤ i ≤ r}. Consider the element τq ∈ Ŵ given by the
affine permutation matrix

τq =

s∑
i=1

tνi−1Ei,i +

n∑
i=s+1

t−1Ei,i. (3.4)

There exists a G-equivariant injective map ψ : Nν ↪→ XL+G(τq) given by

ψ (X) =
(
1− t−1X

)
(modL+G) for X ∈ Nν . (3.5)

The map ψ is an open immersion onto the opposite Bruhat cell

YL+G(τq) := B−/L+G∩XL+G(τq),

where B−/L+G denotes the image of B− under the map LG → LG/L+G. This
statement is well known. A proof of can be found in §4.1 of [1]. A variant of the
map ψ was first introduced in [11].

3.6. The cotangent bundle

We identify the points of the variety G/P with the partial flags in V (= kn) of
shape λ:

G/P ∼= {(F0 ⊂ F1 ⊂ · · · ⊂ Fr−1 ⊂ Fr) | dimFi/Fi−1 = λi} .

Using the Killing form on sln, we can identify the cotangent space at identity
T ∗eG/P with the Lie algebra u of the unipotent radical UP of P . Then T ∗G/P is
the fiber bundle over G/P associated to the principal P -bundle G→ G/P , for the
adjoint action of P on u:

T ∗G/P = G×P u = G× u/∼ .

The equivalence relation ∼ is given by (g, Y ) ∼ (gp, p−1Y p), where g ∈ G, Y ∈ u,
p ∈ P . We also have the identification

T ∗G/P ={(X,F0 ⊂ · · · ⊂ Fk) |X ∈ N , dimFi/Fi−1 = λi, X(Fi)⊂Fi−1} . (3.7)

The two identifications are related via the isomorphism

(g,X) 7→ (gXg−1, gV0 ⊂ · · · ⊂ gVk),

where (V0 ⊂ · · · ⊂ Vr) is the flag of shape λ fixed by P .
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3.8. The affine Grassmannian

A lattice in L ⊂ V [t, t−1] is a k[t] module satisfying k[t, t−1] ⊗
k[t]

L = V [t, t−1]. The

virtual dimension of L is defined as

vdim(L) := dimk(L/L ∩ E)− dimk(E/L ∩ E).

where E is the standard lattice, namely the k[t] span of V . The quotient LG/L+G
is an ind-variety whose points are identified with the lattices of virtual dimension
0 (cf. [3]).

LG/L+G = {L a lattice | vdim(L) = 0} .

3.9. Affine flag varieties

A partial affine flag of shape λ is a sequence of lattices L0 ⊂ L1 ⊂ · · · ⊂ Lr
satisfying tLr = L0 and dimLi/Li−1 = λi for 1 ≤ i ≤ r. For P and P as above,
we can identify the points of the ind-variety LG/P with partial affine flags of shape
λ satisfying the additional condition vdim(L0) = 0 (cf. [3]).

LG/P ∼= {(L0 ⊂ · · · ⊂ Lr) | dimLi/Li−1 = λi, tLr = L0, vdim(L0) = 0} . (3.10)

The ind-variety LG/P is called the affine flag variety associated to P.

3.11. The map φP

Let φP : G×P u→ LG/P be defined by

φP (g,X) = g(1− t−1X)(modP) g ∈ G, X ∈ u.

For g ∈ G, p ∈ P and X ∈ u, we have

φP
(
gp, p−1Xp

)
= gp

(
1− t−1p−1Xp

)
(modP)

= g
(
p− t−1Xp

)
(modP)

= g
(
1− t−1X

)
(modP)

= g φP (1, X) .

It follows that φP is well-defined and G-equivariant. Under the identifications of
Equations (3.7) and (3.10), we have

φP (X,F0 ⊂ F1 ⊂ · · · ⊂ Fr) = L0 ⊂ L1 ⊂ · · · ⊂ Lr.

where Li =
(
1− t−1X

) (
V [t]⊕ t−1Fi

)
.

Lemma 3.12. The map φP is injective.

Proof. Suppose φP (g, Y ) = φP (g1, Y1), i.e.,

g
(
1− t−1Y

)
= g1

(
1− t−1Y1

)
(modP)

=⇒ g
(
1− t−1Y

)
= g1

(
1− t−1Y1

)
x for some x ∈ P .
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Denoting h = g−11 g and Y ′ = hY h−1, we have

h
(
1− t−1Y

)
=
(
1− t−1Y1

)
x

=⇒ x =
(
1− t−1Y1

)−1
h
(
1− t−1Y

)
=
(
1− t−1Y1

)−1 (
1− t−1Y ′

)
h

=⇒ xh−1 =
(
1 + t−1Y1 + t−2Y 2

1 + · · ·
) (

1− t−1Y ′
)
.

Now since x ∈ P , h ∈ G, the left-hand side is integral, i.e., does not involve
negative powers of t. Hence both sides must equal identity. It follows that x =
h ∈ P = P

⋂
G and Y1 = Y ′ = hY h−1. In particular, (g1, Y1) =

(
gh−1, hY h−1

)
∼

(g, Y ) as required. �

3.13. The Springer resolution

Let ν be the partition of n which is conjugate to the partition of n obtained from
λ by rearranging the λi in non-increasing order. The Springer map θP : T ∗G/P →
N , given by θP (g,X) = gXg−1 where g ∈ G, X ∈ n, is a resolution of singularities
for the G-orbit Nν ⊂ N . The maps φP and ψ from Section 3.11 and equation (3.5)
sit in the following commutative diagram:

T ∗G/P LG/P

Nν LG/L+G,

φP

θP pr

ψ

where pr : LG/P → LG/L+G is the natural projection. We present a more precise
version of this statement in Section 4.5.

3.14. The Mirković–Vybornov compactification

Consider the convolution Grassmannian G̃rλ whose points are identified with
certain lattice flags:

G̃rλ =
{
L0 ⊂ L1 ⊂ · · · ⊂ Lr

∣∣Lr = t−1V [t], dimLi/Li−1 = λi, tLi ⊂ Li−1
}
.

Mirković and Vybornov [14] have constructed an embedding ψ̃ : T ∗G/P ↪→ G̃rλ
given by

ψ̃(X,F0 ⊂ · · · ⊂ Fr) = L0 ⊂ · · · ⊂ Lr,

where Li = (1− t−1X)V [t]⊕ t−1Fi. Once again, we have a commutative diagram

T ∗G/P G̃rλ

Nν LG/L+G,

ψ̃

θP pr

ψ

where the map pr : G̃rλ → LG/L+G is given by (L0, L1, . . . , Lr) 7→ L0. As we can
see, the incidence relations tLi ⊂ Li−1 are in general different from the incidence
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relations tLr = L0 of the partial affine flag variety; accordingly, G̃rλ is different
from LG/P . However, when P is maximal, i.e., λ = (d, n−d) for some d, we have

an isomorphism β : G̃rλ ∼−→ LG/P given by

(L0 ⊂ L1 ⊂ t−1V [t]) 7→ (L0 ⊂ L1 ⊂ L2),

where L2 = t−1L0. In this case, one can verify that β ◦ ψ̃ = φP .

4. The element κ

Let λ = (λ1, . . . , λr), P , and P be as in the previous section. Further, let
ν = (ν1, . . . , νs) be the partition of n which is conjugate to the partition of n
obtained from λ by rearranging the λi in non-increasing order.

In this section, we describe the element κ ∈ ŴP for which φP (T ∗G/P ) ⊂
XP(κ); further, κ is minimal for this property. We compute dimXP(κ) = l(κ)
and show that when P is maximal, XP(κ) is a compactification of T ∗G/P .

4.1. Tableaux

We draw a left-aligned tableau with r rows, with the ith row from top having λi
boxes. Fill the boxes of the tableau as follows: the entries of the ith row are the
integers k satisfying di < k ≤ di+1, written in increasing order. We denote by
Row(i) the set of entries in the ith row of the tableau. Observe that the number
of boxes in the ith column from the left is νi. The Weyl group WP is the set of
elements in Sn that preserve the partition {1, . . . , n} =

⊔
iRow(i).

We define a co-ordinate system χ(•, •) on {1, . . . , n} as follows: For 1 ≤ i ≤ r,
1 ≤ j ≤ νi, let χ(j, i) denote the jth entry (from the top) of the ith column. Note
that χ(j, i) need not be in Row(j).

Finally, let F ij,k denote the elementary matrix Eχ(j,i),χ(k,i). Observe that χ(b, i)
= χ(c, j) if and only if i = j and b = c. In particular,

F ia,bF
j
c,d = δijδbcF

i
a,d. (4.2)

4.3. Red and Blue
We split the set {1, . . . , n} into disjoint subsets Red and Blue, depending on their
positions in the tableau. Let S1 = {χ(1, i) | 1 ≤ i ≤ s} be the set of entries which
are topmost in their column. We write S1(i) = S1

⋂
Row(i). For convenience, we

also define S2(i) = Row(i)\S1(i) and S2 =
⋃
i S2(i).

The set Red(i) is the collection of the #S1(i) smallest entries in Row(i):

Red(i) := {j | di−1 < j ≤ di −max {λk | k < i}} .

We set Blue(i) = Row(i)\Red(i), Red =
⋃
iRed(i), and Blue =

⋃
i Blue(i). The

elements of Red(i) are smaller than the elements of Blue(i).
The elements of Red, arranged in increasing order are written l(1), . . . , l(s). We

enumerate the elements of Blue, written row by row from bottom to top, each row
written left to right, as m(1), . . . ,m(n− s).
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Example 4.4. Let n = 17 and the sequence (di) be (1, 5, 9, 11, 17). The corres-
ponding tableau is

1
2 3 4 5
6 7 8 9
1011
121314151617

• r = 5, s = 6.
• The sequence (λi) is (1, 4, 4, 2, 6).
• The sequence (νi) is (5, 4, 3, 3, 1, 1).
• Row(3) = {6, 7, 8, 9}.
• χ(4, 1) = 10, χ(3, 4) = 15, χ(1, 6) = 17, etc.
• F 1

2,4 = E2,10, F
3
3,3 = E14,14, etc.

• S1 = {1, 3, 4, 5, 16, 17}.
• The sequence l(i) is (1, 2, 3, 4, 12, 13).
• The sequence m(i) is (14, 15, 16, 17, 10, 11, 6, 7, 8, 9, 5).

4.5. The element κ

Let κ ∈ Ŵ be given by the affine permutation matrix

s∑
i=1

tνi−1Ei,l(i) +

n−s∑
i=1

t−1Ei+s,m(i).

Recall the element τq ∈ Ŵ from Equation (3.4). The commutative diagram of
Section 3.13 can be refined to the following:

T ∗G/P XP(κ)

Nν XL+G(τq).

φP

θP pr

ψ

The only additional part is the claim φP (T ∗G/P ) ⊂ XP(κ). This is the content
of Theorem 4.11.

4.6. The matrix Z

Let V be the n-dimensional vector space with basis e1, . . . , en, and let Z be the
linear endomorphism of V given by

Zeχ(j,i) =

{
eχ(j−1,i) if j > 1,

0 if j = 1.

Writing Z as a matrix with respect to the basis e1, . . . , en, we have

Z =
s∑
i=1

νi−1∑
j=1

F ij,j+1.
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Observe that
{
eχ(νi,i)

∣∣ 1 ≤ i ≤ s
}

is a minimal generating set for V as a module
over k[Z] (the k-algebra generated by Z). Consequently, the Jordan type of Z is
ν, i.e., Z ∈ N ◦ν . Further, observe that Z(Vi) ⊂ Vi−1 for all i, hence Z ∈ u, where
u is as in Section 3.6.

An element in x ∈ u is called a Richardson element of u if the P -orbit of x is
dense in u, or equivalently, the G-orbit of (1, Z) is dense in T ∗G/P = G×P u. A
comprehensive study of Richardson elements in u can be found in [4]. In particular,
we will need the following:

Lemma 4.7. The matrix Z is a Richardson element in u.

Proof. This follows from Theorem 3.3 of [4], along with the above observation that
the Jordan type of Z is ν, i.e., Z ∈ N ◦ν . �

Proposition 4.8. Let B$B be the Bruhat cell containing 1 − t−1Z. A lift of $
to N

(
k[t, t−1]

)
is given by

∼
$ =

s∑
i=1

(
tνi−1F iνi,1 −

νi∑
j=2

t−1F ij−1,j

)
.

Proof. For 1 ≤ i ≤ s, let

bi :=

νi∑
j=1

νi∑
k=j

tk−jF ik,j =

νi∑
j=1

νi−j∑
k=0

tkF ij+k,j ,

ci :=

νi∑
j=1

F ij,j +

νi∑
j=2

tj−1F ij,1,

Zi :=

νi∑
j=1

F ij,j − t−1
νi−1∑
j=1

F ij,j+1.

We compute

biZici =
( νi∑
j=1

νi−j∑
k=0

tkF ij+k,j

)( νi∑
j=1

F ij,j − t−1
νi−1∑
j=1

F ij,j+1

)
ci

=
( νi∑
j=1

νi−j∑
k=0

tkF ij+k,j −
νi−1∑
j=1

νi−j∑
k=0

tk−1F ij+k,j+1

)
ci

=
( νi∑
j=1

νi−j∑
k=0

tkF ij+k,j −
νi∑
j=2

νi−j∑
k=−1

tkF ij+k,j

)
ci

=
( νi−1∑
k=0

tkF i1+k,1 −
νi∑
j=2

t−1F ij−1,j

)( νi∑
j=1

F ij,j +

νi∑
j=2

tj−1F ij,1

)

=

νi−1∑
k=0

tkF ik+1,1 −
νi∑
j=2

t−1F ij−1,j −
νi∑
j=2

tj−2F ij−1,1

= tνi−1F iνi,1 −
νi∑
j=2

t−1F ij−1,j .
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Observe that 1− t−1Z =
∑

1≤i≤s Zi. It follows from Equation (4.2) that for i 6= j,
biZj = 0 and Zjci = 0. Writing b =

∑
i bi and c =

∑
i ci, we see

b(1− t−1Z)c =
∑
i

biZici = $.

The result now follows from the observation b, c ∈ B. �

Lemma 4.9. There exist wg ∈ ŴL+G(= W ), wp ∈ ŴP(= WP ) such that $ =

wgκwp. In particular, XP($) ⊂ L+GκP(modP).

Proof. Recall the disjoint subsets S1,S2 of {1, . . . , n} from Section 4.3. Consider
the bijection ι : S2 → {χ(j, i) | 1 ≤ j ≤ νi − 1} given by ι(χ(j, i)) = χ(j− 1, i). We
reformulate Proposition 4.8 as

∼
$ =

s∑
i=1

tνi−1Eχ(νi,i),χ(1,i) −
∑
i∈S2

Eι(i),i.

It follows from Equation (2.7) that the affine permutation matrix of $ is given by

$ =
s∑
i=1

tνi−1Eχ(νi,i),χ(1,i) +
∑
i∈S2

Eι(i),i.

Observe that #Red(k) = #S1(k) and #Blue(k) = #S2(k) for all 1 ≤ k ≤ r. Since
both (l(i))1≤i≤s and (χ(1, i))1≤i≤s are increasing sequences, χ(1, i) and l(i) are in
the same row for each i. Furthermore, there exists an enumeration t(1), . . . , t(n−s)
of S2 such that t(i) is in the same row as m(i) for all i. We define wg ∈ W and
wp ∈WP via their affine permutation matrices:

wg =
s∑
i=1

Ei,χ(νi,i) +
n−s∑
i=1

Ei+s,ι(t(i)),

wp =
s∑
i=1

Eχ(1,i),l(i) +
n−s∑
i=1

Et(i),m(i).

A simple calculation shows $ = wgκwp. �

Proposition 4.10. The Schubert variety XP(κ) is stable under left multiplication
by L+G, i.e., XP(κ) = L+GκP/P.

Proof. Consider the affine permutation matrix of κ. We will show, for 1 ≤ i < n,
either siκ = κ(mod ŴP) or siκ < κ. We split the proof into several cases, and use
Proposition 2.17 with sl = si:

(1) i < s and νi = νi+1 : We deduce from νi = νi+1 that the entries l(i) and
l(i+ 1) appear in the same row of the tableau. In particular, l(i) ∈ SP . The non-
zero entries of the ith and (i+ 1)th row of κ are tνi−1Ei,l(i) and tνi+1−1Ei+1,l(i+1)

respectively. We see siκ = κsl(i) = κ(mod ŴP).
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(2) i < s and νi > νi+1 : The non-zero entries of the ith and (i + 1)th row of
κ are tνi−1Ei,l(i) and tνi+1−1Ei+1,l(i+1) respectively. Case 2 of Proposition 2.17
applies with a = l(i), b = l(i+ 1), and we have siκ < κ.

(3) i = s : The non-zero entries of the ith and (i+ 1)th row of κ are tνs−1Es,l(s)
and t−1Es+1,m(1) respectively. Since m(1) ∈ Blue(r), it follows from Section 4.3
that l(s) < m(1). Case 2 of Proposition 2.17 applied with a = l(s), b = m(1) tells
us siκ < κ.

(4) i > s and m(i − s) ∈ SP : The non-zero entries of the i and (i + 1)th

row of κ are t−1Ei,m(i−s) and t−1Ei+1,m(i+1−s) respectively. It follows that siκ =

κsm(i−s) = κ(mod ŴP).
(5) i > s and m(i − s) /∈ SP : It follows from m(i − s) /∈ SP that if m(i −

s) ∈ Row(j) then m(i + 1 − s) ∈ Row(j − 1). In particular, m(i + 1 − s) <
m(i − s). The non-zero entries of the ith and (i + 1)th row of κ are t−1Ei,m(i−s)
and t−1Ei+1,m(i+1−s) respectively. Case 1 of Proposition 2.17 applied with a =
m(i+ 1− s), b = m(i+ s) tells us siκ < κ. �

Theorem 4.11. Let φP be as in Section 3.11. Then Im(φP ) ⊂ XP(κ). In particu-

lar, the map φP gives a compactification of T ∗G/P . Further κ ∈ ŴP is minimal
for the property Im(φP ) ⊂ XP(κ).

Proof. Let O denote the G-orbit of (1, Z) ∈ G ×P u. It follows from Lemma 4.7
that T ∗G/P = O, and from Proposition 4.8 that φP (1, Z) ∈ B$P/P. Since φP is
G-equivariant, it follows that φP (O) ⊂ GB$P/P ⊂ L+G$P/P, and so

φP (T ∗G/P ) = φP
(
O
)
⊂ φP (O) ⊂ L+G$P/P = XP(κ),

where the last equality follows from Lemma 4.9 and Proposition 4.10. Further,
φP (T ∗G/P ), being a closed subvariety of XP(κ), is compact.

To prove the minimality of κ, we show that there exists an element a ∈ G
such that φP (a, Z) ∈ BκP/P. Proposition 4.10 implies that κ is maximal in
the right coset W$. In particular, there exists w ∈ W such that κ = w$ and
l(κ) = l(w) + l($). It follows that BwB$P = BκP, and φP (a, Z) ∈ BκP for any
a ∈ BwB. �

Proposition 4.12. The dimension of XP(κ) is l(κ), the length of κ.

Proof. We need to show that κ ∈ ŴP . For αi ∈ SP , we show κsi > κ. Recall
the partitioning of {1, . . . , n} from Section 4.3 into Red and Blue. Note that
αi ∈ SP , implies i and i+ 1 appear in the same row of the tableau. In particular,
if i ∈ SP

⋂
Blue(j) then i+ 1 ∈ Blue(j).

(1) Suppose i ∈ Blue. Then i = m(k) and i+1 = m(k+1) for some k. The non-
zero entries in the ith and (i+ 1)th columns of κ are t−1Ek+s,i and t−1Ek+s+1,i+1.
We apply Case 1 of Proposition 2.17 with a = i, b = i+ 1.

(2) Suppose i ∈ Red and i + 1 ∈ Blue. The non-zero entries in the ith and
(i+ 1)th columns of κ are tνk−1Ek,i and t−1Ej,i+1. Since k ≤ s < j, we can apply
Case 2 of Proposition 2.17 with a = i, b = i+ 1, νk − 1 = ord(ta) > ord(tb) = −1
and k = σ(a) < σ(b) = j to get κ < κsi.

(3) Suppose i, i+1 ∈ Red. Since i and i+1 are in the same row of the tableau,
we have i = l(k) and i + 1 = l(k + 1) for some k. The non-zero entries in the ith
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and (i+ 1)th columns of κ are tνk−1Ek,i and tνk+1−1Ek+1,i+1. If νk = νk+1, Case
1 of Proposition 2.17 applies with a = i, b = i+ 1 and k = σ(a) < σ(b) = k + 1 to
give κ < κsi. If νk > νk+1, Case 2 of Proposition 2.17 applies with a = i, b = i+1,
k = σ(a) < σ(b) = k+1 and νk−1 = ord(ta) > ord(tb) = νk+1−1 to give κ < κsi.
�

Lemma 4.13. The length of κ is given by the formula

l(κ) = 2 dimG/P +
∑
k′<k

#Row(k)#Blue(k′).

Proof. Note that κ = τqσ, where τq is given by Equation (3.4), and σ ∈W is given
by the permutation matrix

σ =

s∑
i=1

Ei,l(i) +

n−s∑
i=1

Ei+s,m(i). (4.14)

Viewing σ as an element of Sn, we have

σ−1(i) =

{
l(i) i ≤ s,
m(i− s) i > s.

In particular,

l(σ) =#
{

(i, j)
∣∣ 1 ≤ i < j ≤ n, σ−1(i) > σ−1(j)

}
=# {(i, j) | i < j ≤ s, l(i) > l(j)}

+ # {(i, j) | i ≤ s < j, l(i) > m(j − s)}
+ # {(i, j) | s < i < j, m(i− s) > m(j − s)} .

Recall that l(i) is an increasing sequence, i.e., i < j < s =⇒ l(i) < l(j), and so,

l(σ) =# {(i, j) | i ≤ s, j ≤ n− s, l(i) > m(j)}
+ # {(i, j) | i < j ≤ n− s, m(i) > m(j)}

=# {(i, j) | i ∈ Red, j ∈ Blue, i > j}
+ # {(i, j) | i < j ≤ n− s, m(i) > m(j)}

=
∑
k′<k

# {(i, j) | i ∈ Red(k), j ∈ Blue(k′)}

+
∑
k′<k

# {(i, j) | i ∈ Blue(k), j ∈ Blue(k′)}

=
∑
k′<k

# {(i, j) | i ∈ Row(k), j ∈ Blue(k′)}

=
∑
k′<k

#Row(k)#Blue(k′).

Now, it follows from Equations (2.10) and (2.12) that τq ∈ ŴL+G. In particular,

l(τq) = dimXL+G(τq) = dimNν = 2 dimG/P.

Further, l(κ) = l(τq) + l(σ) = 2 dimG/P +
∑
k′<k #Row(k)#Blue(k′) as claimed.

�
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Corollary 4.15. The Schubert variety XP(κ) is a compactification of T ∗G/P if
and only if P is a maximal parabolic subgroup.

Proof. The parabolic subgroup P is maximal if and only if SP = S0\ {αd} for
some d, equivalently, the corresponding tableau has exactly 2 rows. In this case
Blue ⊂ Row(2), (recall from Section 4.3 that Blue =

⊔
i Blue(i)). It follows that

the second term in Lemma 4.13 is an empty sum, which implies l(κ) = 2 dimG/P .
Suppose now that the tableau has r ≥ 3 rows. In this case, both Blue(2) and
Row(r) are non-empty, and so the second term in Lemma 4.13 is strictly greater
than 0. �

5. Conormal variety of the Schubert divisor

Let λ, P , and P be as in the previous section. In this section, we show that
for XP (w) a Schubert divisor in G/P , the conormal variety N∗XP (w) is an open
subset of a Schubert variety in LG/P . In particular, N∗XP (w) is normal, Cohen–
Macaulay, and Frobenius split.

We write h, b, and g for the Lie algebras of T , B, and G respectively. For
α ∈ ∆0, we denote by gα the root space corresponding to α.

5.1. The conormal variety

Let X be a closed subvariety in G/P , and write Xsm for the smooth locus of X.
For x ∈ Xsm, the conormal fibre N∗x is the annihilator of TxX in T ∗xG/P . The
conormal variety N∗X of X ↪→ G/P is then defined to be the closure in T ∗G/P
of the conormal bundle N∗Xsm.

Proposition 5.2. Let ∆P be the subset of ∆0 generated by SP . The conormal
variety N∗XP (w) is the closure in T ∗G/P of{

(bw,X) ∈ G×P u
∣∣∣ b ∈ B, X ∈⊕

α∈R
gα
}
,

where R =
{
α ∈ ∆+

0

∣∣α 6∈ ∆P , w(α) > 0
}

.

Proof. The tangent space of G/P at identity is g/p. Consider the action of P on
g/p induced from the adjoint action of P on g. The tangent bundle T G/P is the
fiber bundle over G/P associated to the principal P -bundle G → G/P , for the
aforementioned action of P on g/p , i.e., T G/P = G×P g/p.

Let R′ =
{
α ∈ ∆−0

∣∣w(α) > 0
}

, so that ∆+
0 = ∆+

P t R t −R′. Further, let
Uw = 〈Uα |α ∈ R′〉. For any point b ∈ B, we have (see, for example [16]):

BwP (modP ) = bBwP (modP )

= b(wUww
−1)wP (modP ) = bwUwP (modP ).

It follows that the tangent subspace at bw of the big cell BwP (modP ) is given by

TwBwP (modP ) =
{

(bw,X) ∈ G×P g/p
∣∣∣X ∈ ⊕

α∈R′
gα/p

}
,
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where gα/p denotes the image of a root space gα under the map g→ g/p. Recall
that the Killing form identifies the dual of a root space gα with the root space
g−α. Consequently, a root space gα ⊂ u annihilates TbwBwP (modP ) if and only
if α ∈ ∆+

0 \∆
+
P and −α 6∈ R′, or equivalently, α ∈ R. The result now follows

from the observation that BwP (modP ) is a dense open subset of XP (w), and is
contained in the smooth locus of XP (w). �

5.3. Schubert divisors

A Schubert divisor in G/P is a Schubert variety of codimension 1. Let wP0 be the
longest element in WP . The affine permutation matrix for wP0 is given by

wP0 =

 0 0 I(λr)

0 . .
.

0
I(λ1) 0 0

 ,

where, I(k) denotes the k×k identity matrix. Codimension one Schubert varieties
XP (w) in G/P correspond to w = skw

P
0 , where k = n − di for some 1 ≤ i < r.

For 1 ≤ k < n, we define vk = τα∨kw0. The affine permutation matrix of vk is

vk =
n∑
i=1

aiEi,n+1−i, ai =


t−1 if i = k,

t if i = k + 1,

1 otherwise.

We denote by vPk the minimal representative of vk with respect to ŴP .

Proposition 5.4. Let w = skw0, where k = n − dj for some 1 ≤ j < r. Then
XP(vPk ) is a compactification of N∗XP (w) via φP .

Proof. We first show that vk is maximal with respect to WP . For any 1 ≤ i < n
different from d1, . . . , dr−1, we have k 6= n− i, hence αn−i(α

∨
k ) ≤ 0. For any such

i, it therefore follows from Equation (2.12) that

vk(αi) = τα∨kw0(αi) = τα∨k (−αn−i) = −τα∨k (αn−i) < 0.

Consequently, we have vksi < vk for all i ∈ {1, . . . , n}\{d1, . . . , dr−1}. We deduce
that vPk = vkwP , where wP denotes the maximal element of WP .

Next, as an application of Equation (2.15), we have l(vk) = dimG/B. We
compute

l(vPk ) = l(vk)− l(wP ) = dimG/B − dimP = dimG/P = dimN∗XP (w).

Since XP(κ) is irreducible, and has the same dimension as N∗XP (w), it suffices
to show that φP (N∗XP (w)) ⊂ XP(κ).

Let L be the bottom left square sub-matrix of wP0 of size dk−1 and L′ the top

right square sub-matrix of wP0 of size (n − dk+1). We fix a lift
◦
w of w to the
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normalizer of T :

◦
w =


0 0 0 0 0 L′

0 0 0 I(λk+1 − 1) 0 0
0 e 0 0 0 0
0 0 0 0 1 0
0 0 I(λk − 1) 0 0 0
L 0 0 0 0 0

 ,

where I(k) denotes the k × k identity matrix, and e = ±1 is determined by the

equation det
◦
w = 1. Observe that the e is in the (n − dk, dk−1 + 1) position and

the 1 in the (n− dk + 1, dk+1) position. Consider the root

γ :=
∑

di−1<j<di+1

αj .

Under the identification of Section 2.2, we have γ = (di−1 + 1, di+1). We check
that {

α ∈ ∆+
0

∣∣α 6∈ ∆P , w(α) > 0
}

= {γ} .

In particular, we can write a generic point of N∗XP (w) as (b
◦
w, aEγ). We may

further assume a 6= 0. It is now sufficient to show that

φP (b
◦
w, aEγ) = b

◦
w
(
1− at−1Eγ

)
∈ XP(vPk ).

Consider b1, b2, b3 ∈ B given by

b2 = I(n) +
et

a
Ek+1,k, b3 = I(n) +

t

a
Edi+1,di−1+1,

b1 =
∑

1≤i≤n

ciEii, ci =


e/a for i = k,

ea for i = k + 1,

1 otherwise.

It is easily verified that (b1b2b
−1)b

◦
w(1− t−1aEγ)b3 is an affine permutation matrix

corresponding to vPk ∈ Ŵ . �

Corollary 5.5. Let XP (w) be a Schubert divisor in G/P . The conormal variety
N∗XP (w) is normal, Cohen–Macaulay, and Frobenius split.

Proof. Schubert varieties in LG/P are normal, Cohen–Macaulay, and Frobenius
split (cf. [3], [13]). Therefore, the same is true for N∗XP (w), since it is an open
subset of XP(vPk ). �
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