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Abstract. In this paper we construct a homomorphism of the affine braid group Braff
n

in the convolution algebra of the equivariant matrix factorizations on the space X 2 =
bn × GLn × nn considered in the earlier paper of the authors. We explain that the
pull-back on the stable part of the space X2 intertwines with the natural homomorphism
from the affine braid group Braff

n to the finite braid group Brn. This observation allows
us derive a relation between the knot homology of the closure of β ∈ Brn and the knot
homology of the closure of β · δ where δ is a product of the JM elements in Brn

1. Introduction

This paper is an extension of our earlier paper where we constructed a triply-
graded knot homology theory [13]. In [13] the homology H(L(β)) of the link L(β)
that is a closure of the braid β ∈ Brn is realized, roughly, as a space of derived
global sections of the complex of equivariant quasi-coherent sheaves Sβ on the
Hilbert scheme of n points on the plane Hilbn. The knot homology of this sort was
expected to exist for quite some time [1], [12], [6], [5], [7], [13], in particular it was
expected that in such theory we would have a natural relation between H(L(β))
and H(L(β ◦ Tw)) where Tw is the full twist braid. This paper shows that this
expectation is indeed true.

Before we proceed to the main statement of the paper, let us recall the main
result of [13]1. In this paper we use notations Vn = Cn, gn = End(V ), bn, nn
are the upper, respectively strictly upper, triangular matrices; we also omit the
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subindex n when the rank is obvious from the context.

The free nested Hilbert scheme Hilbfree
1,n is a B-quotient of the sublocus H̃ilb

free

1,n ⊂
bn × nn × Vn of the cyclic triples {(X,Y, v) | C〈X,Y 〉v = Vn}. The usual nested
Hilbert scheme HilbL1,n is the dg subscheme of Hilbfree

1,n ; it is defined by imposing
the equation [X,Y ] = 0.

The torus Tsc = C∗×C∗ acts on Hilbfree
1,n by scaling the matrices. We denote by

Dper
Tsc

(Hilbfree
1,n ) the derived category of two-periodic complexes of Tsc-equivariant

quasi-coherent sheaves on Hilbfree
1,n . Let us also denote by B∨ the descent of the

trivial vector bundle Vn on H̃ilb
free

1,n to the quotient Hilbfree
1,n . Respectively, B stands

for the dual of B∨. In [13] we construct for every β ∈ Brn an element

Sβ ∈ Dper
Tsc

(Hilbfree
1,n )

such that the space of hyper-cohomology of the complex:

Hk(Sβ) := H(Sβ ⊗ ΛkB)

defines an isotopy invariant.

Theorem 1.0.1 ([13]). For any β ∈ Brn the doubly graded space

Hk(β) := H(k+writh(β)−n−1)/2(Sβ)

is an isotopy invariant of the braid closure L(β).

It is natural to expect that the construction of [13] produces the same triply-
graded knot homology as in the original papers [9], [10]. In the Subsection 1.3
we recall the construction of Sβ . Determining the graded dimensions of Hk(β) for
a given braid is a hard computational problem. However, for a special class of
braids, including torus braids, the computation is relatively easy, and we provide
the details.

1.1. Jucys–Murphy elements

The braid group Brn is generated by the elements σi, i = 1, . . . , n− 1 modulo the
standard relations. The mutually commuting elements δi ∈ Brn:

δi := σiσi+1 · · ·σ2
n−1 · · ·σi+1σi, i = 1, . . . , n− 1

are called Jucys–Murphy (JM) elements.
The group of characters of the Borel subgroup Bn is generated by the characters

χi: χ(X) = Xii and we denote by Cχi the corresponding one-dimensional represen-

tation. The trivial line bundle Cχi
on H̃ilb

free

1,n descends to the line bundle Li on

the quotient Hilbfree
1,n . The main result of this note is the following

Theorem 1.1.1. For any β ∈ Brn we have

Hk(Sβ·δ) = Hk(Sβ ⊗ Lδ),
where δ =

∏n
i=2 δ

ri
i and Lδ = ⊗ni=2L

⊗ri
i .

The scheme HilbL1,n is expected to have many features of the usual Hilbert
scheme of points on the plane. However, since the derived structure is non-trivial,
the computations on the dg scheme HilbL1,n are very challenging. In contract, the

space Hilbfree
1,n is smooth manifold and is an iterated tower of projective spaces. In

particular, we have the following
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Proposition 1.1.2. The line bundle L1 ⊗ · · · ⊗ Ln−1 is ample on Hilbfree
1,n .

Using the ampleness from the previous conjecture we can use the spectral
sequence argument to imply an easy

Corollary 1.1.3. If the numbers ri are sufficiently large then

Hk(Sδ) = H0(Hilbfree
1,n , [OHilbL

1,n
]vir ⊗ ΛkB ⊗ Lδ),

where [OHilbL
1,n

]vir is the notation for the defining complex of the dg scheme HilbL1,n.

Now we explain the method of the proof of the main theorem and describe some
other interesting algebraic structures that are explored in this paper.

1.2. Geometric realization of the affine and finite braid groups

The affine braid group Braff
n is the group of braids whose strands may also wrap

around a ‘flag pole’. The group is generated by the standard generators σi, i =
1, . . . , n−1 and a braid ∆n that wraps the last strand of the braid around the flag
pole:

σi =

i+1 i
• • • • • • •

• • • • • • •

.........................................................................................

.........................................................................................

................
............∗

..............

......................................................

......................................................

......................................................
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.......
.........
......
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and ∆n =
• • • • • • •

• • • • • • •
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..................................................

................................
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..............
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..........................................................................................................................
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.......................

.

The defining relations for these generators are

σn−1 ·∆n · σn−1 ·∆n = ∆n · σn−1 ·∆n · σn−1,

σi ·∆n = ∆n · σi, i < n− 1,

σi · σi+1 · σi = σi+1 · σi · σi+1, i = 1, . . . , n− 2,

σi · σj = σj · σi, |i− j| > 1.

The mutually commuting Bernstein–Lusztig (BL) elements ∆i ∈ Braff
n are de-

fined as follows:

∆i = σi · · ·σn−2σn−1∆nσn−1σn−2 · · ·σi =

i
• • • • • • •

• • • • • • •

..................................................

................................

..................................................

................................

................
............∗

..............

...............................

...............................

...............................

...............................
...............

...............
...............

...............

......................................................

......................................................

................................. ...................... ...................... ...................... ...........

........................................................................................................................................

.............................................................................................

...............
........
.....

............................

.

A further discussion of their properties can be found in [8] which is the source of
our affine braid pictures.

There is a natural homomorphism fgt : Braff
n → Brn; geometrically it is defined

by removing the flag pole. In particular we have:

fgt(∆n) = 1, fgt(∆i) = δi, i = 1, . . . , n− 1.

The main technical tool in [13] is the realization of Brn inside of the convolution
algebra of the category of equivariant matrix factorizations (MFsc

B2
n
(X 2(Gn),W ), ?̄)

where X 2(Gn) = bn ×Gn × nn and

W = Tr(X, g, Y ) = Tr(XAdg(Y )).

Now we extend this structure:
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Theorem 1.2.1. There is a homomorphism:

Φaff : Braff
n → (MFsc

B2
n
(X 2(Gn),W ), ?̄).

Note that the paper [2] constructs a homomorphism from the affine braid group
to the category of matrix factorizations. The construction of [2] relies on the earlier
result of Riche [15], the construction in [13] is independent of the results in [15].
It is unclear to us how to relate the results in this paper to the constructions of
the paper [2].

Given a matrix factorization C in MFsc
B2

n
(X 2(Gn),W ) and two characters ξ, τ :

B → C∗ we define the twisted matrix factorization C〈ξ, τ〉 to be the matrix
factorization C ⊗ Cξ ⊗ Cτ . In these terms we have

Theorem 1.2.2. For any i = 1, . . . , n we have

Φaff(∆i) = Φaff(1)〈χi, 0〉.
The results of this paper are based on a realization that the ordinary braid

group Brn acts naturally on the framed version X 2,fr(Gn) of space X 2(Gn):

X 2,fr(Gn) = {(X, g, Y, v) ∈ X 2(Gn)× Vn | C〈X,Adg(Y )〉v = Vn, g
−1(v) ∈ V 0}

where V 0 is the subset of V consisting of vectors with non-zero last coordinate.
There is a natural map fgt : X 2,fr(Gn) → X 2(Gn), and a pull-back along fgt
provides a natural analog of homomorphism Φaff which we restrict on the finite
part of the braid group Brn = C〈σ1, . . . , σn−1〉:

Φfr : Brn → MFsc
B2(X 2,fr,W ).

Theorem 1.2.3. On MFsc
B2

n
(X 2,fr(Gn),W ) there is a convolution algebra structure

?̄, and the pull-back map

fgt∗ : MFsc
B2

n
(X 2,fr(Gn),W )→ MFsc

B2
n
(X 2(Gn),W )

is a homomorphism of the convolution algebras.

The convolution algebra structures are compatible with the forgetful homomor-
phism fgt:

Theorem 1.2.4. We have

fgt∗ ◦ Φaff = Φfr ◦ fgt.
1.3. Geometric trace operator

The variety H̃ilb
free

1,n embeds inside X 2(Gn) via the map je : (X,Y, v)→ (X, e, Y, v).

The diagonal copy B = B∆ ↪→ B2 respects the embedding je and since j∗e (W ) = 0,
we obtain a functor:

j∗e : MFsc
B2

n
(X 2(Gn),W )→ MFsc

B∆
(H̃ilb

free

1,n , 0).

Respectively, we get a geometric version of “closure of the braid” map:

L : MFsc
B2

n
(X 2(Gn),W )→ Dper

Tsc
(Hilbfree

1,n ).

The main result of [13] could be restated in more geometric terms via the geometric
trace map:

Tr : Brn → Dper
Tsc

(Hilbfree
1,n ), Tr(β) := ⊕kL(Φfr(β))⊗ Λ•B.
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Theorem 1.3.1 ([13]). The composition H◦Tr : Brn → Dper
Tsc

(pt) categorifies the
Jones–Ocneanu trace and thus defines a triply graded homology of links.

Theorem 1.0.1 now follows from the theorems in this section. Indeed, let ∆ =∏
i ∆ki

i and δ =
∏
i δ
ki
i then we have

L ◦Φfr(β · δ) = L ◦Φfr ◦ fgt(β ·∆) = L ◦ fgt∗ ◦Φaff(β ·∆) = L(fgt∗ ◦Φaff(β))⊗Lδ.

To summarize, we constructed the following commutative diagram:

Braff
n Brn L

(MFsc
B2

n
(X 2(Gn),W ), ?̄) (MFsc

B2
n
(X 2,fr(Gn),W ), ?̄) Vect-gr

fgt

Φaff

cl

Φfr H(3)

fgt∗ H◦Tr

. (1)

Here L is the set of (isotopy classes of) oriented links in a 3-sphere, cl is the
closure of a braid and H(3) is the triply graded link homology defined in [13].

The left commutative diagram has two important generalizations. The first
generalization uses the concatenation homomorphism cnt : Braff

n ×Braff
m → Braff

n+m

which is geometrically an insertion of the affine braid element on m strands in place
of the flag pole of the n-strand braid:

Braff
n ×Braff

m Braff
n+m

(MFn, ?̄)× (MFm, ?̄) (MFn+m, ?̄)

cnt

Φaff×Φaff
Φaff

indn

;

here MFn := MFsc
B2

n
(X 2(Gn),W ) and indn is the induction functor described in

Section 3.1. The second generalization uses the concatenation map cnt : Braff
n ×

Brm → Brn+m which is an insertion of an ordinary braid on m strands in place
of the flag pole of the affine braid:

Braff
n ×Brm Brn+m

(MFn, ?̄)× (MFfrm , ?̄) (MFfrn+m, ?̄)

cnt

Φaff×Φfr Φfr

indn

;
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here MFfrm := MFsc
B2

m
(X 2,fr(Gm),W ) and indn is the functor from the Section 3.1.

In particular, the left square of our main diagram 1 is the last diagram with m = 0.
We expect that both diagrams will play an important role in further extension

of the theory from [13] to the case of the colored link homology and to the proof
of the corresponding cabling formula which is a focus of our current research.

The rest of the paper consists of two sections. In Section 2 we recall the main
steps of the construction of the convolution algebras on the category of equivariant
matrix factorizations of the space X 2 = b × Gn × n and its bigger version which
we call ‘non-reduced space’. We need this section for the proofs of our main result
but this section also could be useful for the reader who is interested in the results
of [13] but not interested in the details of the proofs. In Section 3 we explain the
construction of the homomorphism from [13] and explain how it extends to the
case of the affine braid groups. We also prove our main result about the forgetful
pull-back functor.

Acknowledgements. We would like to thank Roman Bezrukavnikov, Eugene
Gorsky, Andrei Neguţ, and Jake Rasmussen for useful discussions. L. R. is espe-
cially thankful to Dmitry Arinkin for illuminating discussions. A. O. is especially
thankful to Andrei Neguţ for illuminating discussions. Both authors are very
thankful to an anonymous referee who made many very valuable suggestions that
helped to improve the text. The work of A. O. was partially supported by NSF
CAREER grant DMS-1352398. The work of L. R. is supported by NSF grant DMS-
1108727.

2. Convolution algebras

In this section we define convolution algebras on the categories of matrix facto-
rizations on several auxiliary spaces. First we discuss the spaces and maps between
them. The main space used for our constructions of the convolution algebras is
the space

X`(Gn) = g× (Gn × nn)
`
.

It has a natural Gn ×B`n-action

(b1, . . . , b`) · (X, g1, Y1, . . . , g`, Y`) = (X, g1 · b−1
1 ,Adb1(Y1), . . . , g` · b−1

` ,Adb`(Y`)),

h · (X, g1, Y1, . . . , g`, Y`) = (Adh(X), h · g1, Y1, . . . , h · g`, Y`).

The space is X2 is particularly important. The central object of our study is
the matrix factorizations on this space with the potential:

W (X, g1, Y1, g2, Y2) = Tr(X(Adg1
(Y1)−Adg2

(Y2))).

Below we briefly discuss the categories of matrix factorizations and their equivari-
ant analogues.

2.1. Matrix factorizations

Matrix factorizations were introduced by Eisenbud [3] and later the subject was
further developed by Orlov [14]; one can also consult [4] for an overview. Below
we present only the basic definitions and do not present any proofs.
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Let us recall that for an affine variety Z and a function F ∈ C[Z] there exists
a triangulated category MF(Z, F ). The objects of the category are pairs

F = (M0 ⊕M1, D), D : Mi →Mi+1, D2 = F,

where Mi are free C[Z]-modules of finite rank and D is a homomorphism of C[Z]-
modules.

Given F = (M,D) and G = (N,D′) the linear space of morphisms Hom(F ,G)
consists of homomorphisms of C[Z]-modules φ = φ0 ⊕ φ1, φi ∈ Hom(Mi, Ni) such
that φ ◦D = D′ ◦ φ. Two morphisms φ, ρ ∈ Hom(F ,G) are homotopic if there is
a homomorphism of C[Z]-modules h = h0 ⊕ h1, hi ∈ Hom(Mi, Ni+1) such that
φ− ρ = D′ ◦ h− h ◦D.

In the paper [13] we introduced a notion of equivariant matrix factorizations
which we explain below. First let us recall the construction of the Chevalley–
Eilenberg complex.

2.2. Chevalley–Eilenberg complex

Suppose that h is a Lie algebra. Chevalley–Eilenberg complex CEh is the complex
(V•(h), d) with Vp(h) = U(h)⊗C Λph and differential dce = d1 + d2 where:

d1(u⊗x1∧. . .∧xp) =

p∑
i=1

(−1)i+1uxi⊗x1∧. . .∧x̂i∧. . .∧xp,

d2(u⊗x1∧. . .∧xp) =
∑
i<j

(−1)i+ju⊗[xi, xj ]∧x1∧. . .∧x̂i∧. . .∧x̂j∧. . .∧xp.

Let us denote by ∆ the standard map h→ h⊗ h defined by x 7→ x⊗ 1 + 1⊗ x.
Suppose V and W are modules over the Lie algebra h; then we use notation

V⊗
∆

W for the h-module which is isomorphic to V ⊗ W as a vector space, the
h-module structure being defined by ∆. Respectively, for a given h-equivariant

matrix factorization F = (M,D) we denote by CEh⊗
∆

F the h-equivariant matrix

factorization (CEh⊗
∆

F , D+dce). The h-equivariant structure on CEh⊗
∆

F originates
from the left action of U(h) that commutes with the right action on U(h) used in
the construction of CEh.

A slight modification of the standard fact that CEh is the resolution of the

trivial module implies that CEh⊗
∆

M is a free resolution of the h-module M .

2.3. Equivariant matrix factorizations

Let us assume that there is an action of the Lie algebra h on Z and F is an
h-invariant function. Then we can construct the following triangulated category
MFh(Z,W ).

The objects of the category are triples:

F = (M,D, ∂), (M,D) ∈ MF(Z,W )

where M =M0⊕M1 and M i=C[Z]⊗V i, V i ∈ Modh, ∂ ∈
⊕

i>jHomC[Z](Λ
ih⊗M,

Λjh⊗M) and D is an odd endomorphism D ∈ HomC[Z](M,M) such that

D2 = F, D2
tot = F, Dtot = D + dce + ∂,
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where the total differential Dtot is an endomorphism of CEh⊗
∆

M , that commutes
with the U(h)-action.

Note that we do not impose the equivariance condition on the differential D
in our definition of matrix factorizations. On the other hand, if F = (M,D) ∈
MF(Z, F ) is a matrix factorization with D that commutes with h-action on M
then (M,D, 0) ∈ MFh(Z, F ).

There is a natural forgetful functor MFh(Z, F )→ MF(Z, F ) that forgets about
the correction differentials:

F = (M,D, ∂) 7→ F ] := (M,D).

Given two h-equivariant matrix factorizations F =(M,D, ∂) and F̃ =(M̃, D̃, ∂̃),

the space of morphisms Hom(F , F̃) consists of homotopy equivalence classes of

elements Ψ ∈ HomC[Z](CEh⊗
∆

M,CEh⊗
∆

M̃) such that Ψ ◦ Dtot = D̃tot ◦ Ψ and

Ψ commutes with U(h)-action on CEh⊗
∆

M . Two maps Ψ,Ψ′ ∈ Hom(F , F̃) are
homotopy equivalent if there is

h ∈ HomC[Z](CEh⊗
∆

M,CEh⊗
∆

M̃)

such that Ψ − Ψ′ = D̃tot ◦ h − h ◦ Dtot and h commutes with U(h)-action on

CEh⊗
∆

M .
Given two h-equivariant matrix factorizations F = (M,D, ∂) ∈ MFh(Z, F ) and

F̃ = (M̃, D̃, ∂̃) ∈ MFh(Z, F̃ ) we define F ⊗F̃ ∈ MFh(Z, F + F̃ ) as the equivariant

matrix factorization (M ⊗ M̃,D + D̃, ∂ + ∂̃).

2.4. Push-forwards, quotient by the group action

The technical part of [13] is the construction of push-forwards of equivariant matrix
factorizations. Here we state the main results; the details may be found in Section
3 of [13]. We need push-forwards along projections and embeddings. We also use
the functor of taking a quotient by group action for our definition of the convolution
algebra.

The projection case is more elementary. Suppose Z = X × Y , both Z and X
have h-action and the projection π : Z → X is h-equivariant. Then for any h
invariant element w ∈ C[X ]h there is a functor π∗ : MFh(Z, π∗(w))→ MFh(X , w)
which simply forgets the action of C[Y ].

We define an embedding-related push-forward in the case when the subvariety

Z0
j
↪−→ Z is the common zero of an ideal I = (f1, . . . , fn) such that the functions

fi ∈ C[Z] form a regular sequence. We assume that the Lie algebra h acts on Z
and I is h-invariant. Then there exists an h-equivariant Koszul complex K(I) =
(Λ•Cn ⊗C[Z], dK) over C[Z] which has non-trivial homology only in degree zero.
Then in Section 3 of [13] we define the push-forward functor

j∗ : MFh(Z0,W |Z0
) −→ MFh(Z,W ),

for any h-invariant element W ∈ C[Z]h.
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Finally, let us discuss the quotient map. The complex CEh is a resolution of
the trivial h-module by free modules. Thus the correct derived version of taking
the h-invariant part of the matrix factorization F = (M,D, ∂) ∈ MFh(Z,W ),
W ∈ C[Z]h is

CEh(F) := (CEh(M), D + dce + ∂) ∈ MF(Z/H,W ),

where Z/H := Spec(C[Z]h) and we use the general definition of h-module V :

CEh(V ) := Homh(CEh,CEh⊗
∆

V ).

2.5. Convolutions and reduced spaces

For a Borel group B, we treat B-modules as T -equivariant n = Lie([B,B])-
modules. For a space Z with B-action and for W ∈ C[Z]B we define MFB(Z,W )
as the full subcategory of MFn(Z,W ) whose objects are matrix factorizations
(M,D, ∂), where M is a B-module and the differentials D and ∂ are T -invariant.
The category MFB`(Z,W ) has a similar definition.

The categories that we use in [13] are subcategories MFsc
B`(X`, F )⊂MFB`(X`, F )

that consist of the matrix factorizations which are equivariant with respect to the
action of Tsc and G-invariant.

The space X3 has natural projections πij on X2 onto the corresponding factors.
Since π∗12(W ) + π∗23(W ) = π∗13(W ), there is a well-defined binary operation on
matrix factorizations MFsc

B2(X2,W ):

F ? G := π13∗(CEh(2)(π∗12(F)⊗ π∗23(G)))T
(2)

. (2)

This operation defines an associative product and we call the corresponding
algebra the convolution algebra. For computational reasons we also introduce a
smaller ‘reduced’ space X ` := b×G`−1 × n with the B`-action:

(b1, . . . , b`) · (X, g1, . . . , g`−1, Y ) = (Adb1(X), b1g1b
−1
2 , b2g2b

−1
3 , . . . ,Adb`(Y )).

In particular the space X 2 has the following B2-invariant potential:

W (X, g, Y ) = Tr(XAdg(Y )).

Proposition 5.1 from [13] provides a functor:

Φ : MFsc
B2(X 2,W )→ MFsc

B2(X2,W )

which is an embedding of the categories. Without the B2-equivariant structure the
functor is an ordinary Knörrer functor [11], the equivariant version of the Knörrer
functor is defined as composition of the equivariant pull-back and push-forward
(see [13, Sect. 5]):

Φ := jx∗ ◦ π∗y ,

where πy : X̃2 → X 2, X̃2 := b×G×n×G×n is the projection πy(X, g1, Y1, g2, Y2) =

(X, g−1
1 g2, Y2) and jx is the natural embedding of X̃2 into X2.
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Let us also introduce a convolution algebra structure on the category of matrix
factorizations MFsc

B2(X 2,W ). There are the following maps π̄ij : X 3 → X 2:

π̄12(X, g12, g13, Y ) = (X, g12,Adg23(Y )++),

π̄13(X, g12, g13, Y ) = (X, g12g23, Y ),

π̄23(X, g12, g13, Y ) = (Ad−1
g12

(X)+, g23, Y ).

Here and everywhere below X+ and X++ stand for the upper and strictly-upper
triangular parts of X. The map π̄12×π̄23 is B2-equivariant but not B3-equivariant.
However in [13, Sect. 5.4] we show that for any F ,G ∈ MFsc

B2(X ,W ) there is a
natural element

(π̄12 ⊗B π̄23)∗(F � G) ∈ MFsc
B3(X 3, π̄

∗
13(W )), (3)

such that we can define the binary operation on MFsc
B2(X ,W ):

F ?̄G := π̄13∗(CEn(2)((π̄12 ⊗B π̄23)∗(F � G))T
(2)

)

and Φ intertwines the convolution structures:

Φ(F) ? Φ(G) = Φ(F ?̄G).

2.6. Convolution on framed spaces

As we mentioned in the introduction, it is natural to consider the framed version
of our basic spaces. The framed version of the non-reduced space is an open subset
X`,fr ⊂ X` × V defined by the stability condition:

C〈Ad−1
gi (X), Yi〉g−1

i (u) = V, g−1
i (u) ∈ V 0 i = 1, . . . , `− 1,

where V 0 ⊂ V is a subset of vectors with a non-zero last coordinate. Similarly, we
define the framed reduced space X 2,fr ⊂ X 2 × V with the stability condition

C〈X,Adg(Y )〉u = V, g−1(u) ∈ V 0. (4)

Let us also define X 3,fr to be the intersection π̄−1
12 (X 2,fr) ∩ π̄−1

23 (X 2,fr) where
π̄ij are the maps X 3 × V → X 2 × V which are just extensions of the previously
discussed maps by the identity map on V . Similarly we have the natural maps πij :
X3,fr → X2,fr and both reduced and non-reduced spaces have natural convolution
algebra structure defined by the formulas (2) and (3).

We denote by fgt the maps X2,fr → X2, X 2,fr → X 2 that forget the framing.
Lemma 12.3 of [13] says that the corresponding pull-back morphism is an homo-
morphism of the convolution algebras:

fgt∗(F ? G) = fgt∗(F) ? fgt∗(G).

Finally, let us mention that we can restrict the Knörrer functor Φ on the open set
X 2,fr to obtain the functor

Φ : MFsc
B2(X 2,fr,W )→ MFsc

B2(X2,fr,W ).

This functor intertwines the convolution algebra structures on the reduced and
non-reduced framed spaces.
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3. Geometric realization of the affine braid group

3.1. Induction functors

The standard parabolic subgroup Pk has Lie algebra generated by b and Ei+1,i,
i 6= k. Let us define space X 2(Pk) := b×Pk×n and let us also use notation X 2(Gn)
for X 2. There is a natural embedding īk : X 2(Pk)→ X 2 and a natural projection
p̄k : X 2(Pk)→ X 2(Gk)×X 2(Gn−k). The embedding īk satisfies the conditions for
existence of the push-forward and we can define the induction functor:

indk := īk∗ ◦ p̄∗k : MFsc
B2

k
(X 2(Gk),W )×MFsc

B2
n−k

(X 2(Gn−k),W )

→ MFsc
B2

n
(X 2(Gn),W ).

Similarly we define the space X 2,fr(Pk) ⊂ b × Pk × n × V as an open subset
defined by the stability condition (4). The last space has a natural projection
map p̄k : X 2,fr(Pk)→ X 2(Gk)× X 2,fr(Gn−k) and the embedding īk : X 2,fr(Pk)→
X 2,fr(Gn) and we can define the induction functor indk := īk∗ ◦ p̄∗k :

MFsc
B2

k
(X 2(Gk),W )×MFsc

B2
n−k

(X 2,fr(Gn−k),W )→ MFsc
B2

n
(X 2,fr(Gn),W ).

It is shown in [13, Sect. 6 (Prop. 6.2)] that the functor indk is the homomorphism
of the convolution algebras:

indk(F1 � F2)?̄indk(G1 � G2) = indk(F1?̄G2 � F2?̄G2).

To define the non-reduced version of the induction functors one needs to introduce
the space X ◦2 (Gn) = g×Gn × n× n which is a slice to the Gn-action on the space
X2. In particular, the potential W on this slice becomes:

W (X, g, Y1, Y2) = Tr(X(Y1 −Adg(Y2))).

Similarly to the case of the reduced space, one can define the space X ◦2 (Pk) :=
g×Pk×n×n and the corresponding maps ik : X ◦2 (Pk)→ X ◦(Gn), pk : X ◦2 (Pk)→
X ◦2 (Gk) × X ◦2 (Gn−k). Thus we get a version of the induction functor for non-
reduced spaces:

indk := ik∗ ◦ p∗k : MFsc
B2

k
(X2(Gk),W )×MFsc

B2
n−k

(X2(Gn−k),W )

→ MFsc
B2

n
(X2(Gn),W ).

It is shown in [13, Prop. 6.1] that the Knörrer functor is compatible with the
induction functor:

indk ◦ (Φk × Φn−k) = Φn ◦ indk.

3.2. Generators of the finite braid group action

Let us define B2-equivariant embedding i : X 2(Bn) → X 2, X 2(B) := b × B × n.
The pull-back of W along the map i vanishes and the embedding i satisfies the
conditions for existence of the push-forward

i∗ : MFsc
B2(X 2(Bn), 0)→ MFsc

B2(X 2(Gn),W ).
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We denote by C[X 2(Bn)] ∈ MFsc
B2(X 2(Bn), 0) the matrix factorization with zero

differential that is homologically non-trivial only in even homological degree. As
is shown in Proposition 7.1 of [13], the push-forward

1̄n := i∗(C[X 2(Bn)])

is the unit in the convolution algebra. Similarly, 1n := Φ(1̄n) is also a unit in the
non-reduced case.

Let us first discuss the case of the braids on two strands. The key to construction
of the braid group action in [13] is the following factorization in the case n = 2:

W (X, g, Y ) = y12(2g11x11 + g21x12)g21/ det,

where det = det(g) and

g =

[
g11 g12

g21 g22

]
, X =

[
x11 x12

0 x22

]
, Y =

[
0 y12

0 0

]
.

Thus we can define the following strongly equivariant Koszul matrix factorization:

C̄+ := (C[X 2]⊗ Λ〈θ〉, D, 0, 0) ∈ MFsc
B2(X 2,W ),

D =
g12y12

det
θ + [g11(x11 − x22) + g21x12]

∂

∂θ
,

where Λ〈θ〉 is the exterior algebra with one generator.
This matrix factorization corresponds to the positive elementary braid on two

strands.
Using the induction functor we can extend the previous definition on the case

of the arbitrary number of strands. For that we introduce an insertion functor:

Indk,k+1 : MFsc
B2

2
(X 2(G2),W )→ MFsc

B2
n
(X 2(Gn),W ),

Indk,k+1(F) := indk+1(indk−1(1̄k−1 ×F)× 1̄n−k−1),

and similarly we define the non-reduced insertion functor

Indk,k+1 : MFsc
B2

2
(X2(G2),W )→ MFsc

B2
n
(X2(Gn),W ).

Thus we define the generators of the braid group as follows:

C̄(k)
+ := Indk,k+1(C̄+), C(k)

+ := Indk,k+1(C+).

Section 11 of [13] is devoted to the proof of the braid relations between these
elements:

C̄(k+1)
+ ?̄C̄(k)

+ ?̄C̄(k+1)
+ = C̄(k)

+ ?̄C̄(k+1)
+ ?̄C̄(k)

+ ,

C(k+1)
+ ? C(k)

+ ? C(k+1)
+ = C(k)

+ ? C(k+1)
+ ? C(k)

+ .

Let us now discuss the inversion of the elementary braid. In view of the inductive
definition of the braid group action, it is sufficient to understand the inversion in
the case n = 2.

Thus we define:

C− := C+〈−χ1, χ2〉 ∈ MFsc
B2(X2(G2),W ),

and the definition of C̄− is similar. As we will see below, the definition of C− is
actually symmetric with respect to the left-right twisting: C− = C+〈χ2,−χ1〉.
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Theorem 3.2.1. We have:
C+ ? C− = 12. (5)

Proof of this relation in the case of SL spaces in given in [13, Sect. 9]. The same
proof works for the GL-case considered in this paper.

3.3. Generators of the affine braid group action

The new generators that we would need to construct the action of the affine braid
group are of the form 1n〈α, β〉. Proposition 9.1 of [13] states that only the sum of
the weights α+ β matters. More precisely, we have the following homotopy

1n〈α, β〉 ∼ 1n〈α+ γ, β − γ〉.

Also note that the element 1n〈
∑n
i=1 χi, 0〉 is a central element of the convolution

algebra and elements 1n〈χi, 0〉, i = 1, . . . , n generate a commutative subalgebra of
the convolution algebra. In particular, in the case n = 2 we have:

C+〈−χ1, χ2〉 = 1〈χ1 + χ2, 0〉 ? C+〈−χ1, χ2〉 ? 1〈−χ1 − χ2, 0〉 = C+〈χ2,−χ1〉.

Theorem 3.3.1. The assignment

σ±1
i 7→ C(i)

± , ∆i 7→ 1n〈χi, 0〉

extends to the algebra homomorphism Φaff : Braff
n → MFsc

B2(X ,W ).

Proof. Since the elements 1n〈χi, 0〉 mutually commute, it is enough to check the
equation

C(i)
+ ? 1n〈χi+1, 0〉 ? C(i)

+ = 1n〈χi, 0〉. (6)

Let us first discuss the case n = 2. In this case the only relation that we need
to show is

C+ ? 12〈χ2, 0〉 ? C+ = 12〈χ1, 0〉.

This relation follows from the previous theorem. Denote ζ = χ1 + χ2, then

C+ ? 12〈χ2, 0〉 ? C+ = C+ ? 12〈−χ1 + ζ, 0〉 ? C+
= C+ ? 12〈−χ1, 0〉 ? C+ ? 12〈χ2, 0〉 ? 12〈ζ − χ2, 0〉
= C+ ? 12〈0,−χ1〉 ? C+ ? 12〈χ2, 0〉 ? 12〈χ1, 0〉
= C+ ? C− ? 12〈χ1, 0〉
= 12〈χ1, 0〉.

(7)

The case of general n follows from the case n = 2 because of our inductive
definition of the braid group generators. Indeed, applying the functor Indi+1,i to
the equation (7) we get the required equation (6). 2

3.4. Stabilization morphism

To complete our proof of Theorem 1.2.4 we need to prove the following
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Proposition 3.4.1. We have the following formulas for the action of the forgetful
functor:

fgt∗ : 1n〈χn, 0〉 7→ 1n, 1̄n〈χn, 0〉 7→ 1̄n.

Proof. Let us show the first equation, since the second one is analogous. Indeed,
the space X2,fr has coordinates (X, g1, Y1, g2, Y2, v) and the stability condition
implies that g−1

1 (v) is the vector that has a non-zero last component. Hence, the
function S = (g−1

1 (v))n is an invertible function on X2,fr and the multiplication
by S yields a invertible homomorphism of the matrix factorizations on X2,fr that
identifies fgt∗(1n〈χn, 0〉) = 1〈χn, 0〉 with 1n. 2
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