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1. Introduction

Let V be a vertex operator algebra.1 If G is a subgroup of the automorphism
group of V, then the invariants VG form a vertex operator subalgebra called
the G-orbifold of V. If W is any vertex operator subalgebra of V, then the W-
coset of V is the commutant C = Com(W,V). Both the orbifold and coset
constructions provide a way to construct new vertex operator algebras from known
ones. Unfortunately, few general results concerning the structure of the resulting
vertex operator subalgebras are known, but it is believed that many nice properties
of V are inherited by its orbifolds and cosets. We remark that while most of
the literature is primarily concerned with semisimple modules of vertex operator
algebras, we are also interested in the logarithmic case in which the vertex operator
algebra admits indecomposable but reducible modules.

We begin by recalling some important results in the invariant theory of vertex
operator algebras that are connected to the questions addressed in this work.

1.1. From classical to vertex-algebraic invariant theory

It is valuable to view invariant-theoretic results about vertex operator algebras
as generalisations of the classical results concerning Lie algebras and groups, à
la Howe and Weyl [63], [109]. For example, a well-known result of Dong, Li and
Mason [50] amounts to a type of Schur–Weyl duality for orbifolds, stating that for
a simple vertex operator algebra V and a compact subgroup G of AutV (acting
continuously and faithfully), the following decomposition holds as a G×VG-module:

V =
⊕
λ

λ⊗ Vλ.

Here, the sum runs over all the simple G-modules λ and is multiplicity-free in the
sense that Vλ 6∼= Vµ if λ 6= µ. They moreover prove that the Vλ are simple modules
for the orbifold vertex operator algebra VG. Similar results have also been obtained
by Kac and Radul [68] (see Section 2.4).

Invariant theory for the classical groups [109] can be used to obtain generators
and relations for orbifold vertex operator algebras VG, provided that V is of
free field type (meaning that the only field appearing in the singular terms of
the operator product expansions of the strong generators is the identity field).
Interestingly, the relations can be used to show that these vertex operator algebras
are strongly finitely generated and, in many cases, explicit minimal strong gene-
rating sets can be obtained [87], [86], [88], [89], [90], [34]. Questions concerning
cosets are usually more involved than their orbifold counterparts. However, the
notion of a deformable family of vertex operator algebras [33] can sometimes be
used to reduce the identification of a minimal strong generating set for a coset to
a known orbifold problem for a free field algebra [32].

It is of course desirable to understand the representation theory of coset vertex
operator algebras. An important first question to ask is if there is also a Schur–
Weyl type duality, as in the orbifold case. Let V be a simple vertex operator

1We mention that much of this discussion generalises immediately to vertex operator
superalgebras. However, we shall generally state results for vertex operator algebras for
simplicity, leaving explicit mention of the super-case to exceptions and examples.
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algebra that is self-contragredient and let A,B ⊆ V be vertex operator subalgebras
satisfying the double commutant condition

A = Com(B,V) and B = Com(A,V).

Under the further assumption that A and B are both simple, self-contragredient,
regular and CFT-type,2

V =
⊕
i

Mi ⊗ Ni

as an A⊗ B-module, where each Mi is a simple A-module and each Ni is a simple
B-module. Under further conditions, Lin finds [84] that this decomposition is
multiplicity-free and the argument relies on knowing that the module categories
of A and B are both semisimple modular tensor categories.

We are aiming for similar results, but generalised to include decompositions of
modules that are not necessarily semisimple. Our setup is that V is a simple vertex
operator algebra containing a Heisenberg vertex operator subalgebra H. We then
study the commutant C = Com(H,V). For this, we assume that C has a module
category C that is a vertex tensor category in the sense of Huang, Lepowsky and
Zhang [67] and that the C-modules obtained upon decomposing V as an H ⊗ C-
module belong to C . In Section 2.1, we summarise some known statements about
vertex tensor categories that are relevant for our study. These statements make
it clear that the C1-cofiniteness of modules in C is a key concept. In Section 6,
we establish the C1-cofiniteness of Heisenberg coset modules for two families of
examples.

1.2. Rational parafermion vertex operator algebras

Heisenberg cosets of rational affine vertex operator algebras are usually called
parafermion vertex operator algebras. They first appeared in the form of the Z-
algebras discovered by Lepowsky and Wilson in [76], [77], [78], [79], see also [75].
In physics, parafermions first appeared in the work of Fateev and Zamolodchikov
[110] where they were given their standard appellation. The relation between
parafermion vertex operator algebras and Z-algebras was subsequently clarified in
[49].

Parafermions are surely among the best understood coset vertex operator algeb-
ras and there has been substantial recent progress towards establishing a complete
picture of their properties. Key results include C2-cofiniteness [19], see also [48, 54],
and rationality [53], using previous results on strong generators [47]. In principle,
strong generators can now also be determined as in [32], where this was detailed
for the parafermions related to sl3. We remark that C2-cofiniteness also follows
from a recent result of Miyamoto on orbifold vertex operator algebras [95]. These
powerful results also allow one, for example, to compute fusion coefficients [55].

One of the central open conjectures in vertex operator algebra theory is if a
simple rational C2-cofinite CFT-type self-contragredient vertex operator algebra

2We recall that a vertex operator algebra V is said to be (of) CFT-type if its conformal
weights are non-negative integers and the zeroth weight space is spanned by vacuum
vector.
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contains a rational vertex operator subalgebra, as, e.g., a lattice vertex operator
algebra (corresponding to an even positive-definite lattice), then the corresponding
coset vertex operator algebra will also be rational. This has recently been estab-
lished for a series of examples in [17]. We prove this statement for cosets by lattice
vertex operator algebras in general (see Theorem 4.12).

1.3. Results

This work is, at least in part, a continuation of our previous work on simple current
extensions of vertex operator algebras [30]. In this vein, we start by proving some
properties of simple currents (Theorem 2.8), in particular that fusing with a simple
current defines an autoequivalence of any suitable category of modules. As further
preparation, we also prove (Theorem 3.1) that if V is simple, G is an abelian group
of automorphisms acting semisimply on V, and

V =
⊕

λ∈L⊂Ĝ

Vλ, (1.1)

then Vλ is a simple current for every λ in L. The proof essentially amounts to
adding details to a very similar result of Miyamoto [93, Sect. 6], see also [26].

Schur–Weyl duality. We next prove a Schur–Weyl duality for Heisenberg cosets
C = Com(H,V). The setup is as follows. Let V be a simple vertex operator
algebra, H ⊆ V be a Heisenberg vertex operator subalgebra that acts semisimply
on V, C be the commutant of H in V, and L be the lattice of Heisenberg weights of
V (V being regarded here as an H-module). Then W = Com(C,V) is an extension
of H by an abelian intertwining algebra. Of course, it might happen that this
extension is trivial, that is, that H = W. In any case, Equation (1.1) translates
into

V =
⊕
λ∈L

Fλ ⊗ Cλ. (1.2)

Let N be the sublattice of all λ ∈ L for which Cλ ∼= C0 = C. Theorem 3.5 now says
that the abelian group L/N controls the decomposition of V as a W ⊗ C-module:

V =
⊕

[λ]∈L/N

W[λ] ⊗ C[λ]. (1.3)

Moreover, the C[λ], λ ∈ L/N, are simple currents for C whose fusion products
include

C[λ] �C C[µ] = C[λ+µ].

This decomposition is multiplicity free in the sense that C[λ] 6∼= C[µ] if [λ] 6= [µ].
The vertex operator algebra

W =
⊕
λ∈N

Fλ

is a simple current extension of H and the W[λ], [λ] ∈ L/N, are simple currents for
W with fusion products W[λ] �W W[µ] = W[λ+µ]. We note that Li has proven [80]
that

⊕
λ∈L/N C[λ] is a generalised vertex algebra.
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The main Schur–Weyl duality result is then a similar decomposition for vertex
operator algebra modules, see Theorem 3.8. For this, let V, H, C, W, L and N

be as above and let M be a V-module upon which H acts semisimply. Then, M
decomposes as

M =
⊕
µ∈M

Mµ =
⊕
µ∈M

Fµ ⊗ Dµ =
⊕

[µ]∈M/N

W[µ] ⊗ D[µ], (1.4)

where M is a union of L-orbits and the Dµ = D[µ] are C-modules satisfying Cλ �C

Dµ = Dλ+µ for all λ ∈ L and µ ∈ M. We moreover show that each of the Dµ
has the same decomposition structure as that of M. One example of this is if
0 → M′ → M → M′′ → 0 is exact, with M′ and M′′ non-zero, then M′ and M′′

decompose as in (1.4):

M′ =
⊕
µ∈M

M′µ =
⊕
µ∈M

Fµ ⊗ D′µ, M′′ =
⊕
µ∈M

M′′µ =
⊕
µ∈M

Fµ ⊗ D′′µ.

Moreover, 0 → D′µ → Dµ → D′′µ → 0 is also exact, with D′µ and D′′µ non-zero, for
all µ ∈M.

However, these module decompositions need not be multiplicity-free in general.
For example, the parafermion coset of L2(sl2) yields an example of a coset module
that appears twice in the decomposition of a simple L2(sl2)-module. We give three
criteria to guarantee that a given decomposition is multiplicity-free — one based
on characters, one based on the signature of the lattice L, and one based on open
Hopf link invariants following [28], [27]. Most of these statements also hold if we
replace V by a vertex operator superalgebra.

Extensions of vertex operator algebras. Let E be a sublattice of L. We would like
to know if

CE =
⊕
λ∈E

Cλ

carries the structure of a vertex operator algebra extending that of C = C0.
Theorem 4.1, which itself follows immediately from [81], implies that this is the
case provided that

WE =
⊕
λ∈E

Wλ

is a vertex operator algebra. If E is a rank one subgroup, then this conclusion also
follows from [30].

Lifting modules. Let D be a C-module. We would like to know if D lifts to a CE-
module and also if there exists a H-module Fβ such that Fβ⊗D lifts to a V-module.
This question is decided by the monodromy (composition of braidings)

MCλ,D : Cλ � D→ Cλ � D.

We have the following result (Theorem 4.3): Let D be a generalised C-module that
appears as a subquotient of the fusion product of some finite collection of simple
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C-modules. Let L′ be the dual lattice of L and let U = L⊗ZR. Then, there exists
α ∈ U such that

MCλ,D = e−2πi〈α,λ〉 IdCλ�D

and Fβ ⊗ D lifts to a V-module if and only if β ∈ α + L′. Moreover, the lifted
module is V �H⊗C (Fβ ⊗ D). Note that the lifting problem, assuming that all
involved vertex operator algebras are regular, was treated in [73].

We also show that D lifts to a CE-module if and only if α is in a certain lattice
associated to E (see Theorem 4.4) and that every CE-module is a quotient of a lifted
module (this follows essentially from [74]). The lifted module is then CE �C D.

Rationality. Miyamoto [95] has proven that C is C2-cofinite provided that W is
the lattice vertex operator algebra of a positive definite even lattice and V is C2-
cofinite. Together with our lifting results and the exactness of fusion with simple
currents, this implies a rationality theorem (Theorem 4.12): If V is simple, rational,
C2-cofinite and CFT-type, then every grading-restricted generalised C-module is
semisimple. In particular, we thereby obtain an alternative proof of the rationality
of the parafermion cosets [53], [26] as well as of the Heisenberg cosets of the rational
Bershadsky–Polyakov algebras [16].

Examples. Our results rely on the applicability of the vertex tensor theory of
Huang, Lepowsky and Zhang [67]. It is in general very difficult to verify this
beyond C2-cofinite vertex operator algebras. We remark that this has recently been
done successfully for the category of ordinary modules of affine vertex operator
algebras at admissible level [29] and it is work in progress to study Heisenberg
cosets of affine vertex operator superalgebras of type sl(2|1) that are extensions
of affine vertex operator algebras at admissible level times certain rational vertex
operator algebras. We also note that Theorem 5 of [44] and Example 4.3 of [21]
give examples where the Heisenberg coset is C2-cofinite and non-rational.

We illustrate our results with various examples, both rational and non-rational,
though our main interest is applications to the vertex operator algebras of logarith-
mic conformal field theory, that is, to indecomposable but reducible modules.
Schur–Weyl duality is exemplified in the well-known rational example of L2(sl2)
(Example 1) and then, in much detail, for the case of L−4/3(sl2) (Example 2). We
explain how Schur–Weyl duality works for the (conjectured) projective covers of
the simple modules. Extensions of the Heisenberg cosets of Lk(g) for rational and
non-zero k are discussed in Example 3.

Example 4 then deals with the relation via Heisenberg cosets of various arche-
typal logarithmic vertex operator algebras, most notably the singlet algebra I(2)
and the affine vertex operator superalgebra Vk(gl(1|1)). In particular, we give the
decomposition of the projective indecomposable modules of the latter in terms of
projective H ⊗ I(2)-modules. The triplet algebra W(2) is then an example of an
extended vertex operator algebra that is C2-cofinite.

The lifting of modules is illustrated in Example 5 for the modules of the N =
2 vertex operator superalgebra. Finally, we use the opportunity to prove that
L−1(sl(m|n)) appears as a Heisenberg coset of an appropriate tensor product of
βγ- and bc-ghost vertex operator superalgebras. This generalises the case n = 0
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of [10]. We mention that the case m = 2 and n = 0 is exceptional and is identified
with a rectangular W-algebra of sl4.

On C1-cofiniteness. Our results rely on the applicability of the vertex tensor theory
of Huang, Lepowsky and Zhang [67]. Our belief is that the key criterion for this
applicability is the C1-cofiniteness of the modules with finite composition length,
see also [38, Sect. 6]. In Section 6, we prove a few C1-cofiniteness results for modules
of Heisenberg cosets of the affine vertex operator algebras of type sl2 as well as
those of the Bershadsky–Polyakov algebras.

Outlook on fusion. The main concern of this work is the relationship between the
modules of the Heisenberg coset vertex operator algebra C and those of its parent
algebra V. A valid question is then if there is also a clear relation between the
fusion product of the C-modules and the corresponding V-modules. One can prove
that the induction functor is a tensor functor under appropriate assumptions on
the module category [31]. Modulo these assumptions, this rigorously establishes
the connection between fusion and extended algebras that has been proposed in
the physics literature [102].

1.4. Application: Towards new C2-cofinite logarithmic vertex operator
algebras

Presently, there are very few known examples of C2-cofinite non-rational vertex
operator algebras; these include the triplet algebras [7], [106], [107] and their close
relatives [1]. In order to gain more experience with such logarithmic C2-cofinite
vertex operator algebras, new examples are needed. The main application we have
in mind for the work reported here is the construction of new examples of this
type.

The idea is a two-step process illustrated as follows:

V
H-coset−−−−−→ C

extension−−−−−−−→ CE.

A series of examples that confirms this idea was explored in [44], see also Example
3. There, the I(p) singlet algebras of Kausch [72] were (conjecturally) obtained
as Heisenberg cosets of the Feigin–Semikhatov algebras [57], see also [61]. The
extension in the above process is then an infinite order simple current extension
and the results [36], [100] are the best understood C2-cofinite logarithmic vertex
operator algebras, the W(p) triplet algebras.

New examples may be obtained by taking V to be the simple affine vertex
operator algebra associated to the simple Lie algebra g at admissible, but negative,
level k and H to be the Heisenberg vertex operator subalgebra generated by the
affine fields associated to the Cartan subalgebra of g. The module categories of such
admissible level affine vertex operator algebras remain quite mysterious despite
strong results concerning category O [69], [14]. Beyond category O, detailed results
are currently only known for g = sl2, see [6], [59], [97], [98], [99], [39], [41], [101],
and g = sl3, see [18]. A first feasible task here would be to compute the characters
of the coset modules that appear in the decomposition of modules in category O.
We expect the appearance of Kostant false theta functions [37] as they are the

307



T. CREUTZIG, S. KANADE, A. R. LINSHAW, D. RIDOUT

natural generalisation of the ordinary false theta functions that appear in the case
of the admissible level parafermion coset of Lk(sl2) [21].

In [21], we will study CE for g = sl2 and k negative and admissible. Under the
assumption that the tensor theory of Huang–Lepowsky–Zhang applies to C, we
shall prove that there are only finitely many inequivalent simple CE-modules. It is
thus natural to conjecture that CE is C2-cofinite. A consequence of C2-cofiniteness
is the modularity of characters (supplemented by pseudotrace functions) [92]. In
[21], we shall also demonstrate this modularity of characters (plus pseudotraces)
for all modules that are lifts of C-modules. We will prove the C2-cofiniteness of
CE, for various choices of E, in subsequent works.

A third family of examples that fit this idea concerns simple minimal W-algebras
in the sense of Kac and Wakimoto [71]. These are quantum Hamiltonian reductions
that are strongly generated by fields in conformal dimension 1 and 3/2, together
with the Virasoro field. For certain levels, these W-algebras have a one-dimensional
associated variety and they contain a rational affine vertex operator subalgebra.
The Heisenberg coset of the coset of the minimal W-algebra by the rational affine
vertex operator algebra thus seems to be another candidate for new C2-cofinite
algebras as infinite order simple current extensions. These cosets are explored in
[15].

1.5. Organisation

We start with a background section. There, we review the vertex tensor theory of
Huang, Lepowsky and Zhang and discuss it in the case of the Heisenberg vertex
operator algebra. Next, we prove various properties of simple currents and then
discuss vertex operator algebra orbifolds following Kac and Radul. Section 3 then
details our results on Schur–Weyl duality for Heisenberg cosets. Section 4 is con-
cerned with extended algebras, lifting of modules and, as a special application,
proves our rationality theorem. In Section 5, we give a short proof that L−1(sl(m|n))
is a Heisenberg coset of an appropriate ghost vertex operator superalgebra. In
Section 6, we prove the C1-cofiniteness of the modules that appear in the Heisen-
berg cosets of the Bershadsky–Polyakov algebras and Lk(sl2).

Acknowledgements. T. C. and S. K. would like to thank Yi-Zhi Huang and
Robert McRae for helpful discussions regarding vertex tensor categories, [67]. T. C.
also thanks Antun Milas for discussions on the applicability of the theory of vertex
tensor categories.

2. Background

In this section, we give a brief exposition of the results of Huang, Lepowsky and
Zhang regarding the vertex tensor categories that we shall use. We mention the
case of Heisenberg vertex operator algebras separately in detail. Then, we present
our new results regarding properties of simple currents under fusion. After that,
we review a useful result of Kac and Radul on the simplicity of orbifold models.

2.1. Conditions and assumptions regarding the theory of Huang–
Lepowsky–Zhang

We begin with a quick glossary of the terminology that we shall use.
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• By a generalised module of a vertex operator algebra, we shall mean a module
that is graded by generalised eigenvalues of L0. A generalised module need
not satisfy any of the other restrictions mentioned below regarding grading.
For n ∈ C and a generalised module W, we let W[n] denote the generalised
L0-eigenspace of eigenvalue n.

• A generalised module W is called lower truncated if W[n] = 0 whenever the
real part of n is sufficiently negative.

• A generalised module W is called grading-restricted if it is lower truncated
and if, moreover, for all n, dim(W[n]) <∞.

• A generalised module W is called strongly graded if dim(W[n]) < ∞ and, for
each n ∈ C, W[n+k] = 0 for all sufficiently negative integers k. This notion is
slightly more general than that of being grading-restricted.

• In the definitions above, we shall replace the qualifier “generalised” with
“ordinary” if the module is graded by eigenvalues of L0 as opposed to gene-
ralised eigenvalues.

• Henceforth, by “module”, without qualifiers, we shall mean a grading-restric-
ted generalised module. For convenience in the applications to follow, we
shall also assume that every vertex operator algebra module is of at most
countable dimension. This implies, of course, that the dimension of all vertex
operator algebras will also be at most countable.

• We will sometimes need broader analogues of the concepts above, wherein the
restrictions pertain to doubly-homogeneous spaces with respect to Heisenberg
zero modes and L0. The actual statements in [67] pertain to such broader
situations. However, the theorems in [65], that guarantee that [67] may be
applied in specific scenarios, assume the definitions that we have recalled
above. We expect that the theorems and concepts in [65] may be generalised
to the broader setting that we require.

Recall the notion [67, Def. 3.10] of a (logarithmic) intertwining operator among a
triple of modules. When the formal variable in a logarithmic intertwining operator
is carefully specialised to a fixed z ∈ C×, one gets the notion of a P (z)-intertwining
map, [67, Def. 4.2]. These maps form the backbone of the logarithmic tensor
category theory developed in [67]. There, tensor products (fusion products) of
modules are defined via certain universal P (z)-intertwining maps �P (z) and the
monoidal structure on the module category is obtained by fixing z ∈ C×, typically
chosen to be z = 1 for convenience.3 We remark that the products �P (z), for
different values of z, together form a structure richer than that of a braided
monoidal category, called a vertex tensor category. This richer structure is exploi-
ted in the proofs of many important theorems, see [66] for some examples.

For convenience, and especially with a view towards the proof of Theorem 3.3
below, we give a definition of the fusion product of two modules, equivalent to that
of [67], using intertwining operators instead of intertwining maps.

3We mention that the same notation is generally used to denote both the fusion
product operation and the universal P (z)-intertwining map corresponding to said fusion
product.
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Definition 2.1. Given modules W1 and W2, the fusion product W1 � W2 is the
pair (W1�W2,Y

�), where W1�W2 is a module and Y� is an intertwining operator

of type
(
W1�W2

W1 W2

)
, that satisfies the following universal property: Given any other

“test module” W and an intertwining operator Y of type
(

W
W1 W2

)
, there exists a

unique morphism η : W1�W2 →W such that Y = η ◦ Y� .

Note that the universal intertwining operator Y� will often be clear from the
context and hence we shall often refer to the fusion product by its underlying
module.

Below, we shall need the following property of the universal intertwining ope-
rators:

Lemma 2.2 ([67, Prop. 4.23]). The universal intertwining operator Y� is surjec-
tive, in the sense that the linear span of its expansion coefficients equals W1�W2.

Now, let V be a vertex operator algebra and let C be a category of generalised
V-modules that satisfies the following properties:

(1) C is a full abelian subcategory of the category of all strongly graded gene-
ralised V-modules.

(2) C is closed under taking contragredient duals and the P (z)-tensor product
�P (z) (recall [67, Def. 4.15]).

(3) V is itself an object of C .
(4) For each object W of C , the (generalised) L0-eigenvalues are real and the

size of the Jordan blocks of L0 is bounded above (the bound may depend
on W).

(5) Assumption 12.2 of [67] holds.

A precise formulation of (5) may be found in [67]. In essence, this assumption
guarantees the convergence of products and iterates of intertwining operators in
a specific class of multivalued analytic functions. It, moreover, guarantees that
products of intertwining operators can be written as iterates and vice versa.

Theorem 2.3 ([67, Thm. 12.15, Cor. 12.16]). Under these conditions, the cate-
gory C equipped with the tensor product bifunctor � = �P (1) is naturally a braided
monoidal category.

We shall not need an explicit description — an easily accessible account of which
may be found in [67, Sect. 12], [66], [31, Sect. 3.3] — of the associativity, unit and
braiding isomorphisms required to specify the braided monoidal category structure
of Theorem 2.3.

We shall require the following fundamental property of �:

Lemma 2.4 ([67, Prop. 4.26]). For any W ∈ C , the functors W� − and −� W
are right-exact.

The condition 5 is quite technical; the following theorem provides situations in
which it holds.

Theorem 2.5 ([65]). Let V be a vertex operator algebra satisfying the following
conditions:
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• V is C alg.
1 -cofinite, meaning that the space spanned by{

Resz z
−1Y (u, z)v

∣∣u, v ∈ V[n] with n > 0
}
∪ L−1V

has finite codimension in V.
• There exists a positive integer N that bounds the differences between the real

parts of the lowest conformal weights of the simple V-modules and is such that
the N -th Zhu algebra AN (V) (see [52]) is finite-dimensional.
• Every simple V-module is R-graded and C1-cofinite.

Then, the category of grading-restricted generalised modules of V satisfies the
conditions 1–5 given above, hence is a vertex tensor category.

If V is C2-cofinite, has no states of negative conformal weight, and the space of
conformal weight 0 states is spanned by vacuum, then these conditions are satisfied
and so the theory of vertex tensor categories may be applied to the grading-restricted
generalised V-modules.

As is amply clear from Theorem 2.5, [94] and [67, Rem. 12.3], C1-cofiniteness
already takes us a long way towards establishing that a given category of V-modules
is a vertex tensor category. Our hope is that, in the future, C1-cofiniteness will
be, along with other minor conditions (such as conditions on the eigenvalues and
Jordan blocks of L0), essentially enough to invoke the theory developed by Huang,
Lepowsky and Zhang. With this hope in mind, we shall prove several useful C1-
cofiniteness results in Section 6.

We would also like to remark that there are still many examples of vertex
operator algebras, some quite fundamental, which do not meet the known condi-
tions that guarantee the applicability of the vertex tensor theory of [67]. It is
an important problem to analyse the module categories of these examples and
bring them “into the fold”, as it were. Not only will this make the theory more
wide-reaching, but we expect that accommodating these new examples will lead
to further crucial insights into the true nature of vertex operator algebra module
categories.

2.2. Vertex tensor categories for the Heisenberg algebra

For Heisenberg vertex operator algebras, there exist simple modules with non-
real conformal weights and, therefore, one can not invoke Theorem 2.5. In this
section, we shall deal with general Heisenberg vertex operator algebras, bypassing
Theorem 2.5 and instead relying (mostly) on the results in [49]. For related
discussions, including self-extensions of simple modules (which are not relevant
for our purposes), see [91], [38], [103].

We shall verify that a certain semisimple category CR of modules with real
conformal weights (see 2.2 below) is closed under fusion and satisfies the associati-
vity requirements for intertwining operators, by invoking results in [49]. Once this
is done, it is straightforward to verify that CR satisfies the assumptions for being
vertex tensor category as in [67, Sect. 12].

Let h be a finite-dimensional abelian Lie algebra over C, equipped with a
symmetric non-degenerate bilinear form 〈· , ·〉. We shall identify h and its dual h∗

via this form. As in [82, Chap. 6], let ĥ denote the Heisenberg Lie algebra and H
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the corresponding Heisenberg vertex operator algebra (of level 1, for convenience).
Given α ∈ h, we denote the (simple) Fock module of H, with highest weight
λ ∈ h, by Fλ. It is known (see [77]), as an algebraic analogue of the Stone-
von Neumann theorem, that these simple Fock modules exhaust the isomorphism
classes of the simple H-modules. Let C be the semisimple abelian category of H
modules generated by these simple H-modules and let CR be the full subcategory
generated by the Fock modules with real highest weights.

Theorem 2.6. The subcategory CR can be given the structure of a vertex tensor
category.

Proof. The proof splits into the following steps. Let λ, µ, ν ∈ h = h∗.
(1) Using [49, Eq. (12.10)], the fusion coefficient

(
W

Fµ Fν

)
is zero if W does not

have Fµ+ν as a direct summand.
(2) Proceeding exactly as in [49, Lem. 12.6–Prop. 12.8], we see that the fusion

coefficient
(
Fµ+ν
Fµ Fν

)
is either 0 or 1.

(3) Let L be the lattice spanned by µ and ν. One can check that the (genera-
lised) lattice vertex operator algebra VL satisfies the Jacobi identity given in [49,
Thm. 5.1], even though L is not necessarily rational. This implies that the vertex
map Y of VL furnishes explicit (non-zero) intertwining operators of type

(
Fµ+ν
Fµ Fν

)
,

thereby implying that the fusion coefficient
(
Fµ+ν
Fµ Fν

)
is always 1.

(4) We conclude that C is closed under �P (z) (recall [67, Def. 4.15]). In general,
if M is a subgroup of h, regarded as an additive abelian group, and if C ′ is the
semisimple category generated by the Fock modules with highest weights in M,
then C ′ is closed under �P (z). In particular, the subcategory CR is closed under
�P (z).

(5) Given µ1, . . . , µj ∈ hR, let L be the lattice that they span. Then, VL again
satisfies the Jacobi identity [49, Thm. 5.1] and the duality results of [49, Chap. 7]
also go through. As a consequence, the expected convergence and associativity
properties of intertwining operators among Fock modules in CR hold.

(6) Since the conformal weights of all modules in CR are real, the associativity
of the intertwining operators yields a natural associativity isomorphism for CR as
detailed in [67, Sect. 12.2].

(7) Finally, one can proceed as in [67, Sect. 12.4] to verify the remaining
properties satisfied by the braiding and associativity isomorphisms. Thus, CR
forms a vertex tensor category in the sense of Huang–Lepowsky and, in particular,
is a braided tensor category. �

2.3. Simple currents

An important concept in the theory of vertex operator algebras is the simple
current extension, wherein a given algebra V is embedded in a larger one W that
is constructed from certain V-modules called simple currents. The utility of this
construction is that, unlike general embeddings, the representation theories of V
and W are very closely related.

Definition 2.7. A simple current J of a vertex operator algebra V is a V-module
that possesses a fusion inverse: J� J−1 ∼= V ∼= J−1 � J.
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Simple currents and simple current extensions were introduced by Schellekens
and Yankielowicz in [105]. We note that more general definitions of a simple current
exist, see [51] for example, but that the one adopted above will suffice for the
vertex operator algebras treated below. Pertinent examples of simple currents are
the Heisenberg Fock modules Fλ discussed in Section 2.2: the fusion inverse of Fλ
is F−λ.

The great advantage of requiring invertibility is that each simple current J gives
rise to a functor J�− which is an autoequivalence of any V-module category that
is closed under �. The following theorem gives some consequences of this; we
provide proofs in order to prepare for the similar, but more subtle arguments of
the next section.

Proposition 2.8. Let J be a simple current of a vertex operator algebra V.

(1) If M is a non-zero V-module, then J� M is non-zero.
(2) If M is an indecomposable V-module, then J� M is indecomposable.
(3) If M is a simple V-module, then J� M is simple. In particular, J is simple

if V is.
(4) The covariant functor J� − is exact (hence, so is −� J).
(5) If M has a composition series with composition factors Si, 1 ≤ i ≤ n, then

J�M has a composition series with composition factors J� Si, 1 ≤ i ≤ n.
(6) If M has a radical or socle, then so does J�M. Moreover, the latter’s radical

or socle is then given by J� radM ∼= rad(J�M) or J� socM ∼= soc(J�M).
(7) If M has a radical or socle series, then so does J � M. In particular, the

corresponding Loewy diagrams of J � M are obtained by replacing each
composition factor Si of M by J� Si.

Proof. If J� M = 0, then 0 = J−1 � J� M ∼= V � M ∼= M. Thus, (1) follows:

M 6= 0 ⇒ J� M 6= 0. (2.1)

Similarly, if J�M ∼= M′ ⊕M′′, then M ∼= J−1 � J�M ∼= (J−1 �M′)⊕ (J−1 �M′′).
In other words, M indecomposable implies that J � M is indecomposable, which
is (2).

Suppose now that M is simple, but that J � M has a proper submodule M′.
Then,

0→ M′ → J� M→ M′′ → 0

is exact, for M′′ ∼= (J � M)/M′ 6= 0. But, fusion is right-exact as recalled in
Theorem 2.4, so

J−1 � M′ → M→ J−1 � M′′ → 0

is exact. However, M′′ 6= 0 implies that J−1 � M′′ is a non-zero quotient of M,
by 1, so we must have J−1 � M′′ ∼= M, as M is simple. Fusing with J now gives
J�M ∼= M′′, so we conclude that M′ = 0 and that J�M is simple. The simplicity
of J ∼= J� V now follows from that of V, completing the proof of (3).

To prove (4), note that applying right-exactness to the short exact sequence
0→ M′ → M→ M′′ → 0 results in

J�
M

M′
∼=

J� M

(J� M′)/ ker f
, (2.2)
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where f is the induced map from J�M′ to J�M that might not be an inclusion.
Fusing with J−1 and applying (2.2), we arrive at

M

M′
∼= J−1 �

J� M

(J� M′)/ ker f
∼=

M(
J−1 �

J� M′

ker f

)
/ ker g

,

where g : J−1 �
(
(J� M′)/ ker f

)
→ M might not be an inclusion. Thus,

M′ ∼=
J−1 �

J� M′

ker f

ker g
∼=

M′

(J−1 � ker f)/ kerh

ker g
,

where h : J−1 � ker f → M′ might not be an inclusion. We conclude that ker g = 0
and kerh = J−1 � ker f . But, both require that

M′ ∼= J−1 �
J� M′

ker f
⇒ J� M′ ∼=

J� M′

ker f
⇒ ker f = 0.

f : J� M′ → J� M is therefore an inclusion, hence J� − is exact.
Suppose now that 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M is a composition

series for M, so that each Si = Mi/Mi−1 is simple. By (4), applying J � − to
each exact sequence 0 → Mi−1 → Mi → Si → 0 gives another exact sequence
0 → J � Mi−1 → J � Mi → J � Si → 0. Moreover, J � Si is simple, by (3).
Assembling all of these exact sequences gives (5).

For (6), first recall that radM is the intersection of the maximal proper sub-
modules of M and that Mi ⊂ M is maximal proper if and only if M/Mi is simple.
In this case, (3) and (4) now imply that J � (M/Mi) is simple and isomorphic to
(J�M)/(J�Mi), whence J�Mi is maximal proper in J�M. Applying J−1�− gives
the converse. Second, given a collection Mi ⊆ M, (4) also implies that J� (∩iMi)
is a submodule of each J � Mi, hence of ∩i(J � Mi). But now, ∩i(J � Mi) ∼=
J � J−1 �

(
∩i(J � Mi)

)
⊆ J � (∩iMi), hence we have J � (∩iMi) ∼= ∩i(J � Mi).

These two conclusions together give J� radM ∼= rad(J�M). A similar, but easier,
argument establishes J� socM ∼= soc(J� M).

Finally, (7) follows by combining (6) with slight generalisations of the arguments
used to prove (5). �

This proposition has a simple summary: fusing with a simple current preserves
module structure. We remark, obviously, that a simple current J need not be
simple if the vertex operator algebra V is not simple.

2.4. Orbifold modules

Here, we review a result of Kac and Radul [68] on the simplicity of orbifold modules.
For a very similar result, see [50].

Let A be an associative algebra, for example the mode algebra of a vertex
operator algebra, and let G be a subgroup of AutA acting semisimply on A.
We consider A-modules M which admit a semisimple G-action that is compatible
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with the G-action on A and which decompose as a countable direct sum of finite-
dimensional simple G-modules. This compatibility means that

g(am) = (ga)(gm) for all g ∈ G, a ∈ V and m ∈ M. (2.3)

If we now define A0 to be the space of G-invariants a ∈ A, so ga = a for all g ∈ G,
then the actions of each g ∈ G and each a ∈ A0 commute on every such module M.

Choose an M satisfying (2.3) and let N be a simple G-module. Then, we may
define the G-module

MN =
∑
{Ni ⊆ M : Ni ∼= N} .

As the action of A0 commutes with that of G, every a ∈ A0 maps a given Ni to
some Nj or 0, by Schur’s lemma. Thus, MN is an A0-module.

If we choose a one-dimensional subspace C ⊆ N, then Schur’s lemma picks out
a one-dimensional subspace Ci ⊆ Ni, for each i. Then, each a ∈ A0 maps each Ci
to some Cj or to 0, hence

MN =
∑
Ni∼=N

Ci

is an A0-module. But, because Ni ∼= N ∼= N⊗ Ci, we may write

MN
∼=
∑
Ni∼=N

N⊗ Ci = N⊗MN

as a CG ⊗ A0-module. The semisimplicity of M, as a G-module, now gives us the
decomposition

M ∼=
⊕
[N]

MN
∼=
⊕
[N]

N⊗MN, (2.4)

again as a CG⊗A0-module. Here, [N] denotes the isomorphism class of the simple
G-module N.

The result of Kac and Radul gives conditions under which the A0-modules MN,
appearing in (2.4), are guaranteed to be simple.

Theorem 2.9 ([68, Thm. 1.1 and Rem. 1.1]). With the above setup, the (non-
zero ) MN appearing in (2.4) will be simple A0-modules provided that M is a simple
A-module.

3. Schur–Weyl duality

In this section, we state and prove results concerning the decomposition of
a vertex operator algebra and its modules into modules over a Heisenberg vertex
operator subalgebra and its commutant. We regard this decomposition as a vertex-
algebraic analogue of the well-known Schur–Weyl duality familiar for symmetric
groups and general linear Lie algebras. These results are enhanced by deducing
sufficient conditions for the decompositions, and their close relations, to be multi-
plicity-free. Finally, we illustrate our results with several carefully chosen examples.
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3.1. Heisenberg cosets

Let G be a finitely generated abelian subgroup of the automorphism group of a
simple vertex operator algebra V. We assume that G grades V, meaning that the
actions of these automorphisms may be simultaneously diagonalised, hence that V
decomposes into a direct sum of G-modules:

V =
⊕
λ∈L

Vλ. (3.1)

Here, the λ are elements of the (abelian) dual group Ĝ of inequivalent (complex,
not necessarily unitary) one-dimensional modules of G (recall that addition is
tensor product and negation is contragredient dual), Vλ denotes the simultaneous
eigenspace upon which each g ∈ G acts as multiplication by λ(g) ∈ C, and L is

the subset of λ ∈ Ĝ for which Vλ 6= 0. Note that the cardinality of L is at most
countable.

The action of V on itself restricts to an action of each Vλ on each Vµ. For
λ = µ = 0, where 0 denotes the trivial G-module, this implies that V0 is a vertex
operator subalgebra of V; for λ = 0, this implies that each Vµ is a V0-module.

From the simplicity of V, it now easily follows that L is a subgroup of Ĝ: closure
under addition follows from annihilating ideals being trivial [82, Cor. 4.5.15] and
closure under negation follows similarly, see [83, Prop. 3.6].

Applying Theorem 2.9, with M = V and A being the mode algebra of V, we can
now improve upon (3.1). Indeed, in this setting, (2.4) becomes

V =
⊕
λ∈L

Cλ ⊗ Vλ,

where Cλ denotes the one-dimensional module upon which g ∈ G acts as multi-
plication by λ(g), and we learn that the Vλ are simple as V0-modules. In particular,
V0 is a simple vertex operator algebra.

If we assume that V0 satisfies the conditions required to invoke the tensor
category theory of Huang, Lepowsky and Zhang (Section 2.1), then more is true.
As Miyamoto has shown, the Vλ are then simple currents for V0, see [93, 26]. It
should be noted that the proof in [93], [26] assumes that the group of automor-
phisms under consideration is finite. However, their proof works more generally
under the assumption that tensor category theory for the fixed-point algebra can
be invoked. For completeness, we include a detailed exposition of their proof in
our slightly more general setting in Appendix A.

Theorem 3.1 ([93, Sect. 6]). Assume the above setup and that V0 = VG satisfies
conditions sufficient to invoke Huang, Lepowsky and Zhang’s tensor category theo-
ry, for example those of Theorem 2.5. Then, the Vλ are simple currents for V0

with Vλ �V0
Vµ ∼= Vλ+µ, for all λ, µ ∈ L.

Let us now restrict to vertex operator algebras V that contain a Heisenberg
vertex operator subalgebra H, generated by r fields hi(z), i = 1, . . . , r, of conformal
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weight 1. We will assume throughout that the action of H on V is semisimple4

and that the eigenvalues of the zero modes hi0, i = 1, . . . , r, are all real. Let C
denote the commutant vertex operator algebra of H in V and let G ∼= Zr be the
lattice generated by the hi0. Each Vλ of the G-decomposition (3.1) is a module for
H since the fields of H commute with the zero modes of G. As G acts semisimply
on Vλ and the only simple H-module with hi0-eigenvalues λ = (λ1, . . . , λr) is the
Fock module Fλ, we must have the following H⊗ C-module decomposition:

Vλ = Fλ ⊗ Cλ, for all λ ∈ L.

In this setting, we may take L to be the lattice of all λ ∈ Rr for which Vλ 6= 0.
Moreover, the C-module Cλ is simple because Vλ and Fλ are. In particular, the
commutant C = C0 is a simple vertex operator algebra. We summarise this as
follows.

Proposition 3.2. Let V be a simple vertex operator algebra with a Heisenberg
vertex operator subalgebra H that acts semisimply on V. Then, the coset vertex
operator algebra C = Com(H,V) is likewise simple.

From here on, we make the following natural assumption:

We assume that we are working with categories of (generalised)
V0- and C-modules for which the tensor category theory of Huang,
Lepowsky and Zhang [67] may be invoked.

Of course, we have confirmed in Section 2.2 that this theory may be invoked for
semisimple H-modules with real weights. In general, we would like to apply our
results to vertex operator algebras for which we are not currently able to verify
this assumption. Such illustrations should therefore be regarded as conjectural.
However, we view the results in these cases as strong evidence that the conditions
required to invoke Huang–Lepowsky–Zhang are, in fact, significantly weaker than
those that were given in Section 2.1.

Given now the fusion rules Fλ �H Fµ ∼= Fλ+µ and Vλ �V0 Vµ ∼= Vλ+µ, which
imply that (

Fλ ⊗ Cλ
)
�V0

(
Fµ ⊗ Cµ

) ∼= Fλ+µ ⊗ Cλ+µ, (3.2)

one is naturally led to suppose that Cλ �C Cµ ∼= Cλ+µ. Proving this, however,
is a little subtle because we are not assuming that the corresponding module
categories are semisimple. We therefore present a technical result that we shall
use to confirm this supposition and other similar assertions. We remark that
this result can be greatly strengthened when one of the vertex operator algebras
involved is of Heisenberg or lattice type, or when the vertex operator algebras
involved are rational (see [84]).

Proposition 3.3. Let A and B be vertex operator algebras and let Ai and Bi, for
i = 1, 2, 3, be A-modules and B-modules, respectively. Suppose that(

(A1 ⊗ B1) �A⊗B (A2 ⊗ B2),Y�
A⊗B

)
= (A3 ⊗ B3,Y

�
A⊗B).

4Examples on which a Heisenberg vertex operator subalgebra does not act semisimply
are provided by the Takiff vertex operator algebras of [23], [22].
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Also assume that either of the fusion coefficients
(

A3

A1 A2

)
or
(

B3

B1 B2

)
is finite. Then,

(A3 ⊗ B3,Y
�
A⊗B) may be taken to be

(
(A1 �A A2) ⊗ (B1 �B B2),Y�

A ⊗ Y�
B

)
. In

particular,
A1 �A A2

∼= A3 and B1 �B B2
∼= B3.

Proof. The key here is [2, Thm. 2.10] which, as stated, applies to non-logarithmic
intertwining operators but in fact also holds when logarithmic intertwiners are
present. Using this, we may write

Y�
A⊗B =

N∑
j=1

Ỹ
(j)
A ⊗ Ỹ

(j)
B ,

for some N , where each Ỹ
(j)
A is an intertwiner for A of type

(
A3

A1 A2

)
and each Ỹ

(j)
B

is of type
(

B3

B1 B2

)
for B. The universality of the fusion product now guarantees

the existence of (unique) A-module morphisms µ
(j)
A : A1 �A A2 → A3, such that

µ
(j)
A ◦ Y

�
A = Ỹ

(j)
A , and B-module morphisms µ

(j)
B : B1 �B B2 → B3, such that µ

(j)
B ◦

Y�
B = Ỹ

(j)
B . Setting µ =

∑N
j=1 µ

(j)
A ⊗ µ

(j)
B , we obtain

µ ◦
(
Y�
A ⊗ Y�

B

)
=

N∑
j=1

(
µ
(j)
A ⊗ µ

(j)
B

)
◦
(
Y�
A ⊗ Y�

B

)
=

N∑
j=1

Ỹ
(j)
A ⊗ Ỹ

(j)
B = Y�

A⊗B. (3.3)

Now, let X be a “test” A ⊗ B-module and let Y be an intertwining operator of
type

(
X

A1⊗B1 A2⊗B2

)
. By the universal property satisfied by (A3 ⊗ B3,Y

�
A⊗B), there

exists a (unique) η : A3 ⊗ B3 → X such that η ◦ Y�
A⊗B = Y. It follows that

(η ◦ µ) ◦
(
Y�
A ⊗ Y�

B

)
= η ◦ Y�

A⊗B = Y. (3.4)

It remains to prove that η ◦ µ : (A1 �A A2) ⊗ (B1 �B B2) → X is the unique

A⊗B-module morphism satisfying (3.4). However, as recalled in Theorem 2.2, Y�
A

and Y�
B are surjective intertwining operators — this surjectivity goes hand-in-hand

with the “uniqueness” requirement in the universal property, see [67, Prop. 4.23]

— and so, therefore, is Y�
A ⊗ Y�

B . This means that (3.4) uniquely specifies the
morphism η ◦ µ, completing the proof. �

From this theorem, we immediately obtain the following theorem.

Corollary 3.4. If A and B are simple vertex operator algebras and M ⊗ N is
a simple current for A ⊗ B, then M and N are simple currents for A and B,
respectively. Moreover, the inverse of M⊗ N is M−1 ⊗ N−1.

Proof. Because A⊗B is assumed to be simple, M⊗N and its inverse are simple A⊗B-
modules, by Theorem 2.83. Moreover, this simplicity hypothesis also guarantees
that the inverse has the form M̃ ⊗ Ñ [58, Thm. 4.7.4]. Applying Theorem 3.3 to

(M̃ ⊗ Ñ) �A⊗B (M ⊗ N) ∼= A ⊗ B, we obtain M̃ �A M ∼= A and Ñ �B N ∼= B, hence

M̃ ∼= M−1 and Ñ ∼= N−1. �
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In any case, (3.2) and Theorem 3.3 give the desired conclusion:

Cλ �C Cµ ∼= Cλ+µ. (3.5)

In particular, the Cλ are simple currents for all λ ∈ L. We have therefore arrived
at the following decomposition of V into simple currents of H and C:

V =
⊕
λ∈L

Fλ ⊗ Cλ. (3.6)

However, this may be further refined if λ 6= µ in L does not imply that Cλ 6= Cµ
(this implication is obviously true for Fock modules). Suppose that Cλ = Cλ+µ
for some λ, µ ∈ L. Then, we must have Cµ = C and hence Cnµ = C for all n ∈ Z.
More generally, let N denote the sublattice of µ ∈ L for which Cµ = C. Then, we
may define

W[λ] =
⊕
µ∈N

Fλ+µ

and note that W = W[0] will be a lattice vertex operator algebra if the conformal
weights of the fields of each Fµ, with µ ∈ N, are all integers.5 The decomposition
(3.6) then becomes a decomposition as a W ⊗ C-module:

V =
⊕

[λ]∈L/N

W[λ] ⊗ C[λ]. (3.7)

Now the C[λ] ≡ Cλ, with [λ] ∈ L/N, are mutually inequivalent: [λ] 6= [µ] implies
that C[λ] � C[µ]. We remark that L/N may still be infinite because the rank of N
may be smaller than that of L.

We summarise these results as follows.

Theorem 3.5. Let:

• V be a simple vertex operator algebra.
• H ⊆ V be a Heisenberg vertex operator subalgebra that acts semisimply on V.
• C = C0 be the commutant of H in V.
• L be the lattice of Heisenberg weights of V (V being regarded as an H-module).

Then the decompositions (3.6) and (3.7) hold, where:

• The Cλ, λ ∈ L, are simple currents for C whose fusion products include
Cλ �C Cµ = Cλ+µ.

• W =
⊕

λ∈N Fλ is a simple current extension of H (N is the sublattice of λ ∈ L

for which Cλ ∼= C).
• The W[λ], [λ] ∈ L/N, are simple currents for W with fusion products W[λ]�W

W[µ] = W[λ+µ].

In particular, the C[λ], [λ] ∈ L/N, of (3.7) are mutually non-isomorphic.

5If the conformal weights are not all integers, then W is a vertex operator superalgebra,
or another type of generalised vertex operator algebra. This does not significantly affect
the following analysis.

319



T. CREUTZIG, S. KANADE, A. R. LINSHAW, D. RIDOUT

Remark 3.6. Note that we may instead choose N to be any subgroup of L in which
every λ ∈ N satisfies Cλ ∼= C. In particular, we may take N = 0, in which case the
decomposition (3.7) reduces to that of (3.6). Obviously, the conclusion that the
C[λ] are mutually non-isomorphic will only hold if N is taken to be maximal.

The corresponding decomposition for V-modules proceeds similarly. Let M
be a non-zero V-module upon which H acts semisimply. The H-weight space
decomposition of M then gives M =

⊕
µ∈M Mµ, where M = {µ ∈ Rr : Mµ 6= 0} is

countable. Using the triviality of annihilating ideals [82, Cor. 4.5.15] as before, we
see that M is closed under the additive action of L, meaning that λ ∈ L and µ ∈M

imply that λ + µ ∈ M. It follows that each Mµ is a V0-module. Decomposing as
an H ⊗ C-module, we get Mµ = Fµ ⊗ Dµ, for some C-module Dµ. The key step
towards proving a decomposition theorem for modules is now to establish certain
fusion products involving the Mµ and Dµ.

Proposition 3.7. Let V, H, C, W and L be as in Theorem 3.5 and let M, M and
Mµ = Fµ ⊗ Dµ be as in the previous paragraph. Then, the following fusion rules
hold for all λ ∈ L and µ ∈M:

Vλ �V0 Mµ
∼= Mλ+µ, (3.8a)

Cλ �C Dµ ∼= Dλ+µ. (3.8b)

We mention that when M = V, the fusion rule (3.8a) is precisely the result of
Miyamoto reported in Theorem 3.1. However, we cannot use Miyamoto’s proof in
this more general setting because it would amount to assuming the simplicity of
the Mµ as V0-modules.

Proof. We will detail the proof of the fusion rule (3.8a), noting that (3.8b) will
then follow immediately by applying Theorem 3.3.

To prove (3.8a), let M̃ denote the V-submodule of M generated by Mµ. Then,

(M/M̃)µ = 0. If v ∈ V−λ is non-zero, for some λ ∈ L, and w ∈ (M/M̃)λ+µ, then it
follows that v must annihilate w, hence that w = 0 by the triviality of annihilating
ideals [82, Cor. 4.5.15]. We conclude that (M/M̃)λ+µ = 0, that is M̃λ+µ = Mλ+µ,
for all λ ∈ L.

The action of V on M now restricts to an action of Vλ on Mµ. The space
generated by the latter action is therefore precisely Mλ+µ [82, Prop. 4.5.6]. It now
follows from the universal property of fusion products that there exists a surjection

Vλ �V0 Mµ � Mλ+µ, (3.9)

for each λ ∈ L and µ ∈M. Fusing with the simple current V−λ therefore gives

Mµ
∼= V−λ �V0 (Vλ �V0 Mµ) � V−λ �V0 Mλ+µ � Mµ,

the first surjection being the right-exactness of fusion and the second surjection
being (3.9) with (λ, µ) replaced by (−λ, λ + µ). Since these surjections preserve
conformal weights and the dimensions of the generalised eigenspaces of L0 are
finite, by hypothesis, it follows that V−λ �V0 Mλ+µ = Mµ, for all λ ∈ L, proving
(3.8a). �
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If λ ∈ N, then the fusion rules (3.8b) imply that Dλ+µ = Dµ, hence that the
D[µ] ≡ Dµ are well defined. The decomposition of M as a W ⊗ C-module now
follows as before. Before stating this formally, it is convenient to observe that
if M = M1 ∪ · · · ∪Mn is a disjoint union of orbits under the action of L, then
M = M1 ⊕ · · · ⊕Mn as a V-module, where Mi =

⊕
µ∈Mi Mi

µ. While the Mi need
not be indecomposable as V-modules, several of the arguments to come will be
simplified if we assume that M consists of a single L-orbit. Conclusions about
more general M then follow immediately from the properties of direct sums.

Theorem 3.8. Let V, H, C, W, L and N be as in Theorem 3.5 and let M be a
V-module upon which H acts semisimply. Then, M decomposes as

M =
⊕
µ∈M

Mµ =
⊕
µ∈M

Fµ ⊗ Dµ =
⊕

[µ]∈M/N

W[µ] ⊗ D[µ], (3.10)

where M is a union of L-orbits and the Dµ = D[µ] are C-modules satisfying Cλ �C

Dµ = Dλ+µ, for all λ ∈ L and µ ∈ M. Moreover, if we assume (for convenience)
that M is a single L-orbit, then the following hold:

(1) If M is a non-zero V-module, then all of the Dµ are non-zero.
(2) If M is a simple V-module, then all of the Dµ are simple.
(3) If M is an indecomposable V-module, then all of the Dµ are indecomposable.

(4) If 0 → M′ → M → M′′ → 0 is exact, with M′ and M′′ non-zero, then M′

and M′′ decompose as in (3.10):

M′ =
⊕
µ∈M

M′µ =
⊕
µ∈M

Fµ ⊗ D′µ, M′′ =
⊕
µ∈M

M′′µ =
⊕
µ∈M

Fµ ⊗ D′′µ. (3.11)

Moreover, 0→ D′µ → Dµ → D′′µ → 0 is also exact, for all µ ∈M.

(5) If M has a composition series with composition factors Si, 1 ≤ i ≤ n, then
each Si decomposes into an H ⊗ C-module as Si =

⊕
µ∈M Fµ ⊗ Tiµ, where

the Tiµ, 1 ≤ i ≤ n, are the composition factors of Dµ, for each µ ∈ M. In
particular, each Dµ has the same composition length as M.

(6) If M has a socle, then so do the Dµ and socM =
⊕

µ∈M Fµ ⊗ socDµ.
If M has a radical, then so do the Dµ. If, in addition, M has no subquotient
isomorphic to the direct sum of two isomorphic simple V-modules, then
radM =

⊕
µ∈M Fµ ⊗ radDµ.

(7) If M has a socle series, then so do the Dµ and the corresponding Loewy
diagram is obtained by replacing each composition factor Si by Tiµ, where

Si =
⊕

µ∈M Fµ ⊗ Tiµ.
If M has a radical series, then so do the Dµ. If, in addition, M has
no subquotient isomorphic to the direct sum of two isomorphic simple V-
modules, then the corresponding Loewy diagram is obtained by replacing
each composition factor Si by Tiµ, where Si =

⊕
µ∈M Fµ ⊗ Tiµ.

Proof. We have already proven the non-numbered statements. For (1), suppose
that Dµ = 0, for some µ ∈ M. Then, Mµ = Fµ ⊗ Dµ would be 0, contradicting
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the definition of M. The argument for (2) is likewise short: M simple implies that
each Mµ, with µ ∈M, is simple, by Theorem 2.9, which forces each of the Dµ to be
simple. To prove (3), note that if some Dν , ν ∈M, were decomposable, then every
Dµ, µ ∈M, would be decomposable because µ− ν ∈ L, hence Dµ ∼= Cµ−ν �C Dν .
But then, every Mµ would be decomposable, hence so would M, a contradiction.

Given the exact sequence in (4), it is clear that H acts semisimply on both M′

and M′′, hence that we have the decompositions (3.11) except that some of the
M′µ or M′′µ might be zero, for some µ ∈ M. However, M is assumed to consist of
a single L-orbit, so either all the M′µ are zero or none of them are (and the same
for the M′′µ). But, either being zero would imply that the corresponding module is
zero, which is ruled out by hypothesis. Thus, the M′µ and M′′µ are non-zero, for all
µ ∈M.

Since restricting to a V0-module and projecting onto the (simultaneous) eigen-
spaces of the hi0 (which commute with V0 = H⊗C) are exact functors, the sequence
0 → Fµ ⊗ D′µ → Fµ ⊗ Dµ → Fµ ⊗ D′′µ → 0 is exact, for all µ ∈ M. However,
EndH Fµ ∼= C implies that each non-trivial map in this exact sequence has the
form idFµ ⊗ dµ, where dµ is a C-module homomorphism. The required exactness
of the sequence of C-modules thus follows, proving (4).

For (5), let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M be a composition series, so
that Si = Mi/Mi−1 is simple, for all 1 ≤ i ≤ n. Then, 0→ Mi−1 → Mi → Si → 0
is exact, hence so is 0 → Di−1µ → Diµ → Tiµ → 0, for all 1 ≤ i ≤ n and µ ∈ M, by

(4). Here, we have decomposed each Mi as Mi =
⊕

µ∈M Fµ ⊗ Diµ, so that D0
µ = 0

and Dnµ = Dµ, and each Si as Si =
⊕

µ∈M Fµ⊗Tiµ. Since the Tiµ are non-zero and
simple, by (1) and (2), they are the composition factors of Dµ.

We turn to (6). Let
{
Mi
}
i∈I be the set of all simple submodules of M so that

socM =
∑
i∈I M

i. Then, each Mi decomposes as Mi =
⊕

µ∈M Fµ ⊗ Diµ, where Diµ
is a simple submodule of Dµ, for each i ∈ I and µ ∈ M, by (2) and (4). As sums
distribute over tensor products, we have

socM =
∑
i∈I

[⊕
µ∈M

Fµ ⊗ Diµ

]
=
⊕
µ∈M

Fµ ⊗
(∑
i∈I

Diµ

)
.

It remains to show that for each µ ∈ M, every simple submodule of Dµ is one of
the Diµ.

Consider therefore a simple submodule Eµ ⊆ Dµ, for some given µ ∈ M. Form
Eν = Cν−µ �C Eµ, for all ν ∈ M (so that ν − µ ∈ L), and note that each Eν is a
simple submodule of Dν , by parts (3) and (4) of Theorem 2.8. Tensoring over C
is exact, so

⊕
ν∈M Fν ⊗ Eν is a submodule of

⊕
ν∈M Fν ⊗ Dν = M. Moreover, it

is a simple submodule because it has the same number of composition factors as
Eµ, by (5). It is therefore one of the Mi, hence Eµ is one of the Diµ. It follows that∑
i∈I D

i
µ = socDµ, as required.

The same argument works for the radical, which we recall is the intersection
of the maximal proper submodules, except that intersections need not distribute
over sums. The additional condition on M guarantees this [24]. The proof of 6 is
thus complete and the proof of (7) now follows similarly to that of (5). �
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Remark 3.9. It is not clear if the condition imposed on M in the radical parts
6 and 7 is required. However, if radM decomposes as radM =

⊕
µ∈M Fµ ⊗ Rµ,

then without this condition, the argument used in the proof only establishes that
Rµ ⊆ radDµ, for each µ ∈M.

Unlike the C[µ] in (3.7), the coset modules D[µ], [µ] ∈ M/N, appearing in
(3.10) need not be mutually non-isomorphic. We shall illustrate this with a simple
example in Section 3.3. In the following section, we first give three useful criteria
which guarantee that the D[µ] are all non-isomorphic.

3.2. Criteria for being multiplicity-free

In this section, we discuss whether the decomposition (3.10) is multiplicity-free or
not. In other words, we investigate when one can assert that the Dµ or the D[µ]

are mutually non-isomorphic, in the notation of Theorem 3.8.

Criterion based on conformal weights. It may so happen that the conformal weights
of the highest-weight vectors of the Heisenberg subalgebra H immediately rule out
multiplicities. For example, consider the case of an affine vertex operator algebra
V of negative level k and a V-module M whose conformal weights are bounded
below. We shall assume, as in Theorem 3.8, that the corresponding set M is a
single orbit of L. Suppose that the decomposition of M is not multiplicity-free, so
that Dµ+λ = Dµ, for some λ ∈ L. Then, Cλ �C Dµ = Dµ and so Dµ+nλ = Dµ, for
all n ∈ Z. However, the conformal weight of the highest-weight vector of Fµ+nλ
is 1

2k ‖µ+ nλ‖2, which becomes arbitrarily negative for |n| large, because k < 0.
It follows that the conformal weights of Fµ+nλ ⊗ Dµ+nλ = Fµ+nλ ⊗ Dµ would
become arbitrarily negative, for all µ ∈ M. This contradicts the hypothesis that
the conformal weights of M =

⊕
µ∈M Fµ ⊗ Dµ are bounded below, hence the Dµ,

with µ ∈M, must all be mutually non-isomorphic.

Criterion based on symmetries of characters. We can also derive a simple test to
rule out multiplicities using the characters

ch
[
Fµ
](
z; q
)

= tr
Fµ
zh0qL

H
0−c/24 =

zµq‖µ‖
2/2

η(q)

of the Fock modules. This relies on the fact that the characters of the Dµ appearing
in (3.10) will not depend on z. We remark that the factors zh0 and zµ should be

interpreted here as z
h1
0

1 · · · z
hr0
r and zµ1

1 · · · zµrr , respectively, where r is the rank of
the Heisenberg vertex operator algebra H.

Suppose, for simplicity, that M consists of a single L-orbit, as in Theorem 3.8.
Define N′ to be the sublattice of Heisenberg weights λ such that Dµ = Dλ+µ, for
every µ ∈M, so that N ≤ N′ ≤ L. It follows that for every λ ∈ N′, the character
of the decomposition (3.10) must satisfy
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ch
[
M
](
z; q; . . .

)
=
∑
µ∈M

zµq‖µ‖
2/2

η(q)
ch
[
Dµ
](
q; . . .

)
=
∑
µ∈M

zλ+µq‖λ+µ‖
2/2

η(q)
ch
[
Dµ
](
q; . . .

)
= zλq‖λ‖

2/2
∑
µ∈M

zµq〈λ,µ〉q‖µ‖
2/2

η(q)
ch
[
Dµ
](
q; . . .

)
= zλq‖λ‖

2/2ch
[
M
](
zqλ; q; . . .

)
,

where qλ acts on a Heisenberg weight µ to give q〈λ,µ〉. If the character of M only
satisfies this equation when λ ∈ N, then we may conclude that the D[µ], with
[µ] ∈M/N, are mutually non-isomorphic. In the case that N = 0, this conclusion
gives the mutual inequivalence of the Dµ, for all µ ∈M.

Criterion based on open Hopf links. In the case of rational vertex operator algebras,
the closed Hopf links are, up to normalisation, the same as the entries of the
modular S-matrix [64]. There is also a close connection between Hopf links and
properties of characters for non-rational vertex operator algebras [28], [27], [38].
We will now explain how Hopf links give a criterion for the existence of fixed points
under the action of fusing with a simple current. For this subsection, we assume
that we are working in a ribbon category C of vertex operator algebra modules
[56]; such categories allow us to take (partial) traces of morphisms.

Let J ∈ C be a simple current and fix a module X ∈ C . Assume that there exists
a positive integer s such that Js � X ∼= X, so that X is a fixed point of Js. Recall
that the monodromy of two modules A and B is defined by MA,B = RB,A ◦ RA,B,
where R denotes their braiding. Recall the notion [56, Def. 8.10.1] of categorical
twist θ, which is a system of natural isomorphisms. The monodromy satisfies the
following balancing property for any two modules A and B:

θA�B = MA,B ◦ (θA � θB).

In the formalism of vertex tensor categories, θ is given by e2iπL0 . We will also
need the open Hopf link operators from [28, 27]. These are defined as the partial
traces ΦA,B = ptrLeft(MA,B) ∈ End(B) and have the important property that they
define a representation of the fusion ring on End(B). In particular, it follows that
ΦJ�X,P = ΦJ,P ◦ ΦX,P, for any module P ∈ C , and hence that

ΦX,P = ΦJs�X,P = ΦJs,P ◦ ΦX,P = ΦsJ,P ◦ ΦX,P. (3.12)

We shall assume now that P is indecomposable with a finite number of composi-
tion factors, so that every endomorphism of P has a single eigenvalue, and that
MJ,P and ΦJ,P are semisimple endomorphisms of J � P and P, respectively. The
latter assumption will be automatically satisfied if J is a simple current of finite
order and both End(P) and End(J � P) are finite-dimensional [30, Lem. 2.13].
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It will also be satisfied if P may be identified with a subquotient of an iterated
fusion product of simple modules [30, Lem. 3.19]. With these assumptions on P,
Equation (3.12) shows that the image of ΦX,P is contained in the eigenspace of
ΦsJ,P with eigenvalue 1 and that this eigenspace is either 0 or P itself. We therefore
have two possible conclusions: ΦX,P = 0 or ΦsJ,P = IdP.

Following [28], we say that a full subcategory P of C is a left ideal if for all
Q ∈P, we have both D�Q ∈P, for all D ∈ C , and D ∈P whenever there exists
a composition D→ Q→ D evaluating to the identity on D. We shall assume that
P is equipped with a modified trace t• [28, 60] (for P = C , the modified trace is
just the ordinary trace t = tr) and a modified dimension d(•) = t•(Id•). We also
let dim(•) = tr(Id•) denote the ordinary trace of the identity morphism.

We now assume that P, as introduced above, belongs to a left ideal P of C .
For any object D of C , the properties of the modified trace imply that

tD�P(IdD�P) = tD�P(IdD � IdP)

= tP(ptrLeft(IdD � IdP)) = tP(tr(IdD) � IdP)

= dim(D)tP(IdP) = dim(D)d(P)

and hence that

tP(ΦJs,P) = tP(ptrLeft(MJs,P))

= tJs�P(MJs,P) = tJs�P(θJs�P ◦ (θ−1Js � θ−1P ))

= dim(Js)d(P)(θJs�P ◦ (θ−1Js � θ−1P )).

Here, we have used the balancing property of monodromy and have identified
θJs�P ◦ (θ−1Js � θ−1P ) with the scalar by which it acts. In the case that ΦJs,P = IdP,
so tP(ΦJs,P) = tP(IdP) = d(P), it follows that dim(J)s(θJs�P ◦ (θ−1Js � θ−1P )) = 1,
whenever d(P) 6= 0. We summarise this as follows.

Proposition 3.10. Let C be a ribbon category, J ∈ C be a simple current and
X ∈ C be a fixed point of Js so that Js � X ∼= X, for some s ∈ Z>0. Let P be
a left ideal of C , equipped with a modified trace t• and modified dimension d(•).
Let P ∈ P be indecomposable such that d(P) 6= 0 and let MJ,P,ΦJ,P ∈ End(P) be
semisimple endomorphisms. Then, one of the following must hold:

(1) ΦX,P = 0, which in turn implies that tP(ΦX,P) = 0. If C is a modular tensor
category, then this implies that the corresponding modular S-matrix entry
is zero.

(2) dim(J)s(θJs�P◦(θ−1Js �θ−1P )) = 1, where we have identified θJs�P◦(θ−1Js �θ−1P )
with the scalar by which it acts.

As these quantities are computable, in principle, we can rule out fixed points
for J = Cλ or W[λ] and thereby deduce a multiplicity-free decomposition. We shall
illustrate this proposition below in a rational example.

3.3. Examples

Here, we discuss two simple examples involving the parafermion cosets [110, 62] to
illustrate the theory developed in this section. Let Lk(g) denote the simple vertex
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operator algebra of level k associated with the affine Kac-Moody (super)algebra ĝ.
Given a Cartan subalgebra h ⊂ g, let H ⊂ Lk(g) be the corresponding Heisenberg
vertex operator subalgebra. The commutant C = Com(H, Lk(g)) is called the level
k parafermion vertex operator algebra of type g.

Example 1. For g = sl2 and k = 2, the parafermion coset is the Virasoro minimal
model M

(
3, 4
)
, also known as the Ising model. The decompositions (3.6) and (3.7)

become

L2(sl2) =
⊕
λ∈4Z

[
Fλ ⊗ K0 ⊕ Fλ+2 ⊗ K1/2

]
= W[0] ⊗ K0 ⊕W[2] ⊗ K1/2, (3.13)

where Kh denotes the simple M
(
3, 4
)
-module of highest weight h, the lattice of

H-weights of L2(sl2) is L = 2Z, and the sublattice of H-weights giving isomorphic
coset modules is N = 4Z. The convention here for Fλ is that λ indicates the sl2-
weight so that the conformal dimension of this Heisenberg module is λ2/8. The
lattice vertex operator algebra W is thus obtained by extending H by the group of
simple currents generated by F4.

The representation theory of L2(sl2) is semisimple and it has three simple
modules Mω, ω = 0, 1, 2, which are distinguished by the Dynkin labels (k − ω, ω)
of their highest weights. L2(sl2) is identified with M0 and the decomposition
corresponding to (3.13) for M2 is obtained by swapping K0 with K1/2. In particular,
the L-orbit for M2 is also M = 2Z. The situation for M1 is, however, slightly
different:

M1 =
⊕

µ∈2Z+1

Fµ ⊗ K1/16 = W[1] ⊗ K1/16 ⊕W[−1] ⊗ K1/16.

Here, M = 2Z + 1 and N′ = 2Z 6= N (the non-isomorphic lattice modules are
paired with isomorphic coset modules). In other words, this decomposition fails
to be multiplicity-free.

To see that this is consistent with the criterion of Section 3.2, recall that ŝl2
admits a family σ`, ` ∈ Z, of spectral flow automorphisms that lift to automor-
phisms of the corresponding affine vertex algebras. The latter may be used to twist
the action on an Lk(sl2)-module M and thereby construct new modules σ`(M).
Using the conventions of [97], the characters of M and σ`(M) are related by

ch
[
σ`(M)

](
z; q
)

= z`kq`
2k/4ch

[
M
](
zq`/2; q

)
.

For k = 2, spectral flow acts on the simple modules as σ(Mω) = M2−ω, ω =
0, 1, 2. Identifying the weight space of sl2 with C and noting that the scalar product
on this space is then 〈λ, µ〉 = 1

4λµ, the criterion of Section 3.2 asks us to check
which λ ∈ C satisfy the relation

ch
[
Mω
](
z; q
)

= zλqλ
2/8ch

[
Mω
](
zqλ/4; q

)
= ch

[
σλ/2(Mω)

](
z; q
)
, (3.14)

for a given Mω. Since σ2 acts as the identity, this relation holds for each ω if
λ ∈ N = 4Z. If ω 6= 1, then it does not hold for λ = 2, hence N′ = 4Z and
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both M0 and M2 have multiplicity-free decompositions in terms of lattice modules.
However, this relation does hold for ω = 1 and λ = 2, so we cannot conclude that
the lattice decomposition of M1 is multiplicity-free (consistent with our explicit
calculation that it is not).

With a little more work, we can also see how this failure is consistent with the
criterion of Section 3.2. Let X = K1/16 and let J be the simple current K1/2, so
that X is a fixed point for J: J� X ∼= X. Since L2(sl2) is a unitary vertex operator
algebra, dim(J) = 1. Also, as recalled above, θ is given by e2iπL0 , hence, in our
notation, it acts on Kt by e2iπt, where t = 0, 1/2, 1/16. Further, it is easy to
check that the category C of M

(
3, 4
)
-modules has no non-trivial ideals except for

C itself.

We now verify that for every indecomposable P in C , either condition 1 or 2 of
our Hopf link criterion (Theorem 3.10) is satisfied.

P = K0: In this case, θJ�P ◦ (θ−1J � θ−1P ) = θK1/2
◦ (θ−1K1/2

� θ−1K0
) = 1.

P = K1/2: In this case, θJ�P ◦ (θ−1J � θ−1P ) = θK0
◦ (θ−1K1/2

� θ−1K1/2
) = 1.

P = K1/16: In this case, θJ�P ◦ (θ−1J � θ−1P ) = θK1/16
◦ (θ−1K1/2

� θ−1K1/16
) = −1, but

the modular S-matrix of M
(
3, 4
)

has entry SK1/16,K1/16
= 0.

So we see that in the first two cases condition (2) is satisfied while condition (1)
holds in the last. This is, of course, consistent with the fact that the decomposition
is not multiplicity-free. As an aside, we remark that if we had only known that
K1/16 was a fixed-point of the simple current (which implies that the decomposition
is not multiplicity-free), then we could have instead deduced that SK1/16,K1/16

must
vanish, as above.

Example 2. A more interesting example is the parafermion coset with g = sl2 at
level k = −4/3. In [5], Adamović showed that the resulting coset vertex operator
algebra is the (simple) singlet algebra I(1, 3) of central charge c = −7. This is
strongly generated by the energy-momentum tensor and a single conformal primary
of weight 5. We can revisit and extend this study using the results of this section.
We stress that at this point it is unknown if a large enough category for the parent
vertex operator algebra L−4/3(sl2) satisfies the conditions that would allow us to
apply the theory of Huang–Lepowsky–Zhang. However, it was recently shown [29]
that the category of ordinary modules for L−4/3(sl2) (and more generally Lk(ĝ) for
an admissible level k of ĝ) does satisfy the necessary conditions and indeed forms
a ribbon category. Nevertheless, we shall proceed with the analysis, assuming that
this theory may be applied. The results suggest that this assumption is, in this
case, not unreasonable.

Let Λ0 and Λ1 denote the fundamental weights of ŝl2. The vertex operator al-
gebra L−4/3(sl2) admits precisely three highest-weight modules, namely the simple
modules Mω whose highest weights have the form (k − ω)Λ0 + ωΛ1, where ω ∈
{0,−2/3,−4/3}, as well as an uncountable number of simple non-highest-weight
modules [6], [59], [101]. In particular, I(1, 3) is not a rational vertex operator
algebra. As the level is negative and these highest-weight modules have conformal
weights that are bounded below, the criterion of Section 3.2 applies and we con-
clude that their decompositions are multiplicity-free.
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Explicitly, the decomposition (3.6) takes the form

L−4/3(sl2) =
⊕
λ∈2Z

Fλ ⊗ Cλ, (3.15)

where Cλ is a simple highest-weight I(1, 3)-module whose highest-weight vector
has conformal weight ∆λ = |λ| (3 |λ|+ 8)/16. The convention here for Fλ is again
that λ indicates the sl2-weight so that the conformal dimension of this Heisenberg
module is −3λ2/16. Of course, Cλ and C−λ are not isomorphic for λ 6= 0 because
the decomposition (3.15) is multiplicity-free — they must therefore be distinguished
by the action of the zero mode of the weight 5 conformal primary.

The theory of Section 3.1 shows that the Cλ, with λ ∈ 2Z, are all (non-
isomorphic) simple currents. This had been previously deduced [100], [36] from
the (conjectural) standard Verlinde formula of [40], [102] for non-rational vertex
operator algebras. Noting that ∆±4 = 5, we remark [44], [100] that the simple
current extension of I(1, 3) by the Cλ, with λ ∈ 4Z, is the triplet algebra W(1, 3)
of Kausch [72].

Consider now the L−4/3(sl2)-modules σ−2(M−2/3) and σ(M−2/3), obtained by

twisting the action on M−2/3 by the spectral flow automorphisms σ`, ` ∈ Z.
Whilst both these modules have conformal weights that are unbounded below,
their decompositions into H⊗ I(1, 3)-modules are nevertheless multiplicity-free:

σ−2(M−2/3) =
∑
µ∈2Z

Fµ ⊗ D(−2)
µ , σ(M−2/3) =

∑
µ∈2Z

Fµ ⊗ D(1)
µ .

Here, the D
(−2)
µ and D

(1)
µ are simple highest-weight I(1, 3)-modules whose highest-

weight vectors have conformal weights given by

∆(−2)
µ =


µ(3µ+ 8)

16
if µ≤−2,

(µ+ 4)(3µ+ 4)

16
if µ≥−2

and ∆(1)
µ =


(µ− 4)(3µ− 4)

16
if µ≤2,

µ(3µ− 8)

16
if µ≥2,

respectively.
The interesting thing about the L−4/3(sl2)-modules σ−2(M−2/3) and σ(M−2/3)

is that they appear, together with two copies of the vacuum module M0, as the
composition factors of an indecomposable L−4/3(sl2)-module P0. This module was
first constructed as a fusion product in [59] and was structurally characterised in
[39] (see [8] for a construction and characterisation of a different indecomposable
L−4/3(sl2)-module). The action of the Virasoro zero mode L0 on P0 is non-
semisimple. The Loewy diagram for P0 has the form

M0

σ−2(M−2/3) σ(M−2/3)

M0

P0 ,
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where our convention is that the socle appears at the bottom. An immediate
consequence of Theorem 3.8 is that there exists a countably-infinite number of
mutually non-isomorphic indecomposable I(1, 3)-modules P0

µ, µ ∈ 2Z, on which
the I(1, 3) Virasoro zero mode acts non-semisimply. The Loewy diagrams of these
indecomposables are

Cµ

D
(−2)
µ D

(1)
µ

Cµ

P0
µ .

The existence of such I(1, 3)-modules was predicted in [100] from the fact that
similar indecomposables have been constructed [8], [106] for a simple current exten-
sion, the triplet algebra W(1, 3).

4. Properties of Heisenberg cosets

Recall from the introduction that one of our main applications for Heisenberg
cosets is to construct new, potentially C2-cofinite, vertex operator algebras as
extensions:

V
H−coset−−−−−−→ C

extension−−−−−−−→ E.

So far, we understand how V-modules decompose as H⊗C-modules. The remaining
tasks are to identify when C may be extended by certain abelian intertwining
algebras to a larger algebra E. This will be stated in Theorem 4.1. Since abelian
intertwining algebra extensions are mild generalisations of simple current exten-
sions, analogous arguments to [30] allow us to give precise criteria for the lifting
of H⊗ C-modules to V-modules, see Theorem 4.3. An analogous criterion for the
lifting of C-modules to E-modules is given in Theorem 4.4.

4.1. Extended algebras

If certain Fock modules involved in the vertex operator algebra decomposition yield
a lattice vertex operator (super)algebra, then the corresponding coset modules
form a vertex operator (super)algebra as well. Thus, we get extensions of the
coset.

Theorem 4.1. Let
V =

⊕
λ∈L

Fλ ⊗ Cλ.

If E is a sub-lattice of L, such that
⊕

λ∈E Fλ forms a lattice vertex operator
(super)algebra, then E =

⊕
λ∈E Cλ has a natural vertex operator (super)algebra

structure.
Moreover, assume that V is simple, the zeroth weight space of V is spanned by

its vacuum, the Cλ are mutually inequivalent, and that the zeroth weight space of
E is spanned by its vacuum. Then, E is simple.
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Proof. The first statement is an immediate corollary of [81, Thms. 3.1, 3.2] with
` = 1, see also [49]. These results in fact guarantee a generalised vertex algebra
structure on

⊕
λ∈L Cλ. Note that no restrictions with regards to vertex tensor

category theory are needed on V or C.
For the second statement, we first show that given any non-zero homogeneous

v ∈ V, there exists a homogeneous w ∈ V such that YV(w, x)v contains 1V as a
coefficient. Indeed, by [82, Cor. 4.5.10], there exist homogeneous w1, . . . , wk ∈ V
and n1, . . . , nk ∈ Z such that 1V = w1

(n1)
v+· · ·+wk(nk)v. However, since V[0] = C1V,

at least one of the summands is a non-zero scalar multiple of 1V. Now, fix λ ∈ E

and let c ∈ Cλ be non-zero and homogeneous. Pick a non-zero homogeneous
f ∈ Fλ. Then, there exists a homogeneous w =

∑
i f

i ⊗ ci ∈ V, with f i ∈ F−λ
and ci ∈ C−λ, such that YV(w, x)(f ⊗ c) has 1V as an expansion coefficient. Again,
since V[0] = C1V, there must exist at least one i for which YV(f i ⊗ ci, x)(f ⊗ c)
has the same property. However, by construction of the vertex operator algebra
map for E, we can write YV(f i ⊗ ci, x)(f ⊗ c) = (YH(f i, x)f)⊗ (YE(ci, x)c), where
YH and YE are the vertex operator maps for H and E, respectively. It follows that
1V = 1H ⊗ 1E =

∑
n∈Z(f i(n)f) ⊗ (ci(K−n)c), where K is some constant depending

on the conformal weights of the elements involved. There must now exist n such
that the LE

0-eigenvalue of ci(K−n)c is 0, hence, it must be a scalar multiple of 1E,
since we have assumed that E[0] = C1E. This immediately gives the simplicity
of E. �

For a more general scenario involving mirror extensions, see [84].

Example 3. Let g be a simple simply-laced Lie algebra and choose a level k = p/q
that is non-zero and rational (take p and q coprime); we do not require k to be
admissible. Then, Lk(g) is graded by (1/

√
k)Q =

√
q/pQ, where Q is the root

lattice:

Lk(g) =
⊕

λ∈
√
q/pQ

Fλ ⊗ Cλ.

The sublattice p
√
q/pQ =

√
pq Q is even, so

V√pqQ =
⊕

λ∈√pqQ

Fλ

is a lattice vertex operator algebra. It follows by Theorem 4.1 that

Ek,g :=
⊕

λ∈√pqQ

Cλ

is also a vertex operator algebra.
We believe that these extended vertex operator algebras have a good chance

to be C2-cofinite. The main outcome of [21] is that in the case g = sl2 and
k + 2 ∈ Q \ {1/n | n ∈ Z>0}, the characters of the modules of the extended
vertex operator algebra are modular (when supplemented by pseudotraces). In
two specific examples, C2-cofiniteness is already known. One of them is L−4/3(sl2),
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which is thus a continuation of Example 2. The other is L−1/2(sl2), which will form
a part of Example 4 below.

Recall that
L−4/3(sl2) =

⊕
λ∈2Z

Fλ ⊗ Cλ,

where Cλ is a simple highest-weight I(1, 3)-module whose highest-weight vector has
conformal weight ∆λ = |λ| (3 |λ|+ 8)/16 and the Heisenberg Fock module Fλ has
conformal dimension −3λ2/16. It follows that

VL =
⊕
λ∈4Z

Fλ

is the lattice vertex operator algebra with L =
√
−6Z and hence

W(1, 3) =
⊕
λ∈4Z

Cλ

is also a vertex operator algebra. It is actually the W(1, 3)-triplet that is well
known to be C2-cofinite [7]. This relation between singlet vertex operator algebra
and L−4/3(sl2) was first realised by Adamović [5] and has a nice generalisation to
a relation between singlet vertex operator algebras and certain W-algebras [44].

Example 4. We now illustrate how certain well-known, and somehow archetypal,
logarithmic vertex operator superalgebras are related via simple current extensions
and Heisenberg cosets, thus nicely illustrating the picture advocated in this work
and [30]. For these examples, the picture is as follows:

Vk(gl(1|1))
extension //

coset

��

L−1/2(sl(2|1))
extension //

coset

��

βγ ⊗ VZ

coset

��
H⊗ I(2)

extension //

coset

))

L−1/2(sl2)
extension //

coset

��

βγ

coset

uu
I(2)

extension // W(2) .

Here, I(2) is the p = 2 singlet vertex operator algebra [6], [36], [40], [100] and W(2)
is its C2-cofinite, but non-rational, infinite order simple current extension, called
the triplet, see [7] for example.

These and other extensions have been worked out in [42], [43], [11] while the
coset picture has been part of [42], [45], [44]. Here, the situation of the singlet
algebra I(2) is that the C1-cofiniteness of the known admissible modules has been
established [38], fusion coefficients are known [9], and the category of C1-cofinite
modules is a vertex tensor category in the sense of [67] provided that every C1-
cofinite N-gradable module is of finite length [38, Thm. 17].

For references on I(2)-modules, we refer to [6], [36], [40], [100]; for a reference
on Vk(gl(1|1))-modules, we refer to [42]. I(2) has simple highest-weight modules
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Fλ of conformal weight λ(λ − 1)/2, for λ ∈ R \ Z. For λ = 1 − r ∈ Z, we have
instead the non-split short exact sequences

0→ Mr → F1−r → Mr+1 → 0,

where Mr denotes a simple highest-weight module (with r ∈ Z). Similarly, the
affine vertex operator superalgebra Vk(gl(1|1)) has simple highest-weight modules
Vn,e, where n, e ∈ R are weight labels and e/k /∈ Z. If ` = e/k ∈ Z, then we
instead have the non-split short exact sequence

0→ An−1,`k → Vn,`k → An,`k → 0,

where An,`k denotes a simple highest-weight module (with n ∈ R and ` ∈ Z).
The Vn,e with e/k /∈ Z are projective, while the projective cover Pn,`k of An,`k is
characterised by the following non-split short exact sequence:

0→ Vn+1,`k → Pn,`k → Vn,`k → 0.

The commutant of I(2) in Vk(gl(1|1)) is a rank two Heisenberg vertex operator
algebra and we denote the Fock modules of the latter by Fn,e. Using the explicit
realisation of Vk(gl(1|1))-modules found in [45], we determine the decompositions
of the simple Vk(gl(1|1))-modules to be

Vn,e =
⊕
m∈Z

Fm−n,e ⊗ F−m+1−e/k, An,`k =
⊕
m∈Z

Fm−n,`k ⊗Mm+1+`.

It now follows from Theorem 3.8 that

Pn,`k =
⊕
m∈Z

Fm−n,`k ⊗ Sm+1+`, (4.1)

where Sm is an indecomposable I(2)-module that has non-split short-exact sequence

0→ F1−m → Sm → F2−m → 0.

In terms of Loewy diagrams, (4.1) becomes

Pn,`k =

An,`k

An+1,`k An−1,`k

An,`k

=
⊕
m∈Z

Fm−n,`k ⊗


Mm+1+`

Mm+` Mm+2+`

Mm+1+`

 .

The triplet algebra W(2) is known to be C2-cofinite but non-rational. It is a simple
current extension of I(2), namely,

W(2) =
⊕
m∈Z

M2m+1.
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4.2. Lifting coset modules

In this subsection, we show that the question of whether certain generalised C-
modules D may be tensored with appropriate Fock modules so that the product
can be induced (lifted) to a V-module is essentially answered by the monodromy

MCλ,D = RD,Cλ ◦RCλ,D : Cλ � D→ Cλ � D.

For the properties of the monodromy used here, we refer to [30].
The following lemma is easily proved as in [30] and will be used frequently

below.

Lemma 4.2. Let X ∈ C be such that for any simple current Ji ∈ C , the monodro-
my satisfies MJi,X = λJi,X IdJ�X, where λJ1,X ∈ C for i = 1, 2. Then, λJ1,XλJ2,X =
λJ1�J2,X.

Theorem 4.3. Let V, H, C and L be as in Theorem 3.5, let L′ be the lattice
dual to L, let U = L ⊗Z R, and let D be a generalised C-module that appears as
a subquotient of the fusion product of some finite collection of simple C-modules.
Then, there exists α ∈ U such that for all λ ∈ L,

MCλ,D = e−2πi〈α,λ〉 IdCλ�D

and Fβ ⊗ D lifts to a V-module if and only if β ∈ α+ L′.

Proof. Recall that we are working with categories of C and H that have real
conformal weights. Additionally, recall that we are working with a semisimple
category for H and a category for C in which each object has globally bounded
Jordan blocks with respect to the LC

0 -action.
We know that L is equipped with a symmetric non-degenerate bilinear form

〈· , ·〉 and that this form takes real values (since the conformal weights with respect
to H are real). By the non-degeneracy of 〈· , ·〉, given a homomorphism f : L→ S1,
there exists α ∈ U such that

f(λ) = e2iπ〈α,λ〉, (4.2)

for all λ ∈ L. Moreover, β ∈ U also satisfies Equation (4.2) if and only if β ∈ α+L′.
Since each Cλ is a simple current, the monodromy satisfies MCλ,D = Mλ IdCλ�D

for some scalar Mλ ∈ C× [30]. As MCλ,D is semisimple and Cλ, D and Cλ�D have
globally bounded LC

0 -Jordan blocks, proceeding as in the proof of [30, Eq. (3.10)],
we gather that MCλ,D = (θCλ�D)ss ◦ ((θ−1Cλ

)ss � (θ−1D )ss), where ss denotes the
semisimple part. Because each of the modules involved has real conformal weights,
it follows that Mλ = e2iπrλ for some rλ ∈ R. Using Theorem 4.2, we deduce that
λ 7→Mλ is a group homomorphism from L to S1 and so is λ 7→M−1λ (since S1 is
abelian).

In Equation (4.2), we now take the homomorphism f(λ) = M−1λ , deducing the
existence of α ∈ U such that M−1λ = e2iπ〈α,λ〉 = MFλ,Fα . Using Theorem 3.3,
it follows that (Fλ ⊗ Cλ) � (Fα ⊗ D) ∼= Fλ+α ⊗ (Cλ � D) and therefore that the
monodromy factors over the ⊗ tensorands. We conclude that MFλ⊗Cλ, Fα⊗D =
MFλ, Fα ⊗MCλ,D = 1. This means that Fα ⊗D lifts to a V-module. Moreover, the
arguments given show that Fβ ⊗ D lifts if and only if β ∈ α+ L′. �
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We now combine this with extensions of C, as in Theorem 4.1, to deduce the
following result.

Corollary 4.4. Assume the setup of Theorem 4.3. Let E be a sublattice of L such
that E =

⊕
λ∈E Cλ has a vertex operator algebra structure inherited from V, as in

Theorem 4.1. Then, D lifts to an E-module ⊕λ∈ECλ � D if and only if the α of
Theorem 4.3 belongs to E′, where E′ is the dual lattice of E.

Proof. Recall that each Cλ is a simple current for C. Therefore, using [66] (for the
“if” direction) and [30] (for the “only if” direction), we know that ⊕λ∈ECλ � D is
an E-module if and only if MCλ,Cµ�D = IdCλ�(Cµ�D), for all λ, µ ∈ E. Since E is a
vertex operator algebra, we know that MCλ,Cµ = IdCλ�Cµ for all λ, µ ∈ E. Using
standard properties of the monodromy, we gather that MCλ,Cµ�D = IdCλ�(Cµ�D),
for λ, µ ∈ E, if and only if MCλ,D = IdCλ�D, for all λ ∈ E, which in turn holds if
and only if α ∈ E′. �

Remark 4.5. Since E is a simple current extension of C, we can utilise arguments
similar to [74, Thm. 4.4] in order to analyse certain simple E-modules. Let X be
a simple E-module such that there exists a simple C-module X0 ⊆ X. (In the
notation of [74], the role of the group G is played by E and the V χ are identified
with the Cλ, λ ∈ E.) Then, ⊕λ∈ECλ � X0 has a natural structure of an (induced)
E-module and it surjects onto X.

Example 5. We now illustrate this lifting result using the unitary N = 2 minimal
model vertex operator superalgebras. We refer the reader to [3], [4], [46], [104] for
additional information on these minimal models.

We start with some well-known results whose proofs can be found, for example,
in [32]. Let k be a positive integer, so that Lk(sl2) contains the lattice vertex
operator algebra VLα , with Lα = αZ and α2 = 2k, hence Lα ∼=

√
2kZ. The

bc-ghost vertex operator algebra E(1) is isomorphic to VLβ with Lβ = βZ and
β2 = 1, hence Lβ ∼= Z. Then, the lattice Lα ⊕ Lβ contains the lattice Lγ = γZ
with γ = α + kβ as a sublattice. The orthogonal complement is N = µZ with
µ = α− 2β. In [32, Sect. 8] it is proved that

Sk = Com(VLµ , Lk(sl2)⊗ E(1))

is the simple rational N = 2 minimal model vertex operator superalgebra of central
charge c = 3k/(k + 2).

We will now explain how to obtain simple Sk-modules. For this, let λ be an
integer with 0 ≤ λ ≤ k. Further, let Λ0 and Λ1 be the usual fundamental weights
of ŝl2. Then, the simple Lk(sl2)-modules are the integrable highest-weight modules
L(λ) with highest weights (k − λ)Λ0 + λΛ1. We note that Vnα/2k+Lα appears in
L(λ) if and only if λ+ n is even. This follows directly since Vnα/2k+Lα appears in
the decomposition of Lk(sl2) if and only if n is even.

We now express the lattice vectors of L′α ⊕ Lβ in terms of those of L′γ ⊕ L′µ,
namely

a

2k
α+ bβ = (a+ bk)

γ

k(k + 2)
+ (a− 2b)

µ

2(k + 2)
(a, b ∈ Z).

334



SCHUR–WEYL DUALITY FOR HEISENBERG COSETS

It follows that Vn/2(k+2)+N′ is contained in L(λ)⊗VLβ if and only if λ+n is even
as well. We thus get

L(λ)⊗ VLβ
∼=


⊕

ν∈2N′/N
Vν+N ⊗M(λ, ν) if ν + λ is even,⊕

ν∈1/2(k+2)+2L′/L

Vν+L ⊗M(λ, ν) if ν + λ is odd,

as VLµ ⊗ Sk-modules. By Theorem 3.8, part 2, all of the M(λ, ν) are simple Sk-
modules. On the other hand, by Theorem 4.3, for every Lk-module M, there exists
a VN -module Vν+N such that Vν+ρ+N ⊗M lifts to a VN ⊗ Sk-module if and only
if ρ ∈ (2N′)′/N = 1

2N/N.
Finally, we announce that the relation between the tensor category of a vertex

operator algebra and its extensions can be made quite explicit [31] and that these
results imply that every simple Sk-module appears in the decomposition of at least
one of the L(λ)⊗ VLβ . Moreover, one has

M(λ, ν) ∼= M(λ′, ν′) if and only if λ′ = k − λ and ν′ = ν +
µ

2
mod Lµ.

4.3. Rationality

In this section, we prove an interesting rationality result. Let V be simple, rational,
CFT-type and C2-cofinite. Then, Theorem 4.12 below states that every grading-
restricted generalised C-module is semisimple.

We work with the following setup: Let C = Com(H,V) and assume that
Com(C,V) = VL, where L is a positive-definite even lattice (possibly zero). With
this, VL and C form a commuting pair and C is simple. We now collect several
well-known results from the literature that guarantee the conditions under which
we may invoke the vertex tensor category theory of [67] for C (under suitable
assumptions on V).

Lemma 4.6. If V is C2-cofinite, then so is C. In particular, if V = Lk(ĝ) with
k ∈ N, then C is C2-cofinite.

The proof of this statement can be found in [95]. For the special case in which
V = Lk(ĝ) with k ∈ N, see [19].

Lemma 4.7. If V is simple and CFT-type, then so is C.

Proof. As VL and C form a commuting pair, there exists a non-zero map VL⊗C→
V. Since VL and C are both simple, so is VL⊗C and hence this map is an injection.
Now, 1⊗ C[n] ⊆ V[n] for any n, where we recall that M[n] denotes the generalised
eigenspace of L0, acting on M, with eigenvalue n. In particular, we conclude that
C[n] = 0 for n < 0 and C[0] = C1C. �

Lemma 4.8. If V is simple, CFT-type and self-contragredient, then so is C.

Proof. As above, we have an injection VL ⊗ C ↪→ V. Since V′ ∼= V, there exists a
non-degenerate symmetric invariant bilinear form on V, see [58] or [80, Prop. 2.6].
Moreover, the space of symmetric invariant forms on V is naturally isomorphic
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to (V0/L1V1)∗ [80, Thm. 3.1]. Since V0 = C1, we conclude that L1V1 = 0.
Now, L1V1 = 0 implies that L1(1 ⊗ C1) = 1 ⊗ ((LC)1C1) = 0. This implies that
(LC)1C1 = 0, which coupled with the simplicity of C implies that there exists a
non-degenerate symmetric invariant bilinear form on C, by [80, Cor. 3.2]. In other
words, C′ ∼= C. �

Lemma 4.9. If V is simple, CFT-type and C2-cofinite, then:

(1) The category of grading-restricted generalised modules for V and C satisfy
the conditions needed to invoke Huang, Lepowsky and Zhang’s tensor cate-
gory theory.

(2) Denoting the finite abelian group L′/L by G, there exists a subgroup H of G
such that

V =
⊕
λ∈H

Vλ ⊗ Cλ.

(3) Each Cλ appearing in the above decomposition is a simple current for C.

Indeed, 1 follows from [65] and the previous lemmas; 2 and 3 follow from our
results above.

Lemma 4.10. Let (L, 〈· , ·〉) be a positive-definite even lattice, L′ be the dual
lattice and let G = L′/L. Then, the map f : µ 7→ Qµ, where Qµ(ν) = e2πi〈µ,ν〉

and µ, ν ∈ G, is an isomorphism of G with its dual group Ĝ.

Proof. It is clear that the image of f is in Ĝ. Let λ be in the kernel of f . Then,
we see that 〈λ,L′〉 ⊆ Z, hence that λ ∈ L′′ = L and so λ = 0 in G. �

Lemma 4.11. Let C be C2-cofinite and CFT-type. Then, the endomorphism space
of any grading-restricted generalised module for C is finite-dimensional. Moreover,
each grading-restricted generalised module has finite length and has L0-Jordan
blocks of bounded length.

These are the results [65, Thm. 3.24, Prop. 4.1 and Prop. 4.7]. In fact, the
conclusions hold under somewhat weaker hypotheses.

Theorem 4.12. Let V be simple, rational, C2-cofinite and CFT-type. Then, every
grading-restricted generalised C-module is semisimple.

Proof. We shall freely use the lemmas above as well as the notation they introduce.
Let W be a grading-restricted generalised C-module. We know that W decomposes
as a finite direct sum of indecomposable modules. Therefore, without loss of
generality, assume that W is indecomposable.

Since W is indecomposable and the Cλ are finite-order simple currents for every
λ ∈ H, we know thatMCλ,W is a scalar multiple Mλ ∈ C× of the identity morphism,
by [30, Lem. 3.17]. Let us assume that W is such that for some non-zero C-modules
R and S, we have an exact sequence

0→ R→W→ S→ 0.

We know from [30, Lem. 3.19(b)] that MCλ,R = Mλ idCλ�R and MCλ,S =Mλ idCλ�S.
From Theorem 4.2, we know that λ 7→M±1λ are group homomorphisms H→ S1.
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We now seek µ ∈ L′ such that, for all λ ∈ H, the VL-module Vµ+L is such that
the monodromy of Vλ+L ⊗ Cλ with Vµ+L ⊗ X is trivial, for X = R, S and W. In
other words, we want to find µ such that for all λ ∈ H,

MVµ+L,Vλ+L
= M−1λ .

Since H and G are finite abelian groups, every character of H can be extended to
a character of G. Choose χ ∈ Ĝ extending λ 7→ M−1λ . We will be done if we can
find µ ∈ L′ such that for each λ ∈ G = L′/L, we have

Qµ(λ) = e2πi〈µ,λ〉 = MVµ+L,Vλ+L
= χ(λ).

But, this is guaranteed by Theorem 4.10.
For X = R, S,W, denote Vµ+L ⊗ X by X̃ and let

X̃e =
⊕
λ∈H

(Vλ+L � Vµ+L)⊗ (Cλ � X) =
⊕
λ∈H

Vλ+µ+L ⊗ (Cλ � X).

We now invoke [66, Thm. 3.4] to see that X̃e is indeed a generalised (untwisted)
module for V.

Using the exactness of simple currents (Theorem 2.8, part 4), we deduce the
following exact sequence of V-modules:

0→ R̃e → W̃e → S̃e → 0.

However, every such exact sequence splits by the rationality of V. As any morphism
of V-modules preserves Heisenberg weights, we conclude that 0 → R→W→ S→ 0
splits. �

Now we can combine our results with those of [64, 65] to obtain the following
corollary.

Corollary 4.13. If V is simple, rational, C2-cofinite, CFT-type and self-contra-
gredient, then we have the following:

(1) Every C-module is semisimple.
(2) There exist finitely many inequivalent simple modules.
(3) Fusion coefficients amongst simple modules are finite.
(4) Every finitely generated generalised C-module is an ordinary C-module.

In particular, C is rational and the category of finitely generated C-modules has the
structure of a modular tensor category.

Example 6. The Bershadsky–Polyakov algebra [25, 96] is the quantum Hamilto-
nian reduction of L`−3/2(sl3) for the minimal embedding of sl2 in sl3. This vertex
operator algebra is strongly generated by four fields of conformal dimensions 1,
2, 3/2 and 3/2. We denote its simple quotient by W`. This quotient is rational
provided that ` is a positive integer [12].

When ` ∈ Z>0, W` contains the lattice vertex operator algebra VL of the lattice
L =

√
6(`− 1)Z as a vertex operator subalgebra [16]. Furthermore, its Heisenberg
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coset is rational, since it is isomorphic to the principal W-algebra W(sl2`) at level
k = −2` + (2`+ 3)/(2`+ 1) and central charge c = −3(2`− 1)2/(2`+ 3) [16],
which is known to be rational [13]. Our results give thus another, more direct,
proof of the rationality of this coset.

A second example are the Heisenberg cosets of the subregular W-algebra of sl4
at levels k = −4 + (m+ 4)/3 for m a positive integer greater than two and m+ 1
not divisible by three. These are also rational [35].

5. Heisenberg cosets inside free field algebras and L−1(sl(m|n))

We take the opportunity to prove that L−1(sl(m|n)) arises as a certain Heisen-
berg coset inside a free field algebra, specifically inside a certain tensor product of
bc- and βγ-ghost systems. It has been known for a while that this affine vertex
operator superalgebra is a subalgebra of the Heisenberg coset [70]. Identifying this
coset precisely is not only of interest in its own right, but it also gives a different
proof to a recent result for the case n = 0 and m ≥ 3 [10]. As simple affine vertex
operator superalgebras are poorly understood at present, we hope that one can
use this realisation to clarify the structure of L−1(sl(m|n))-modules.

Let S denote the βγ-system, which has even generators β and γ and defining
operator product expansions

β(z)β(w) ∼ 0, β(z)γ(w) ∼ 1

z − w
, γ(z)γ(w) ∼ 0.

Let H be the Heisenberg vertex operator subalgebra generated by h = :βγ : and
let C = Com(H, S). By a theorem of Wang [108], C is isomorphic to the singlet
algebra I(2). The explicit generators, suitably normalised, are as follows:

L = :ββγγ : + 2 :β∂γ : − 2 :∂βγ : ,

W = :βββγγγ : + 3 :ββ∂γγ : − 6 :∂ββγγ : − 6 :∂β∂γ : + 3 :∂2βγ : .
(5.1)

Now, let S(n) denote the rank n βγ-system, generated by the even elements βi

and γj , for i = 1, . . . , n, subject to

βi(z)βj(w) ∼ 0, βi(z)γj(w) ∼ δi,j
z − w

, γi(z)γj(w) ∼ 0.

In this case, H is the Heisenberg vertex operator subalgebra with generator h =∑n
i=1 : βiγi : and C(n) is the coset Com(H, S(n)). Note that C(n) contains

n commuting copies of I(2) with generators Li and W i, obtained from (5.1) by
replacing β and γ with βi and γi, respectively. Moreover, C(n) contains the fields

Xjk = − :βjγk : , j, k = 1, . . . , n, j 6= k,

H` = − :β1γ1 : + :β`+1γ`+1 : , 1 ≤ ` < n,

which generate a homomorphic image of the universal affine vertex operator algebra
V−1(sln).

A consequence of [85, Thm. 7.3] is the following result:
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Lemma 5.1. C(n) is generated as a vertex algebra by the Li, W i, Xjk and H`,
for i, j, k, ` as above.

A recent theorem of Adamović and Perše [10] states that the map V−1(sln)→
C(n) is surjective, for n ≥ 3, hence that C(n) is isomorphic to the simple affine
vertex operator algebra L−1(sln). Using Theorem 5.1, we now provide a much
shorter proof of this result. It suffices to show that all the Li and W i lie in the
image of the map V−1(sln) → C(n) and, by symmetry, it is enough to prove this
for L1 and W 1. However, this is immediate from the following identifications:

L1 = :H1H2 : + :X12X21 : + :X13X31 : − :X23X32 : − ∂H1,

W 1 = − :H1H2H2 : − :X12X21H2 : − :X13X31H1 : − :X13X31H2 :

+ :X23X32H2 : − :X13X32X21 : + 1
2 :X12∂X21 : − 3

2 :∂X12X21 :

+ 7
2 :X13∂X31 : − 9

2 :∂X13X31 : − 1
2 :X23∂X32 :

+ 3
2 :∂X23X32 : − 1

2 :H1∂H2 : + 1
2 :∂H1H2 : + 1

2∂
2H1.

Next, we find a minimal strong generating set for the remaining case C(2). In
this case, it is readily verified that L1 and W 1 do not lie in the affine vertex
operator algebra generated by X12, X21 and H1. However, consider the following
elements of C(2):

P = − 1
2L

2
(0)X

12 + 1
3 :H1X12 : + 2

3∂X
12

= :β1∂γ2 : − :∂β1γ2 : + 1
3 :β1β1γ1γ2 : + 2

3 :β1β2γ2γ2 : ,

Q = − 1
2L

1
(0)X

21 − 2
3 :H1X21 : + 1

3∂X
21

= :β2∂γ1 : − :∂β2γ1 : + 1
3 :β1β2γ1γ1 : + 2

3 :β2β2γ1γ2 : ,

R = L1 − L2, L = :X12X21 : + 1
4 :H1H1 : − 1

2∂H
1.

Here, L is the Sugawara–Virasoro field of V−1(sl2), which has central charge −3,
and X12, X21 and H1 are primary with respect to L of conformal weight 1. It
is easily verified that P , Q and R are primary of weight 2 with respect to L and
that the generators X12, X21, H1, P , Q and R close under operator product
expansion. They therefore strongly generate a vertex operator subalgebra C′(2) ⊆
C(2). Moreover, we have

L1 = 1
2R+ :X12X21 : + 1

2 :H1H1 : − 1
2∂H

1,

L2 = − 1
2R+ :X12X21 : + 1

2 :H1H1 : − 1
2∂H

1,

W 1 = − 1
2 :RH1 : − :PX21 : − 1

2 :H1H1H1 : − 5
3 :X12X21H1 :

− 13
3 :∂X12X21 : + 10

3 :X12∂X21 : − 1
6 :∂H1H1 : + 1

3∂
2H1,

W 2 = − 1
2 :RH1 : − :PX21 : + 1

2 :H1H1H1 : + 4
3 :X12X21H1 :

+ 19
6 :∂X12X21 : − 25

6 :X12∂X21 : − 5
3 :∂H1H1 : + 3

4∂R+ 7
12∂

2H1.

Since C(2) is generated by L1, L2, W 1, W 2, X12, X21 and H1, this shows that
C′(2) = C(2). We have therefore proved the following:
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Theorem 5.2. C(2) is of type W(1, 1, 1, 2, 2, 2). In fact, it is the simple quotient of
an algebra of type W(1, 1, 1, 2, 2, 2, 2), where the Virasoro field of weight 2 coincides
with the Sugawara field.

Remark 5.3. Recall that each embedding of sl2 inside a reductive Lie superalgebra
g gives an associated affine W-superalgebra from the level k affine vertex operator
superalgebra associated with g [71]. Denote by Wk(sl4) the universal affine W-
algebra of sl4 for the embedding of sl2 such that sl4 decomposes into four copies
of the adjoint module of sl2 plus three copies of the trivial one. This implies
that Wk(sl4) is of type (1, 1, 1, 2, 2, 2, 2) and, in fact, one can check that the
three primaries of conformal weight 1 generate the vertex operator subalgebra
V2k+4(sl2). Specialising to k = −5/2, so that the central charge of Wk(sl4) is −3,
we see that it contains L−1(sl2) as a vertex operator subalgebra.

Proposition 5.4. C(2) is isomorphic to the simple quotient W−5/2(sl4).

Proof. At level k = −5/2, W−5/2(sl4) has a singular vector in weight 2 given
by the difference between the Virasoro field and the Sugawara field for V−1(sl2).
Therefore in the simple quotient W−5/2(sl4), L−1(sl2) is conformally embedded
and W−5/2(sl4) is of type W (1, 1, 1, 2, 2, 2). Using the free field realization of
W−5/2(sl4) given in [20, Ex. 3.3], a straightforward computation reveals that C(2)
and W−5/2(sl4) have the same OPE algebra. Since C(2) is simple, the claim follows.
�

Next, we consider Heisenberg cosets inside bc- and bcβγ-ghost systems. First,
consider the rank n bc-system E(n) with odd generators bi, ci satisfying

bi(z)bj(w) ∼ 0, bi(z)cj(w) ∼ δi,j
z − w

, ci(z)cj(w) ∼ 0.

The Heisenberg subalgebra H has generator h = −
∑n
i=1 : bici : and the coset

Com(H,E(n)) is well-known to be trivial, for n = 1, and isomorphic to L1(sln), for
n ≥ 2.

We therefore turn to the Heisenberg subalgebra H inside S(n) ⊗ E(m) with
generator

h =
n∑
i=1

:βiγi : −
m∑
j=1

:bici : .

Let C(n,m) = Com(H, S(n) ⊗ E(m)) denote the coset. It is easy to verify that
C(n,m) contains the following fields:

Xjk = − :βjγk : , j, k = 1, . . . , n, j 6= k,

H` = − :β1γ1 : + :β`+1γ`+1 : , 1 ≤ ` < n,

X̄rs = :brcs : , r, s = 1, . . . ,m, r 6= s,

H̄u = :b1c1 : − :bu+1cu+1 : , 1 ≤ u < m,

J i,r = :βiγi : − :brcr : , 1 ≤ i ≤ n, 1 < r < m,

φr,k = :brγk : , ψj,s = :βjcs : , j, k = 1, . . . , n, r, s = 1, . . . ,m.

Moreover, these generate a homomorphic image of V1(sl(n|m)).
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Lemma 5.5. For all m,n ≥ 1, C(n,m) is generated as a vertex algebra by the
Li and W i, with i = 1, . . . , n, together with the image of the map V1(sl(n|m)) →
C(n,m) referred to above.

The proof is similar to that of Theorem 5.1.

Theorem 5.6. For all m,n ≥ 1, C(n,m) is isomorphic to the simple affine vertex
superalgebra L1(sl(n|m)).

Proof. Since C(n,m) is simple, it suffices to show that the Li and W i lie in the
image of the map V1(sl(n|m))→ C(n,m). By symmetry, it is enough to show this
for L1 and W 1. Consider the following fields in the image of V1(sl(n|m)):

J1,1 = :β1γ1 : − :b1c1 : , ψ1,1 = :β1c1 : , φ1,1 = :b1γ1 : .

A straightforward calculation shows that

L1 = :J1,1J1,1 : − 2 :ψ1,1φ1,1 : + ∂J1,1,

W 1 = :J1,1J1,1J1,1 : − 3 :J1,1ψ1,1φ1,1 : + 3 :∂ψ1,1φ1,1 : − 1
2∂

2J1,1,

which completes the proof. �

6. Some C1-cofiniteness results

In this section, we show that the simple parafermion algebras of sl2, as well
as the cosets by the Heisenberg subalgebras of the Bershadsky–Polyakov algebras,
each admit large categories of C1-cofinite modules.

6.1. The sl2 parafermion algebra

We work with the usual generating set {X ≡ E, Y ≡ F,H} for the universal affine
vertex operator algebra Vk(sl2). Let Ik ⊂ Vk(sl2) denote the maximal proper
ideal, graded by conformal weight, so that the simple affine vertex operator algebra
Lk(sl2) is isomorphic to Vk(sl2)/Ik. By abuse of notation, we use the same symbols
X, Y and H for the generators of Lk(sl2). Let Nk(sl2) = Com(H, Lk(sl2)) denote
the simple parafermion vertex operator algebra of sl2. We will prove the following.

Theorem 6.1. For all k 6= 0,−2, every simple Nk(sl2)-module appearing in the
coset decomposition of Lk(sl2) has the C1-cofiniteness property.

Here, we note that we are assuming Miyamoto’s definition for C1-cofiniteness
(see [94]): A module M for a vertex algebra V is C1-cofinite if M/C1(M) is finite-
dimensional, where C1(M) is spanned by the elements A(j)m, where A ∈ V has
positive conformal weight, A(z) =

∑
n∈ZA(n)z

−n−1, j < 0 and m ∈ M.
When k is a positive integer, Nk(sl2) is rational, so the C1-cofiniteness of the

above modules is already known. Therefore, we shall assume from here on that
k is not a non-negative integer. As the zeroth Dynkin label of the highest weight
of the vacuum module of Vk(sl2) is k, it follows now that Ik does not contain the
normally ordered powers :Xn : or :Y n : , for any n.

Recall that the invariant subalgebra Lk(sl2)U1 is isomorphic to H ⊗ Nk(sl2),
where the U1-action is infinitesimally generated by the zero mode H0. Since each
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simple Lk(sl2)U1 -module M appearing in the decomposition of Lk(sl2) is isomorphic
to H⊗N, for some simple Nk(sl2)-module N, it suffices to prove the C1-cofiniteness
of the simple modules M.

For all k 6= −2, the invariant subalgebra Vk(sl2)U1 has a strong generating set
{H,U1,j | j ≥ 0}, where Ui,j = :∂iX∂jY : . If k 6= 0,−2 and i ≥ 4, then there is
a relation of weight i+ 2 of the form

U0,i = Pi(H,U0,0, U0,1, U0,2, U0,3), (6.1)

where Pi is a normally ordered polynomial in the given fields and their derivatives.
Therefore, Vk(sl2)U1 is strongly generated by {H,U0,0, U0,1, U0,2, U0,3} and hence
is of type W(1, 2, 3, 4, 5), for all k 6= 0,−2. Moreover, since the map Vk(sl2)U1 →
Lk(sl2)U1 is surjective, this strong generating set descends to one for Lk(sl2)U1 .

Since U1 is compact and Lk(sl2) is simple, we have a decomposition

Lk(sl2) =
⊕
n∈Z

Ln ⊗Mn,

where Ln is the simple one-dimensional U1-module, indexed by n ∈ Z, and the
Mn are inequivalent simple Lk(sl2)U1 -modules. More precisely, Mn consists of
elements on which H0 has eigenvalue 2n. Since :Xn : and :Y n : are non-zero in
Lk(sl2) (since k /∈ N), but these elements lie in Mn and M−n, respectively and have
minimal conformal weight n in these eigenspaces, it follows that Mn and M−n are
generated as Lk(sl2)U1 -modules by :Xn : and :Y n : , respectively. Note that we
have a similar decomposition

Vk(sl2) =
⊕
n∈Z

Ln ⊗ M̃n,

where the M̃n are Vk(sl2)U1 -modules which are no longer simple when Vk(sl2) is
not simple.

To prove that the Mn are C1-cofinite as Lk(sl2)U1 -modules, it suffices to prove

the C1-cofiniteness of M±1. In fact, we shall prove a stronger statement: M̃±1
is C1-cofinite as a Vk(sl2)U1 -module. Since the map M̃±1 → M±1 is surjective
and compatible with the actions of Vk(sl2)U1 and Lk(sl2)U1 , this implies the C1-

cofiniteness of M±1. We only prove the C1-cofiniteness of M̃−1; the proof for M̃1

is the same.
Since Vk(sl2) is freely generated by X, Y and H, it has a good increasing

filtration

Vk(sl2)(0) ⊆ Vk(sl2)(1) ⊆ · · · , Vk(sl2)(0) =
⋃
d≥0

Vk(sl2)(d),

where Vk(sl2)(d) is spanned by normally ordered products of X, Y , H and their

derivatives, whose length is at most d. Then, M̃−1 inherits this filtration and

(M̃−1)(d) has a basis consisting of the elements

:∂i1H · · · ∂irH∂j1X · · · ∂jsX∂k1Y · · · ∂ksY ∂ks+1Y : , (6.2)

where r, s ≥ 0, i1 ≥ · · · ≥ ir ≥ 0, j1 ≥ · · · ≥ js ≥ 0, k1 ≥ · · · ≥ ks ≥ ks+1 ≥ 0 and

r + 2s+ 1 ≤ d. In particular, (M̃−1)(1) has basis
{
∂jY | j ≥ 0

}
.
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Lemma 6.2. Any ω ∈ M̃−1 of conformal weight m > 0 is equivalent to a scalar

multiple of ∂m−1Y , modulo C1(M̃−1).

Proof. It suffices to assume that ω is a monomial of the form (6.2) with r+2s > 0,
which has filtration degree r+2s+1. Let ν= :∂i1H · · · ∂irH Ui1,j1 · · ·Uis,js ∂s+1Y :

and observe that ν has conformal weight m and lies in C1(M̃−1), while ω − ν has
filtration degree r+2s. Therefore, by induction on filtration degree, ω is equivalent
to an element of filtration degree 1 and weight m. The only such element, up to
scalar multiples, is ∂m−1Y . �

Now we are ready to prove Theorem 6.1. By the preceding lemma, it is enough
to prove that ∂iY ∈ C1(M̃−1), for i sufficiently large. For this purpose, we compute

(U0,4)(0)(∂
iY ) =

(
k +

2

5

)
∂i+5Y + · · · ,

where the remaining terms are of the form : ∂rH∂i+4−rY : , for 0 ≤ r ≤ i, and
hence lie in C1(M̃−1). Recall that for all k 6= 0,−2, we have the relation (6.1)
expressing U0,4 as a normally ordered polynomial P4 in H and the U0,j with j ≤ 3.
We claim that

(U0,4)(0)(∂
iY ) = P4(H,U0,0, U0,1, U0,2, U0,3)(0)(∂

iY ) ∈ C1(M̃−1).

To see this, let ω be a term appearing in P4(H,U0,0, U0,1, U0,2, U0,3) of the form
: α1 . . . αt : , where t > 1 and αj is either H, U0,0, U0,1, U0,2, U0,3 or one of

their derivatives. Then, ω(0)(∂
iY ) ∈ C1(M̃−1) because the zero mode of such an

operator cannot only consist of non-negative modes of the αj . If t = 1, then ω is
a total derivative by weight considerations, so ω(0)(∂

iY ) = 0. It follows that for

all k 6= −2/5, ∂iY ∈ C1(M̃−1) for all i ≥ 5.
Finally, suppose that k = −2/5. A similar computation shows that

(U0,5)(0)(∂
iY ) = − 1

15
∂i+6Y + · · · ,

where the remaining terms are of the form : ∂rH∂i+5−rY : , for 0 ≤ r ≤
i, and hence lie in C1(M̃−1). The same argument using the relation U0,5 =

P5(H,U0,0, U0,1, U0,2, U0,3) shows that ∂iY ∈ C1(M̃−1) for all i ≥ 6.

6.2. Bershadsky–Polyakov algebras

Let Wk denote the universal Bershadsky–Polyakov algebra, freely generated by
fields J , T , G+ and G− of conformal weights 1, 2, 3/2 and 3/2, respectively. We
refer to [57] for the defining operator product expansions. This algebra appeared

originally in [25], [96], and it coincides with the Feigin–Semikhatov algebra W
(2)
3

[57] and also with the minimal universal W-algebra associated to sl3 [71]. Let
Ik ⊂ Wk denote the maximal proper ideal, graded by conformal weight, and let
Wk = Wk/Ik be the simple quotient.

The field J generates a Heisenberg algebra H and we define Ck = Com(H,Wk)
and Ck = Com(H,Wk). In [16], it was shown that Ck is of type W(2, 3, 4, 5, 6, 7),
for all k except for {−1,−3/2,−3}. As there is a projection Ck → Ck, the strong
generators of Ck descend to give strong generators for Ck as well.
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Theorem 6.3. For all k 6= −1,−3/2,−3, every simple Ck-module appearing in
the coset decomposition of Wk has the C1-cofiniteness property.

The proof of this result is similar to that of Theorem 6.1. First, suppose that
k = p/2−3, for p = 5, 7, 9, . . . . It was shown in [16] that Cp/2−3 is isomorphic to a
simple rational W-algebra associated with slp−3 of central charge c = −3(p−4)2/p.
Moreover, Wp/2−3 is a simple current extension of Cp/2−3 ⊗ VL, where VL is the
lattice vertex algebra for L =

√
3p− 9Z. From this result, we see that Theorem 6.3

holds for these cases, so from now on we assume that k does not have this form.
One consequence of this restriction is that Ik does not contain : (G±)n : , for any
n ≥ 0.

Recall that WU1

k
∼= H ⊗ Ck, where the U1 action is infinitesimally generated

by the zero mode of J . Since each simple (Wk)U1 -module M appearing in Wk

is isomorphic to H ⊗ N, for some simple Ck-module N, it suffices to prove the
C1-cofiniteness of the simple modules M.

For all k 6= −1,−3/2,−3, (Wk)U1 has [16, Thm. 5.3] a strong generating set
{J, L, U0,j | j ≥ 0}, where Ui,j = : ∂iG+∂jG− : . Given i ≥ 5, there is a relation
of weight i+ 3 of the form

U0,i = Pi(J, L, U0,0, U0,1, U0,2, U0,3, U0,4), (6.3)

where Pi is a normally ordered polynomial in the given fields and their derivatives.
Therefore, (Wk)U1 is strongly generated by {J, L, U0,0, U0,1, U0,2, U0,3, U0,4} and
hence is of type W(1, 2, 3, 4, 5, 6, 7) for all k 6= −1,−3/2,−3. Since the map
(Wk)U1 → (Wk)U1 is surjective, this strong generating set descends to a set of
strong generators for (Wk)U1 .

We have the decomposition

Wk =
⊕
n∈Z

Ln ⊗Mn, (6.4)

where Ln is the simple one-dimensional U1-module indexed by n ∈ Z and the Mn

are inequivalent simple (Wk)U1 -modules on which J0 has eigenvalue n. We note
that Mn contains a unique, up to scalar, element ωn of minimal conformal weight
3n/2. Indeed, ω0 = 1, ωn = :(G−)−n : , for n < 0, and ωn = :(G+)n : , for n > 0.
It follows that Mn is generated as a (Wk)U1 -module by ωn.

As usual, to prove the C1-cofiniteness of Mn as a (Wk)U1 -module for all n, it
suffices to prove the C1-cofiniteness of M±1. For this purpose, it is enough to

prove that M̃±1 is C1-cofinite as a (Wk)U1 -module, where the M̃n are defined by
the decomposition of Wk analogous to (6.4). We only prove the C1-cofiniteness of

M̃−1 as the proof for M̃1 is virtually identical.
Recall from [16] that Wk has a weak filtration

(Wk)(0) ⊆ (Wk)(1) ⊆ · · · , (Wk) =
⋃
d≥0

(Wk)(d),

where (Wk)(d) is spanned by the normally ordered products of J , L, G± and their
derivatives, where at most d of the fields G± and their derivatives appear. Then,
M̃−1 inherits this filtration and (M̃−1)(d) has a basis consisting of the

:∂a1L · · · ∂aiL∂b1J · · · ∂bjJ∂c1G+ · · · ∂crG+∂d1G− · · · ∂dr+1G− : , (6.5)
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with i, j, r ≥ 0, 0 ≤ a1 ≤ · · · ≤ ai, 0 ≤ b1 ≤ · · · ≤ bj , 0 ≤ c1 ≤ · · · ≤ cr,
0 ≤ d1 ≤ · · · ≤ dr+1 and 2r + 1 ≤ d.

Lemma 6.4. Any ω ∈ M̃−1 of weight m+3/2 > 0 is equivalent to a scalar multiple

of ∂mG−, modulo C1(M̃−1).

Proof. ω is equivalent modulo C1(M̃−1) to a linear combination of terms of the
form :∂a1L · · · ∂aiL∂b1J · · · ∂bjJ∂mG− : by the same argument that was used to
prove Theorem 6.2. All such terms, except possibly ∂mG−, clearly lie in C1(M̃−1).
�

To prove Theorem 6.3, it is enough to show that ∂iG− ∈ C1(M̃−1), for i
sufficiently large. For this purpose, we compute

(U0,5)(0)(∂
iG−) =

(
k2 +

2

21
k +

1

28

)
∂i+7G− + · · · ,

where the remaining terms lie in C1(M̃−1). Recall that for all k 6= −1,−3/2,−3,
we have the relation (6.3) expressing U0,5 as a normally ordered polynomial P5 in
J , L and the U0,j with j ≤ 4. We claim that

(U0,5)(0)(∂
iG−)=P5(J, L, U0,0, U0,1, U0,2, U0,3, U0,4)(0)(∂

iG−)∈C1(M̃−1).

To see this, let ω be a term appearing in P5(J, L, U0,0, U0,1, U0,2, U0,3, U0,4) of the
form : α1 . . . αt : , where t > 1 and αj is either J , L, U0,0, U0,1, U0,2, U0,3, U0,4

or one of their derivatives. Then, ω(0)(∂
iG−) ∈ C1(M̃−1) because the zero mode

of such an operator cannot consist only of non-negative modes of the αj . If t = 1,
then ω is a total derivative by weight considerations, so ω(0)(∂

iG−) = 0. It follows

that if k is not a root of x2 + 2x/21 + 1/28, then ∂iG− ∈ C1(M̃−1) for all i ≥ 7.
Finally, suppose that k is a root of x2 + 2x/21 + 1/28. A similar computation

shows that

(U0,6)(0)(∂
iG−) =

(
k2 +

1

56
k +

3

112

)
∂i+8G− + · · · ,

where the remaining terms lie in C1(M̃−1). Since k is not a root of x2+x/56+3/112,
the same argument using the relation U0,6 = P6(J, L, U0,0, U0,1, U0,2, U0,3, U0,4)

shows that ∂iG− ∈ C1(M̃−1) for all i ≥ 8.

A. A proof of Theorem 3.1

Let V be a simple vertex operator algebra and let G be a finitely generated
abelian group of semisimple automorphisms of V. Assume that V =

⊕
λ∈L Vλ

for some subgroup L of Ĝ. Assume also that we are working with a category of
V0-modules that satisfies the conditions required to invoke Huang, Lepowsky and
Zhang’s tensor category theory (see Theorem 2.3 above); under these conditions
we have the following fundamental result [67, Thm 9.23, Cor. 9.24] that we shall
need below.
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Theorem A.1 ([67, Thm. 9.23, Cor. 9.24]). Assume the setting of Theorem 2.3.
Given z1, z2 ∈ C× with |z1| > |z2| > |z1 − z2| > 0, modules W1, W2, W3, W4,
M1 and logarithmic intertwining operators Y1, Y2 of types

(
W4

W1 M1

)
and

(
M1

W2 M3

)
,

respectively, there exists a module M2 and logarithmic intertwining operators Y1,
Y2 of types

(
W4

M2 W3

)
and

(
M2

W1 W2

)
, respectively, such that for w′4 ∈ W′4, w1 ∈ W1,

w2 ∈W2, w3 ∈W3, the following equality holds:

〈w′4,Y1(w1, z1)Y2(w2, z2)w3〉 = 〈w′4,Y1(Y2(w1, z1 − z2)w2, z2)w3〉.

Conversely, given Y1, Y2 as above, there exist M1, Y1, Y2 satisfying the above
equality.

Put simply, a product of logarithmic intertwining operators may be written as
an iterate, and vice versa.

We denote the vertex operator map of V by Y . Fix an i ∈ L. We shall prove
that V−i � Vi ∼= V0. In other words, we shall prove that Vi is a simple current.
The proof we provide below is essentially a detailed version of the proof given in
[93], [26].

We break the proof into several steps.

(1) Let us think of Y as a V-intertwining operator of type
(

V
V V

)
. We have already

assumed that V is simple, so V is simple as a V-module. Using [49, Prop. 11.9],
we see that for any t1, t2 ∈ V, Y (t1, x)t2 6= 0. This implies that the coefficients of
Y (t1, x)t2, as t1 runs over Vj and t2 runs over Vk, span a non-zero V0-submodule
of Vj+k. Since Vj+k is a simple V0-module, it follows that the coefficients of
Y (t1, x)t2, for t1 ∈ Vj and t2 ∈ Vk, span Vj+k.

(2) Given generalised V0-modules A and B, we denote by Y�
A,B the universal

intertwining operator of type
(
A�B
A B

)
furnished by the universal property of fusion.

If V0 is a direct summand of A, then we assume that Y�
A,B is normalised so that

Y�
A,B(v0, x)b = YB(v0, x)b for all v0 ∈ V0 and b ∈ B, where YB is the module map

for the V0-module B. Moreover, for finite direct sums, A =
⊕

Ai, we will assume

that Y�
A,B

∣∣
Ai

= Y�
Ai,B

, for all B.

We mention that in what follows, we will often make the identification V0�Vi =
Vi, for simplicity.

(3) Recall that we have fixed an i ∈ L. By [67, Thm. 9.23, Cor. 9.24], we have
the associativity of intertwining operators and hence there exists a logarithmic
intertwining operator Yr,s;i of type

( Vr+s�Vi
Vr Vs�Vi

)
such that for complex numbers x, y

with |x| > |y| > |x− y| > 0, we have

〈w′,Y�
Vr+s,Vi

(Y (ur, x− y)us, y)vi〉 = 〈w′,Yr,s;i(ur, x)Y�
Vs,Vi

(us, y)vi〉, (A.1)

for any ur ∈ Vr, us ∈ Vs, vi ∈ Vi and w′ ∈ (Vr+s � Vi)
′.

(4) Taking ur = 1 in (A.1) now gives

〈w′,Y�
Vs,Vi

(us, y)vi〉 = 〈w′,Y0,s;i(1, x)Y�
Vs,Vi

(us, y)vi〉.
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Combining this with the observation that the coefficients of Y�
Vs,Vi

(ts, y)vi span
Vs � Vi, we see that

Y0,s;i(1, x)ve = ve,

for all ve ∈ Vs � Vi. Using the Jacobi identity, it now follows that Y0,s;i(u0, x)ve,
where u0 ∈ V0 and ve ∈ Vs� Vi, coincides with the action of u0 on Vs� Vi by the
V0-module map.

(5) Taking us = 1 in (A.1), we instead arrive at

〈w′,Yr,0;i(ur, x)vi〉

= 〈w′,Yr,0;i(ur, x)Y�
V0,Vi

(1, y)vi〉 = 〈w′,Y�
Vr,Vi

(Y (ur, x− y)1, y)vi〉

= 〈w′,Y�
Vr,Vi

(e(x−y)L−1ur, y)vi〉 = 〈w′,Y�
Vr,Vi

(ur, y + x− y)vi〉,

where all the equalities hold for complex numbers x, y with |x| > |y| > |x− y| > 0.
We may now choose y = 2x/3, as this satisfies the required constraints, and deduce
that

Yr,0;i(ur, x)vi = Y�
Vr,Vi

(ur, x)vi, (A.2)

for all ur ∈ Vr and vi ∈ Vi.
(6) For complex numbers |x| > |y| > |z| > |x− z| > |y − z| > |x− y| > 0, we

have

〈w′,Yr,s+t;i(ur, x)Ys,t;i(us, y)Y�
Vt,Vi

(ut, z)vi〉

= 〈w′,Yr,s+t;i(ur, x)Y�
Vs+t,Vi

(Y (us, y − z)ut, z)vi〉

= 〈w′,Y�
Vr+s+t,Vi

(Y (ur, x− z)Y (us, y − z)ut, z)vi〉

= 〈w′,Y�
Vr+s+t,Vi

(Y (Y (ur, x− y)us, y − z)ut, z)vi〉

= 〈w′,Yr+s,t;i(Y (ur, x− y)us, y)Y�
Vt,Vi

(ut, z)vi〉.

Again, because the coefficients of Y�
Vt,Vi

span Vt�Vi, it follows that for all ur ∈ Vr,
us ∈ Vs and ve ∈ Vt � Vi,

Yr,s+t;i(ur, x)Ys,t;i(us, y)ve = Yr+s,t;i(Y (ur, x− y)us, z)ve. (A.3)

(7) Now we consider V−i�Vi. Since the vertex operator map Y for V furnishes
a V0-intertwining operator of type

(
V0

V−i Vi

)
, there exists a morphism from V−i�Vi

to V0, by the universal property of fusion. As the coefficients of Y (u−i, x)ui, for
u−i ∈ V−i and ui ∈ Vi, span V0, V−i � Vi surjects onto V0. But, the latter is
simple, so proving the simplicity of V−i � Vi will give V−i � Vi ∼= V0, as desired.

(8) Let B be a non-zero V0-submodule of V−i � Vi (we recall that V−i � Vi is
non-zero because it surjects onto V0) and let

E = span {coefficients of Yi,−i;i(ui, x)b | ui ∈ Vi, b ∈ B} . (A.4)
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Since the type of Yi,−i;i is
(

Vi
Vi V−i�Vi

)
, E can be regarded as a V0-submodule of Vi.

(9) E is in fact a non-zero submodule of Vi. Indeed, if it were 0, then the left-
hand side of (A.3), with r = t = −i and s = i, would vanish and this would imply
that Y0,−i;i(Y (u−i, x−y)ui, y)b = 0 for all u−i ∈ V−i, ui ∈ Vi and b ∈ B. However,
the coefficients of Y (u−i, x−y)ui would then span V0 and thus Y0,−i;i(u0, x)b would
equal YB(u0, x)b, for all u0 ∈ V0, where YB is the module map for the V0-module
B. Since the coefficients of the module map span the entire module, we have a
contradiction.

(10) Since 0 $ E ⊆ Vi and Vi is simple, we conclude that E = Vi. Combining
this with Equation (A.2) now gives

span{coefficients of Y−i,0;i(v−i, x)Yi,−i;i(vi, y)b | v−i ∈ V−i, vi ∈ Vi, b ∈ B}
= span{coefficients of Y−i,0;i(v−i, x)ε | v−i ∈ V−i, ε ∈ E}
= span{coefficients of Y−i,0;i(v−i, x)vi | v−i ∈ V−i, vi ∈ Vi}

= span{coefficients of Y�
V−i,Vi

(v−i, x)vi | v−i ∈ V−i, vi ∈ Vi}

= V−i � Vi.

However, using the right-hand side of Equation (A.3) instead gives

span{coefficients of Y−i,0;i(v−i, x)Yi,−i;i(vi, y)b | v−i ∈ V−i, vi ∈ Vi, b ∈ B}
= span{coefficients of Y0,−i;i(Y (v−i, x− y)vi, y)b | v−i ∈ V−i, vi ∈ Vi, b ∈ B}
= span{coefficients of Y0,−i;i(v0, x− y)b | v0 ∈ V0, b ∈ B}
= span{coefficients of YB(v0, x− y)b | v0 ∈ V0, b ∈ B}
= B.

This shows that V−i � Vi = B for any non-zero submodule B of V−i � Vi. We
conclude that V−i � Vi is simple. Hence, it equals V0.

Remark A.2. In the proof above, it is clear that we never switched the order of
the vertex operator maps. It follows that the statement also holds when V is a
vertex operator superalgebra.
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