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COTANGENT BUNDLE TO THE FLAG VARIETY–I

V. LAKSHMIBAI∗

Department of Mathematics
Northeastern University
Boston, MA 02115, USA

lakshmibai@neu.edu

C. S. SESHADRI

Chennai Mathematical Institute
Siruseri, Kelambakkam, Chennai

Tamil Nadu 603103, India

css@cmi.ac.in

R. SINGH

Department of Mathematics
Northeastern University
Boston, MA 02115, USA

singh.rah@husky.neu.edu

Abstract. We show that there is a SLn-stable closed subset of an affine Schubert variety
in the infinite-dimensional flag variety (associated to the Kac–Moody group ŜLn) which
is a natural compactification of the cotangent bundle to the finite-dimensional flag variety
SLn/B.

1. Introduction

Let the base field K be the field of complex numbers. Consider a cyclic quiver
with h vertices and dimension vector d = (d1, . . . , dh):
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Denote Vi = Kdi . Let

Z = Hom(V1, V2)× · · · × Hom(Vh, V1), GLd =
∏

1≤i≤h

GL(Vi).
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We have a natural GLd-action on Z: for g=(g1, . . . , gh)∈GLd, f=(f1, . . . , fh)∈
Z,

g · f = (g2f1g
−1
1 , g3f2g

−1
2 , . . . , g1fhg

−1
h ).

Let

N = {(f1, . . . , fh) ∈ Z | fh ◦ fh−1 ◦ · · · ◦ f1 : V1 → V1 is nilpotent}.
Note that fh ◦ fh−1 ◦ · · · ◦ f1 : V1 → V1 being nilpotent is equivalent to
fi−1 ◦ fi−2 ◦ · · · ◦ f1 ◦ fh ◦ · · · ◦ fi+1fi : Vi → Vi being nilpotent. Clearly N is
GLd-stable. Lusztig (cf. [Lu1]) has shown that an orbit closure in N is canonically

isomorphic to an open subset of a Schubert variety in ŜLn/Q, where n=
∑

1≤i≤h di,

and Q is the parabolic subgroup of ŜLn corresponding to omitting α0, αd1 , αd1+d2 ,

. . . , αd1+···+dh−1
(αi, 0 ≤ i ≤ n− 1 being the set of simple roots for ŜLn). Corres-

ponding to h = 1, we have that N is in fact the variety of nilpotent elements in
Md1,d1(K), and thus the above isomorphism identifies N with an open subset of

a Schubert variety XN in ŜLn/G0, G0 being the maximal parabolic subgroup of

ŜLn corresponding to “omitting” α0.
Let now h = 2

Z0 = {(f1, f2) ∈ Z | f2 ◦ f1 = 0, f1 ◦ f2 = 0}.
Strickland (cf. [S]) has shown that each irreducible component of Z0 is the conormal
variety to a determinantal variety in Md1,d2(K). A determinantal variety in
Md1,d2(K) being canonically isomorphic to an open subset in a certain Schubert
variety in Gd2,d1+d2 (the Grassmannian variety of d2-dimensional subspaces of
Kd1+d2) (cf. [LS]), the above two results of Lusztig and Strickland suggest a con-
nection between conormal varieties to Schubert varieties in the (finite-dimensional)
flag variety and the affine Schubert varieties. This is the motivation for this article.
Let G = SLn.

Inspired by Lusztig’s embedding (cf. [Lu1], [Lu2]) of N in ŜLn/Q, we define

a family of maps ψp : T ∗G/B ↪→ ŜLn/B, parametrized by polynomials in one
variable with coefficients in C((t)), and with 1 as the constant term. For a

particular map φ (analogous to Lusztig’s map) in this family, we find a κ0 ∈ Ŵ
such that the affine Schubert variety X(κ0) is G0-stable (G0 being as above, the

maximal parabolic subgroup of ŜLn corresponding to “omitting” α0) and show that

φ gives an embedding T ∗G/B ↪→ X(κ0) ⊂ ŜLn/B. We thus obtain a SLn-stable
closed subvariety of X(κ0) as a natural compactification of T ∗G/B (cf. Theorem

6.4). Let π : ŜLn/B → ŜLn/G0 be the canonical projection. Then we show that
π(T ∗G/B) = N , the variety of nilpotent matrices, and that π |T∗G/B : T ∗G/B →
N is in fact the Springer resolution.

Following the above ideas, Lakshmibai (cf. [L]) has obtained a stronger result
for T ∗Gd,n, the cotangent bundle to the Grassmannian variety Gd,n. She shows
that there is an embedding χ (analogous to φ) of T ∗Gd,n inside a Schubert variety

X(ι) ⊂ ŜLn/Qd (where Qd is the two-step parabolic subgroup of ŜLn correspond-
ing to omitting α0, αd) such that X(ι) is in fact a compactification of T ∗Gd,n. The
result of [L] has been generalized to T ∗G/P in [LRS], G/P being a cominuscule
Grasssmannian variety.
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It would be interesting to know if the result of [L] could be achieved replacing P
with B, for a suitable generalization of χ. We show in §7 that this is not possible for
any ψp in the above family, even when n = 3. We think that our result about the
embedding φ : T ∗G/B ↪→ X(κ0) identifying a certain SLn-stable closed subvariety
of X(κ0) as a natural compactification of T ∗G/B is the best possible in relating

T ∗G/B and affine Schubert varieties in ŜLn/B.
The results of this paper open up other related problems like the study of line

bundles on T ∗G/B,G = SLn (using the embedding of T ∗G/B into X(κ0), and
realizing line bundles on T ∗G/B as restrictions of suitable line bundles on X(κ0)),
establishing similar embeddings of the cotangent bundles to partial flag varieties
G/Q (G semi-simple and Q a parabolic subgroup), etc. Further, the facts that
conormal varieties to Schubert varieties in G/B are closed subvarieties of T ∗G/B,
and that the affine Schubert variety X(κ0) contains a G-stable closed subvariety
which is a natural compactification of T ∗G/B, suggest similar compactifications
for conormal varieties to Schubert varieties in G/B (by suitable affine Schubert

varieties in ŜLn/B); such a realization could lead to important consequences such
as a knowledge of the equations of the conormal varieties (to Schubert varieties)
as subvarieties of the cotangent bundle. These problems will be dealt with in a
subsequent paper.

Regarding results on similar compactifications, we mention Mirkovic–Vybor-
nov’s work (cf. [MV]), where the authors construct compactifications of Nakajima’s
quiver varieties of type A inside affine Grassmannians of type A. Manivel and
Michalek ([MM]) have recently studied the local geometry of tangential varieties
(which are compactifications of the tangent bundle) to cominuscule Grassman-
nians. Also of interest is the work of Achar, Henderson and Riche (see [AH],
[AHR] for details) relating various results of Broer and Reeder to the Springer
resolution via the geometric Satake correspondence.

The sections are organized as follows. In §2, we fix notation and recall affine
Schubert varieties. In §3, we introduce the elements κ and κ0 (in Ŵ , the affine
Weyl group), and prove some properties of κ. In §4, we prove a crucial result on κ

needed for realizing the embeddings of N and T ∗SLn/B inside ŜLn/G0 and ŜLn/B
respectively. In §5, we spell out Lusztig’s isomorphism which identifies N with an
open subset of XG0

(κ) (inside ŜLn/G0). In §6, using the map φ : T ∗G/B → ŜLn/B
as above and the natural projection ŜLn/B → ŜLn/G0, we recover the Springer
resolution of N ; we also prove the main result that φ identifies an SLn-stable closed
subvariety of X(κ0) as a compactification of T ∗G/B. In §7, we show that it is not
possible, for any choice in the family ψp, to realize an affine Schubert variety (in

ŜL3/B) as a compactification of the cotangent bundle T ∗SL3/B.

Acknowledgement: The first author wishes to thank Chennai Mathematical
Institute for the hospitality extended to her during her visit in Winter 2014 when
this work was started. The authors thank the referee for alerting them to the work
of [AH], [AHR]. The authors thank the Macaulay2 team for providing a web client
to the same at http://habanero.math.cornell.edu:3690/.
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2. Affine Schubert varieties

Let K = C, F = K((t)), the field of Laurent series, A = K[[t]]. Let G be a
semi-simple algebraic group over K, T a maximal torus in G, B a Borel subgroup,
B ⊃ T , and let B− be the Borel subgroup opposite to B. Let G = G(F ). The
natural inclusion K ↪→ A ↪→ F induces an inclusion

G ↪→ G(A) ↪→ G.

The natural projection A→ K given by t 7→ 0 induces a homomorphism

π : G(A)→ G.

The group B := π−1(B) is a Borel subgroup of G.

2.1. Bruhat decomposition

Let Ŵ = N(K[t, t−1])/T , the affine Weyl group of G (here, N is the normalizer

of T in G). The group Ŵ is a Coxeter group (cf. [Kac]). We have that

G(F ) =
⋃̇

w∈Ŵ
BwB, G(F )/B =

⋃̇
w∈Ŵ

BwB(modB).

For w ∈ Ŵ , let X(w) be the affine Schubert variety in G(F )/B:

X(w) =
⋃̇

τ≤w
BτB(modB).

It is a projective variety of dimension `(w).

2.2. Affine flag variety, affine Grassmannian

Let G = SL(n), G = G(F ), G0 = G(A). We say g ∈ G is integral if and only if
g ∈ G0, i.e., viewed as G-valued meromorphic function on C, it has no poles at
t = 0. The homogeneous space G/B is the affine flag variety, and G/G0 is the
affine Grassmannian. Further,

G/G0 =
⋃̇

w∈ŴG0
BwG0(modG0)

where ŴG0 is the set of minimal representatives in Ŵ of Ŵ/WG0
.

Let
Ĝr(n) = {A-lattices in Fn}.

Here, by an A-lattice in Fn, we mean a free A-submodule of Fn of rank n. Let E
be the standard lattice, namely, the A-span of the standard F -basis {e1, . . . , en}
for Fn. For V ∈ Ĝr(n), define

vdim(V ) := dimK(V/V ∩ E)− dimK(E/V ∩ E).

One refers to vdim(V ) as the virtual dimension of V . For j ∈ Z denote

Ĝrj(n) = {V ∈ Ĝr(n) | vdim(V ) = j}.
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Then Ĝrj(n), j ∈ Z give the connected components of Ĝr(n). We have a transitive

action of GLn(F ) on Ĝr(n) with GLn(A) as the stabilizer at the standard lattice
E. Further, let G0 be the subgroup of GLn(F ), defined as,

G0 = {g ∈ GLn(F ) | ord(det g) = 0}

(here, for a f ∈ F , say f =
∑

ait
i, order f is the smallest r such that ar 6= 0).

Then G0 acts transitively on Ĝr0(n) with GLn(A) as the stabilizer at the standard

lattice E. Also, we have a transitive action of SLn(F ) on Ĝr0(n) with SLn(A) as
the stabilizer at the standard lattice E. Thus we obtain the identifications:

GLn(F )/GLn(A) ' Ĝr(n),

G0/GLn(A) ' Ĝr0(n), SLn(F )/SLn(A) ' Ĝr0(n).
(∗)

In particular, we obtain

G0/GLn(A) ' SLn(F )/SLn(A). (∗∗)

2.3. Generators for Ŵ

Recall the Weyl group Ŵ = N(K[t, t−1])/T . Let R (resp. R+) be the set of roots
(resp. positive roots) of G relative to B, and let δ be the basic imaginary root of

the affine Kac–Moody algebra of type Ân−1 given by (cf. [Kac])

δ = α0 + θ = α0 + · · ·+ αn−1.

The set of real roots of G is given by {rδ + β | r ∈ Z, β ∈ R}, and the set of

positive roots of G is given by {rδ + β | r > 0, β ∈ R}
⋃̇
R+ (cf. [Kac]). Following

the notation in [Kac], we shall work with the set of generators for Ŵ given by
{s0, s1, . . . , sn−1}, where si, 0 ≤ i ≤ n − 1, are the reflections with respect to
αi, 0 ≤ i ≤ n − 1. Note that {αi, 1 ≤ i ≤ n − 1} is simply the set of simple roots
of SLn (with respect to the Borel subgroup B). In particular, the Weyl group W

of SLn(C) is simply the subgroup of Ŵ generated by {s1, . . . , sn−1}.

2.4. The affine presentation

The generators si, 1 ≤ i ≤ n− 1 have the following canonical lifts to N(K[t, t−1]):
si is the permutation matrix (ars), with ajj = 1, j 6= i, i+1, ai i+1 = 1, ai+1 i = −1,
and all other entries are 0. A canonical lift for s0 is given by

0 0 · · · t−1

0 1 · · · 0
...

...
...

...
0 · · · 1 0
−t 0 0 0

 .

Let sθ ∈ W be the reflection with respect to the longest root θ in An−1 given
by θ = α1 + · · · + αn−1. Let L (resp. Q) be the root (resp. coroot) lattice of
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sln(= Lie(SLn)), and let 〈 , 〉 be the canonical pairing on L×Q. Consider θ∨ ∈ Q
given by θ∨ = α∨1 + · · ·+α∨n−1. There exists (cf. [K], §13.1.6) a group isomorphism

Ŵ →W nQ given by

si 7→ si for 1 ≤ i ≤ n− 1,

s0 7→ sθλ−θ∨ ,

where we write λq for (id, q) ∈ W n Q. In particular, we get s0sθ 7→ λθ∨ , which
we use to compute a lift of λθ∨ to N(K[t, t−1]):

0 0 · · · t−1

0 1 · · · 0
...

...
...

...
0 · · · 1 0
−t 0 0 0




0 0 · · · −1
0 1 · · · 0
...

...
...

...
0 · · · 1 0
1 0 0 0

 =


t−1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 · · · 1 0
0 0 0 t

 .

Consider the element w ∈W corresponding to (1, i)(i+ 1, n) ∈ Sn, and observe
that w(θ∨) = α∨i , the ith simple coroot. It follows that a lift of λα∨i = wλθ∨w

−1

is given by

w


t−1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 · · · 1 0
0 0 0 t

w−1 =


. . .

t−1

t
. . .


where in the matrix on the right-hand side, the dots are 1, and the off-diagonal
entries are 0, i.e., the matrix on the right-hand side is the diagonal matrix with
i, (i+ 1)-th entries being t−1, t respectively, and all other diagonal entries being 1.

The (Coxeter) length of λq is given by the following formula (cf. [K, §13.1.E(3)]):

l(λq) =
∑
α∈R+

|α(q)|, q ∈ Q

where α(q) := 〈α, q〉. The action of λq on the root system of G is determined by
the following formulae (cf. [K, §13.1.6]):

λq(α) = α− α(q)δ for α ∈ R, q ∈ Q,
λq(δ) = δ.

In particular, for α ∈ R+, λq(α) > 0 if and only if α(q) ≤ 0.

Corollary 2.5. For α ∈ R+, q ∈ Q, l(λqsα) > l(λq) if and only if α(q) ≤ 0.

Proof. Follows from the equivalence wsα > w if and only if w(α) > 0, applied to
w = λq. �
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3. The element κ0

Our goal is to give a compactification of the cotangent bundle T ∗G/B as a (left)
SLn stable subvariety of the affine Schubert variety X(κ0), where κ0 is as defined
below:

τ := sn−1 · · · s2s1s0,
κ := τn−1,

κ0 := w′τn−1

where w′ is the longest element in the Weyl group generated by s1, . . . sn−2. We
first prove some properties of κ and τ which are consequences of the braid relations

sisi+1si = si+1sisi+1, 0 ≤ i ≤ n− 2,

s0sn−1s0 = sn−1s0sn−1

and the commutation relations:

sisj = sjsi, 1 ≤ i, j ≤ n− 1, |i− j| > 1, s0si = sis0, 2 ≤ i ≤ n− 2.

3.1. Some facts

Fact 1: τ(δ) = δ.
Fact 2: τ(α1 + · · ·+ αn−1) = 2δ + αn−1.
Fact 3: τ(rδ + αi + · · · + αn−1) = (r + 1)δ + αi−1 + αi + · · · + αn−1, 2 ≤ i ≤
n− 1, r ∈ Z+.
Fact 4: sn−1 · · · sj+1(αj) = αj + αj+1 + · · ·+ αn−1, j 6= 0, n− 1.
Fact 5: sn−1 · · · s1(α0) = δ + αn−1.
Fact 6: τ(αn−1) = δ+αn−2+αn−1 (a special case of Fact 3 with r = 0, i = n−1).
Fact 7: τ(α1) = α0 + αn−1.
Fact 8: τ(αi) = αi−1, i 6= 1, n− 1.
Fact 9: τ(α0 + αn−1) = αn−2.

Remark 3.2. Facts 7, 8, 9 imply that (αn−1 + α0, αn−2, αn−3, . . . , α1) is a cycle of
order n− 1 for τ . In particular, each of these roots is fixed by κ.

3.3. A reduced expression for κ

Let κ be the element in Ŵ defined as above. We may write κ = τ1 · · · τn−1, where
τi’s are equal, and equal to τ(= sn−1 · · · s2s1s0) (we have a specific purpose behind
writing κ as above).

Lemma 3.4. The expression τ1 · · · τn−1 for κ is reduced.

Proof.

Claim: τ1 · · · τisn−1 · · · sj+1(αj), 1 ≤ i ≤ n − 2, 0 ≤ j ≤ n − 2, τ1 · · · τi(αn−1),
1 ≤ i ≤ n− 2 are positive real roots.

Note that the Claim implies the required result. We divide the proof of the
Claim into the following three cases.
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Case 1: To show: τ1 · · · τi(αn−1), 1 ≤ i ≤ n− 2 is a positive real root.

We have

τ1 · · · τi(αn−1)

= τ1 · · · τi−1(δ + αn−2 + αn−1) (cf. §3.1, Fact 6)

= τ1 · · · τi−2(2δ + αn−3 + αn−2 + αn−1) (cf. §3.1, Fact 3)

= τ1 · · · τi−k(kδ + αn−k−1 + · · ·+ αn−1), 0 ≤ k ≤ i− 1 (cf. §3.1, Fact 3).

Note that k ≤ i − 1 implies that n − k − 1 ≥ n − i ≥ 2, and hence we can apply
§3.1, Fact 3. Corresponding to k = i− 1, we obtain τ1 · · · τi(αn−1) = τ1((i− 1)δ +
αn−i + · · ·+ αn−1 ). Hence once again using §3.1, Fact 3, we obtain

τ1 · · · τi(αn−1) = iδ + αn−i−1 + · · ·+ αn−1, 1 ≤ i ≤ n− 2

(note that for 1 ≤ i ≤ n− 2, n− i− 1 ≥ 1).

Case 2: To show: τ1 · · · τisn−1 · · · s1(α0), 1 ≤ i ≤ n− 2 is a positive real root.

We have

τ1 · · · τisn−1 · · · s1(α0)

= τ1 · · · τi(δ + αn−1) (cf. §3.1, Fact 5)

= τ1 · · · τi−1(2δ + αn−2 + αn−1) (cf. §3.1, Fact 6)

= τ1 · · · τi−k((k + 1)δ + αn−k−1 + · · ·+ αn−1), 0≤k≤ i− 1 (cf. §3.1, Fact 3).

Note that as in Case 1, for k ≤ i − 1, we have n − k − 1 ≥ 2, and therefore
§3.1, Fact 3 holds. Corresponding to k = i − 1, we have τ1 · · · τisn−1 · · · s1(α0) =
τ1(iδ + αn−i + · · ·+ αn−1). Hence once again using §3.1 Fact 3, we obtain

τ1 · · · τisn−1 · · · s1(α0) = (i+ 1)δ + αn−i−1 + · · ·+ αn−1, 1 ≤ i ≤ n− 2

(note that for 1 ≤ i ≤ n− 2, n− i− 1 ≥ 1).

Case 3: To show: τ1 · · · τisn−1 · · · sj+1(αj), 1 ≤ i ≤ n− 2, j 6= 0, n− 1 is a positive
real root.

We have τ1 · · · τisn−1 · · · sj+1(αj) = τ i(αj + αj+1 + · · · + αn−1) (cf. §3.1, Fact
4) = τ i(αj) + . . . + τ i(αn−2) + τ i(αn−1) which is positive because each term is
positive (cf. Case 1 and Remark 3.2). �

Corollary 3.5. `(κ) = n(n− 1).

3.6. Minimal representative-property for κ

Lemma 3.7. κ(αi) is a real positive root for all i 6= 0.

Proof. For 1 ≤ i ≤ n− 2, κ(αi) = αi is positive from Remark 3.2. Further,

τ1 · · · τn−1(αn−1)

= τ1 · · · τn−2(δ + αn−2 + αn−1) (cf. §3.1, Fact 6))

= τ1 · · · τn−k((k − 1)δ + αn−k + · · ·+ αn−1), 1 ≤ k ≤ n− 1 (cf. §3.1, Fact 3)).

Note that for 1 ≤ k ≤ n−2, n−k ≥ 2 and hence §3.1, Fact 3 holds. Corresponding
to k = n− 1, we get

τ1 · · · τn−1(αn−1) = τ1((n− 2)δ + α1 + · · ·+ αn−1)

= nδ + αn−1 (cf. §3.1, Facts 1,2). �
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Corollary 3.8. κ is a minimal representative in Ŵ/ŴG0
.

For w ∈ Ŵ , we shall denote the Schubert variety in G/G0 by XG0
(w).

Lemma 3.9. XG0
(κ) is stable for multiplication on the left by G0.

Proof. It suffices to show that

siκ ≤ κ( mod ŴG0
), 1 ≤ i ≤ n− 1. (∗)

The assertion (∗) is clear if i = n− 1. Observe that wsα = sw(α)w. In particular,

since κ fixes αi, 1 ≤ i ≤ n−2, it follows siκ = κsi = κ( mod ŴG0), for 1 ≤ i ≤ n−2.
�

Lemma 3.10. Let P be the parabolic subgroup of G corresponding to the choice of
simple roots {α1, . . . αn−2}. The element κ is a minimal representative in ŴP\Ŵ .

Proof. It is enough to show that siκ > κ, or equivalently, κ−1(αi) > 0 for 1 ≤ i ≤
n− 2. This follows from Remark 3.2. �

Remark 3.11. For the discussion in §3.3, §3.6, concerning reduced expressions,
minimal-representative property and G0-stability, we have used the expression for
elements of Ŵ , Ŵ being considered as a Coxeter group. One may as well carry
out the discussion using the permutation presentations for elements of Ŵ .

Theorem 3.12 (A reduced expression for κ0). The element κ0(= w′τn−1) is the

maximal representative of κ in ŴG0
\Ŵ , i.e., the unique element in Ŵ such that

X(κ0) = G0κB(modB).

In particular, X(κ0) is (left) G0-stable. Let w′ be a reduced expression for the

longest element w′ in ŴP and τ the reduced expression sn−1 · · · s1s0. Then w′τn−1

is a reduced expression for κ0.

Proof. Observe that w = w′sn−1 · · · s1 is a reduced expression for the longest

element w in ŴG0
, and so w′κ = ws0τ

n−2. Lemma 3.10 implies that w′τn−1 is a
reduced expression. In particular,

l(κ0) = l(w′κ) = l(w′sn−1 · · · s1) + l(s0τ
n−2) = l(w) + l(s0τ

n−2).

It remains to show that w′κ is a maximal representative in ŴG0\Ŵ , i.e., siw
′κ <

w′κ, or equivalently l(siw
′κ) < l(w′κ) for 1 ≤ i ≤ n− 1. First note that

l(siw
′κ) = l(siws0τ

n−2) ≤ l(siw) + l(s0τ
n−2).

Now, since w is the longest element in ŴG0
, it follows l(siw) < l(w) and further

l(siw
′κ) < l(w) + l(s0τ

n−2) = l(w′κ). �
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4. The main lemma

In this section, we prove one crucial result involving κ, which we then use to
prove the main result.

Lemma 4.1. Let Y =
∑

1≤i<j≤n aijEij, where Eij is the elementary n×n matrix

with 1 at the (i, j)-th place and 0’s elsewhere. Let Y = Idn×n +
∑

1≤i≤n−1 t
−iY i

(note that Y n = 0). Assume that aii+1 6= 0, 1 ≤ i ≤ n− 1. There exist g ∈ G0, h ∈
B such that gκ = Y h.

Proof. Choose g to be the matrix

g =


0 0 0 · · · 1
−1 0 0 · · · g2n
0 −1 0 · · · g3n
...

...
...

...
0 0 · · · −1 gnn

 .

Note that the lower left corner submatrix (i.e.,the n−1×n−1 submatrix with rows
2-nd through the (n−1)-th of g, and the first n−1 columns of g) is−Idn−1×n−1, and
that the determinant of g equals 1. Hence, we may take gin, 2 ≤ i ≤ n as elements
in K[[t]] so that g ∈ G0. We shall now show that there exist gin, 2 ≤ i ≤ n, and
hij , 1 ≤ i, j ≤ n such that h(∈ B), and gκ = Y h. We have Y −1 = Idn×n − t−1Y .

Set
h = (Idn×n − t−1Y )gκ.

We have (by definition of κ (§3), and the choice of lifts for si (cf. §2.3))

κ = diag(t, . . . , t, t−(n−1)).

Note that since we want h to belong to B, each diagonal entry in h (as an element
of K[[t]]) should have order 0, hij , i > j should have order > 0, and hij , i < j
should have order ≥ 0 (since h(0) should belong to B). Now the diagonal entries
in h are given by

hii = aii+1, 1 ≤ i ≤ n− 1, hnn = t−(n−1)gnn.

Hence choosing gnn such that order gnn = n−1 (note that since g ∈ G0, order gij ≥
0, 1 ≤ i, j ≤ n, so this choice for g is allowed), we obtain that each diagonal entry
in h is in K[[t]], with order equal to 0. Also, we have

hi+1i = −t, 1 ≤ i ≤ n− 1,

hik = 0, k ≤ i− 2, 3 ≤ i ≤ n− 1,

hik = aik+1, 1 ≤ i < k ≤ n− 1.

Thus the entries hik, k ≤ n− 1 satisfy the order conditions mentioned above. Let
us then consider hjn, 1 ≤ j ≤ n. We have

hjn = t−(n−1)gjn −
∑

j+1≤k≤n

t−najkgkn, 1 ≤ j ≤ n. (∗)
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We shall choose gin (in K[[t]]) so that the order of gin equals i− 1 ( note that
this agrees with the above choice of gnn in the discussion of the diagonal entries
in h). Let us write

gin =
∑

g
(k)
in t

k.

We shall show that with the above choice of gin, the integrality condition on the

hin’s imposes conditions on g
(k)
in , i−1 ≤ k ≤ n, 1 ≤ i ≤ n, leading to a linear system

in these g
(k)
in ’s (note that, the integrality condition on the hin’s, 1 ≤ i ≤ n, implies

that hin’s should belong to K[[t]], with the additional condition that hnn should
have order 0, the latter condition having already been accommodated, since gnn has

been chosen to have order n−1). Treating g
(k)
in ’s as the unknowns, we show that the

resulting linear system has a unique solution, thus proving the choice of g, h with
the said properties. We shall now describe this linear system. The linear system

will involve
(
n
2

)
equations in

(
n
2

)
unknowns, namely, g

(k)
in , i− 1 ≤ k ≤ n, 2 ≤ i ≤ n.

The linear system is obtained as follows. The lowest power of t appearing on the
right-hand side of (∗) above is −(n−j) (note that order of gkn equals k−1). Hence
equating the coefficients of t−(n−i), j ≤ i ≤ n − 1 on the right-hand side of (∗) to
0, we obtain

g
(i−1)
jn −

∑
j+1≤k≤n

ajkg
(i)
kn = 0, j ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1. (∗∗)

Note that, corresponding to hnn, we do not have any conditions, since by our
choice of gnn (the order of gnn is n − 1), we have that hnn (= t−(n−1)gnn) is
integral. Also, corresponding to g1n (which is equal to 1, by our choice of g), we

have g
(i)
1n = 0, i ≥ 1, and this occurs just in one equation, namely, the equation

corresponding to the coefficient of t−(n−1) in h1n:

g1n − a12g(1)2n = 0.

Rewriting this equation as

−a12g(1)2n = −1

(there is a purpose behind retaining the negative sign in −a12g(1)2n ), we arrive at
the linear system

AnX = B

where An is a square matrix of size
(
n
2

)
, X is the

(
n
2

)
column matrix (gkjn, j − 1 ≤

k ≤ n, 2 ≤ j ≤ n), and B is the
(
n
2

)
column matrix with the first entry equal to

−1, and all other entries equal to 0.

Claim: An is invertible, and |An| = (−1)(
n
2)
∏

1≤i≤n−1 a
n−i
i i+1.

Note that the Claim implies that (g
(k)
jn ’s, j−1 ≤ k ≤ n, 2 ≤ j ≤ n) are uniquely

determined, and therefore we may choose gjn as elements in K[[t]] with g
(k)
jn ’s,

j − 1 ≤ k ≤ n, as the solutions of the above linear system, with g
(k)
jn , k > n, being

arbitrary.
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We prove the Claim by induction on n. We shall first show that An−1 can
be identified in a natural way as a submatrix of An. We want to think of the
rows of An forming (n− 1) blocks (referred to as row-blocks in the sequel) of size
n− 1, n− 2, . . . , n− j, . . . , 1, namely, the j-th block consists of n− j rows given by
the coefficients occurring on the left-hand side of (∗∗) for j ≥ 2, and for j = 1, the
first block consists of n−1 rows given by the coefficients occurring on the left-hand
side of the following n− 1 equations:

−a12g(1)2n = −1, −g(i)2n −
∑

3≤k≤n

a2kg
(i)
kn = 0, 2 ≤ i ≤ n− 1.

Similarly, we want to think of the columns of An forming (n−1) blocks (referred
to as column-blocks in the sequel) of size n− 1, n− 2, . . . , n− j, . . . , 1, namely, the

j-th block consisting of n−j columns indexed by g
(i)
jn , j−1 ≤ i ≤ n. Then indexing

the n− j rows in the j-th row-block as j, j + 1, . . . , n − 1, the entries in the rows
of the j-th row-block have the following description:

The non-zero entries in the i-th row in the jth row-block (j≥2) are 1,−a23,−a24,
. . . ,−a2 i+1 respectively, occurring at the columns indexed by g

(i−1)
2n , g

(i)
3n , . . . , g

(i)
i+1n.

The non-zero entries in the i-th row in the first row-block (j ≥ 2) are −a12,−a13,
. . . ,−a2 i+1 respectively, occurring at the columns indexed by g

(i)
2n , g

(i)
3n , . . . , g

(i)
i+1n.

From this it follows that An−1 is obtained from An by deleting the first row
in each row-block and the first column in each column-block. For instance, we
describe below A5 and A4; for convenience of notation, we denote bij = −aij . We
have

A5 =



b12 0 0 0 0 0 0 0 0 0
0 b12 0 0 b13 0 0 0 0 0
0 0 b12 0 0 b13 0 b14 0 0
0 0 0 b12 0 0 b13 0 b14 b15
1 0 0 0 b23 0 0 0 0 0
0 1 0 0 0 b23 0 b24 0 0
0 0 1 0 0 0 b23 0 b24 b25
0 0 0 1 0 0 b34 0 0
0 0 0 0 0 1 0 0 b34 b35
0 0 0 0 0 0 0 1 0 b45


,

A4 =


b12 0 0 0 0 0
0 b12 0 b13 0 0
0 0 b12 0 b13 b14
1 0 0 b23 0 0
0 1 0 0 b23 b24
0 0 0 1 0 b34

 .

As rows (respectively columns) of A5, the positions of the first row (respectively,
the first column) in each of the four row-blocks (respectively columns-blocks) in A5

are given by 1, 5, 8, 10; deleting these rows and columns in A5, we get A4. These
rows and columns are highlighted in A5.

As above, let bij = −aij . Now expanding An along the first row, we have
that |An| equals b12|M1|,M1 being the submatrix of An obtained by deleting the
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first row and first column in An (i.e., deleting the first row (respectively, the first
column) in the first row-block (respectively, the first column-block)). Now in M1,
in the first row in the second row-block the only non-zero entry is b23, and it is
a diagonal entry in M1. Hence expanding M1 through this row, we get that |An|
equals b12b23|M2|,M2 being the submatrix of An obtained by deleting the first
rows (respectively, the first columns) in the first two row-blocks (respectively, the
first two column-blocks) in An. Now in M2, in the first row in the third row-block,
the only non-zero entry is b34, and it is a diagonal entry in M2. Hence expanding
M2 along this row, we get that |An| equals b12b23b34|M3|,M3 being the submatrix
of An obtained by deleting the first rows (respectively, the first columns) in the
first three row-blocks (respectively, the first three column-blocks) in An. Thus
proceeding, at the (n− 1)-th step, we get that |An| equals b12b23 · · · bn−1n|An−1|.
By induction, we have |An−1| = (−1)(

n−1
2 )∏

1≤i≤n−2 a
n−1−i
i i+1 . Substituting back for

bij ’s, we obtain |An| = (−1)(
n
2)
∏

1≤i≤n−1 a
n−i
i i+1. It remains to verify the statement

of the claim when n = 2 (starting point of induction). In this case, we have

g =

(
0 1
−1 g22

)
, κ =

(
t 0
0 t−1

)
,

Y −1 =

(
1 −t−1a12
0 1

)
, h =

(
a12 t−1 − t−2a12g22
−t −t−1g22

)
.

Hence the linear system consists of the single equation

−a12g(1)22 = −1.

Hence A2 is the 1× 1 matrix (−a12), and |A2| = −a12, as required. �

5. Lusztig’s map

Consider N , the variety of nilpotent elements in g (the Lie algebra of G). In
this section, we spell out (Lusztig’s) isomorphism which identifies XG0

(κ) as a
compactification of N .

5.1. The map ψ

Consider the map

ψ : N → G/G0, ψ(N) = (Id + t−1N + t−2N2 + · · · )(modG0), N ∈ N .

Note that the sum on the right-hand side is finite, since N is nilpotent. We now
list some properties of ψ.

(i) ψ is injective:
Let ψ(N1) = ψ(N2). Denoting λi := ψ(Ni), i = 1, 2, we get that λ−12 λ1 belongs

to G0. On the other hand,

λ−12 λ1 = (Id− t−1N2)(Id+ t−1N + t−2N2 + · · · ).
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Now λ−12 λ1 is integral. It follows that both sides of the above equation equal Id.
This implies λ1 = λ2, which in turn implies that N1 = N2. Hence we obtain the
injectivity of ψ.

(ii) ψ is G-equivariant:
We have

ψ(g ·N) = ψ(gNg−1)

= (Id + t−1gNg−1 + t−2gN2g−1 + · · · )(modG0)

= g(Id + t−1N + t−2N2 + · · · )g−1(modG0)

= g(Id + t−1N + t−2N2 + · · · )(modG0) (since g−1 ∈ G0)

= gψ(N).

Proposition 5.2. For N ∈ N , ψ(N) belongs to XG0
(κ).

Proof. We divide the proof into two cases.

Case 1: Let N be upper triangular, say,

N = (nij)1≤i,j≤n

where nij = 0, for i ≥ j; note that N ∈ bu, bu being the Lie algebra of Bu, the
unipotent radical of B. We may work in the open subset xii+1 6= 0, 1 ≤ i ≤ n− 1
in bu,

∑
1≤i<j≤n xijEij being a generic element in bu. Hence we may suppose

that ni i+1 6= 0, 1 ≤ i ≤ n − 1. In this case, in view of Lemma 4.1, we have that
there exist g ∈ G0, h ∈ B such that gκ = ψ(N)h. This implies, in view of the
G0-stability for XG0(κ) (cf. Lemma 3.9), ψ(N) belongs to XG0(κ).

Case 2: Let M be an arbitrary nilpotent matrix. Then there exists an upper
triangular matrix N in the G-orbit through N . Hence there exists a g ∈ G such
that M = gNg−1(= g · N) with N upper triangular. Now by G-equivariance of
ψ (cf. (ii) above), we have ψ(M) = g · ψ(N). By case 1, ψ(N) ∈ XG0

(κ); this
together with the G0-stability for XG0

(κ) implies that ψ(M) belongs to XG0
(κ).

�

Theorem 5.3. XG0
(κ) is a compactification of N .

Proof. Let N be the closure of N in G/G0. Combining the above Proposition
with §5.1, (i) and the facts that dimN = n(n − 1) = dimXG0

(κ) (cf. Corollaries
3.5,3.8), we obtain N = XG0

(κ). �

6. Cotangent bundle

In this section, we first recall the Springer resolution. We then construct a family
ψp, parametrized by polynomials p in one variable with coefficients in C((t)) and
constant term 1, of maps ψp : T ∗G/B → G/B. We show that for a particular choice
φ in the family, we get an embedding of T ∗G/B inside G/B. Using the natural
projection G/B → G/G0 and the results of §5, we recover the Springer resolution.
We then show that φ identifies an SLn-stable closed subvariety of X(κ0) as a
compactification of T ∗G/B.
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The cotangent bundle T ∗G/B is a vector bundle over G/B, with the fiber at
any point x ∈ G/B being the cotangent space to G/B at x; the dimension of
T ∗G/B equals 2 dimG/B. Also, T ∗G/B is the fiber bundle over G/B associated
to the principal B-bundle G → G/B, for the adjoint action of B on bu (the Lie
algebra of the unipotent radical Bu of B). Thus

T ∗G/B = G×B bu = G× bu/∼

where the equivalence relation ∼ is given by

(g, Y ) ∼ (gb, b−1Y b), g ∈ G, Y ∈ bu, b ∈ B.

6.1. Springer resolution

Let N be the variety of nilpotent elements in g, the Lie algebra of G. Consider
the map

θ : G×B bu → G/B ×N , θ((g, Y )) = (gB, gY g−1), g ∈ G, Y ∈ bu

We observe the following on the map θ:

(i) θ is well defined:
Let b ∈ B. Consider (gb, b−1Y b)(∼(g, b)). We have,

θ((gb, b−1Y b)) = (gB, gb(b−1Y b)b−1g−1) = (gB, gY g−1) = θ((g, Y )).

(ii) θ is injective:
Suppose θ((g1, Y1)) = θ((g2, Y2)). Then (g1B, g1Y1g

−1
1 ) = (g2B, g2Y2g

−1
2 ). This

implies

g1B = g2B, g1Y1g
−1
1 = g2Y2g

−1
2 .

Hence we obtain

g−11 g2 =: b ∈ B, Y2 = g−12 g1Y1g
−1
1 g2,

∴ g2 = g1b, Y2 = b−1Y1b,

∴ (g1, Y1) = (g1b, b
−1Y1b) = (g2, Y2).

Thus we get an embedding

θ : T ∗G/B ↪→ G/B ×N .

The second projection

T ∗G/B → N , (g, Y ) 7→ gY g−1

is proper and birational and is the celebrated Springer resolution.
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6.2. The maps ψp

Let p(Y ) be a polynomial in Y with coefficients in F , and constant term 1. We
write

p(Y ) = 1 +
∑
i≥1

pi(t)Y
i.

It is clear that p(Y ) ∈ G. Define the map ψp : G×B bu → G/B by

ψp(g, Y ) = gp(Y )(modB), g ∈ G, Y ∈ bu.

The following calculation shows that ψp is well defined: Let g ∈ G, b ∈ B, Y ∈ bu.
Then

ψp((gb, b
−1Y b)) = gb

(
Id + p1(t)b−1Y b+ p2(t)b−1Y 2b+ · · ·

)
(modB)

= g
(
Id + p1(t)Y b+ p2(t)Y 2b+ · · ·

)
(modB)

= g
(
Id + p1(t)Y + p2(t)Y 2 + · · ·

)
(modB)

= ψp(g, Y ).

Also, it is clear that ψp is G-equivariant.

6.3. Embedding of T ∗G/B into G/B
We consider one particular member φ of the family ψp: namely φ = ψp where p(Y )
is the polynomial (1− t−1Y )−1; observe that for nilpotent Y , the function

p(Y ) = (1− t−1Y )−1

= 1 + t−1Y + t−2Y 2 + · · ·

is a polynomial, since the sum on the right-hand side is finite. In particular,
φ : G×B bu → G/B is given by

φ(g, Y ) = g(Id + t−1Y + t−2Y 2 + · · · )(modB).

In the sequel, we shall denote

Y := Id + t−1Y + t−2Y 2 + · · ·

We now list some facts on the map φ:

(i) φ is well-defined.
(ii) φ is injective:

Let φ((g1, Y1)) = φ((g2, Y2)). This implies that g1Y1 ≡ g2Y2(modB), where
recall that for Y ∈ bu, Y = Id + t−1Y + t−2Y 2 + · · · . Hence, g1Y1 = g2Y2x, for

some x ∈ B. Denoting h =: g−12 g1, we have hY1 = Y2x, and therefore,

x = Y2
−1hY1 = Y2

−1(hY1h
−1)h = Y2

−1Y ′1h
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where Y ′1 = hY1h
−1. Hence

xh−1 = Y2
−1Y ′1 = (Id− t−1Y2)(Id + t−1hY1h

−1 + t−2hY 2
1 h
−1 + · · · ).

Now, since x ∈ B, h(= g−12 g1) ∈ G, the left-hand side is integral, i.e., it does not
involve negative powers of t. Hence both sides equal Id. This implies

Y2 = Y ′1 , x = h.

The fact that x = h together with the facts that x ∈ B, h ∈ G implies that

h ∈ B ∩G(= B). (∗)

Further, the fact that Y2 = Y ′1 implies that Y1 = h−1Y2h. Hence

Id + t−1Y1 + t−2Y 2
1 + · · · = Id + t−1h−1Y2h+ t−2h−1Y 2

2 h+ · · ·

From this it follows that
Y1 = h−1Y2h. (∗∗)

Now (∗), (∗∗) together with the fact that h = g−12 g1 imply that

(g1, Y1) = (g2h, h
−1Y2h) ∼ (g2, Y2).

From this, injectivity of φ follows.

(iii) G-equivariance: It is clear that φ is G-equivariant.
(iv) Springer resolution: Consider the projection π : G/B → G/G0. Let x ∈
T ∗G/B, say, x = (g, Y ), g ∈ G, Y ∈ bu. We have

π ◦ φ((g, Y )) = φ((g, Y ))(modG0)

= g(Id + t−1Y + t−2Y 2 + · · · )(modG0)

= g(Id + t−1Y + t−2Y 2 + · · · )g−1(modG0)

= (Id + t−1N + t−2N2 + · · · )(modG0)

where N = gY g−1 is nilpotent. Hence, in view of Lusztig’s isomorphism (cf. Pro-
position 5.3), we recover the Springer resolution as

π |T∗G/B : T ∗G/B → N ↪→ G/G0.

Theorem 6.4 (Compactification of T ∗G/B). Let G = SLn(C) and φ : T ∗G/B→
G/B be as in Section 6.3. Then φ identifies T ∗G/B (the closure being in G/B) with
a G-stable closed subvariety of the affine Schubert variety X(κ0).

Proof. Let (g0, Y ), g0 ∈ G, Y ∈ bu. Then φ(g0, Y ) = g0(Id + t−1Y + t−2Y 2 +
· · · )(modB) = g0Y (modB), where Y = Id + t−1Y + t−2Y 2 + · · · . Writing Y =∑

1≤i<j≤n aijEij with Eij as in Lemma 4.1, we may work in the open subset
xii+1 6= 0, 1 ≤ i ≤ n − 1 in bu,

∑
1≤i<j≤n xijEij being a generic element in bu.

Then Lemma 4.1 implies that there exist g ∈ G0, h ∈ B such that gκ = Y h. Hence
Y belongs to X(κ0)(= G0κB(modB)); hence g0Y is also in X(κ0) (since g0 is
clearly in G0). �
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7. Consequences of ψp for T ∗G/B

In this section, we show that for any polynomial p, the map ψp as defined in

§6.2 cannot realize an affine Schubert variety (in ŜL3/B) as a compactification of
the cotangent bundle T ∗SL3(K)/B.

Proposition 7.1. Let G be the group SL3(K) and the B the Borel subgroup of
upper triangular matrices in G. Let p be a polynomial as in §6.2. Suppose that the
associated map ψp : T ∗G/B → G/B is injective. Then there exist g ∈ G, w ∈ Ŵ
and Y ∈ bu such that ψp(g, Y ) ∈ BwB and l(w) > 6.

Proof. From §6.2, we may assume p(Y ) = 1 +
∑
i≥1

pi(t)Y
i. We first claim that

p1(t) /∈ A. Assume the contrary. For

Z =

0 1 0
0 0 0
0 0 0


we see that Z2 = 0, and so p(Z) = 1 + p1(t)Z ∈ B. In particular, ψp(Z) = ψp(0),
contradicting the injectivity of ψp.

We now write p(Y ) = 1− t−aqY − t−brY 2 where

• q, r ∈ A.
• q(0) 6= 0.
• a ≥ 1.
• Either r = 0 or r(0) 6= 0.

We now fix Y =

0 1 0
0 0 1
0 0 0

 and g =

 0 0 −1
0 −1 0
−1 0 0

, so that

gp(Y ) =

 0 0 −1
0 −1 t−aq
−1 t−aq t−br

 .

Our strategy is to find elements C,D ∈ B such that Cgp(Y )D ∈ N(K[t, t−1]). We
can then identify the Bruhat cell containing gp(Y ), and so identify the minimal
Schubert variety containing ψp(g, Y ). The choice of C,D depends on the values of
certain inequalities, which we divide into 4 cases. We draw here a decision tree
showing the relationship between the inequalities and the choice C,D:

Case 1

r = 0

Case 1

b ≤
a

Case 2

a < b < 2a
Case 3

q2 + r = 0

Case 4
q2 + r 6= 0

2a = b

Case 4

2a
<
b

r 6= 0
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A rational function in t is implicitly equated with its Laurent power series at 0.
In particular, a rational function f belongs to A if and only if f has no poles at 0,
i.e. its denominator is not divisible by t.

(1) If r = 0 or b ≤ a, let

C =


rt2a−b + q2 qta t2a

0 − q

rt2a−b + q2
− ta

rt2a−b + q2

0 0 −1

q

 ,

D =


1 0 0
qta

rt2a−b + q2
1 −rt

a−b

q
t2a

rt2a−b + q2
0 1

 .

We compute

Cgp(Y )D =

−t2a 0 0
0 0 t−a

0 t−a 0

 .

It follows that gp(Y ) ∈ Bλqs2B, where q = −2aα∨1 − aα∨2 . We calculate

l(λq) = |α1(q)|+ |α2(q)|+ |α1(q) + α2(q)|
= 3a+ 0 + 3a

= 6a.

It follows from lemma 2.5 that l(λqs2) > l(λq) = 6a ≥ 6.

(2) Suppose a < b < 2a. In particular, a ≥ 2, b ≥ 3. Let

C =


−rt2a−b + q2 qta t2a

0 − r

rt2a−b + q2
−qtb−a

rt2a−b + q2

0 0
1

r

 ,

D =


1 0 0
taq

q2 + t2a−br
1 0

t2a

q2 + t2a−br
−qt

b−a

r
1

 .

We compute

Cgp(Y )R =

t2a 0 0
0 tb−2a 0
0 0 t−b

 .
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It follows that gp(Y ) ∈ BλqB, where q = −2aα∨1 − bα∨2 . We calculate

l(λq) = |α1(q)|+ |α2(q)|+ |α1(q) + α2(q)|
= (4a− b) + (2b− 2a) + (2a+ b)

= 4a+ 2b ≥ 14.

(3) If b = 2a and q2 + r = 0, let

C =

q ta 0
0 q ta

0 0
1

q2

, D =


1 0 0
0 1 0

− t
2a

q2
ta

q
1

.
We compute

Cgp(Y )D =

 0 −ta 0
−ta 0 0

0 0 −t−2a

 .

It follows that gp(Y ) ∈ Bλqs1B, where q = −aα∨1 −2aα∨2 . Similar to the first case,
we see that l(λqs1) > 6.

(4) Suppose either b > 2a, or b = 2a and r+q2 6= 0. In particular, r+q2tb−2a 6= 0
and b ≥ 2. Let

C =


−r − q2tb−2a −qtb−a −tb

0 − r

r + q2tb−2a
qtb−a

r + q2tb−2a

0 0
1

r

 ,

D =


1 0 0

qtb−a

q2tb−2a + r
1 0

tb

q2tb−2a + r
−qt

b−a

r
1

 .

We compute

Cgp(Y )D =

tb 0 0
0 1 0
0 0 t−b

 .

It follows that gp(Y ) ∈ BλqB, where q = −bα∨1 − bα∨2 . We calculate

l(λq) = |α1(q)|+ |α2(q)|+ |α1(q) + α2(q)|
= b+ b+ 2b

= 4b ≥ 8. �

146



COTANGENT BUNDLE TO THE FLAG VARIETY–I

References

[AH] P. Achar, A. Henderson Geometric Satake, Springer correspondence, and small
representations, Selecta Math. 19 (2013), 949–986.

[AHR] P. Achar, A. Henderson, S. Riche Geometric Satake, Springer correspondence,
and small representations II, Represent. Theory 19 (2015), 94–166.

[Kac] V. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press,
Cambridge, 1990

[K] S. Kumar, Kac–Moody Groups, their Flag Varieties and Representation Theory,
Progress in Mathematics, Vol. 204, Birkhäuser Boston, Boston, MA, 2002.
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